diff options
Diffstat (limited to '1970/CH10')
-rwxr-xr-x | 1970/CH10/EX10.1/CH10Exa1.sce | 9 | ||||
-rwxr-xr-x | 1970/CH10/EX10.10/CH10Exa10.sce | 14 | ||||
-rwxr-xr-x | 1970/CH10/EX10.11/CH10Exa11.sce | 9 | ||||
-rwxr-xr-x | 1970/CH10/EX10.12/CH10Exa12.sce | 10 | ||||
-rwxr-xr-x | 1970/CH10/EX10.13/CH10Exa13.sce | 15 | ||||
-rwxr-xr-x | 1970/CH10/EX10.14/CH10Exa14.sce | 19 | ||||
-rwxr-xr-x | 1970/CH10/EX10.15/CH10Exa15.sce | 16 | ||||
-rwxr-xr-x | 1970/CH10/EX10.2/Ch10Exa2.sce | 20 | ||||
-rwxr-xr-x | 1970/CH10/EX10.3/CH10Exa3.sce | 16 | ||||
-rwxr-xr-x | 1970/CH10/EX10.4/CH10Exa4.sce | 12 | ||||
-rwxr-xr-x | 1970/CH10/EX10.5/CH10Exa5.sce | 15 | ||||
-rwxr-xr-x | 1970/CH10/EX10.6/CH10Exa6.sce | 18 | ||||
-rwxr-xr-x | 1970/CH10/EX10.7/CH10Exa7.sce | 9 | ||||
-rwxr-xr-x | 1970/CH10/EX10.8/CH10Exa8.sce | 18 | ||||
-rwxr-xr-x | 1970/CH10/EX10.9/CH10Exa9.sce | 19 |
15 files changed, 219 insertions, 0 deletions
diff --git a/1970/CH10/EX10.1/CH10Exa1.sce b/1970/CH10/EX10.1/CH10Exa1.sce new file mode 100755 index 000000000..08c62275d --- /dev/null +++ b/1970/CH10/EX10.1/CH10Exa1.sce @@ -0,0 +1,9 @@ +// Scilab code Exa10.1 : : Page-455 (2011)
+clc; clear;
+M = 47.668; // Total mass of reaction, MeV
+E = 44.359; // Total energy, MeV
+Q = M-E; // Q-value, MeV
+printf("\nThe Q-value for the formation of P30 = %5.3f MeV", Q);
+
+// Result
+// The Q-value for the formation of P30 = 3.309 MeV
\ No newline at end of file diff --git a/1970/CH10/EX10.10/CH10Exa10.sce b/1970/CH10/EX10.10/CH10Exa10.sce new file mode 100755 index 000000000..ee6c0c8a7 --- /dev/null +++ b/1970/CH10/EX10.10/CH10Exa10.sce @@ -0,0 +1,14 @@ +// Scilab code Exa10.10 : : Page-458 (2011) +clc; clear; +N_0 = 6.02252e+26; // Avogadro's constant +sigma = 3.5e-28; // Cross section, square metre +rho = 8.9e+03; // Nuclear density, Kg per cubic metre +M = 58; // Mass number +summation = rho/M*N_0*sigma; // Macroscopic cross section, per metre +x = 0.01e-02; // Thickness of nickel sheet, metre +I0_ratio_I = exp(summation*x/2.3026); // Fractional attenuation of neutron beam on passing through nickel sheet +printf("\nThe fractional attenuation of neutron beam on passing through nickel sheet = %6.4f", I0_ratio_I); + +// Result +// The fractional attenuation of neutron beam on passing through nickel sheet = 1.0014 +// Wrong answer given in the textbook diff --git a/1970/CH10/EX10.11/CH10Exa11.sce b/1970/CH10/EX10.11/CH10Exa11.sce new file mode 100755 index 000000000..9be87c934 --- /dev/null +++ b/1970/CH10/EX10.11/CH10Exa11.sce @@ -0,0 +1,9 @@ +// Scilab code Exa10.11 : : Page-458 (2011) +clc; clear; +lambda = sqrt(1.45e-021/(4*%pi)); // Wavelength, metre +W_ratio = 2.3e-07; // Width ratio +sigma = W_ratio*(4*%pi)*lambda^2*10^28; // Scattering contribution, barn +printf("\nThe scattering contribution to the resonance = %4.2f barns", sigma); + +// Result +// The scattering contribution to the resonance = 3.33 barns diff --git a/1970/CH10/EX10.12/CH10Exa12.sce b/1970/CH10/EX10.12/CH10Exa12.sce new file mode 100755 index 000000000..d728c4585 --- /dev/null +++ b/1970/CH10/EX10.12/CH10Exa12.sce @@ -0,0 +1,10 @@ +// Scilab code Exa10.12 : : Page-458 (2011) +clc; clear; +sigma = 2.8e-024; // Cross section, metre square +lambda = 2.4e-11; // de Broglie wavelength, metre +R_prob = %pi*sigma/lambda^2; // Relative probabilities of (n,n) and (n,y) in indium +printf("\nThe relative probabilities of (n,n) and (n,y) in indium = %5.3f", R_prob); + +// Result +// The relative probabilities of (n,n) and (n,y) in indium = 0.015 + diff --git a/1970/CH10/EX10.13/CH10Exa13.sce b/1970/CH10/EX10.13/CH10Exa13.sce new file mode 100755 index 000000000..edb040784 --- /dev/null +++ b/1970/CH10/EX10.13/CH10Exa13.sce @@ -0,0 +1,15 @@ +// Scilab code Exa10.13 : : Page-459 (2011) +clc; clear; +h = 6.625e-34; // Planck's constant, joule sec +m_n = 1.67e-27; // Mass of neutron, Kg +E = 4.906; // Energy, joule +w_y = 0.124; // radiation width, eV +w_n = 0.007*E^(1/2); // Probability of elastic emission of neutron, eV +I = 3; // Total angular momentum +I_c = 2; // Total angular momentum in the compound state +sigma = ((h^2)*(2*I_c+1)*w_y*w_n)*10^28/(2*%pi*m_n*E*1.602e-019*(2*I+1)*(w_y+w_n)^2); // Cross section, barns +printf("\nThe cross section of neutron capture = %5.3e barns", sigma); + +// Result +// The cross section of neutron capture = 3.755e+004 barns + diff --git a/1970/CH10/EX10.14/CH10Exa14.sce b/1970/CH10/EX10.14/CH10Exa14.sce new file mode 100755 index 000000000..ab42dd6b4 --- /dev/null +++ b/1970/CH10/EX10.14/CH10Exa14.sce @@ -0,0 +1,19 @@ +// Scilab code Exa10.14 : : Page-459 (2011) +clc; clear; +R = 5; // Radius, femto metre +k_d = 0.98; // The value of k for deutron +k_p = 0.82; // The value of k for triton +theta = rand(1,5); // Angles at which differetial cross section is maximum, degree +// Use of for loop for angles calculation(in degree) +for l = 0:4 + theta = round((acos((k_d^2+k_p^2)/(2*k_d*k_p)-l^2/(2*k_d*k_p*R^2)))*180/3.14); + printf("\nFor l = %d", l); + printf(",the value of theta_max = %d degree", ceil(theta)); + end + +// Result +// For l = 0,the value of theta_max = 0 degree +// For l = 1,the value of theta_max = 8 degree +// For l = 2,the value of theta_max = 24 degree +// For l = 3,the value of theta_max = 38 degree +// For l = 4,the value of theta_max = 52 degree
\ No newline at end of file diff --git a/1970/CH10/EX10.15/CH10Exa15.sce b/1970/CH10/EX10.15/CH10Exa15.sce new file mode 100755 index 000000000..5cb82bae9 --- /dev/null +++ b/1970/CH10/EX10.15/CH10Exa15.sce @@ -0,0 +1,16 @@ +// Scilab code Exa10.15 : : Page-459 (2011) +clc; clear; +k_d = 2.02e+30; // The value of k for deutron +k_t = 2.02e+30; // The value of k for triton +theta = 23*3.14/180; // Angle, radiams +q = sqrt (k_d+k_t-2*k_t*cos(theta))*10^-15; // the value of q in femto metre +R_0 = 1.2; // Distance of closest approach, femto metre +A = 90; // Mass number of Zr-90 +z = 4.30; // Deutron size, femto metre +R = R_0*A^(1/3)+1/2*z; // Radius of the nucleus, femto metre +l = round(q*R); // Orbital angular momentum +I = l+1/2 // Total angular momentum +printf("\nThe total angular momentum transfer = %3.1f ", I); + +// Result +// The total angular momentum transfer = 4.5
\ No newline at end of file diff --git a/1970/CH10/EX10.2/Ch10Exa2.sce b/1970/CH10/EX10.2/Ch10Exa2.sce new file mode 100755 index 000000000..12744c119 --- /dev/null +++ b/1970/CH10/EX10.2/Ch10Exa2.sce @@ -0,0 +1,20 @@ +// Scilab code Exa10.2 : : Page-455 (2011)
+clc; clear;
+E_x = 7.70; // Energy of the alpha particle, MeV
+E_y = 4.44; // Energy of the proton, MeV
+m_x = 4.0; // Mass number of alpha particle
+m_y = 1.0; // Mass number of protium ion
+M_X = 14; // Mass number of nitrogen nucleus
+M_Y = 17; // Mass number of oxygen nucleus
+theta = 90*3.14/180; // Angle between incident beam direction and emitted proton, degree
+A_x = 4.0026033; // Atomic mass of alpha particle, u
+A_X = 14.0030742; // Atomic mass of nitrogen nucleus, u
+A_y = 1.0078252; // Atomic mass of proton, u
+Q = ((E_y*(1+m_y/M_Y))-(E_x*(1-m_x/M_Y))-2/M_Y*sqrt((m_x*m_y*E_x*E_y))*cos(theta))/931.5; // Q-value, u
+A_Y = A_x+A_X-A_y-Q; // Atomic mass of O-17, u
+printf("\nThe Q-value of the reaction = %9.7f u \nThe atomic mass of the O-17 = %10.7f u", Q, A_Y);
+
+// Result
+// The Q-value of the reaction = -0.0012755 u
+// The atomic mass of the O-17 = 16.9991278 u
+// Atomic mass of the O-17 : 16.9991278 u
\ No newline at end of file diff --git a/1970/CH10/EX10.3/CH10Exa3.sce b/1970/CH10/EX10.3/CH10Exa3.sce new file mode 100755 index 000000000..b1c9acb36 --- /dev/null +++ b/1970/CH10/EX10.3/CH10Exa3.sce @@ -0,0 +1,16 @@ +// Scilab code Exa10.3 : : Page-455 (2011)
+clc; clear;
+m_p = 1.007276; // Atomic mass of the proton, u
+m_H = 3.016049; // Atomic mass of the tritium, u
+m_He = 3.016029; // Atomic mass of the He ion, u
+m_n = 1.008665; // Atomic mass of the emitted neutron, u
+Q = (m_p+m_H-m_He-m_n)*931.5; // Q-value in MeV
+E_p = 3; // Kinetic energy of the proton, MeV
+theta = 30*3.14/180; // angle, radian
+u = sqrt(m_p*m_n*E_p)/(m_He+m_n)*cos(theta); //
+v = ((m_He*Q)+E_p*(m_He-m_p))/(m_He+m_n); //
+E_n = (u+sqrt(u^2+v))^2; // Kinetic energy of the emitted neutron,MeV
+printf("\nThe kinetic energy of the emitted neutron = %5.3f MeV", E_n);
+
+// Result
+// The kinetic energy of the emitted neutron = 1.445 MeV
\ No newline at end of file diff --git a/1970/CH10/EX10.4/CH10Exa4.sce b/1970/CH10/EX10.4/CH10Exa4.sce new file mode 100755 index 000000000..663ccaea9 --- /dev/null +++ b/1970/CH10/EX10.4/CH10Exa4.sce @@ -0,0 +1,12 @@ +// Scilab code Exa10.4 : : Page-456 (2011)
+clc; clear;
+r_min = 4e-015; // Distance between two deutrons, metre
+k = 1.3806504e-023; // Boltzmann's constant, Joule per kelvin
+alpha = 1/137; // Fine structure constant
+h_red = 1.05457168e-034; // Reduced planck's constant, Joule sec
+C = 3e+08; // Velocity of light, meter per second
+T = alpha*h_red*C/(r_min*k);
+printf("\nThe temperature in the fusion reaction is = %3.1e K", T);
+
+// Result
+// The temperature in the fusion reaction is = 4.2e+009 K
\ No newline at end of file diff --git a/1970/CH10/EX10.5/CH10Exa5.sce b/1970/CH10/EX10.5/CH10Exa5.sce new file mode 100755 index 000000000..0d5d622ee --- /dev/null +++ b/1970/CH10/EX10.5/CH10Exa5.sce @@ -0,0 +1,15 @@ +// Scilab code Exa11.5 : : Page-456 (2011)
+clc; clear;
+E_0 = 4.99; // Energy of the proton, MeV
+m_p = 1; // Mass number of the proton
+m_F = 19; // Mass number of the flourine
+E = E_0/(1+m_p/m_F); // Energy of the relative motion, MeV
+A_F = 18.998405; // Atomic mass of the fluorine, amu
+A_H = 1.007276; // Atomic mass of the proton, amu
+A_Ne = 19.992440; // Atomic mass of the neon, amu
+del_E = (A_F+A_H-A_Ne)*931.5; // Binding energy of the absorbed proton, MeV
+E_exc = E+del_E; // Excitation energy of the compound nucleus, MeV
+printf("\nThe excitation energy of the compound nucleus = %6.3f MeV", E_exc);
+
+// Result
+// The excitation energy of the compound nucleus = 17.074 MeV
\ No newline at end of file diff --git a/1970/CH10/EX10.6/CH10Exa6.sce b/1970/CH10/EX10.6/CH10Exa6.sce new file mode 100755 index 000000000..8f97aa143 --- /dev/null +++ b/1970/CH10/EX10.6/CH10Exa6.sce @@ -0,0 +1,18 @@ +// Scilab code Exa10.6 : : Page-457 (2011)
+clc; clear;
+E_d = 0.6; // Energy of the deutron, MeV
+m_d = 2; // Mass number of the deutron
+m_Li = 19; // Mass number of the Lithium
+E = E_d/(1+m_d/m_Li); // Energy of the relative motion, MeV
+A_Li = 6.017; // Atomic mass of the Lithium, amu
+A_d = 2.015; // Atomic mass of the deutron, amu
+A_Be = 8.008; // Atomic mass of the Beryllium, amu
+del_E = (A_Li+A_d-A_Be)*931.5; // Binding energy of the absorbed proton, MeV
+E_exc = E+del_E; // Excitation energy of the compound nucleus, MeV
+l_f = 2; // orbital angular momentum of two alpha particle
+P = (-1)^l_f*(+1)^2; // Parity of the compound nucleus
+printf("\nThe excitation energy of the compound nucleus = %6.3f MeV\nThe parity of the compound nucleus = %d", E_exc, P);
+
+// Result
+// The excitation energy of the compound nucleus = 22.899 MeV
+// The parity of the compound nucleus = 1
diff --git a/1970/CH10/EX10.7/CH10Exa7.sce b/1970/CH10/EX10.7/CH10Exa7.sce new file mode 100755 index 000000000..da3039223 --- /dev/null +++ b/1970/CH10/EX10.7/CH10Exa7.sce @@ -0,0 +1,9 @@ +// Scilab code Exa10.7 : : Page-457 (2011) +clc; clear; +lambda = 1e-016; // Disintegration constant, per sec +phi = 10^11; // Neutron flux, neutrons per square cm per sec +sigma = 5*lambda/(phi*10^-27); // Cross section, milli barns +printf("\nThe cross section for neutron induced fission = %d milli barns", sigma); + +// Result +// The cross section for neutron induced fission = 5 milli barns
\ No newline at end of file diff --git a/1970/CH10/EX10.8/CH10Exa8.sce b/1970/CH10/EX10.8/CH10Exa8.sce new file mode 100755 index 000000000..c633371aa --- /dev/null +++ b/1970/CH10/EX10.8/CH10Exa8.sce @@ -0,0 +1,18 @@ +// Scilab code Exa10.8 : : Page-457 (2011) +clc; clear; +N_0 = 6.02252e+026; // Avogadro's constant +rho = 8.9*10^3; // Nuclear density of Co-59, Kg per cubic metre +M = 59; // Mass number +sigma = 30e-028; // Cross section, per square metre +phi = 10^16; // Neutron flux, neutrons per square metre per sec +d = 0.04e-02; // Thickness of Co-59 sheet, metre +t = 3*60*60; // Total reaction time, sec +t_half = 5.2*365*86400; // Half life of Co-60, sec +lambda = 0.693/t_half; // Disintegration constant, per sec +N_nuclei = round(N_0*rho/M*sigma*phi*d*t); // Number of nuclei of Co-60 produced +Init_activity = lambda*N_nuclei; // Initial activity, decays per sec +printf("\nThe number of nuclei of Co60 produced = %5.2e \nThe initial activity per Sq. metre = %1.0g decays per sec", N_nuclei, Init_activity); + +// Result +// The number of nuclei of Co60 produced = 1.18e+019 +// The initial activity per Sq. metre = 5e+010 decays per sec
\ No newline at end of file diff --git a/1970/CH10/EX10.9/CH10Exa9.sce b/1970/CH10/EX10.9/CH10Exa9.sce new file mode 100755 index 000000000..45d3d567f --- /dev/null +++ b/1970/CH10/EX10.9/CH10Exa9.sce @@ -0,0 +1,19 @@ +// Scilab code Exa10.9 : : Page-458 (2011) +clc; clear; +d = 0.1; // Thickness of Fe-54 sheet, Kg per squre metre +M = 54; // Mass number of Fe +m = 1.66e-027; // Mass of the proton, Kg +n = d/(M*m); // Number of nuclei in unit area of the target, nuclei per square metre +ds = 10^-5; // Area, metre square +r = 0.1; // Distance between detector and target foil, metre +d_omega =ds/r^2; // Solid angle, steradian +d_sigma = 1.3e-03*10^-3*10^-28; // Differential cross section, square metre per nuclei +P = d_sigma*n; // Probablity, event per proton +I = 10^-7; // Current, ampere +e = 1.6e-19; // Charge of the proton, C +N = I/e; // Number of protons per second in the incident beam, proton per sec +dN = P*N; // Number of events detected per second, events per sec +printf("\nThe number of events detected = %d events per sec", dN); + +// Result +// The number of events detected = 90 events per sec
\ No newline at end of file |