diff options
Diffstat (limited to '1952')
135 files changed, 1425 insertions, 0 deletions
diff --git a/1952/CH1/EX1.1/Ex1_1.sce b/1952/CH1/EX1.1/Ex1_1.sce new file mode 100755 index 000000000..7bc620654 --- /dev/null +++ b/1952/CH1/EX1.1/Ex1_1.sce @@ -0,0 +1,8 @@ +// chapter 1 , Example1 1 , pg 20
+v=1440 //velocity of ultrasonic waves(in m/s)
+t=0.33 //time lapsed(in sec)
+d=(v*t) //distance travelled by ultrasonic waves
+d1=d/2 //depth of submarine
+disp (d, ' the velocity of ultrasonic waves ( in m) is ' )
+disp (d1, ' the depth of submarine ( in m) is ' )
+
diff --git a/1952/CH1/EX1.10/Ex1_10.sce b/1952/CH1/EX1.10/Ex1_10.sce new file mode 100755 index 000000000..d53880b50 --- /dev/null +++ b/1952/CH1/EX1.10/Ex1_10.sce @@ -0,0 +1,8 @@ +// chapter 1 , Example1 10 , pg 24
+v=1440 //velocity of ultrasonic waves(in m/s)
+t=0.83 //time lapsed(in sec)
+d=(v*t) //distance travelled by sound
+d1=d/2 //depth of submarine
+disp (d, ' the velocity of ultrasonic waves ( in m) is ' )
+disp (d1, ' the depth of submarine ( in m) is ' )
+
diff --git a/1952/CH1/EX1.11/Ex1_11.sce b/1952/CH1/EX1.11/Ex1_11.sce new file mode 100755 index 000000000..7e552fba6 --- /dev/null +++ b/1952/CH1/EX1.11/Ex1_11.sce @@ -0,0 +1,7 @@ +// chapter 1 , Example1 11 , pg 24
+aS=1050//total absorption inside hall(in Sabine)
+//a=average absorption coefficient , S=area of interior surface
+V=9000//volume of hall(in m^3)
+T=(0.165*V)/aS//reverberation time
+printf("Reverberation time of hall\n")
+printf("T=%.4f sec",T)
diff --git a/1952/CH1/EX1.12/Ex1_12.sce b/1952/CH1/EX1.12/Ex1_12.sce new file mode 100755 index 000000000..9e511433a --- /dev/null +++ b/1952/CH1/EX1.12/Ex1_12.sce @@ -0,0 +1,7 @@ +// chapter 1 , Example1 12 , pg 25
+V=13500//volume(in m^3)
+T=1.2//reverberation time(in sec)
+a=0.65//average absorption coefficient(in Sabine/m^2)
+S=(0.165*V)/(a*T)//area of interior surface
+printf("Area of interior surface\n")
+printf("S=%.1f m^2",S)
diff --git a/1952/CH1/EX1.13/Ex1_13.sce b/1952/CH1/EX1.13/Ex1_13.sce new file mode 100755 index 000000000..6e4d77058 --- /dev/null +++ b/1952/CH1/EX1.13/Ex1_13.sce @@ -0,0 +1,7 @@ +// chapter 1 , Example1 13 , pg 25
+V=15000//volume(in m^3)
+T1=1.3//initial reverberation time(in sec)
+aS=(0.165*V)/T1 //total absorption of hall (in Sabine)
+T2=(0.165*V)/(aS+300)//revrberation time of hall after adding 300 chairs each having absorption of 1 Sabine
+printf("Reverberation time of hall after adding 300 chairs\n")
+printf("T2=%.3f sec",T2)
diff --git a/1952/CH1/EX1.14/Ex1_14.sce b/1952/CH1/EX1.14/Ex1_14.sce new file mode 100755 index 000000000..025c232df --- /dev/null +++ b/1952/CH1/EX1.14/Ex1_14.sce @@ -0,0 +1,8 @@ +// chapter 1 , Example1 14 , pg 26
+v=1440 //velocity of ultrasonic waves(in m/s)
+t=0.5 //time lapsed(in sec)
+d=(v*t) //distance travelled by ultrasonic waves
+d1=d/2 //depth of submarine
+disp (d, ' the velocity of ultrasonic waves ( in m) is ' )
+disp (d1, ' the depth of submarine ( in m) is ' )
+
diff --git a/1952/CH1/EX1.15/Ex1_15.sce b/1952/CH1/EX1.15/Ex1_15.sce new file mode 100755 index 000000000..798275d7c --- /dev/null +++ b/1952/CH1/EX1.15/Ex1_15.sce @@ -0,0 +1,6 @@ +// chapter 1 , Example1 15 , pg 26
+lam=2*0.4*10^-3 //distance between 2 antinodes is lam/2 (in m)
+n=1.5*10^6 //frequency of crystal(in Hz)
+v=n*lam //velocity
+printf("velocity of waves in sea water\n")
+printf("v=%.1f m/s",v)
diff --git a/1952/CH1/EX1.16/Ex1_16.sce b/1952/CH1/EX1.16/Ex1_16.sce new file mode 100755 index 000000000..9a4bf9059 --- /dev/null +++ b/1952/CH1/EX1.16/Ex1_16.sce @@ -0,0 +1,8 @@ +// chapter 1 , Example1 16 , pg 26
+l=40*10^-3//length(in m)
+E=11.5*10^10//youngs modulus(in N/m^2)
+d=7250//density(in kg/m^3)
+p=1//fundamental mode
+n= p*sqrt(E/d)/(2*l) //natural frequency
+printf("Fundamental frequency of quartz crystal\n")
+printf("n=%.2f KHz",n*10^-3)
diff --git a/1952/CH1/EX1.2/Ex1_2.sce b/1952/CH1/EX1.2/Ex1_2.sce new file mode 100755 index 000000000..0f39861d4 --- /dev/null +++ b/1952/CH1/EX1.2/Ex1_2.sce @@ -0,0 +1,8 @@ +// chapter 1 , Example1 2 , pg 21
+d=7.25*10^3 //density(in kg/m^3)
+E=115*10^9 //youngs modulus(in N/m^2)
+l=40*10^-3 //length of rod(in m)
+n=sqrt(E/d)/(2*l) //natural frequency of rod
+disp (n*10^-3, 'the natural frequency of rod (in kHz) is ')
+printf("yes,the rod can be used for producing ultrasonic waves because its frequency lies in the ultrasonic range")
+
diff --git a/1952/CH1/EX1.3/Ex1_3.sce b/1952/CH1/EX1.3/Ex1_3.sce new file mode 100755 index 000000000..f0c84c46e --- /dev/null +++ b/1952/CH1/EX1.3/Ex1_3.sce @@ -0,0 +1,8 @@ +// chapter 1 , Example1 3 , pg 21
+l=10^-3//length(in m)
+E=7.9*10^10//youngs modulus(in N/m^2)
+d=2650//density(in kg/m^3)
+p=1//fundamental mode
+n= p*sqrt(E/d)/(2*l) //natural frequency
+printf("Fundamental frequency of quartz crystal\n")
+printf("n=%.2f Hz",n)
diff --git a/1952/CH1/EX1.4/Ex1_4.sce b/1952/CH1/EX1.4/Ex1_4.sce new file mode 100755 index 000000000..f04b8d50c --- /dev/null +++ b/1952/CH1/EX1.4/Ex1_4.sce @@ -0,0 +1,9 @@ +// chapter 1 , Example1 4 , pg 22
+lam=2*0.55*10^-3 //distance between 2 antinodes is lam/2 (in m)
+n=1.45*10^6 //frequency of crystal(in Hz) (given) they have taken n=1.5 Hz in calculation
+v=n*lam //velocity
+printf("velocity of waves in sea water\n")
+printf("v=%.1f m/s",v)
+
+
+//sum is solved using n=1.5 Hz while the frequency given is n=1.45 Hz
diff --git a/1952/CH1/EX1.5/Ex1_5.sce b/1952/CH1/EX1.5/Ex1_5.sce new file mode 100755 index 000000000..82f38c057 --- /dev/null +++ b/1952/CH1/EX1.5/Ex1_5.sce @@ -0,0 +1,7 @@ +// chapter 1 , Example1 5 , pg 22
+l=50*10^-3//length of rod(in m)
+d=7250//density(in kg/m^3)
+E=11.5*10^10//youngs modulus(in N/m^2)
+n=sqrt(E/d)/(2*l)//natural frequency
+printf("Natural frequency of rod\n")
+printf("n=%.2f KHz",n*10^-3)
diff --git a/1952/CH1/EX1.6/Ex1_6.sce b/1952/CH1/EX1.6/Ex1_6.sce new file mode 100755 index 000000000..1f87a64bd --- /dev/null +++ b/1952/CH1/EX1.6/Ex1_6.sce @@ -0,0 +1,8 @@ +// chapter 1 , Example1 6 , pg 23
+l=2*10^-3//length(in m)
+d=2650//density(in kg/m^3)
+E=7.9*10^10//youngs modulus(in N/m^2)
+p=1
+n=(p*sqrt(E/d))/(2*l)//natural frequency
+printf("frequency of crystal\n")
+printf("n=%.3f MHz",n*10^-6)
diff --git a/1952/CH1/EX1.7/Ex1_7.sce b/1952/CH1/EX1.7/Ex1_7.sce new file mode 100755 index 000000000..4c2166664 --- /dev/null +++ b/1952/CH1/EX1.7/Ex1_7.sce @@ -0,0 +1,8 @@ +// chapter 1 , Example1 7 , pg 23
+l=3*10^-3//length(in m)
+d=2500//density(in kg/m^3)
+E=8*10^10//youngs modulus(in N/m^2)
+p=1
+n=(p*sqrt(E/d))/(2*l)//natural frequency
+printf("frequency of ultrasound\n")
+printf("n=%.3f KHz",n*10^-3)
diff --git a/1952/CH1/EX1.8/Ex1_8.sce b/1952/CH1/EX1.8/Ex1_8.sce new file mode 100755 index 000000000..097c7b50e --- /dev/null +++ b/1952/CH1/EX1.8/Ex1_8.sce @@ -0,0 +1,8 @@ +// chapter 1 , Example1 8 , pg 23
+l=1.5*10^-3//length(in m)
+d=2650//density(in kg/m^3)
+E=7.9*10^10//youngs modulus(in N/m^2)
+p=1
+n=(p*sqrt(E/d))/(2*l)//natural frequency
+printf("frequency of crystal\n")
+printf("n=%.3f MHz",n*10^-6)
diff --git a/1952/CH1/EX1.9/Ex1_9.sce b/1952/CH1/EX1.9/Ex1_9.sce new file mode 100755 index 000000000..ee0b6be88 --- /dev/null +++ b/1952/CH1/EX1.9/Ex1_9.sce @@ -0,0 +1,7 @@ +// chapter 1 , Example1 9 , pg 24
+v=1440 //velocity of ultrasonic waves(in m/s)
+t=0.95 //time lapsed(in sec)
+d=(v*t) //distance travelled by ultrasonic waves
+d1=d/2 //depth of sea
+disp (d1, ' the depth of sea ( in m) is ' )
+
diff --git a/1952/CH10/EX10.1/Ex10_1.sce b/1952/CH10/EX10.1/Ex10_1.sce new file mode 100755 index 000000000..e14da5a81 --- /dev/null +++ b/1952/CH10/EX10.1/Ex10_1.sce @@ -0,0 +1,7 @@ +// chapter 10 , Example10 1 , pg 289
+Er=1.0000684 //Dielectric constant
+N=2.7*10^25 //(in atoms/m^3)
+E0=8.85*10^-12 //permittivity of free space (in F/m)
+Alpha_e=(E0*(Er-1))/N //electronic polarization
+printf("Electronic polarization (in F*m^2)\n")
+disp(Alpha_e)
diff --git a/1952/CH10/EX10.2/Ex10_2.sce b/1952/CH10/EX10.2/Ex10_2.sce new file mode 100755 index 000000000..2ac0d3b8d --- /dev/null +++ b/1952/CH10/EX10.2/Ex10_2.sce @@ -0,0 +1,7 @@ +// chapter 10 , Example10 2 , pg 290
+Er=1.0024 //Dielectric constant
+N=2.7*10^25 //(in atoms/m^3)
+E0=8.85*10^-12 //permittivity of free space (in F/m)
+Alpha_e=(E0*(Er-1))/N //electronic polarization
+printf("Electronic polarization (in F*m^2)\n")
+disp(Alpha_e)
diff --git a/1952/CH12/EX12.1/Ex1.sce b/1952/CH12/EX12.1/Ex1.sce new file mode 100755 index 000000000..13f56c912 --- /dev/null +++ b/1952/CH12/EX12.1/Ex1.sce @@ -0,0 +1,11 @@ +// Additional solved examples , Example 1 , pg 330
+lam=590*10^-9//wavelength(in m)
+T=270+273 //temperature(in kelvin) (converting celsius into kelvin)
+k=1.38*10^-23//boltzman constant (in (m^2*Kg)/(s^2*k))
+h=6.625*10^-34//plancks constant(in Js)
+c=3*10^8//speed of light
+N=exp(-(h*c)/(lam*k*T)) //N=(n2/n1)=relative population of atoms in the 1st excited state and in ground state
+//n1=number of atoms in ground state
+//n2=number of atoms in excited state
+printf("Relative population of Na atoms in the 1st excited state and in ground state\n")
+disp(N)
diff --git a/1952/CH12/EX12.10/Ex10.sce b/1952/CH12/EX12.10/Ex10.sce new file mode 100755 index 000000000..81f90f63c --- /dev/null +++ b/1952/CH12/EX12.10/Ex10.sce @@ -0,0 +1,16 @@ +// Additional solved examples , Example 10 , pg 335
+n1=1.5//core refractive index
+n2=1.45//cladding refractive index
+n0=1//refractive index of air
+NA=sqrt(n1^2-n2^2)//numerical aperture
+alpha_m =asin(NA/n0)//angle of acceptance (in radian)
+a=100*10^-6/2 //radius of core
+phi_m=asin((n0*sin(alpha_m))/n1)// no*sin(alpha_m)=n1*sin(phi_m) (in radian)
+L=a/tan(phi_m) //(in m)
+printf("Minimum number of reflections per metre=zero\n") //since rays travelling with alpha=0 suffer no internal reflection
+//for rays travelling with alpha=alpha_m ,1 internal reflection takes place for a transversed distance of 2*L
+N=1/(2*L) //Maximum number of reflections per metre
+disp("Maximum number of reflections per metre(in m^-1)=")
+printf("N=%.0f",N)
+
+//Answer varies as L is restricted to 1.86*10^-4 (m) instead of 1.888*10^-4 (m)
diff --git a/1952/CH12/EX12.11/Ex11.sce b/1952/CH12/EX12.11/Ex11.sce new file mode 100755 index 000000000..e9c748690 --- /dev/null +++ b/1952/CH12/EX12.11/Ex11.sce @@ -0,0 +1,10 @@ +// Additional solved examples , Example 11 , pg 335
+c=3*10^8 //speed of light(in m/sec)
+h=6.625*10^-34//planck's constant(in J s)
+lam=1.4*10^-10//wavelength(in m)
+E=(h*c)/(lam*1.6*10^-19) //energy of photon(in eV)
+p=h/lam //momentum of photon
+printf("Energy of photo\n")
+printf("E=%.1f eV\n",E)
+printf("momentum of photon(in Kg m/sec)\n")
+disp(p)
diff --git a/1952/CH12/EX12.12/Ex12.sce b/1952/CH12/EX12.12/Ex12.sce new file mode 100755 index 000000000..9b09049b0 --- /dev/null +++ b/1952/CH12/EX12.12/Ex12.sce @@ -0,0 +1,8 @@ +// Additional solved examples , Example 12 , pg 336
+E1=2*10^4 //energy emitted per second(in J)
+n=1000*10^3 //frequency(in Hz)
+h=6.625*10^-34 //plancks constant(in J s)
+E=h*n//energy carried by 1 photon(in J)
+N=E1/E//number of photons emitted per second
+printf("number of photons emitted per second\n")
+disp(N)
diff --git a/1952/CH12/EX12.13/Ex13.sce b/1952/CH12/EX12.13/Ex13.sce new file mode 100755 index 000000000..0e8215901 --- /dev/null +++ b/1952/CH12/EX12.13/Ex13.sce @@ -0,0 +1,10 @@ +// Additional solved examples , Example 13 , pg 336
+m=0.05//mass(in Kg)
+v=2000//speed(in m/sec)
+h=6.625*10^-34//plancks constant(in J s)
+p=m*v//momentum(in kg m/sec)
+lam=h/p //wavelength
+printf("de Broglie wavelength(in m)\n")
+disp(lam)
+printf("de Broglie wavelength(in A)\n")
+disp(lam*10^10)
diff --git a/1952/CH12/EX12.14/Ex14.sce b/1952/CH12/EX12.14/Ex14.sce new file mode 100755 index 000000000..804c134bb --- /dev/null +++ b/1952/CH12/EX12.14/Ex14.sce @@ -0,0 +1,8 @@ +// Additional solved examples , Example 14 , pg 336
+h=6.625*10^-34//plancksconstant(in J s)
+c=3*10^8//velocity of x-ray photon(in m/sec)
+m0=9.11*10^-31//rest mass of electron(in Kg)
+phi=(85*%pi)/180//angle of scattering (in radian) (converting degree into radian)
+delta_H=(h*(1-cos(phi)))/(m0*c)//change in wavelength due to compton scattering
+printf("change in wavelength of x-ray photon(in m)\n")
+disp(delta_H)
diff --git a/1952/CH12/EX12.15/Ex15.sce b/1952/CH12/EX12.15/Ex15.sce new file mode 100755 index 000000000..7900a84d2 --- /dev/null +++ b/1952/CH12/EX12.15/Ex15.sce @@ -0,0 +1,19 @@ +// Additional solved examples , Example 15 , pg 337
+//plane has intercepts 2a,2b,3c along the 3 crystal axes
+//lattice points in 3-d lattice are given by r=p*a+q*b+s*c
+//as p,q,r are the basic vectors the proportion of intercepts 2:2:3
+p=2
+q=2
+s=3
+//therefore reciprocal
+r1=1/2
+r2=1/2
+r3=1/3
+//taking LCM
+v=int32([2,2,3])
+l=double(lcm(v))
+m1=(l*r1)
+m2=(l*r2)
+m3=(l*r3)
+printf("miler indices=")
+disp(m3,m2,m1)
diff --git a/1952/CH12/EX12.16/Ex16.sce b/1952/CH12/EX12.16/Ex16.sce new file mode 100755 index 000000000..c8836d419 --- /dev/null +++ b/1952/CH12/EX12.16/Ex16.sce @@ -0,0 +1,19 @@ +// Additional solved examples , Example 16 , pg 337
+//plane has intercepts 4a,2b,4c along the 3 crystal axes
+//lattice points in 3-d lattice are given by r=p*a+q*b+s*c
+//as p,q,r are the basic vectors the proportion of intercepts 2:2:3
+p=4
+q=2
+s=4
+//therefore reciprocal
+r1=1/4
+r2=1/2
+r3=1/4
+//taking LCM
+v=int32([4,2,4])
+l=double(lcm(v))
+m1=(l*r1)
+m2=(l*r2)
+m3=(l*r3)
+printf("miler indices=")
+disp(m3,m2,m1)
diff --git a/1952/CH12/EX12.17/Ex17.sce b/1952/CH12/EX12.17/Ex17.sce new file mode 100755 index 000000000..2450aec6f --- /dev/null +++ b/1952/CH12/EX12.17/Ex17.sce @@ -0,0 +1,8 @@ +// Additional solved examples , Example 17 , pg 338
+d110=1.96//spacing of(1 1 0) planes (in Angstrom)
+h=1
+k=1
+l=0 //(h k l)=(1 1 0)
+a=d110*sqrt(h^2+k^2+l^2)//size of unit cell
+printf("size of unit cell=")
+printf("a=%.2f angstrom",a)
diff --git a/1952/CH12/EX12.18/Ex18.sce b/1952/CH12/EX12.18/Ex18.sce new file mode 100755 index 000000000..7265c8952 --- /dev/null +++ b/1952/CH12/EX12.18/Ex18.sce @@ -0,0 +1,7 @@ +// Additional solved examples , Example 18 , pg 339
+r=1.575 *10^-10 //radius of atom (in m)
+a=2*r//lattice constant (for HCP structure) (in m)
+c=a*sqrt(8/3) //(in m)
+V=(3*sqrt(3)*a^2*c)/2 //volume of unit cell
+printf("volume of unit cell(in m^3)\n")
+disp(V)
diff --git a/1952/CH12/EX12.19/Ex19.sce b/1952/CH12/EX12.19/Ex19.sce new file mode 100755 index 000000000..c40fc2728 --- /dev/null +++ b/1952/CH12/EX12.19/Ex19.sce @@ -0,0 +1,11 @@ +// Additional solved examples , Example 19 , pg 339
+Vf=7*10^5 //Fermi velocity (in m/s)
+m=9.11*10^-31 // mass of electron(in Kg)
+Ef=(m*Vf^2)/2 //Fermi energy (in J)
+printf("Fermi energy for the electrons in the metal=")
+printf("Ef=%.1f eV",(Ef/(1.6*10^-19))) //converting J into eV
+
+
+
+
+//Answer is given wrong
diff --git a/1952/CH12/EX12.2/Ex2.sce b/1952/CH12/EX12.2/Ex2.sce new file mode 100755 index 000000000..399a89710 --- /dev/null +++ b/1952/CH12/EX12.2/Ex2.sce @@ -0,0 +1,11 @@ +// Additional solved examples , Example 2 , pg 330
+lam=500*10^-9//wavelength(in m)
+T=250+273 //temperature(in kelvin) (converting celsius into kelvin)
+k=1.38*10^-23//boltzman constant (in (m^2*Kg)/(s^2*k))
+h=6.625*10^-34//plancks constant(in Js)
+c=3*10^8//speed of light
+N=exp(-(h*c)/(lam*k*T)) //N=(n2/n1)=relative population of atoms in the 1st excited state and in ground state
+//n1=number of atoms in ground state
+//n2=number of atoms in excited state
+printf("Relative population of Na atoms in the 1st excited state and in ground state\n")
+disp(N)
diff --git a/1952/CH12/EX12.20/Ex20.sce b/1952/CH12/EX12.20/Ex20.sce new file mode 100755 index 000000000..9f016011c --- /dev/null +++ b/1952/CH12/EX12.20/Ex20.sce @@ -0,0 +1,23 @@ +// Additional solved examples , Example 20 , pg 339
+rho=1.8*10^-8 //resistivity (in ohm*m)
+Ef=4.8 //Fermi energy (in eV)
+E=100 //electric field intensity (in V/m)
+n=6.2*10^28 //concentration of electrons (in atoms/m^3)
+e=1.6*10^-19 //charge in electron (in C)
+Me=9.11*10^-31 //mass of electron (in Kg)
+T=Me/(rho*n*e^2) //relaxation time
+Un=(e*T)/Me //mobility of electron
+Vd=(e*T*E)/Me //drift velocity
+Vf=sqrt((2*Ef*e)/Me) //Fermi velocity
+lam_m=Vf*T //mean free path
+
+printf("Relaxation time of electron (in s)")
+disp(T)
+printf("Mobility of electron (in m^2/(V*s))")
+disp(Un)
+printf("Drift velocity of electron (in m/s)")
+disp(Vd)
+printf("Fermi velocity of electrons (in m/s)")
+disp(Vf)
+printf("Mean free path(in m)")
+disp(lam_m)
diff --git a/1952/CH12/EX12.21/Ex21.sce b/1952/CH12/EX12.21/Ex21.sce new file mode 100755 index 000000000..e1b9dc136 --- /dev/null +++ b/1952/CH12/EX12.21/Ex21.sce @@ -0,0 +1,6 @@ +// Additional solved examples , Example 21 , pg 341
+del_E=0.02*1.6*10^-19 // del_E = E-Ef (in J) (converting eV into J)
+T=220 //temperature (in K)
+k=1.38*10^-23 //boltzmanns constant (in J/K)
+F_E=1/(1+exp(del_E/(k*T))) //Fermi Dirac distribution function
+printf("F_E=%.3f",F_E)
diff --git a/1952/CH12/EX12.22/Ex22.pdf b/1952/CH12/EX12.22/Ex22.pdf Binary files differnew file mode 100755 index 000000000..643f64ad5 --- /dev/null +++ b/1952/CH12/EX12.22/Ex22.pdf diff --git a/1952/CH12/EX12.22/Ex22.png b/1952/CH12/EX12.22/Ex22.png Binary files differnew file mode 100755 index 000000000..81d6cb3c5 --- /dev/null +++ b/1952/CH12/EX12.22/Ex22.png diff --git a/1952/CH12/EX12.22/Ex22.sce b/1952/CH12/EX12.22/Ex22.sce new file mode 100755 index 000000000..a4b5130c6 --- /dev/null +++ b/1952/CH12/EX12.22/Ex22.sce @@ -0,0 +1,28 @@ +// Additional solved examples , Example 22 , pg 341
+ni=1.5*10^10 //intrinsic concentration (in cm^-3)
+Nd=5*10^15 //donor concentration (in atoms/cm^3)
+T=300 //temperature (in K)
+e=1.6*10^-19 //charge of electron (in C)
+k=1.38*10^-23 //Boltzmann constant (in J/K)
+n0=Nd //Assuming n0=Nd ( since Nd >> ni)
+p0=ni^2/n0 //hole concentration
+E=k*T*log(n0/ni) // E=(Ef-Ei) location of Ef relative to Ei
+printf("Hole concentration (in cm^-3)")
+disp(p0)
+printf("Location of Ef relative to Ei (in eV)")
+disp(E/e)
+x = linspace(-5.5,5.5,51);
+y = 1 ;
+
+scf(2);
+clf(2);
+plot(x,y+0.1);
+
+plot(x,y,'ro-');
+plot(x,y-0.329,'--');
+plot(x,y*0,'bs:');
+xlabel(["x axis";"(independent variable)"]);
+ylabel("Energy level (eV)");
+title("Band diagram");
+legend(["Ec";"Ef";"Ei";"Ev"]);
+set(gca(),"data_bounds",matrix([-6,6,-0.1,1.1],2,-1));
diff --git a/1952/CH12/EX12.23/Ex23.sce b/1952/CH12/EX12.23/Ex23.sce new file mode 100755 index 000000000..b4a171968 --- /dev/null +++ b/1952/CH12/EX12.23/Ex23.sce @@ -0,0 +1,9 @@ +// Additional solved examples , Example 23 , pg 342
+I=40 //current (in A)
+B=1.4 //magnetic field (in T)
+d=2*10^-2 //width of slab (in m)
+n=8.4*10^28 //concentration of electrons (in m^-3)
+e=1.6*10^-19 // charge (in C)
+VH=(B*I)/(n*e*d) //Hall voltage
+printf("Hall voltage(in V)=")
+disp(VH)
diff --git a/1952/CH12/EX12.24/Ex24.sce b/1952/CH12/EX12.24/Ex24.sce new file mode 100755 index 000000000..3856c854b --- /dev/null +++ b/1952/CH12/EX12.24/Ex24.sce @@ -0,0 +1,18 @@ +// Additional solved examples , Example 24 , pg 342
+e=1.6*10^-19 //charge in electron (in C)
+Ix=2*10^-3 //current (in A)
+d=220*10^-4 //thickness (in cm)
+Bz=5*10^-5 //magnetic induction (in Wb/cm^2)
+Un=800 //electron mobility (in cm^2/(V*s))
+n=9*10^16 //doping concentration (in atoms/cm^3)
+
+sigma=n*e*(Un) // electrical conductivity
+rho=1/sigma //resistivity
+Rh=-1/(e*n) //Hall coefficient
+Vh=-(Ix*Bz)/(d*e*n) //Hall voltage
+printf("Resistivity(in ohm*cm)")
+disp(rho)
+printf("Hall coefficient(in cm^3/C)")
+disp(Rh)
+printf("Hall voltage (in V)")
+disp(Vh)
diff --git a/1952/CH12/EX12.25/Ex25.sce b/1952/CH12/EX12.25/Ex25.sce new file mode 100755 index 000000000..67eb1892a --- /dev/null +++ b/1952/CH12/EX12.25/Ex25.sce @@ -0,0 +1,7 @@ +// Additional solved examples , Example 25 , pg 343
+I=10 // current(in A)
+A=8*10^-4 //area(in m^2)
+M=I*A //magnetic moment associated with the loop
+printf("Magnetic moment associated with the loop(in A m^2)=")
+disp(M)
+printf("M is directed away from the observer and is perpendicular to the plane of the loop")
diff --git a/1952/CH12/EX12.26/Ex26.sce b/1952/CH12/EX12.26/Ex26.sce new file mode 100755 index 000000000..5b7af6463 --- /dev/null +++ b/1952/CH12/EX12.26/Ex26.sce @@ -0,0 +1,7 @@ +// Additional solved examples , Example 26 , pg 343
+I=22 // current(in A)
+A=9*10^-3 //area(in m^2)
+M=I*A //magnetic moment associated with the loop
+printf("Magnetic moment associated with the loop(in A m^2)=")
+disp(M)
+printf("M is directed towards the observer and is perpendicular to the plane of the loop")
diff --git a/1952/CH12/EX12.27/Ex27.sce b/1952/CH12/EX12.27/Ex27.sce new file mode 100755 index 000000000..56616cc1a --- /dev/null +++ b/1952/CH12/EX12.27/Ex27.sce @@ -0,0 +1,9 @@ +// Additional solved examples , Example 27 , pg 344
+r=0.62*10^-10 //radius of orbit (in m)
+e= 1.6*10^-19 //charge on electron (in C)
+n=10^15 //frequency of revolution of electron (in rps)
+I=e*n //current (in A)
+A=%pi *r^2 //area (in m^2)
+M=I*A //magnetic moment associated with motion of electron
+printf("Magnetic moment associated with motion of electron (in A m^2)")
+disp(M)
diff --git a/1952/CH12/EX12.28/Ex28.sce b/1952/CH12/EX12.28/Ex28.sce new file mode 100755 index 000000000..4eb918ad8 --- /dev/null +++ b/1952/CH12/EX12.28/Ex28.sce @@ -0,0 +1,8 @@ +// Additional solved examples , Example 28 , pg 344
+H=2000 //magnetizing field (in A/m)
+phi=5*10^-5 //magnetic flux (in Wb)
+A=0.2 *10^-4 //area (in m^2)
+B=phi/A //magnetic flux density (in Wb/m^2)
+u=B/H //permeability (in H/m)
+printf("permeability (in H/m )=")
+disp(u)
diff --git a/1952/CH12/EX12.29/Ex29.sce b/1952/CH12/EX12.29/Ex29.sce new file mode 100755 index 000000000..68f0c3ac8 --- /dev/null +++ b/1952/CH12/EX12.29/Ex29.sce @@ -0,0 +1,5 @@ +// Additional solved examples , Example 29 , pg 345
+ur=4000 //relative permeability
+xm=ur-1 //magnetic susceptibility
+printf("Magnetic susceptibility=")
+disp(xm)
diff --git a/1952/CH12/EX12.3/Ex3.sce b/1952/CH12/EX12.3/Ex3.sce new file mode 100755 index 000000000..62480f754 --- /dev/null +++ b/1952/CH12/EX12.3/Ex3.sce @@ -0,0 +1,9 @@ +// Additional solved examples , Example 3 , pg 331
+T=260+273 //temperature(in kelvin) (converting celsius into kelvin)
+h=6.625*10^-34//plancks constant(in Js)
+c=3*10^8//speed of light(in m/s)
+lam=590*10^-9//wavelength(in m)
+k=1.38*10^-23//boltzman constant (in (m^2*Kg)/(s^2*k))
+N=1/(exp((h*c)/(lam*k*T))-1) //N=((n21)'/(n21)) ratio of stimulated emission to spontaneous emission
+printf("Ratio of stimulated emission to spontaneous emission is")
+disp(N)
diff --git a/1952/CH12/EX12.30/Ex30.sce b/1952/CH12/EX12.30/Ex30.sce new file mode 100755 index 000000000..9e498e9ed --- /dev/null +++ b/1952/CH12/EX12.30/Ex30.sce @@ -0,0 +1,7 @@ +// Additional solved examples , Example 30 , pg 345
+H0=6*10^4 //magnetic field intensity at 0K (in A/m)
+T=4.2 //temperature (in K)
+Tc=8 //critical temperature (in K)
+Hc=H0*(1-(T^2/Tc^2)) // critical magnetic field intensity
+printf("critical magnetic field intensity\n")
+printf("Hc=%.0f A/m",Hc)
diff --git a/1952/CH12/EX12.31/Ex31.sce b/1952/CH12/EX12.31/Ex31.sce new file mode 100755 index 000000000..9576385d1 --- /dev/null +++ b/1952/CH12/EX12.31/Ex31.sce @@ -0,0 +1,7 @@ +// Additional solved examples , Example 31 , pg 346
+H0=7*10^4 //magnetic field intensity at 0K (in A/m)
+T=4.2 //temperature (in K)
+Tc=8.2 //critical temperature (in K)
+Hc=H0*(1-(T^2/Tc^2)) // critical magnetic field intensity
+printf("critical magnetic field intensity\n")
+printf("Hc=%.0f A/m",Hc)
diff --git a/1952/CH12/EX12.32/Ex32.sce b/1952/CH12/EX12.32/Ex32.sce new file mode 100755 index 000000000..c9c521759 --- /dev/null +++ b/1952/CH12/EX12.32/Ex32.sce @@ -0,0 +1,11 @@ +// Additional solved examples , Example 32 , pg 346
+M1=198.5 //isotopic mass
+Tc1=4.175 //critical temperature for M1 (in K)
+Tc2=4.213 //critical temperature for M2 (in K)
+alpha=0.5
+
+//M^alpha * Tc=constant
+M2=((M1^alpha*Tc1)/Tc2)^(1/alpha)
+printf("Isotopic mass at critical temperature 4.133K\n")
+printf("M2=%.3f ",M2)
+
diff --git a/1952/CH12/EX12.33/Ex33.sce b/1952/CH12/EX12.33/Ex33.sce new file mode 100755 index 000000000..1c3e36bfa --- /dev/null +++ b/1952/CH12/EX12.33/Ex33.sce @@ -0,0 +1,11 @@ +// Additional solved examples , Example 33 , pg 346
+M1=199 //isotopic mass
+Tc1=4.18 //critical temperature for M1 (in K)
+Tc2=4.14 //critical temperature for M2 (in K)
+alpha=0.5
+
+//M^alpha * Tc=constant
+M2=((M1^alpha*Tc1)/Tc2)^(1/alpha)
+printf("Isotopic mass at critical temperature 4.133K\n")
+printf("M2=%.4f ",M2)
+
diff --git a/1952/CH12/EX12.4/Ex4.sce b/1952/CH12/EX12.4/Ex4.sce new file mode 100755 index 000000000..c62d29c9f --- /dev/null +++ b/1952/CH12/EX12.4/Ex4.sce @@ -0,0 +1,10 @@ +// Additional solved examples , Example 4 , pg 331
+lam=632.8*10^-9//wavelength(in m)
+Em=3.16*10^-3*60//energy emitted per minute(in J/min)
+c=3*10^8//speed of light(in m/s)
+h=6.625*10^-34//plancks constant(in Js)
+n=c/lam //frequency of emitted photons(in Hz)
+E=h*n //energy of each photon(in J)
+N=Em/E //number of photons emitted per minute
+printf("Number of photons emitted per minute")
+disp(N)
diff --git a/1952/CH12/EX12.5/Ex5.sce b/1952/CH12/EX12.5/Ex5.sce new file mode 100755 index 000000000..5b8a6d660 --- /dev/null +++ b/1952/CH12/EX12.5/Ex5.sce @@ -0,0 +1,10 @@ +// Additional solved examples , Example 5 , pg 332
+lam=540*10^-9//wavelength(in m)
+Em=5*10^-3*60//energy emitted per minute(in J/min)
+c=3*10^8//speed of light(in m/s)
+h=6.625*10^-34//plancks constant(in Js)
+n=c/lam //frequency of emitted photons(in Hz)
+E=h*n //energy of each photon(in J)
+N=Em/E //number of photons emitted per minute
+printf("Number of photons emitted per minute")
+disp(N)
diff --git a/1952/CH12/EX12.6/Ex6.sce b/1952/CH12/EX12.6/Ex6.sce new file mode 100755 index 000000000..6ad5d0aaf --- /dev/null +++ b/1952/CH12/EX12.6/Ex6.sce @@ -0,0 +1,12 @@ +// Additional solved examples , Example 6 , pg 332
+n1=1.5//core refractive index
+n2=1.45//cladding refractive index
+n0=1//refractive index of air
+NA=sqrt(n1^2-n2^2)//numerical aperture
+alpha_m =asin(NA/n0)//angle of acceptance (in radian)
+phi_m=asin((n0*sin(alpha_m))/n1)// no*sin(alpha_m)=n1*sin(phi_m) (in radian)
+phi_c=asin(n2/n1) //critical angle (in radian)
+printf("NA=%.2f \n",NA)
+printf("alpha_m=%.2f degree\n",(alpha_m*180)/%pi)
+printf("phi_m=%.2f degree\n",(phi_m*180)/%pi)
+printf("phi_c=%.2f degree",(phi_c*180)/%pi)
diff --git a/1952/CH12/EX12.7/Ex7.sce b/1952/CH12/EX12.7/Ex7.sce new file mode 100755 index 000000000..6d77a9861 --- /dev/null +++ b/1952/CH12/EX12.7/Ex7.sce @@ -0,0 +1,12 @@ +// Additional solved examples , Example 7 , pg 333
+n1=1.5//core refractive index
+n2=1.45//cladding refractive index
+n0=1.1//refractive index of medium
+NA=sqrt(n1^2-n2^2)//numerical aperture
+alpha_m =asin(NA/n0)//angle of acceptance (in radian)
+phi_m=asin((n0*sin(alpha_m))/n1)// no*sin(alpha_m)=n1*sin(phi_m) (in radian)
+phi_c=asin(n2/n1) //critical angle (in radian)
+printf("NA=%.2f \n",NA)
+printf("alpha_m=%.2f degree\n",(alpha_m*180)/%pi)
+printf("phi_m=%.2f degree\n",(phi_m*180)/%pi)
+printf("phi_c=%.2f degree",(phi_c*180)/%pi)
diff --git a/1952/CH12/EX12.8/Ex8.sce b/1952/CH12/EX12.8/Ex8.sce new file mode 100755 index 000000000..f29fc5d26 --- /dev/null +++ b/1952/CH12/EX12.8/Ex8.sce @@ -0,0 +1,8 @@ +// Additional solved examples , Example 8 , pg 334
+n1=1.5//core refractive index
+n2=1.45//cladding refractive index
+c=3*10^8//speed of light(in m/s)
+P=(n1*(n1-n2))/(n2*c) //pulse broadening per unit length due to multiple dispersion
+//P=(del_t/L) where del_t=time interval , L=distance transversed by ray inside core
+printf("pulse broadening per unit length due to multiple dispersion(in s/m)")
+disp(P)
diff --git a/1952/CH12/EX12.9/Ex9.sce b/1952/CH12/EX12.9/Ex9.sce new file mode 100755 index 000000000..d1f82350c --- /dev/null +++ b/1952/CH12/EX12.9/Ex9.sce @@ -0,0 +1,8 @@ +// Additional solved examples , Example 9 , pg 334
+n1=1.55//core refractive index
+n2=1.48//cladding refractive index
+c=3*10^8//speed of light(in m/s)
+P=(n1*(n1-n2))/(n2*c) //pulse broadening per unit length due to multiple dispersion
+//P=(del_t/L) where del_t=time interval , L=distance transversed by ray inside core
+printf("pulse broadening per unit length due to multiple dispersion(in s/m)")
+disp(P)
diff --git a/1952/CH13/EX13.1.10/Ex10.sce b/1952/CH13/EX13.1.10/Ex10.sce new file mode 100755 index 000000000..8cda6b328 --- /dev/null +++ b/1952/CH13/EX13.1.10/Ex10.sce @@ -0,0 +1,8 @@ +// Additional solved numerical questions , Example(set 1) 10 , pg 349
+a=4.938 //lattice constant(in Angstrom)
+h=2
+k=2
+l=0 //since (h k l)=(2 2 0) miller indices
+d=a/sqrt(h^2+k^2+l^2) //spacing
+printf("spacing of (2 2 0) planes=")
+printf("d=%.3f Angstrom",d)
diff --git a/1952/CH13/EX13.1.12/Ex12.sce b/1952/CH13/EX13.1.12/Ex12.sce new file mode 100755 index 000000000..a71e6c59f --- /dev/null +++ b/1952/CH13/EX13.1.12/Ex12.sce @@ -0,0 +1,7 @@ +// Additional solved numerical questions , Example(set 1) 12_b_3 , pg 349
+Eg=0.8*1.6*10^-19 //bandgap (in J) (converting eV into J)
+h=6.625*10^-34 //plancks constant (in J s)
+c=3*10^8 //speed of light (in m/s)
+lam=(h*c)/Eg //wavelength
+printf("wavelength of light emitted (in m)is=")
+disp(lam)
diff --git a/1952/CH13/EX13.1.14/Ex14.sce b/1952/CH13/EX13.1.14/Ex14.sce new file mode 100755 index 000000000..6f4e04705 --- /dev/null +++ b/1952/CH13/EX13.1.14/Ex14.sce @@ -0,0 +1,11 @@ +// Additional solved numerical questions , Example(set 1) 14_a_3 , pg 350
+lam=1.24*10^-13 //wavelength (in m)
+h=6.625*10^-34//plancksconstant(in J s)
+c=3*10^8//velocity of x-ray photon(in m/sec)
+m0=9.11*10^-31//rest mass of electron(in Kg)
+phi=(90*%pi)/180//angle of scattering (in radian) (converting degree into radian)
+delta_H=(h*(1-cos(phi)))/(m0*c)//change in wavelength due to compton scattering (in m)
+LAM=lam+delta_H //wavelength (in m)
+E=(h*c)/LAM //energy of scattered photon (in J)
+printf("Energy of scattered photon (in J)=")
+disp(E)
diff --git a/1952/CH13/EX13.1.15/Ex15.sce b/1952/CH13/EX13.1.15/Ex15.sce new file mode 100755 index 000000000..90c0492ee --- /dev/null +++ b/1952/CH13/EX13.1.15/Ex15.sce @@ -0,0 +1,14 @@ +// Additional solved numerical questions , Example(set 1) 15_b_3 , pg 352
+a=2.88*10^-8 //lattice constant (in cm)
+d=7200 //density (in Kg/m^3)
+C=8/a^3 // atomic concentration
+n=8 //number of atoms/cell
+n1=C/n //unit cell concentration
+
+//since density =7200 Kg/m^3
+//7200 Kg = 10^6 cc
+//hence 1Kg = (10^6)/7200 cc
+N=(n1*10^6)/7200 //number of unit cells present in 1 Kg of metal
+printf("Number of unit cells present in 1 Kg of metal=")
+disp(N)
+printf("unit cells")
diff --git a/1952/CH13/EX13.1.2/Ex2.sce b/1952/CH13/EX13.1.2/Ex2.sce new file mode 100755 index 000000000..d35de9623 --- /dev/null +++ b/1952/CH13/EX13.1.2/Ex2.sce @@ -0,0 +1,8 @@ +// Additional solved numerical questions , Example(set 1) 2 , pg 348
+l=0.7*10^-3//length(in m)
+E=8.8*10^10//youngs modulus(in N/m^2)
+d=2800//density(in kg/m^3)
+p=1//fundamental mode
+n= p*sqrt(E/d)/(2*l) //natural frequency
+printf("Fundamental frequency of quartz crystal)\n")
+printf("n=%.2f Hz",n)
diff --git a/1952/CH13/EX13.1.6/Ex6.sce b/1952/CH13/EX13.1.6/Ex6.sce new file mode 100755 index 000000000..702f63637 --- /dev/null +++ b/1952/CH13/EX13.1.6/Ex6.sce @@ -0,0 +1,6 @@ +// Additional solved numerical questions , Example(set 1) 6 , pg 348
+n1=1.5 //refractive index of core
+n2= 1.47 // cladding refractive index
+theta_c=asin(n2/n1) //critical angle (in radian)
+printf("critical angle=\n")
+printf("theta_c=%.2f degree",(theta_c*180)/%pi)
diff --git a/1952/CH13/EX13.2.1/Ex2_1.sce b/1952/CH13/EX13.2.1/Ex2_1.sce new file mode 100755 index 000000000..645a066a4 --- /dev/null +++ b/1952/CH13/EX13.2.1/Ex2_1.sce @@ -0,0 +1,8 @@ +// Additional solved numerical questions , Example(set 2) 1 , pg 352
+l=4*10^-2 //length(in m)
+E=207 *10^6 //youngs modulus(in N/m^2)
+d=8900 //density(in kg/m^3)
+p=1//fundamental mode
+n= p*sqrt(E/d)/(2*l) //natural frequency
+printf("Fundamental frequency of quartz crystal)\n")
+printf("n=%.2f Hz",n)
diff --git a/1952/CH13/EX13.2.13/Ex2_13.sce b/1952/CH13/EX13.2.13/Ex2_13.sce new file mode 100755 index 000000000..9946fa979 --- /dev/null +++ b/1952/CH13/EX13.2.13/Ex2_13.sce @@ -0,0 +1,8 @@ +// Additional solved numerical questions , Example(set 2) 13_b , pg 354
+n1=1.5//core refractive index
+n2=1.447//cladding refractive index
+n0=1//refractive index of air
+NA=sqrt(n1^2-n2^2)//numerical aperture
+alpha_m =asin(NA/n0)//angle of acceptance (in radian)
+printf("NA=%.1f \n",NA)
+printf("alpha_m=%.2f degree\n",(alpha_m*180)/%pi)
diff --git a/1952/CH13/EX13.2.7/Ex2_7.sce b/1952/CH13/EX13.2.7/Ex2_7.sce new file mode 100755 index 000000000..02ea81fd9 --- /dev/null +++ b/1952/CH13/EX13.2.7/Ex2_7.sce @@ -0,0 +1,10 @@ +// Additional solved numerical questions , Example(set 2) 7 , pg 353
+lam=0.5*10^-9 //wavelength (in m)
+h=6.625*10^-34//plancksconstant(in J s)
+c=3*10^8//velocity of x-ray photon(in m/sec)
+m0=9.11*10^-31//rest mass of electron(in Kg)
+phi=(45*%pi)/180//angle of scattering (in radian) (converting degree into radian)
+delta_H=(h*(1-cos(phi)))/(m0*c)//change in wavelength due to compton scattering (in m)
+LAM=lam+delta_H //wavelength (in m)
+printf("wavelength of scattered radiation (im m)=")
+disp(LAM)
diff --git a/1952/CH13/EX13.3.11/Ex3_11.sce b/1952/CH13/EX13.3.11/Ex3_11.sce new file mode 100755 index 000000000..42324df10 --- /dev/null +++ b/1952/CH13/EX13.3.11/Ex3_11.sce @@ -0,0 +1,7 @@ +// Additional solved numerical questions , Example(set 3) 11_a , pg 355
+Un=3*10^-3 //electron mobility (in m^2/(V*s))
+e=1.6*10^-19 //charge in electron (in C)
+Me=9.11*10^-31 //mass of electron (in Kg)
+T=(Me*Un)/e //mean free time
+printf("Mean free time(in S)")
+disp(T)
diff --git a/1952/CH13/EX13.3.12/Ex3_12.sce b/1952/CH13/EX13.3.12/Ex3_12.sce new file mode 100755 index 000000000..d728bef3a --- /dev/null +++ b/1952/CH13/EX13.3.12/Ex3_12.sce @@ -0,0 +1,19 @@ +// Additional solved numerical questions , Example(set 3) 12_b , pg 356
+ni=1.5*10^16 //intrinsic carrier density(in m^-3)
+Un=1.35 //electron mobility (in m^2/(V*s))
+up=0.48 //hole mobility (in m^2/(V*s))
+e=1.6*10^-19 //charge in electron (in C)
+
+Ix=10^-3 //current (in A)
+d=100*10^-6 //thickness (in m)
+Bz=0.1 //magnetic induction (in T)
+Un1=0.07 //electron mobility (in m^2/(V*s))
+n=10^23 //doping concentration (in atoms/m^3)
+
+sigma=ni*e*(Un+up) // electrical conductivity
+rho=1/sigma //resistivity
+Vh=-(Ix*Bz)/(d*e*n) //Hall voltage
+printf("Resistivity(in ohm*m)")
+disp(rho)
+printf("Hall voltage (in V)")
+disp(Vh)
diff --git a/1952/CH13/EX13.3.13/Ex3_13.sce b/1952/CH13/EX13.3.13/Ex3_13.sce new file mode 100755 index 000000000..ba3da2275 --- /dev/null +++ b/1952/CH13/EX13.3.13/Ex3_13.sce @@ -0,0 +1,22 @@ +// Additional solved numerical questions , Example(set 3) 13_b , pg 357
+A=250 //area of B-H loop
+f=50 //frequency (in Hz)
+d=7.5*10^3 //density (in Kg/m^3)
+M=10 //mass of core (in Kg)
+
+H=2000 //magnetic field intensity (in A/m)
+Xm=1000 //susceptibility
+U0=4*%pi*10^-7 // relative permeability
+
+V=M/d //volume of sample (in m^3)
+N=60*60*f //number of cycles per hour
+EL=A*V*N //energy loss per hour
+I=H*Xm //intensity of magnetization
+Ur=1+Xm
+B=Ur*U0*H //magnetic flux density
+printf("Energy loss per hour (in J)")
+disp(EL)
+printf("Intensity of magnetization (in Wb/m^3)")
+disp(I)
+printf("Magnetic flux density(in T)")
+disp(B)
diff --git a/1952/CH13/EX13.3.14/Ex3_14.sce b/1952/CH13/EX13.3.14/Ex3_14.sce new file mode 100755 index 000000000..244942121 --- /dev/null +++ b/1952/CH13/EX13.3.14/Ex3_14.sce @@ -0,0 +1,25 @@ +// Additional solved numerical questions , Example(set 3) 14 , pg 358
+Er1=1.0000684 //Dielectric constant (for sum 14_a_2)
+N=2.7*10^25 //(in atoms/m^3)
+E0=8.85*10^-12 //permittivity of free space (in F/m)
+Er2=6 //dielectric constant (for sum 14_a_3)
+E=100 //electric field intensity (in V/m) (for sum 14_a_3)
+A=200*10^-4 //area (in m^2)
+Er3=3.7 //dielectric constant (for sum 14_b_2)
+d=10^-3 //thickness (in m)
+V=300 //electric potential (in V)
+Alpha_e=(E0*(Er1-1))/N //electronic polarization
+R=(Alpha_e/(4*%pi*E0))^(1/3) //radius of atom
+P=E0*(Er2-1)*E //polarization
+C=(E0*Er3*A)/d //capacitance
+E1=V/d //electric flux density
+printf("Electronic polarization (in F*m^2)")
+disp(Alpha_e)
+printf("Radius of He atom(in m)")
+disp(R)
+printf("polarization(in C/m^2)")
+disp(P)
+printf("capacitance(in F)")
+disp(C)
+printf("Electric flux density (in V/m)")
+disp(E1)
diff --git a/1952/CH2/EX2.1/Ex2_1.sce b/1952/CH2/EX2.1/Ex2_1.sce new file mode 100755 index 000000000..79d642f0b --- /dev/null +++ b/1952/CH2/EX2.1/Ex2_1.sce @@ -0,0 +1,11 @@ +// chapter 2 , Example2 1 , pg 52
+lam=590*10^-9//wavelength(in m)
+T=250+273 //temperature(in kelvin) (converting celsius into kelvin)
+k=1.38*10^-23//boltzman constant (in (m^2*Kg)/(s^2*k))
+h=6.625*10^-34//plancks constant(in Js)
+c=3*10^8//speed of light
+N=exp(-(h*c)/(lam*k*T)) //N=(n2/n1)=relative population of atoms in the 1st excited state and in ground state
+//n1=number of atoms in ground state
+//n2=number of atoms in excited state
+printf("Relative population of Na atoms in the 1st excited state and in ground state\n")
+disp(N)
diff --git a/1952/CH2/EX2.2/Ex2_2.sce b/1952/CH2/EX2.2/Ex2_2.sce new file mode 100755 index 000000000..3b7f409b5 --- /dev/null +++ b/1952/CH2/EX2.2/Ex2_2.sce @@ -0,0 +1,12 @@ +// chapter 2 , Example2 2 , pg 53
+T=250+273 //temperature(in kelvin) (converting celsius into kelvin)
+h=6.625*10^-34//plancks constant(in Js)
+c=3*10^8//speed of light(in m/s)
+lam=590*10^-9//wavelength(in m)
+k=1.38*10^-23//boltzman constant (in (m^2*Kg)/(s^2*k))
+N=1/(exp((h*c)/(lam*k*T))-1) //N=((n21)'/(n21)) ratio of stimulated emission to spontaneous emission
+printf("Ratio of stimulated emission to spontaneous emission is")
+disp(N)
+
+
+//answer given is wrong
diff --git a/1952/CH2/EX2.3/Ex2_3.sce b/1952/CH2/EX2.3/Ex2_3.sce new file mode 100755 index 000000000..7173d56a1 --- /dev/null +++ b/1952/CH2/EX2.3/Ex2_3.sce @@ -0,0 +1,10 @@ +// chapter 2 , Example2 3 , pg 53
+lam=632.8*10^-9//wavelength(in m)
+Em=3.147*10^-3*60//energy emitted per minute(in J/min)
+c=3*10^8//speed of light(in m/s)
+h=6.625*10^-34//plancks constant(in Js)
+n=c/lam //frequency of emitted photons(in Hz)
+E=h*n //energy of each photon(in J)
+N=Em/E //number of photons emitted per minute
+printf("Number of photons emitted per minute")
+disp(N)
diff --git a/1952/CH3/EX3.1/Ex3_1.sce b/1952/CH3/EX3.1/Ex3_1.sce new file mode 100755 index 000000000..0d12185f4 --- /dev/null +++ b/1952/CH3/EX3.1/Ex3_1.sce @@ -0,0 +1,16 @@ +// chapter 3 , Example 3.1 , pg 84
+n1=1.5//core refractive index
+n2=1.47//cladding refractive index
+n0=1//refractive index of air
+NA=sqrt(n1^2-n2^2)//numerical aperture
+alpha_m =asin(NA/n0)//angle of acceptance (in radian)
+phi_m=asin((n0*sin(alpha_m))/n1)// no*sin(alpha_m)=n1*sin(phi_m) (in radian)
+phi_c=asin(n2/n1) //critical angle (in radian)
+printf("NA=%.1f \n",NA)
+printf("alpha_m=%.2f degree\n",(alpha_m*180)/%pi)
+printf("phi_m=%.2f degree\n",(phi_m*180)/%pi)
+printf("phi_c=%.2f degree",(phi_c*180)/%pi)
+
+
+//data given is n2=1.97 which is not possible since refractive index of cladding should always be less than refractive index of core
+//in calculation n2=1.47
diff --git a/1952/CH3/EX3.2/Ex3_2.sce b/1952/CH3/EX3.2/Ex3_2.sce new file mode 100755 index 000000000..f575169ea --- /dev/null +++ b/1952/CH3/EX3.2/Ex3_2.sce @@ -0,0 +1,8 @@ +// chapter 3 , Example 3.2 , pg 85
+n1=1.5//core refractive index
+n2=1.47//cladding refractive index
+c=3*10^8//speed of light(in m/s)
+P=(n1*(n1-n2))/(n2*c) //pulse broadening per unit length due to multiple dispersion
+//P=(del_t/L) where del_t=time interval , L=distance transversed by ray inside core
+printf("pulse broadening per unit length due to multiple dispersion(in s/m)")
+disp(P)
diff --git a/1952/CH3/EX3.3/Ex3_3.sce b/1952/CH3/EX3.3/Ex3_3.sce new file mode 100755 index 000000000..a38b8a0ee --- /dev/null +++ b/1952/CH3/EX3.3/Ex3_3.sce @@ -0,0 +1,16 @@ +// chapter 3 , Example 3.3 , pg 85
+n1=1.5//core refractive index
+n2=1.47//cladding refractive index
+n0=1//refractive index of air
+a=100*10^-6/2 //radius of core
+NA=sqrt(n1^2-n2^2)//numerical aperture
+alpha_m =asin(NA/n0)//angle of acceptance (in radian)
+phi_m=asin((n0*sin(alpha_m))/n1)// no*sin(alpha_m)=n1*sin(phi_m) (in radian)
+L=a/tan(phi_m) //(in m)
+printf("Minimum number of reflections per metre=zero\n") //since rays travelling with alpha=0 suffer no internal reflection
+//for rays travelling with alpha=alpha_m ,1 internal reflection takes place for a transversed distance of 2*L
+N=1/(2*L) //Maximum number of reflections per metre
+disp("Maximum number of reflections per metre(in m^-1)=")
+printf("N=%.0f",N)
+
+//Answer varies as L is restricted to 2.45*10^-4 (m) instead of 2.462*10^-4 (m)
diff --git a/1952/CH4/EX4.1/Ex4_1.sce b/1952/CH4/EX4.1/Ex4_1.sce new file mode 100755 index 000000000..c4a3b0c57 --- /dev/null +++ b/1952/CH4/EX4.1/Ex4_1.sce @@ -0,0 +1,10 @@ +// chapter 4 , Example4 1 , pg 117
+c=3*10^8 //speed of light(in m/sec)
+h=6.625*10^-34//planck's constant(in J s)
+lam=1.2*10^-10//wavelength(in m)
+E=(h*c)/(lam*1.6*10^-19) //energy of photon(in eV)
+p=h/lam //momentum of photon
+printf("Energy of photo\n")
+printf("E=%.1f eV\n",E)
+printf("momentum of photon(in Kg m/sec)\n")
+disp(p)
diff --git a/1952/CH4/EX4.2/Ex4_2.sce b/1952/CH4/EX4.2/Ex4_2.sce new file mode 100755 index 000000000..bc5baada5 --- /dev/null +++ b/1952/CH4/EX4.2/Ex4_2.sce @@ -0,0 +1,8 @@ +// chapter 4 , Example 4.2 , pg 117
+E1=10^4 //energy emitted per second(in J)
+n=900*10^3 //frequency(in Hz)
+h=6.625*10^-34 //plancks constant(in J s)
+E=h*n//energy carried by 1 photon(in J)
+N=E1/E//number of photons emitted per second
+printf("number of photons emitted per second\n")
+disp(N)
diff --git a/1952/CH4/EX4.3/Ex4_3.sce b/1952/CH4/EX4.3/Ex4_3.sce new file mode 100755 index 000000000..83cefa006 --- /dev/null +++ b/1952/CH4/EX4.3/Ex4_3.sce @@ -0,0 +1,12 @@ +// chapter 4 , Example 4.3 , pg 118
+c=3*10^8//speed of light(in m/sec)
+h=6.625*10^-34//plancks constant(in J s)
+E1=100//energy emitted per second(in J)
+lam=5893*10^-10//wavelength(in m)
+E=(h*c)/lam //energy carried by 1 photon
+N=E1/E//number of photons emitted per second
+printf("number of photons emitted per second\n")
+disp(N)
+
+
+//answer mentioned is wrong
diff --git a/1952/CH4/EX4.4/Ex4_4.sce b/1952/CH4/EX4.4/Ex4_4.sce new file mode 100755 index 000000000..da361b36b --- /dev/null +++ b/1952/CH4/EX4.4/Ex4_4.sce @@ -0,0 +1,14 @@ +// chapter 4 , Example 4.4 , pg 118
+lam=2.8*10^-10//wavelength (in m)
+theta=(30*%pi)/180//viewing angle(in radian) (converting degree into radian)
+c=3*10^8//speed of light(in m/sec)
+h=6.625*10^-34//plancks constant(in J s)
+m0=9.11*10^-31//rest mass of electron(in Kg)
+lam1=lam+((2*h)*sin(theta/2)^2)/(m0*c) //wavelength of scattered radiation
+printf("wavelength of scattered radiation(in m)\n")
+disp(lam1)
+printf("wavelength of scattered radiation(in Angstrom)\n")
+disp(lam1*10^10)
+
+
+//calculation is done assuming h=6.6*10^-34 Js in book
diff --git a/1952/CH4/EX4.5/Ex4_5.sce b/1952/CH4/EX4.5/Ex4_5.sce new file mode 100755 index 000000000..baa9ff7bf --- /dev/null +++ b/1952/CH4/EX4.5/Ex4_5.sce @@ -0,0 +1,14 @@ +// chapter 4 , Example 4.5 , pg 119
+m=0.04//mass(in Kg)
+v=1000//speed(in m/sec)
+h=6.625*10^-34//plancks constant(in J s)
+p=m*v//momentum(in kg m/sec)
+lam=h/p //wavelength
+printf("de Broglie wavelength(in m)\n")
+disp(lam)
+printf("de Broglie wavelength(in A)\n")
+disp(lam*10^10)
+
+
+
+//calculation is done assuming h=6.6*10^-34 Js
diff --git a/1952/CH4/EX4.6/Ex4_6.sce b/1952/CH4/EX4.6/Ex4_6.sce new file mode 100755 index 000000000..1697ec0a5 --- /dev/null +++ b/1952/CH4/EX4.6/Ex4_6.sce @@ -0,0 +1,10 @@ +// chapter 4 , Example 4.6 , pg 119
+a=0.1 *10^-9 //width (in m)
+n=1// lowest energy state of particle is obtained at n=1
+h=6.625*10^-34 //plancks constant(in Js)
+m=9.11*10^-31//mass of electron (in Kg)
+E=(h^2)/(8*m*a^2)//energy of an electron
+printf("Energy of electron in ground state(in J)\n")
+disp(E)
+printf("E=%.3f eV",E/(1.6025*10^-19))
+
diff --git a/1952/CH4/EX4.7/Ex4_7.sce b/1952/CH4/EX4.7/Ex4_7.sce new file mode 100755 index 000000000..b5b4960ce --- /dev/null +++ b/1952/CH4/EX4.7/Ex4_7.sce @@ -0,0 +1,10 @@ +// chapter 4 , Example 4.7 , pg 120
+a=4*10^-9 //width (in m)
+n=1// lowest energy state of particle is obtained at n=1
+h=6.625*10^-34 //plancks constant(in Js)
+m=9.11*10^-31//mass of electron (in Kg)
+E=(h^2)/(8*m*a^2)//energy of an electron
+printf("Energy of electron in ground state(in J)\n")
+disp(E)
+printf("E=%.5f eV",E/(1.6025*10^-19))
+
diff --git a/1952/CH4/EX4.8/Ex4_8.sce b/1952/CH4/EX4.8/Ex4_8.sce new file mode 100755 index 000000000..45e41e85c --- /dev/null +++ b/1952/CH4/EX4.8/Ex4_8.sce @@ -0,0 +1,13 @@ +// chapter 4 , Example 4.8 , pg 120
+a=0.1 *10^-9 //width (in m)
+n1=1// lowest energy state of particle is obtained at n=1
+n=6 //6th excited state hance n=6
+h=6.625*10^-34 //plancks constant(in Js)
+m=9.11*10^-31//mass of electron (in Kg)
+//E=(n^2*h^2)/(8*m*a^2) n=excited state of electron
+E1=(n1^2*h^2)/(8*m*a^2)//energy of an electron in ground state (in J)
+E6=(n^2*h^2)/(8*m*a^2)//energy at 6th excuted state(in J)
+E=E6-E1//energy required to excite the electron from ground state to the 6th excited state
+printf("energy required to excite the electron from ground state to the 6th excited state(in J)\n")
+disp(E)
+printf("E=%.2f eV",(E/(1.6025*10^-19)))
diff --git a/1952/CH4/EX4.9/Ex4_9.sce b/1952/CH4/EX4.9/Ex4_9.sce new file mode 100755 index 000000000..e0493adb6 --- /dev/null +++ b/1952/CH4/EX4.9/Ex4_9.sce @@ -0,0 +1,8 @@ +// chapter 4 , Example 4.9 , pg 121
+h=6.625*10^-34//plancksconstant(in J s)
+c=3*10^8//velocity of x-ray photon(in m/sec)
+m0=9.11*10^-31//rest mass of electron(in Kg)
+phi=(90*%pi)/180//angle of scattering (in radian) (converting degree into radian)
+delta_H=(h*(1-cos(phi)))/(m0*c)//change in wavelength due to compton scattering
+printf("change in wavelength of x-ray photon(in m)\n")
+disp(delta_H)
diff --git a/1952/CH5/EX5.1/Ex5_1.sce b/1952/CH5/EX5.1/Ex5_1.sce new file mode 100755 index 000000000..bfe195405 --- /dev/null +++ b/1952/CH5/EX5.1/Ex5_1.sce @@ -0,0 +1,19 @@ +// chapter 5 , Example5 1 , pg 149
+//plane has intercepts a,2b,3c along the 3 crystal axes
+//lattice points in 3-d lattice are given by r=p*a+q*b+s*c
+//as p,q,r are the basic vectors the proportion of intercepts 1:2:3
+p=1
+q=2
+s=3
+//therefore reciprocal
+r1=1/1
+r2=1/2
+r3=1/3
+//taking LCM
+v=int32([1,2,3])
+l=double(lcm(v))
+m1=(l*r1)
+m2=(l*r2)
+m3=(l*r3)
+printf("miler indices=")
+disp(m3,m2,m1)
diff --git a/1952/CH5/EX5.2/Ex5_2.sce b/1952/CH5/EX5.2/Ex5_2.sce new file mode 100755 index 000000000..05fb90ab2 --- /dev/null +++ b/1952/CH5/EX5.2/Ex5_2.sce @@ -0,0 +1,9 @@ +// chapter 5 , Example5 2 , pg 150
+a=5.43*10^-8//lattice constant(in cm)
+M=28.1 //atomic weight (in g)
+n=8// number of atoms/cell (for Si)
+N=6.02*10^23 //Avogadro number
+C=n/a^3 //atomic concentration =(number of atoms/cell)/cell volume (in atoms/cm^3)
+D=(C*M)/N //Density
+printf("Density of Si=")
+printf("D=%.2f g/cm^3",D)
diff --git a/1952/CH5/EX5.3/Ex5_3.sce b/1952/CH5/EX5.3/Ex5_3.sce new file mode 100755 index 000000000..877a29dc4 --- /dev/null +++ b/1952/CH5/EX5.3/Ex5_3.sce @@ -0,0 +1,9 @@ +// chapter 5 , Example5 3 , pg 151
+//(1 1 1) plane for a BCC crystal
+a=5*10^-10//lattice constant (in m)
+//height of equilaterl triangle (shaded area) =a*sqrt(3/2)
+//hence area of shaded triangular portion is a*sqrt(2)*a*sqrt(3/2)/2 = a^2*sqrt(3)/2
+//every corner atom contributes 1/6to the area
+n111=(3/6)/(a^2*sqrt(3)/2) //planar concentration
+printf("surface density of atoms in (1 1 1)plane of BCC structure (in atoms/m^2)")
+disp(n111)
diff --git a/1952/CH5/EX5.4/Ex5_4.sce b/1952/CH5/EX5.4/Ex5_4.sce new file mode 100755 index 000000000..fa69fcdfc --- /dev/null +++ b/1952/CH5/EX5.4/Ex5_4.sce @@ -0,0 +1,8 @@ +// chapter 5 , Example5 2 , pg 150
+a=4.049 //lattice constant(in Angstrom)
+h=2
+k=2
+l=0 //since (h k l)=(2 2 0) miller indices
+d=a/sqrt(h^2+k^2+l^2) //spacing
+printf("spacing of (2 2 0) planes=")
+printf("d=%.3f Angstrom",d)
diff --git a/1952/CH5/EX5.5/Ex5_5.sce b/1952/CH5/EX5.5/Ex5_5.sce new file mode 100755 index 000000000..19daa2959 --- /dev/null +++ b/1952/CH5/EX5.5/Ex5_5.sce @@ -0,0 +1,8 @@ +// chapter 5 , Example5 5 , pg 152
+d110=2.03//spacing of(1 1 0) planes (in Angstrom)
+h=1
+k=1
+l=0 //(h k l)=(1 1 0)
+a=d110*sqrt(h^2+k^2+l^2)//size of unit cell
+printf("size of unit cell=")
+printf("a=%.2f angstrom",a)
diff --git a/1952/CH5/EX5.6/Ex5_6.sce b/1952/CH5/EX5.6/Ex5_6.sce new file mode 100755 index 000000000..101b45c17 --- /dev/null +++ b/1952/CH5/EX5.6/Ex5_6.sce @@ -0,0 +1,20 @@ +// chapter 5 , Example5 6 , pg 152
+a=5.64//lattice constant (in Angstrom)
+h1=1
+k1=0
+l1=0 //(h1 k1 l1)=(1 0 0)
+h2=1
+k2=1
+l2=0 //(h2 k2 l2)=(1 1 0)
+h3=1
+k3=1
+l3=1//(h3 k3 l3)=(1 1 1)
+d100=a/sqrt(h1^2+k1^2+l1^2) //spacing of (1 0 0)planes
+d110=a/sqrt(h2^2+k2^2+l2^2) //spacing of (1 1 0)planes
+d111=a/sqrt(h3^2+k3^2+l3^2) //spacing of (1 1 1)planes
+printf("spacing of (1 0 0) planes=")
+printf("d100=%.2f Angstrom\n",d100)
+printf("spacing of (1 1 0) planes=")
+printf("d110=%.2f Angstrom\n",d110)
+printf("spacing of (1 1 1) planes=")
+printf("d111=%.2f Angstrom",d111)
diff --git a/1952/CH5/EX5.7/Ex5_7.sce b/1952/CH5/EX5.7/Ex5_7.sce new file mode 100755 index 000000000..a2933451d --- /dev/null +++ b/1952/CH5/EX5.7/Ex5_7.sce @@ -0,0 +1,7 @@ +// chapter 5 , Example5 7 , pg 153
+r=1.605 *10^-10 //radius of atom (in m)
+a=2*r//lattice constant (for HCP structure) (in m)
+c=a*sqrt(8/3) //(in m)
+V=(3*sqrt(3)*a^2*c)/2 //volume of unit cell
+printf("volume of unit cell(in m^3)\n")
+disp(V)
diff --git a/1952/CH6/EX6.1/Ex6_1.sce b/1952/CH6/EX6.1/Ex6_1.sce new file mode 100755 index 000000000..0ae6a3db9 --- /dev/null +++ b/1952/CH6/EX6.1/Ex6_1.sce @@ -0,0 +1,6 @@ +// chapter 6 , Example6 1 , pg 170
+Vf=10^6 //Fermi velocity (in m/s)
+m=9.11*10^-31 // mass of electron(in Kg)
+Ef=(m*Vf^2)/2 //Fermi energy (in J)
+printf("Fermi energy for the electrons in the metal=")
+printf("Ef=%.1f eV",(Ef/(1.6*10^-19))) //converting J into eV
diff --git a/1952/CH6/EX6.10/Ex6_10.sce b/1952/CH6/EX6.10/Ex6_10.sce new file mode 100755 index 000000000..fcbc5dd8e --- /dev/null +++ b/1952/CH6/EX6.10/Ex6_10.sce @@ -0,0 +1,9 @@ +// chapter 6 , Example6.10 , pg 175
+lam=4*10^-8 //maen free path of electrons (in m)
+n=8.4*10^28 //electron density (in m^-3)
+Vth=1.6*10^6 //average thermal velocity of electrons (in m/s)
+e=1.6*10^-19 //charge of electron (in C)
+Me=9.11*10^-31 //mass of electron (in Kg)
+sigma=(n*e^2*lam)/(Vth*Me) //conductivity
+printf("Electrical conductivity (in /(ohm*m))")
+disp(sigma)
diff --git a/1952/CH6/EX6.11/Ex6_11.sce b/1952/CH6/EX6.11/Ex6_11.sce new file mode 100755 index 000000000..97b04ee82 --- /dev/null +++ b/1952/CH6/EX6.11/Ex6_11.sce @@ -0,0 +1,16 @@ +// chapter 6 , Example6.11 , pg 176
+Tr=10^-14 //relaxation time (in s)
+T=300 //temperature (in K)
+n=6*10^28 //electron concentration (in /m^3)
+Me=9.11*10^-31 //mass of electron (in Kg)
+e=1.6*10^-19 //charge of electron (in C)
+k=1.38*10^-23 //Boltzmann constant (in J/K)
+sigma=(n*e^2*Tr)/(Me) //Electrical conductivity
+K=(3*n*k^2*Tr*T)/(2*Me) //Thermal conductivity
+L=K/(sigma*T) //Lorentz number
+printf("Electrical conductivity (in /(ohm*m))")
+disp(sigma)
+printf("Thermal conductivity (in W/(m*K))")
+disp(K)
+printf("Lorentz number (in(W*ohm)/K^2)")
+disp(L)
diff --git a/1952/CH6/EX6.12/Ex6_12.sce b/1952/CH6/EX6.12/Ex6_12.sce new file mode 100755 index 000000000..dcfdfe576 --- /dev/null +++ b/1952/CH6/EX6.12/Ex6_12.sce @@ -0,0 +1,8 @@ +// chapter 6 , Example6.12 , pg 177
+n=5.8*10^28 // electron concentration (in /m^3)
+e=1.6*10^-19 // charge of electron (in C)
+rho=1.54*10^-8 //resistivity of metal (in ohm*m)
+M=9.11*10^-31 //mass of electron (in Kg)
+T=M/(n*e^2*rho) //relaxation time
+printf("Relaxation time(in s)")
+disp(T)
diff --git a/1952/CH6/EX6.13/Ex6_13.sce b/1952/CH6/EX6.13/Ex6_13.sce new file mode 100755 index 000000000..cb64ea448 --- /dev/null +++ b/1952/CH6/EX6.13/Ex6_13.sce @@ -0,0 +1,15 @@ +// chapter 6 , Example6.13 , pg 177
+rho=1.54*10^-8 //resistivity (in ohm*m)
+E=100 //electric field intensity (in V/m)
+n=5.8*10^28 //electron concentration (in /m^3)
+e=1.6*10^-19 //charge of electron (in C)
+Me=9.11*10^-31 //mass of electron (in Kg)
+T=Me/(rho*n*e^2) //relaxation time
+Vd=(e*E*T)/Me //drift velocity
+U=Vd/E //mobility
+printf("Relaxation time (in s)")
+disp(T)
+printf("Drift veloity (in m/s)")
+disp(Vd)
+printf("Mobility(in m^2/(V*s))")
+disp(U)
diff --git a/1952/CH6/EX6.14/Ex6_14.sce b/1952/CH6/EX6.14/Ex6_14.sce new file mode 100755 index 000000000..00a1d237e --- /dev/null +++ b/1952/CH6/EX6.14/Ex6_14.sce @@ -0,0 +1,11 @@ +// chapter 6 , Example6 14 , pg 178
+T=300 //temperature (in K)
+l=2 //length (in m)
+R=0.02 //Resistance (in ohm)
+u=4.3*10^-3 // (in m^2/(V*s))
+I=15 //current (in A)
+V=I*R //voltage drop across wire (in V )
+E=V/l //electric field across wire (in V/m)
+Vd=u*E //drift velocity (in m/s)
+printf("Drift velocity (in m/s)")
+disp(Vd)
diff --git a/1952/CH6/EX6.15/Ex6_15.sce b/1952/CH6/EX6.15/Ex6_15.sce new file mode 100755 index 000000000..9234325a8 --- /dev/null +++ b/1952/CH6/EX6.15/Ex6_15.sce @@ -0,0 +1,11 @@ +// chapter 6 , Example6 15 , pg 179
+m=9.11*10^-31 //mass of electron (in Kg)
+k=1.38*10^-23 //boltzmann constant (in J/K)
+e=1.6*10^-19 //electronic charge(in C )
+Vf=0.86*10^6 //Fermi velocity of electron (in m/s)
+Ef=(m*Vf^2)/(2*e) //Fermi energy (in eV)
+Tf=(Ef*e)/k //Fermi temperature
+printf("Fermi energy=")
+printf("Ef=%.1f eV \n",Ef)
+printf("Fermi temperature =")
+printf("Tf=%.0f K",Tf)
diff --git a/1952/CH6/EX6.16/Ex6_16.sce b/1952/CH6/EX6.16/Ex6_16.sce new file mode 100755 index 000000000..78a032227 --- /dev/null +++ b/1952/CH6/EX6.16/Ex6_16.sce @@ -0,0 +1,7 @@ +// chapter 6 , Example6 16 , pg 179
+Tf=2460 //Fermi temperature (in K)
+m=9.11*10^-31 //mass of electron (in Kg)
+k=1.38*10^-23 //boltzmann constant (in J/K)
+Vf=sqrt((2*k*Tf)/m) //Fermi velocity
+printf("Fermi velocity (in m/s)=")
+disp(Vf)
diff --git a/1952/CH6/EX6.2/Ex6_2.sce b/1952/CH6/EX6.2/Ex6_2.sce new file mode 100755 index 000000000..9cc2311ab --- /dev/null +++ b/1952/CH6/EX6.2/Ex6_2.sce @@ -0,0 +1,7 @@ +// chapter 6 , Example6 2 , pg 170
+Ef0=7.04*1.6*10^-19 // Fermi energy at 0 K (converting eV into J)
+T=300 //temperature (in K)
+k=1.38*10^-23 //boltzmann constant (in (m^2*Kg)/(s^2*K^-1))
+Ef=Ef0*(1-(%pi^2*(k*T)^2)/(12*Ef0^2)) //Fermi energy at 300 K (in J)
+printf("Fermi energy at 300 K =")
+printf("Ef=%.4f eV",(Ef/(1.6*10^-19))) //converting J into eV
diff --git a/1952/CH6/EX6.3/Ex6_3.sce b/1952/CH6/EX6.3/Ex6_3.sce new file mode 100755 index 000000000..263017cba --- /dev/null +++ b/1952/CH6/EX6.3/Ex6_3.sce @@ -0,0 +1,12 @@ +// chapter 6 , Example6.3 , pg 171
+d=2.7*10^3 //density (in Kg/m^3)
+Ma=27 //atomic weight
+Me=9.11*10^-31 //mass of electron (in Kg)
+e=1.6*10^-19 //charge in electron (in C)
+T=10^-14 //relaxation time (in s)
+Na=6.022*10^23 //Avogadro constant
+N=3*10^3 //number of free electrons per atom
+n=(d*Na*N)/Ma //(in /m^3)
+sigma=(n*e^2*T)/Me //conductivity
+printf("Conductivity of Al (in /(ohm*m))")
+disp(sigma)
diff --git a/1952/CH6/EX6.4/Ex6_4.sce b/1952/CH6/EX6.4/Ex6_4.sce new file mode 100755 index 000000000..b22c79173 --- /dev/null +++ b/1952/CH6/EX6.4/Ex6_4.sce @@ -0,0 +1,7 @@ +// chapter 6 , Example6 4 , pg 171
+sigma=5.87*10^7 // electrical conductivity (in /(ohm m))
+K=390 //thermal conductivity (in W/(m K))
+T=293 //temperature (in K)
+L=K/(sigma*T) //Lorentz number by wiedemann-Franz law
+printf("Lorentz number (in W*ohm /K^2)")
+disp(L)
diff --git a/1952/CH6/EX6.5/Ex6_5.sce b/1952/CH6/EX6.5/Ex6_5.sce new file mode 100755 index 000000000..cf6901ba8 --- /dev/null +++ b/1952/CH6/EX6.5/Ex6_5.sce @@ -0,0 +1,13 @@ +// chapter 6 , Example6 5 , pg 172
+d=8900 //density (in Kg/m^3)
+M=63.5 //atomic weight
+T=10^-14 //relaxation time(in s)
+N=6.022*10^23 //Avogadros constant
+N1=10^3 //number of free electrons per atom
+e=1.6*10^-19 //electronic charge (in C)
+me=9.11*10^-31 //mass of electron (in Kg)
+
+n=(N*d*N1)/M
+sigma =(n*e^2*T)/me //electrical conductivity
+printf("Electrical conductivity(in ohm m)=")
+disp(sigma)
diff --git a/1952/CH6/EX6.6/Ex6_6.sce b/1952/CH6/EX6.6/Ex6_6.sce new file mode 100755 index 000000000..78f8743da --- /dev/null +++ b/1952/CH6/EX6.6/Ex6_6.sce @@ -0,0 +1,23 @@ +// chapter 6 , Example6 6 , pg 172
+rho=1.54*10^-8 //resistivity (in ohm*m)
+Ef=5.5 //Fermi energy (in eV)
+E=100 //electric field intensity (in V/m)
+n=5.8*10^28 //concentration of electrons (in atoms/m^3)
+e=1.6*10^-19 //charge in electron (in C)
+Me=9.11*10^-31 //mass of electron (in Kg)
+T=Me/(rho*n*e^2) //relaxation time
+Un=(e*T)/Me //mobility of electron
+Vd=(e*T*E)/Me //drift velocity
+Vf=sqrt((2*Ef*e)/Me) //Fermi velocity
+lam_m=Vf*T //mean free path
+
+printf("Relaxation time of electron (in s)")
+disp(T)
+printf("Mobility of electron (in m^2/(V*s))")
+disp(Un)
+printf("Drift velocity of electron (in m/s)")
+disp(Vd)
+printf("Fermi velocity of electrons (in m/s)")
+disp(Vf)
+printf("Mean free path(in m)")
+disp(lam_m)
diff --git a/1952/CH6/EX6.7/Ex6_7.sce b/1952/CH6/EX6.7/Ex6_7.sce new file mode 100755 index 000000000..8a48f0172 --- /dev/null +++ b/1952/CH6/EX6.7/Ex6_7.sce @@ -0,0 +1,9 @@ +// chapter 6 , Example6 6 , pg 174
+L= 2.26*10^-8 //Lorentz number (in W*m /K^2)
+T=27+273 //temperature (in K) (converting celsius into kelvin)
+rho=1.72*10^-8 //electrical resistivity (in ohm *m)
+
+//according to Wiedemann-Franz law
+K=(L*T)/rho //thermal conductivity
+printf("Thermal conductivity =")
+printf("K=%.0f W/(m*K)",K)
diff --git a/1952/CH6/EX6.8/Ex6_8.sce b/1952/CH6/EX6.8/Ex6_8.sce new file mode 100755 index 000000000..dca36e6e1 --- /dev/null +++ b/1952/CH6/EX6.8/Ex6_8.sce @@ -0,0 +1,7 @@ +// chapter 6 , Example6 8 , pg 174
+sigma=5.87*10^7 // electrical conductivity (in /(ohm m))
+K=390 //thermal conductivity (in W/(m K))
+T=293 //temperature (in K)
+L=K/(sigma*T) //Lorentz number by wiedemann-Franz law
+printf("Lorentz number (in W*ohm /K^2)")
+disp(L)
diff --git a/1952/CH6/EX6.9/Ex6_9.sce b/1952/CH6/EX6.9/Ex6_9.sce new file mode 100755 index 000000000..400bf9180 --- /dev/null +++ b/1952/CH6/EX6.9/Ex6_9.sce @@ -0,0 +1,6 @@ +// chapter 6 , Example6 9 , pg 174
+del_E=0.01*1.6*10^-19 // del_E = E-Ef (in J) (converting eV into J)
+T=200 //temperature (in K)
+k=1.38*10^-23 //boltzmanns constant (in J/K)
+F_E=1/(1+exp(del_E/(k*T))) //Fermi Dirac distribution function
+printf("F_E=%.2f",F_E)
diff --git a/1952/CH7/EX7.1/Ex7_1.sce b/1952/CH7/EX7.1/Ex7_1.sce new file mode 100755 index 000000000..b751ed72d --- /dev/null +++ b/1952/CH7/EX7.1/Ex7_1.sce @@ -0,0 +1,11 @@ +// chapter 7 , Example7.1 , pg 208
+Er=13.2 // relative permittivity
+Me=9.11*10^-31 //mass of electron (in Kg)
+Mnc=0.067*Me
+h=6.625*10^-34 //plancks constant (in Js)
+Eo=8.85*10^-12
+e=1.6*10^-19 //electronic charge of electron (in C)
+E=(Mnc*e^4)/(8*(Er*Eo)^2*h^2) //Donor binding energy (in J)
+printf("Donor binding energy (in J)=")
+disp(E)
+printf("E=%.4f eV",(E/e))
diff --git a/1952/CH7/EX7.10/Ex7_10.sce b/1952/CH7/EX7.10/Ex7_10.sce new file mode 100755 index 000000000..455acc201 --- /dev/null +++ b/1952/CH7/EX7.10/Ex7_10.sce @@ -0,0 +1,10 @@ +// chapter 7 , Example 7.10 , pg 214
+T1=300 //temperature (in K)
+e=1.6*10^-19 //charge of electron (in C)
+k=1.38*10^-23 //Boltzmann constant (in J/K)
+T2=330 //temperature (in K)
+E1=0.3 // E1=(Ec-Ef_300) (in eV)
+E2=(E1*T2)/T1 //E2=(Ec-Ef_330) (in eV)
+printf("At 330 K the Fermi energy kevel lies ")
+disp(E2)
+printf("(in eV) below conduction band")
diff --git a/1952/CH7/EX7.11/Ex7_11.sce b/1952/CH7/EX7.11/Ex7_11.sce new file mode 100755 index 000000000..a73c06520 --- /dev/null +++ b/1952/CH7/EX7.11/Ex7_11.sce @@ -0,0 +1,11 @@ +// chapter 7 , Example 7.11 , pg 214
+T=300 //temperature (in K)
+e=1.6*10^-19 //charge of electron (in C)
+h=6.625*10^-34 //plancks constant (in m^2*Kg*S^-1)
+Eg=1.1 //bandgap (in eV)
+k=1.38*10^-23 //Boltzmann constant (in J/K)
+Me=9.11*10^-31 //mass of electron (in Kg)
+Mn=0.31*Me //electron effective mass
+ni=2*((2*%pi*k*T*Mn)/h^2)^(3/2)*exp(-(Eg*e)/(2*k*T)) //intrinsic concentration
+printf("Intrinsic concentration (in m^-3)")
+disp(ni)
diff --git a/1952/CH7/EX7.12/Ex7_12.sce b/1952/CH7/EX7.12/Ex7_12.sce new file mode 100755 index 000000000..76b339778 --- /dev/null +++ b/1952/CH7/EX7.12/Ex7_12.sce @@ -0,0 +1,7 @@ +// chapter 7 , Example7.12 , pg 214
+T=300 //temperature (in K)
+Rh=0.55*10^-10 //Hall coefficient (in m^3/(A*s))
+sigma=5.9*10^7 //conductivity (in ohm^-1 * m^-1)
+DM= Rh*sigma //drift mobility
+printf("Drift mobility (in m^2/(V *s))=")
+disp(DM)
diff --git a/1952/CH7/EX7.13/Ex7_13.sce b/1952/CH7/EX7.13/Ex7_13.sce new file mode 100755 index 000000000..a52a13e06 --- /dev/null +++ b/1952/CH7/EX7.13/Ex7_13.sce @@ -0,0 +1,15 @@ +// chapter 7 , Example 7.13 , pg 215
+Ud=3.2*10^-3 //electron drift mobility (in m^2/(V*s))
+sigma=5.9*10^7 //conductivity (in /(ohm*m))
+e=1.6*10^-19 //charge of electron (in C)
+Na=6.022*10^23 //Avogadro constant (in mol^-1)
+ni=sigma/(Ud*e) //intrinsic concentration (in m^-3)
+Aw=63.5 //atomic weight
+d=8960 //density (in Kg/m^3)
+n=10^3 //number of free electrons per atom
+N=(Na*d*n)/Aw //concentration of free electrons in pure Cu
+Avg_N=ni/N //Average number of electrons contributed per Cu atom
+printf("concentration of free electrons in pure Cu (in m^-3)")
+disp(N)
+printf("Average number of electrons contributed per Cu atom\n")
+printf("Avg_N=%.2f ",Avg_N)
diff --git a/1952/CH7/EX7.14/Ex7_14.sce b/1952/CH7/EX7.14/Ex7_14.sce new file mode 100755 index 000000000..a59885960 --- /dev/null +++ b/1952/CH7/EX7.14/Ex7_14.sce @@ -0,0 +1,10 @@ +// chapter 7 , Example7.14 , pg 215
+RH=3.66*10^-11 //Hall coefficient (in m^3/(A*s))
+e=1.6*10^-19 //charge in electron (in C)
+sigma=112*10^7 //conductivity (in (oh*m)^-1)
+n=1/(RH*e) //charge carrier density
+Un=sigma/(n*e) //electron mobility
+printf("charge carrier density(in m^-3)=")
+disp(n)
+printf("Electron mobility=")
+printf("Un=%.3f m^2/(A*s)",Un)
diff --git a/1952/CH7/EX7.15/Ex7_15.sce b/1952/CH7/EX7.15/Ex7_15.sce new file mode 100755 index 000000000..b3c3d57d0 --- /dev/null +++ b/1952/CH7/EX7.15/Ex7_15.sce @@ -0,0 +1,14 @@ +// chapter 7 , Example7.15 , pg 216
+I=50 //current (in A)
+B=1.5 //magnetic field (in T)
+d=0.2*10^-2 //width of slab (in m)
+n=8.4*10^28 //concentration of electrons (in m^-3)
+e=1.6*10^-19 // charge (in C)
+VH=(B*I)/(n*e*d) //Hall voltage
+printf("Hall voltage(in V)=")
+disp(VH)
+
+
+
+
+//Answer given is wrong
diff --git a/1952/CH7/EX7.16/Ex7_16.sce b/1952/CH7/EX7.16/Ex7_16.sce new file mode 100755 index 000000000..7c5ce46a3 --- /dev/null +++ b/1952/CH7/EX7.16/Ex7_16.sce @@ -0,0 +1,11 @@ +// chapter 7 , Example7.16 , pg 216
+ni=2.5*10^19 //intrinsic carrier density(in m^-3)
+Un=0.39 //electron mobility (in m^2/(V*s))
+up=0.19 //hole mobility (in m^2/(V*s))
+e=1.6*10^-19 //charge in electron (in C)
+l=10^-2 //length (in m)
+A=10^-3*10^-3 //area (in m^2)
+sigma=ni*e*(Un+up) // electrical conductivity (in (ohm*m)^-1)
+R=l/(sigma*A) //Resistance
+printf("Resistance of intrinsic Ge rod\n")
+printf("R=%.0f ohm",R)
diff --git a/1952/CH7/EX7.17/Ex7_17.sce b/1952/CH7/EX7.17/Ex7_17.sce new file mode 100755 index 000000000..4fd9da192 --- /dev/null +++ b/1952/CH7/EX7.17/Ex7_17.sce @@ -0,0 +1,10 @@ +// chapter 7 , Example7.17 , pg 216
+Eg=1.12 //bandgap (in eV)
+T=300 //temperature (in K)
+Me=9.11*10^-31 //mass of electron (in Kg)
+Mn=0.12*Me
+Mp=0.28*Me
+k=1.38*10^-23 //Boltzmann constant (in (m^2*Kg)/(s^2*K))
+Ef=(Eg/2)+((log(Mp/Mn)*3*k*T)/(4*1.6*10^-19))
+printf("position of Fermi level")
+printf("Ef=%.3f eV",Ef)
diff --git a/1952/CH7/EX7.18/Ex7_18.sce b/1952/CH7/EX7.18/Ex7_18.sce new file mode 100755 index 000000000..c637ae928 --- /dev/null +++ b/1952/CH7/EX7.18/Ex7_18.sce @@ -0,0 +1,8 @@ +// chapter 7 , Example7.18 , pg 217
+ni=1.5*10^16 //intrinsic carrier density(in m^-3)
+Un=0.13 //electron mobility (in m^2/(V*s))
+up=0.05 //hole mobility (in m^2/(V*s))
+e=1.6*10^-19 //charge in electron (in C)
+sigma=ni*e*(Un+up) // electrical conductivity
+printf("Electrical conductivity\n")
+printf("sigma=%.6f (ohm*m)^-1",sigma)
diff --git a/1952/CH7/EX7.19/Ex7_19.sce b/1952/CH7/EX7.19/Ex7_19.sce new file mode 100755 index 000000000..775e9e834 --- /dev/null +++ b/1952/CH7/EX7.19/Ex7_19.sce @@ -0,0 +1,14 @@ +// chapter 7 , Example7.19 , pg 217
+ni=2.15*10^13 //intrinsic carrier density(in cm^-3)
+Un=3900 //electron mobility (in cm^2/(V*s))
+up=1900 //hole mobility (in cm^2/(V*s))
+e=1.6*10^-19 //charge in electron (in C)
+sigma_I=ni*e*(Un+up) // electrical conductivity (in (ohm*cm)^-1)
+rho_I=1/sigma_I //intrinsic resistivity
+printf("Intrinsic resistivity\n")
+printf("rho_I=%.0f ohm*cm",rho_I)
+
+
+
+
+//Intrisic carrier density is given as 2.15*10^-13 instead of 2.15*10^13
diff --git a/1952/CH7/EX7.2/Ex7_2.pdf b/1952/CH7/EX7.2/Ex7_2.pdf Binary files differnew file mode 100755 index 000000000..599dee7c8 --- /dev/null +++ b/1952/CH7/EX7.2/Ex7_2.pdf diff --git a/1952/CH7/EX7.2/Ex7_2.png b/1952/CH7/EX7.2/Ex7_2.png Binary files differnew file mode 100755 index 000000000..9a566229d --- /dev/null +++ b/1952/CH7/EX7.2/Ex7_2.png diff --git a/1952/CH7/EX7.2/Ex7_2.sce b/1952/CH7/EX7.2/Ex7_2.sce new file mode 100755 index 000000000..0d534a552 --- /dev/null +++ b/1952/CH7/EX7.2/Ex7_2.sce @@ -0,0 +1,28 @@ +// chapter 7 , Example 7.2 , pg 208
+ni=1.5*10^10 //intrinsic concentration (in cm^-3)
+Nd=10^16 //donor concentration (in atoms/cm^3)
+T=300 //temperature (in K)
+e=1.6*10^-19 //charge of electron (in C)
+k=1.38*10^-23 //Boltzmann constant (in J/K)
+n0=Nd //Assuming n0=Nd ( since Nd >> ni)
+p0=ni^2/n0 //hole concentration
+E=k*T*log(n0/ni) // E=(Ef-Ei) location of Ef relative to Ei
+printf("Hole concentration (in cm^-3)")
+disp(p0)
+printf("Location of Ef relative to Ei (in eV)")
+disp(E/e)
+x = linspace(-5.5,5.5,51);
+y = 1 ;
+
+scf(2);
+clf(2);
+plot(x,y+0.1);
+
+plot(x,y,'ro-');
+plot(x,y-0.347,'--');
+plot(x,y*0,'bs:');
+xlabel(["x axis";"(independent variable)"]);
+ylabel("Energy level (eV)");
+title("Band diagram");
+legend(["Ec";"Ef";"Ei";"Ev"]);
+set(gca(),"data_bounds",matrix([-6,6,-0.1,1.1],2,-1));
diff --git a/1952/CH7/EX7.20/Ex7_20.sce b/1952/CH7/EX7.20/Ex7_20.sce new file mode 100755 index 000000000..342149df8 --- /dev/null +++ b/1952/CH7/EX7.20/Ex7_20.sce @@ -0,0 +1,8 @@ +// chapter 7 , Example7.20 , pg 217
+ni=2.1*10^19 //intrinsic carrier density(in m^-3)
+Un=0.4 //electron mobility (in m^2/(V*s))
+up=0.2 //hole mobility (in m^2/(V*s))
+e=1.6*10^-19 //charge in electron (in C)
+sigma=ni*e*(Un+up) // electrical conductivity
+printf("Electrical conductivity\n")
+printf("sigma=%.3f (ohm*m)^-1",sigma)
diff --git a/1952/CH7/EX7.21/Ex7_21.sce b/1952/CH7/EX7.21/Ex7_21.sce new file mode 100755 index 000000000..d3286b37c --- /dev/null +++ b/1952/CH7/EX7.21/Ex7_21.sce @@ -0,0 +1,20 @@ +// chapter 7 , Example 7.21 , pg 218
+e=1.6*10^-19 // charge of electron (in C)
+I=5*10^-3 // current (in mA)
+V=1.35 // voltage (in V)
+Vh=20*10^-3 //Hall voltage (in V)
+B=0.45 //magnetic induction (in T)
+l=10^-2 //length (in m)
+b=5*10^-3 //breadth (in m)
+d=10^-3 //thickness (in m)
+R=V/I //resistance (in ohm)
+A=b*d //area (in m^2)
+rho= (R*A)/l //resistivity (in ohm*m)
+E=Vh/d //Hall electric field (in V/m)
+J=I/A //current density (in A/m^2)
+Rh=E/(B*J) //Hall coefficient
+Un=Rh/rho //electron mobility (in m^2/(V*S))
+printf("Hall coefficient =")
+printf("Rh=%.3f m^3/C \n",Rh)
+printf("Electron mobility=")
+printf("Un=%.2f m^2/(V*S)",Un)
diff --git a/1952/CH7/EX7.22/Ex7_22.sce b/1952/CH7/EX7.22/Ex7_22.sce new file mode 100755 index 000000000..ea440a9c6 --- /dev/null +++ b/1952/CH7/EX7.22/Ex7_22.sce @@ -0,0 +1,9 @@ +// chapter 7 , Example7.22 , pg 218
+Ix=200 //current (in A)
+Bz=1.5 //magnetic field (in T)
+d=10^-3 //width of slab (in m)
+p=8.4*10^28 //concentration of electrons (in m^-3)
+e=1.6*10^-19 // charge (in C)
+VH=(Bz*Ix)/(p*e*d) //Hall voltage
+printf("Hall voltage(in V)=")
+disp(VH)
diff --git a/1952/CH7/EX7.3/Ex7_3.sce b/1952/CH7/EX7.3/Ex7_3.sce new file mode 100755 index 000000000..b55b35c1f --- /dev/null +++ b/1952/CH7/EX7.3/Ex7_3.sce @@ -0,0 +1,8 @@ +// chapter 7 , Example7.3 , pg 208
+Nd=10^14 //Donor density (in atoms/cm^3)
+e=1.6*10^-19 //electronic charge of electron (in C)
+Un=3900 // electron mobility (in cm^2/(V*s)) for Ge at 300 K
+sigma=Nd*e*Un //conductivity
+rho=1/sigma //resistivity
+printf("Resistivity=\n")
+printf("rho=%.2f ohm*cm",rho)
diff --git a/1952/CH7/EX7.4/Ex7_4.sce b/1952/CH7/EX7.4/Ex7_4.sce new file mode 100755 index 000000000..e925c90dd --- /dev/null +++ b/1952/CH7/EX7.4/Ex7_4.sce @@ -0,0 +1,18 @@ +// chapter 7 , Example7 4 , pg 209
+e=1.6*10^-19 //charge in electron (in C)
+Ix=2*10^-3 //current (in A)
+d=200*10^-4 //thickness (in cm)
+Bz=5*10^-5 //magnetic induction (in Wb/cm^2)
+Un=800 //electron mobility (in cm^2/(V*s))
+n=5*10^16 //doping concentration (in atoms/cm^3)
+
+sigma=n*e*(Un) // electrical conductivity
+rho=1/sigma //resistivity
+Rh=-1/(e*n) //Hall coefficient
+Vh=-(Ix*Bz)/(d*e*n) //Hall voltage
+printf("Resistivity(in ohm*cm)")
+disp(rho)
+printf("Hall coefficient(in cm^3/C)")
+disp(Rh)
+printf("Hall voltage (in V)")
+disp(Vh)
diff --git a/1952/CH7/EX7.5/Ex7_5.sce b/1952/CH7/EX7.5/Ex7_5.sce new file mode 100755 index 000000000..0a856b478 --- /dev/null +++ b/1952/CH7/EX7.5/Ex7_5.sce @@ -0,0 +1,23 @@ +// chapter 7 , Example 7.5 , pg 210
+T=300 //temperature (in K)
+Un=0.4 //electron mobility (in m^2/(V*s))
+Up=0.2 //hole mobility (in m^2/(V*s))
+e=1.6*10^-19 //charge of electron (in C)
+h=6.625*10^-34 //plancks constant (in m^2*Kg*S^-1)
+Eg=0.7 //bandgap (in eV)
+k=1.38*10^-23 //Boltzmann constant (in J/K)
+Me=9.11*10^-31 //mass of electron (in Kg)
+Mn=0.55*Me //electron effective mass
+Mp=0.37*Me //hole effective mass
+ni=2*((2*%pi*k*T)/h^2)^(3/2)*(Mn*Mp)^(3/4)*exp(-(Eg*e)/(2*k*T)) //intrinsic concentration
+sigma=ni*e*(Un+Up) //intrinsic conductivity
+rho=1/sigma //intrinsic resistivity
+printf("Intrinsic concentration (in m^-3)")
+disp(ni)
+printf("Intrinsic conductivity (in /(ohm*m)")
+disp(sigma)
+printf("Intrinsic resistivity (in ohm*m)")
+disp(rho)
+
+
+//answer given is wrong
diff --git a/1952/CH7/EX7.6/Ex7_6.sce b/1952/CH7/EX7.6/Ex7_6.sce new file mode 100755 index 000000000..1ce2f238a --- /dev/null +++ b/1952/CH7/EX7.6/Ex7_6.sce @@ -0,0 +1,9 @@ +// chapter 7 , Example 7.6 , pg 211
+Nd=10^16 //donor concentration (in cm^-3)
+ni=1.45*10^10 //intrinsic concentration (in cm^-3)
+T=300 //temperature (in K)
+e=1.6*10^-19 //charge of electron (in C)
+k=1.38*10^-23 //Boltzmann constant (in J/K)
+E=k*T*log(Nd/ni) //E=(Efd-Ei) Fermi energy with respect to Fermi energy in intrinsic Si
+printf("Fermi energy with respect to Fermi energy in intrinsic Si(in eV)")
+disp(E/e)
diff --git a/1952/CH7/EX7.7/Ex7_7.sce b/1952/CH7/EX7.7/Ex7_7.sce new file mode 100755 index 000000000..39382d33c --- /dev/null +++ b/1952/CH7/EX7.7/Ex7_7.sce @@ -0,0 +1,24 @@ +// chapter 7 , Example 7.7 , pg 211
+rho=2300 //resistivity (in ohm*m) for Si (value given in book is wrong)
+ni=1.6*10^16 //intrinsic concentration (in m^-3)
+Ue=0.15 //electron mobility (in m^2/(V*s))
+e=1.6*10^-19 //charge of electron (in C)
+// assuming 1*1*1 (in cm) dimension of Si crystal
+l=10^-2 //length (in m)
+b=10^-2 //breadth (in m)
+w=10^-2 //width (in m)
+Nsi=5*10^28 // (in atoms/m^3)
+x=1/10^9 //doping concentration
+A=l*b //area (in m^2)
+R1=(rho*l)/A //resistance of pure Si crystal (in ohm)
+Nd=Nsi*x //donor concentration (in m^-3)
+p=ni^2/Nd //concentration of hole (in m^-3)
+sigma=Nd*Ue*e //coductivity of doped Si (in ohm^-1*m^-1)
+R=l/(sigma*A) //resistance of doped Si crystal (in ohm)
+printf("Resistance of pure Si crystal (in ohm)")
+disp(R1)
+printf("Resistance of doped Si crystal (in ohm)")
+disp(R)
+
+
+//answer given is wrong
diff --git a/1952/CH7/EX7.8/Ex7_8.sce b/1952/CH7/EX7.8/Ex7_8.sce new file mode 100755 index 000000000..fdebed813 --- /dev/null +++ b/1952/CH7/EX7.8/Ex7_8.sce @@ -0,0 +1,17 @@ +// chapter 7 , Example 7.8 , pg 212
+rho=2.12 //resistivity (in ohm*m)
+T=300 //temperature (in K)
+Un=0.36 //electron mobility (in m^2/(V*s))
+Up=0.17 //hole mobility (in m^2/(V*s))
+h=6.625*10^-34 //plancks constant (in m^2*Kg*S^-1)
+k=1.38*10^-23 //Boltzmann constant (in J/K)
+e=1.6*10^-19 //charge in electron (in C)
+Me=9.11*10^-31 //mass of electron (in Kg)
+Mn=0.5*Me //electron effective mass
+Mp=0.37*Me //hole effective mass
+ni=1/(rho*e*(Un+Up)) //intrinsic concentration (in m^-3)
+Nc=2*((2*%pi*k*T)/h^2)^(3/2)*(Mn)^(3/2) //effective density of states in conduction band (in m^-3)
+Nv=2*((2*%pi*k*T)/h^2)^(3/2)*(Mp)^(3/2) //effective density of states in valence band (in m^-3)
+Eg=2*k*T*log(sqrt(Nc*Nv)/ni) //Forbidden energy gap
+printf("Forbidden energy gap=")
+printf("Eg=%.3f eV",Eg/e)
diff --git a/1952/CH7/EX7.9/Ex7_9.sce b/1952/CH7/EX7.9/Ex7_9.sce new file mode 100755 index 000000000..722ebef97 --- /dev/null +++ b/1952/CH7/EX7.9/Ex7_9.sce @@ -0,0 +1,8 @@ +// chapter 7 , Example7.9 , pg 213
+ni=2.4*10^19 //intrinsic carrier density(in m^-3)
+Un=0.39 //electron mobility (in m^2/(V*s))
+up=0.19 //hole mobility (in m^2/(V*s))
+e=1.6*10^-19 //charge in electron (in C)
+sigma=ni*e*(Un+up) // electrical conductivity
+printf("Electrical conductivity\n")
+printf("sigma=%.3f (ohm*m)^-1",sigma)
diff --git a/1952/CH8/EX8.1/Ex8_1.sce b/1952/CH8/EX8.1/Ex8_1.sce new file mode 100755 index 000000000..b9ffe9e23 --- /dev/null +++ b/1952/CH8/EX8.1/Ex8_1.sce @@ -0,0 +1,7 @@ +// chapter 8 , Example 8.1 , pg 238
+I=12 // current(in A)
+A=7.5*10^-4 //area(in m^2)
+M=I*A //magnetic moment associated with the loop
+printf("Magnetic moment associated with the loop(in A m^2)=")
+disp(M)
+printf("M is directed away from the observer and is perpendicular to the plane of the loop")
diff --git a/1952/CH8/EX8.2/Ex8_2.sce b/1952/CH8/EX8.2/Ex8_2.sce new file mode 100755 index 000000000..615a9880d --- /dev/null +++ b/1952/CH8/EX8.2/Ex8_2.sce @@ -0,0 +1,9 @@ +// chapter 8 , Example 8.2 , pg 238
+r=0.5*10^-10 //radius of orbit (in m)
+e= 1.6*10^-19 //charge on electron (in C)
+n=10^16 //frequency of revolution of electron (in rps)
+I=e*n //current (in A)
+A=%pi *r^2 //area (in m^2)
+M=I*A //magnetic moment associated with motion of electron
+printf("Magnetic moment associated with motion of electron (in A m^2)")
+disp(M)
diff --git a/1952/CH8/EX8.3/Ex8_3.sce b/1952/CH8/EX8.3/Ex8_3.sce new file mode 100755 index 000000000..cb0310a1a --- /dev/null +++ b/1952/CH8/EX8.3/Ex8_3.sce @@ -0,0 +1,5 @@ +// chapter 8 , Example 8.3 , pg 239
+ur=5000 //relative permeability
+xm=ur-1 //magnetic susceptibility
+printf("Magnetic susceptibility=")
+disp(xm)
diff --git a/1952/CH8/EX8.4/Ex8_4.sce b/1952/CH8/EX8.4/Ex8_4.sce new file mode 100755 index 000000000..07657fc4b --- /dev/null +++ b/1952/CH8/EX8.4/Ex8_4.sce @@ -0,0 +1,8 @@ +// chapter 8 , Example 8.4 , pg 239
+H=1800 //magnetizing field (in A/m)
+phi=3*10^-5 //magnetic flux (in Wb)
+A=0.2 *10^-4 //area (in m^2)
+B=phi/A //magnetic flux density (in Wb/m^2)
+u=B/H //permeability (in H/m)
+printf("permeability (in H/m )=")
+disp(u)
diff --git a/1952/CH8/EX8.5/Ex8_5.sce b/1952/CH8/EX8.5/Ex8_5.sce new file mode 100755 index 000000000..25f83e044 --- /dev/null +++ b/1952/CH8/EX8.5/Ex8_5.sce @@ -0,0 +1,15 @@ +// chapter 8 , Example 8.5 , pg 239
+B=0.65 //magnetic induction (in T)
+d=8906 //density (in Kg/m^3)
+M=58.7 //atomic weight
+e=1.6*10^-19 //charge of electron (in C)
+h=6.625*10^-34 //plancks constant (in m^2*Kg*S^-1)
+m=9.11*10^-31 //mass of electron (in Kg)
+Uo=4*%pi*10^-7 //vacuum permeability
+Na=6.023*10^26 //Avogadro constant
+Ub=(e*h)/(4*%pi*m) //Bhor magneton (in A*m^2)
+N=(d*Na)/M //number of atoms per unit volume
+Ur=B/(N*Uo) //relative permeability (in A/m^2)
+M=Ur/(Ub) //magnetic moment
+printf("Magnetic moment")
+printf("M=%.2f A*m^2",M)
diff --git a/1952/CH9/EX9.1/Ex9_1.sce b/1952/CH9/EX9.1/Ex9_1.sce new file mode 100755 index 000000000..b5ed44c32 --- /dev/null +++ b/1952/CH9/EX9.1/Ex9_1.sce @@ -0,0 +1,7 @@ +// chapter 9 , Example9.1 , pg 255
+H0=6.5*10^4 //magnetic field intensity at 0K (in A/m)
+T=4.2 //temperature (in K)
+Tc=7.18 //critical temperature (in K)
+Hc=H0*(1-(T^2/Tc^2)) // critical magnetic field intensity
+printf("critical magnetic field intensity\n")
+printf("Hc=%.0f A/m",Hc)
diff --git a/1952/CH9/EX9.2/ex9_2.sce b/1952/CH9/EX9.2/ex9_2.sce new file mode 100755 index 000000000..b807e1585 --- /dev/null +++ b/1952/CH9/EX9.2/ex9_2.sce @@ -0,0 +1,10 @@ +// chapter 9 , Example9.2 , pg 255
+M1=199.5 //isotopic mass
+Tc1=4.185 //critical temperature for M1 (in K)
+Tc2=4.133 //critical temperature for M2 (in K)
+alpha=0.5
+
+//M^alpha * Tc=constant
+M2=((M1^alpha*Tc1)/Tc2)^(1/alpha)
+printf("Isotopic mass at critical temperature 4.133K\n")
+printf("M2=%.3f ",M2)
|