diff options
Diffstat (limited to '1892')
117 files changed, 2760 insertions, 0 deletions
diff --git a/1892/CH1/EX1.1.s/Example1_1_page41.sce b/1892/CH1/EX1.1.s/Example1_1_page41.sce new file mode 100755 index 000000000..3a41229e3 --- /dev/null +++ b/1892/CH1/EX1.1.s/Example1_1_page41.sce @@ -0,0 +1,16 @@ +// Example 1.1 Page: 41
+
+clear; clc; close;
+
+format('v',6);
+// Given data
+P=4;//No. of poles
+f=50;//in Hz
+N=1410;//in rpm
+
+//Calculations
+Ns=120*f/P;//in r
+disp(Ns,"Synchronous speed in rpm : ");
+S=(Ns-N)/Ns;//Full load slip
+S=S*100;//in %
+disp(S,"Full load slip in % : ");
diff --git a/1892/CH1/EX1.1/Example1_1_page24.sce b/1892/CH1/EX1.1/Example1_1_page24.sce new file mode 100755 index 000000000..3ee88853e --- /dev/null +++ b/1892/CH1/EX1.1/Example1_1_page24.sce @@ -0,0 +1,23 @@ +// Example 1.1
+
+clear; clc; close;
+
+format('v',6);
+// Given data
+Zinner=0.01+0.5*%i;//Impedence at standstill of inner cage in ohm
+Zouter=0.05+0.1*%i;//Impedence at standstill of outer cage in ohm
+
+//Calculations
+//Part (a) : at starting
+R1=real(Zinner);//in ohm
+R2=real(Zouter);//in ohm
+X1=imag(Zinner);//in ohm
+X2=imag(Zouter);//in ohm
+//Formula : Ts=3/ws*V_dash^2*R2/(R2^2+X2^2)
+TsoBYTsi=(R2/(R2^2+X2^2))/(R1/(R1^2+X1^2))
+disp(TsoBYTsi,"Part(a) Ratio of Torque : ");
+//Part(b) : slip =5%
+S=5/100;//slip
+//Formula : T=3/ws*V_dash^2*(R2/S)^2/((R2/S)+X2^2)
+ToBYTi=((R2/S)/((R2/S)^2+X2^2))/((R1/S)/((R1/S)^2+X1^2))
+disp(ToBYTi,"Part (b) Ratio of Torque : ");
diff --git a/1892/CH1/EX1.10/Example1_10.sce b/1892/CH1/EX1.10/Example1_10.sce new file mode 100755 index 000000000..76733fb42 --- /dev/null +++ b/1892/CH1/EX1.10/Example1_10.sce @@ -0,0 +1,21 @@ +// Example 1.10
+
+clear; clc; close;
+
+format('v',8);
+// Given data
+f=50;//in Hz
+P=8;//no. of poles
+Tsh=190;//in N-m
+fr=1.5;//in Hz
+MechLoss=700;//in watts
+
+//Calculations
+S=fr/f;//Slip
+Ns=120*f/P;//in rpm
+N=Ns*(1-S);//in rpm
+Pout=Tsh*2*%pi*N/60;//in watts
+Pm=Pout+MechLoss;//in watts
+//formula-: P2:Pc:Pm=1:S:1-S
+Pc=Pm*S/(1-S);//in watts
+disp(Pc,"Rotor Copper loss in watts : ");
diff --git a/1892/CH1/EX1.11/Example1_11.sce b/1892/CH1/EX1.11/Example1_11.sce new file mode 100755 index 000000000..e36796b3e --- /dev/null +++ b/1892/CH1/EX1.11/Example1_11.sce @@ -0,0 +1,25 @@ +// Example 1.11
+
+clear; clc; close;
+
+format('v',8);
+// Given data
+f=50;//in Hz
+P=4;//no. of poles
+Pin=50;//in kW
+N=1440;//in rpm
+StatorLoss=1000;//in watts
+FrictionalLoss=650;//in watts
+
+//Calculations
+Ns=120*f/P;//in rpm
+S=(Ns-N)/Ns;//Slip
+
+N=Ns*(1-S);//in rpm
+P2=Pin-StatorLoss/1000;//in KW
+//formula-: P2:Pc:Pm=1:S:1-S
+Pc=S*P2;//in KW
+Pm=P2-Pc;//in KW
+Pout=Pm-FrictionalLoss/1000;//in KW
+Eff=Pout/Pin*100;//in %
+disp(Eff,"Full load efficiency in % : ");
diff --git a/1892/CH1/EX1.12/Example1_12.sce b/1892/CH1/EX1.12/Example1_12.sce new file mode 100755 index 000000000..237e81193 --- /dev/null +++ b/1892/CH1/EX1.12/Example1_12.sce @@ -0,0 +1,34 @@ +// Example 1.12
+
+clear; clc; close;
+
+format('v',8);
+// Given data
+f=50;//in Hz
+phase=3;//no. of phase
+P=4;//no. of poles
+Tsh=300;//in N-m
+Tlost=50;//in N-m
+fr=120;//in cycles/min
+fr=fr/60;//in Hz
+I2r=60;//in Ampere/phase
+
+//Calculations
+S=fr/f;//slip
+disp(S*100,"(i) Slip(%) : ");
+Ns=120*f/P;//in rpm
+N=Ns*(1-S);//in rpm
+Pout=Tsh*2*%pi*N/60;//watts
+disp(Pout/1000,"(ii) Net output Power(KW) : ");
+FricLoss=Tlost*2*%pi*N/60;//in watts
+Pm=Pout+FricLoss;//in watts
+//formula-: P2:Pc:Pm=1:S:1-S
+Pc=S*Pm/(1-S);//copper loss in Watts
+PcPERphase=Pc/phase;//Copper loss per phase in watts
+disp(PcPERphase,"(iii) Rotor copper loss per phase(watts) : ");
+P2=Pc/S;//in watts
+Eff=Pm/P2*100;//in %
+disp(Eff,"(iv) Rotor efficiency in % : ");
+//Formula : CuLossPerPhase=I2r^2*R2;//in watts
+R2=PcPERphase/I2r^2;//in ohm/phase
+disp(R2,"(v) Rotor resistance per phase(ohm/phase) : ");
diff --git a/1892/CH1/EX1.13/Example1_13.sce b/1892/CH1/EX1.13/Example1_13.sce new file mode 100755 index 000000000..f1d3e3879 --- /dev/null +++ b/1892/CH1/EX1.13/Example1_13.sce @@ -0,0 +1,30 @@ +// Example 1.13
+
+clear; clc; close;
+
+format('v',6);
+// Given data
+Pout=25;//in KW
+f=50;//in Hz
+phase=3;//no. of phase
+P=4;//no. of poles
+N=1410;//in rpm
+MechLoss=850;//in watts
+StatLossBYCuLoss=1.17;
+I2r=65;//in Ampere
+
+//Calculations
+Ns=120*f/P;//in rpm
+S=(Ns-N)/Ns;//slip
+Pm=Pout*1000+MechLoss;//in watts
+disp(Pm,"Gross mechanical power devloped in watts : ");
+//formula-: P2:Pc:Pm=1:S:1-S
+Pc=S*Pm/(1-S);//copper loss in Watts
+disp(Pc,"Rotor Copper Losses in watts : ");
+R2=Pc/phase/I2r^2;//in ohm/phase
+disp(R2,"Rotor resistance per phase in ohm ; ");
+StatorLoss=1.7*Pc;//in watts
+P2=Pc/S;//in Watts
+Pin=P2+StatorLoss;//in watts
+Eff=Pout*1000/Pin*100;//in %
+disp(Eff,"Full laod Efficiency in % : ");
diff --git a/1892/CH1/EX1.14/Example1_14.sce b/1892/CH1/EX1.14/Example1_14.sce new file mode 100755 index 000000000..ed86675b5 --- /dev/null +++ b/1892/CH1/EX1.14/Example1_14.sce @@ -0,0 +1,39 @@ +// Example 1.14
+
+clear; clc; close;
+
+format('v',7);
+// Given data
+Pout=24;//in KW
+P=8;//no. of poles
+N=720;//in rpm
+VL=415;//in volt
+IL=57;//in Ampere
+f=50;//in Hz
+phase=3;//no. of phase
+cosfi=0.707;//power factor
+MechLoss=1000;//in watts
+Rs=0.1;//in ohm/phase
+
+//Calculations
+Ns=120*f/P;//in rpm
+S=(Ns-N)/Ns;//slip
+Pm=Pout*1000+MechLoss;//in watts
+//formula-: P2:Pc:Pm=1:S:1-S
+//Pc=S*Pm/(1-S);//copper loss in Watts
+Tsh=Pout*10^3/(2*%pi*N/60);//in N-m
+disp(Tsh,"Shaft Torque in N-m : ");
+T=Pm/((2*%pi*N/60));//in N-m
+disp(T,"Gross torque devloped in N-m : ");
+Pc=S*Pm/(1-S);//copper loss in Watts
+disp(Pc,"Rotor Cu losses in watts : ");
+P2=Pc/S;//in watts
+Pin=sqrt(3)*VL*IL*cosfi;//in watts
+Is=IL;//stator current per phase in Ampere
+StatorCuLoss=3*Is^2*Rs;//in watts
+disp(StatorCuLoss,"Stator Copper losses in watts : ");
+StatorLosses=Pin-P2;//in watts
+StatorIronLoss=StatorLosses-StatorCuLoss;//in watts
+disp(StatorIronLoss,"Stator Iron losses in watts : ");
+Eff=Pout*10^3/Pin*100;//in %
+disp(Eff,"Efficiency in % : ");
diff --git a/1892/CH1/EX1.15/Example1_15.sce b/1892/CH1/EX1.15/Example1_15.sce new file mode 100755 index 000000000..a87dbc125 --- /dev/null +++ b/1892/CH1/EX1.15/Example1_15.sce @@ -0,0 +1,51 @@ +// Example 1.15
+
+clear; clc; close;
+
+format('v',8);
+// Given data
+Poles=12;//no. of poles
+V1=420;//in volt
+f=50;//in Hz
+r1=2.95;//in watts
+x1=6.82;//in watts
+r2dash=2.08;//in watts
+x2dash=4.11;//in ohm/phase
+ImLine=6.7;//in Ampere
+TcoreLoss=269;//in watts
+S=3;//slip in %
+
+//Calculations
+S=S/100;//slip
+Im=ImLine/sqrt(3);//in Ampere
+Im_bar=Im*exp(%i*(-%pi/2))*(r1+%i*x1);//in Ampere
+//V1=(E1+real(Im_bar))+imag(Im_bar)
+//Equating magnitude of both sides gives a polynomial for E1
+P=[1 2*real(Im_bar) abs(Im_bar)^2-V1^2];
+E1=roots(P);
+E1=E1(2);//discarding -ve value
+Xo=E1/Im;//in ohm
+//Zeq=Xo*exp(%i*(%pi/2))*(r2dash/S)/(%i*Xo+%i*x2dash+r2dash/S);
+Zeq=%i*Xo*(r2dash/S+%i*x2dash)/(%i*Xo+%i*x2dash+r2dash/S);
+Zin=r1+%i*x1+Zeq;//in ohm
+I1=V1/Zin;//in Ampere
+disp("Magnitude is "+string(abs(I1))+" & angle in degree is "+string(atand(imag(I1),real(I1))));
+cosfi=cosd(atand(imag(I1)/real(I1)));//lagging power factor
+disp(cosfi,"Power factor(lagging) : ");
+I2r_dash=I1*(%i*Xo)/(r2dash+%i*(Xo+x2dash));//in Ampere
+//disp(I2r_dash,"Equivalent rotor current in Ampere : ");
+disp("Magnitude is "+string(abs(I2r_dash))+" & angle in degree is "+string(atand(imag(I2r_dash),real(I2r_dash))));
+Ns=120*f/Poles;//in rpm
+T=9.55*3*real(I2r_dash)^2*r2dash/S/Ns;//in N-m
+disp(T,"Torque devloped in N-m : ");
+Zth=(r1+%i*x1)*%i*Xo/((r1+%i*x1)+%i*Xo);//in Ohm
+Rth=real(Zth);//in ohm
+Xth=imag(Zth);//in ohm
+Vth=V1*(%i*Xo)/(r1+%i*(Xth+Xo));//in Volt
+Ws=(2*%pi*Ns/60);//in rad/sec
+Tm=(3/Ws)*0.5*real(Vth)^2/(Rth+sqrt(Rth^2+(Xth+x2dash)^2));//in N-m
+disp(Tm,"Maximum torque devloped in N-m : ");
+Sm=r2dash/sqrt(Rth^2+(Xth+x2dash)^2);//slip
+Nm=Ns*(1-Sm);//
+disp(Nm,"Speed at maximum torque in rpm : ");
+//Answer for rotor equivalent Current and Torque developed is wrong in the book.
diff --git a/1892/CH1/EX1.16/Example1_16.sce b/1892/CH1/EX1.16/Example1_16.sce new file mode 100755 index 000000000..247adde09 --- /dev/null +++ b/1892/CH1/EX1.16/Example1_16.sce @@ -0,0 +1,43 @@ +// Example 1.16
+
+clear; clc; close;
+
+format('v',7);
+// Given data
+V=440;//in volt
+P=8;//no. of poles
+Pout=40;//in KW
+f=50;//in Hz
+phase=3;//no. of phase
+R1=0.1;//in ohm
+X1=0.4;//in ohm
+R2dash=0.15;//Equivalent rotor resistance in ohm
+X2dash=0.44;//Equivalent rotor reactance in ohm
+I0=20*expm(%i*-acos(0.09));//in Ampere
+N=727.5;//in rpm
+MechLoss=1000;//in watts
+CoreLoss=1250;//in watts
+
+//Calculations
+Ns=120*f/P;//in rpm
+S=(Ns-N)/Ns;//slip
+RLdash=R2dash*(1-S)/S
+V1=V/sqrt(3);//in volt
+R1e=R1+R2dash;//in ohm
+X1e=X1+X2dash;//in ohm
+I2rdash=V1/(R1e+RLdash+%i*X1e);//in Ampere
+I1bar=I0+I2rdash;//in Ampere
+InputCurrent=abs(I1bar);//in Ampere
+InputPF=cosd(atand(imag(I1bar),real(I1bar)));//
+disp(InputPF,InputCurrent,"(i) Input Current in Ampere & PF(lagging) are : ");
+T=3*abs(I2rdash)^2*R2dash/S/(2*%pi*Ns/60);//in N-m
+disp(T,"(ii) Torque Developed in N-m : ") ;
+P2=3*abs(I2rdash)^2*R2dash/S;//in Watts
+//Formula : P2:Pc:Pm=1:S:1-S
+Pm=(1-S)*P2;//in Watts
+TotPout=Pm-MechLoss;//in watts
+disp(TotPout,"(iii) Output power in Watts : ");
+TotCuLoss=3*abs(I2rdash)^2*R1e;//in watts
+Eff=TotPout/(TotPout+TotCuLoss+CoreLoss+MechLoss)*100;//in %
+disp(Eff,"(iv) Efficiency in % : ");
+
diff --git a/1892/CH1/EX1.17/Example1_17.sce b/1892/CH1/EX1.17/Example1_17.sce new file mode 100755 index 000000000..0220be3d7 --- /dev/null +++ b/1892/CH1/EX1.17/Example1_17.sce @@ -0,0 +1,23 @@ +// Example 1.17
+
+clear; clc; close;
+
+format('v',6);
+// Given data
+Z1=0.07+%i*0.4;//in ohm
+Z2dash=0.08+%i*0.2;//in ohm
+V1_line=200;//in volt
+
+//Calculations
+R1=real(Z1);//in ohm
+X1=imag(Z1);//in ohm
+R2dash=real(Z2dash);//in ohm
+X2dash=imag(Z2dash);//in ohm
+R1e=R1+R2dash;//in ohm
+X1e=X1+X2dash;//in ohm
+Z1e=R1e+%i*X1e;//in ohm
+Z1e_mag=abs(Z1e);//magnitude of Z1e in ohm
+V1PerPhase=V1_line/sqrt(3);//in volt
+Pout_max=3*V1PerPhase^2/2/(R1e+Z1e);//
+S=R2dash/(R2dash+Z1e_mag);//
+disp(S*100,"Slip in % : ")
diff --git a/1892/CH1/EX1.18/Example1_18.sce b/1892/CH1/EX1.18/Example1_18.sce new file mode 100755 index 000000000..e1ef7175f --- /dev/null +++ b/1892/CH1/EX1.18/Example1_18.sce @@ -0,0 +1,18 @@ +// Example 1.18
+
+clear; clc; close;
+format('v',6);
+// Given data
+P=4;//in poles
+f=50;//in Hz
+Pout=30;//in HP
+VL=400;//in volt
+Eta=0.8;//Efficiency
+cosfi=0.75;//lagging power factor
+
+//Calculations
+Pout=Pout*735.5;//in Watts
+Pin=Pout/Eta;//in Watts
+//Formula : Pin=sqrt(3)*VL*IL*cosfi
+IL=Pin/sqrt(3)/VL/cosfi;//in Ampere
+disp(IL,"Current by the mains in ampere : ");
diff --git a/1892/CH1/EX1.19/Example1_19.sce b/1892/CH1/EX1.19/Example1_19.sce new file mode 100755 index 000000000..2d1fa6157 --- /dev/null +++ b/1892/CH1/EX1.19/Example1_19.sce @@ -0,0 +1,33 @@ +// Example 1.19
+
+clear; clc; close;
+format('v',8);
+// Given data
+P=4;//in poles
+Pout=37;//in HP
+f=50;//in Hz
+N=1425;//in rpm
+MechLoss=3;//in HP
+StatorLoss=2500;//in watts
+VL=500;//in volt
+cosfi=0.9;//power factor
+
+//Calculations
+Ns=120*f/P;//in rpm
+S=(Ns-N)/Ns;//slip
+disp(S,"(i) Slip is : ");
+Pout=Pout*735.5;//in Watts
+MechLoss=MechLoss*735.5;//in Watts
+Pin=Pout+MechLoss;//in Watts
+//Formula : P2:Pc:Pin=1:5:1-S
+Pc=(S/(1-S))*Pin;//in watts
+disp(Pc,"(ii) Rotor Cu Loss in watts : ");
+P2=Pc/S;//in Watts
+Pin=P2+StatorLoss;//in watts
+disp(Pin,"(iii) Total power input in watts : ");
+Eta=Pout/Pin*100;//in %
+disp(Eta,"(iv) Efficiency in % : ");
+fr=S*f;//in Hz
+fr=fr*60;//in cycles/min
+disp(fr,"(v) No. of cycles per minute : ");
+//Part (ii) & (iii) answer is wrong in the book.
diff --git a/1892/CH1/EX1.2/Example1_2.sce b/1892/CH1/EX1.2/Example1_2.sce new file mode 100755 index 000000000..922d3cf0e --- /dev/null +++ b/1892/CH1/EX1.2/Example1_2.sce @@ -0,0 +1,16 @@ +// Example 1.2
+
+clear; clc; close;
+
+format('v',6);
+// Given data
+P=2;//No. of poles
+f=50;//in Hz
+S=2;//in %
+
+
+//Calculations
+S=S/100;//unitless
+Ns=120*f/P;//in rpm
+N=Ns*(1-S)
+disp(N,"Speed of motor in rpm : ");
diff --git a/1892/CH1/EX1.20/Example1_20.sce b/1892/CH1/EX1.20/Example1_20.sce new file mode 100755 index 000000000..d9684e113 --- /dev/null +++ b/1892/CH1/EX1.20/Example1_20.sce @@ -0,0 +1,21 @@ +// Example 1.20
+
+clear; clc; close;
+format('v',7);
+// Given data
+E2line=60;//in Volt
+R2=0.6;//in ohm
+X2=4;//in ohm
+Rx=5;//in ohm
+Xx=2;//in ohm
+S=4;//in %
+
+//Calculations
+E2ph=E2line/sqrt(3);//in volt
+ZT=R2+%i*X2+Rx+%i*Xx;//
+I2=E2ph/abs(ZT);//in Ampere
+disp(I2,"(i) Rotor Current per phase in Ampere : ");
+S=S/100;//slip
+Z2r=R2+%i*S*X2;//in ohm
+I2r=S*E2ph/abs(Z2r);//in Ampere
+disp(I2r,"(ii) Rotor Current per phase in Ampere : ");
diff --git a/1892/CH1/EX1.21/Example1_21.sce b/1892/CH1/EX1.21/Example1_21.sce new file mode 100755 index 000000000..b9e7191d6 --- /dev/null +++ b/1892/CH1/EX1.21/Example1_21.sce @@ -0,0 +1,15 @@ +// Example 1.21
+
+clear; clc; close;
+format('v',7);
+// Given data
+P=4;//no. of poles
+f=50;//in Hz
+P2=3000;//in watts
+
+//Calculations
+Ns=120*f/P;//in rpm
+T=P2/(2*%pi*Ns/60);//in N-m
+disp(T,"Torque Devloped in N-m : ");
+T=T*(2*%pi*Ns/60);//in syn. Watt
+disp(T,"Torque Devloped in syn. Watt : ");
diff --git a/1892/CH1/EX1.22/Example1_22.sce b/1892/CH1/EX1.22/Example1_22.sce new file mode 100755 index 000000000..aba65d619 --- /dev/null +++ b/1892/CH1/EX1.22/Example1_22.sce @@ -0,0 +1,20 @@ +// Example 1.22
+
+clear; clc; close;
+format('v',7);
+// Given data
+E1Line=1000;//in volt
+R2=0.01;//in ohm
+X2=0.2;//in ohm
+I2st=200;//in Ampere
+ratio=3.6;//ratio of stator to rotor turns
+
+//Calculations
+K=1/ratio;//ratio of rotor to stator turns
+E1ph=E1Line/sqrt(3);//in Volt
+E2ph=K*E1ph;//in volt
+//Let R2dash=R2+Rx
+//Formula : I2st=E2ph/sqrt(R2dash^2+X2^2);
+R2dash=sqrt((E2ph/I2st)^2-X2^2)
+Rx=R2dash-R2;//in ohm
+disp(Rx,"External resistance required per phase in ohm : ");
diff --git a/1892/CH1/EX1.23/Example1_23.sce b/1892/CH1/EX1.23/Example1_23.sce new file mode 100755 index 000000000..c811ae920 --- /dev/null +++ b/1892/CH1/EX1.23/Example1_23.sce @@ -0,0 +1,28 @@ +// Example 1.23
+
+clear; clc; close;
+format('v',7);
+// Given data
+VL=400;//in volt
+E1Line=VL;//in volt
+P=4;//no. of poles
+S=5;//in %
+f=50;//in Hz
+R2=0.15;//in ohm
+X2=1;//in ohm
+ratio=2;//ratio of stator to rotor turns
+
+//Calculations
+S=S/100;//slip
+E1ph=E1Line/sqrt(3);//in Volt
+K=1/ratio;//ratio of rotor to stator turns
+E2ph=K*E1ph;//in volt
+Ns=120*f/P;//in rpm
+ns=Ns/60;//in rps
+T=(3/2/%pi/ns)*S*E2ph^2*R2/(R2^2+(S*X2)^2);//in N-m
+disp(T,"(i) Total Torque devloped in N-m :");
+Tm=(3/2/%pi/ns)*E2ph^2/2/X2;//in N-m
+disp(Tm,"(ii) Maximum Torque in N-m :");
+Sm=R2/X2;//maximum slip
+N=Ns*(1-Sm);//in rpm
+disp(N,"(iii) Speed at maximum torque in rpm : ");
diff --git a/1892/CH1/EX1.24/Example1_24.sce b/1892/CH1/EX1.24/Example1_24.sce new file mode 100755 index 000000000..53c95af65 --- /dev/null +++ b/1892/CH1/EX1.24/Example1_24.sce @@ -0,0 +1,49 @@ +// Example 1.24
+
+clear; clc; close;
+format('v',7);
+// Given data
+VL=400;//in volt
+f=50;//in Hz
+P=6;//no. of poles
+Z1=0.3+%i*0.4;//in ohm
+Z2dash=0.2+%i*0.4;//in ohm
+X0=20;//Magnetic reactance in ohm
+R0=100;//resistance for core loss in ohm
+S=4;//in %
+StatorLoss=2;//in KW
+MechLoss=2;//in KW
+//Calculations
+R1=real(Z1);//in ohm
+R2dash=real(Z2dash);//in ohm
+X1=imag(Z1);//in ohm
+X2dash=imag(Z2dash);//in ohm
+S=S/100;//slip
+V1=VL/sqrt(3);//in volt
+Ns=120*f/P;//in rpm
+Ri=R2dash*(1-S)/S;//in ohm
+R1e=R1+R2dash;//in ohm
+X1e=X1+X2dash;//in ohm
+I2rdash=V1/(R1e+Ri+%i*X1e);//in Ampere
+Ic=V1/R0;//in Ampere
+Im=V1/(%i*X0);//in Ampere
+I0=(Ic+Im);//in Ampere
+CoreLoss=Ic^2*R0;//Core loss per phase in Watts
+I1=I0+I2rdash;//in Ampere
+Istator=abs(I1);//in Ampere
+cosfi=cosd(atand(imag(I1)/real(I1)));//lagging power factor
+
+Pc=3*abs(I2rdash)^2*R2dash;//in Watts
+//Here P2:P0:Pm=1:S:1-S
+Pm=Pc*(1-S)/S;//in watts
+Pout=Pm-MechLoss*1000;//in watts
+StatorCuLoss=3*abs(I1)^2*R1;//in watts
+TotLoss=CoreLoss*3+StatorCuLoss+Pc+MechLoss*1000;//in watts
+Eff=Pout/(Pout+TotLoss)*100;//in %
+N=Ns*(1-S);//in rpm
+disp(N,"(a) Motor Speed in rpm : ");
+disp(Istator,"(b) Stator current in Ampere : ");
+disp(cosfi,"(c) Power factor lagging : ");
+disp(Pout,"(d) Motor Output in Watts : ");
+disp(Eff,"(d) Efficiency in % : ");
+//Answer of Pout is wrong in the book.
diff --git a/1892/CH1/EX1.25/Example1_25.sce b/1892/CH1/EX1.25/Example1_25.sce new file mode 100755 index 000000000..8e6998b11 --- /dev/null +++ b/1892/CH1/EX1.25/Example1_25.sce @@ -0,0 +1,24 @@ +// Example 1.25
+
+clear; clc; close;
+format('v',7);
+// Given data
+V=440;//in volt
+f=50;//in Hz
+P=4;//no. of poles
+X1=5.2;//in ohm
+R2dash=1.2;//in ohm
+X2dash=4.5;//in ohm
+
+//Calculations
+disp("Magnetic components not present. So, Rth=R1 & Xth=X1")
+//Rth=R1;//in ohm
+//Xth=X1;//in ohm
+//Formula : R2dash/Sm=sqrt(X1^2+X2dash^2)
+Sm=R2dash/(X1+X2dash);//Maximum Slip
+I1=V/sqrt(3)/sqrt((R2dash/Sm)^2+(X1+X2dash)^2);//in Ampere
+I2dash=I1;//in Ampere(Neglecting I0)
+Ns=120*f/P;//in rpm
+Tmax=3*I2dash^2*R2dash/Sm/2/%pi/Ns*60;//in N-m
+disp(Tmax,"Maximum Torque in N-m ; ");
+disp(Sm*100,"Maximum Slip in % : ");
diff --git a/1892/CH1/EX1.26/Example1_26.sce b/1892/CH1/EX1.26/Example1_26.sce new file mode 100755 index 000000000..f073bbe07 --- /dev/null +++ b/1892/CH1/EX1.26/Example1_26.sce @@ -0,0 +1,21 @@ +// Example 1.26
+
+clear; clc; close;
+format('v',7);
+// Given data
+f=50;//in Hz
+P=4;//no. of poles
+X2=0.1;//in ohm
+R2=0.02;//in ohm
+//Tst=2/3*Tmax
+TstByTm=2/3;//ratio
+
+//Calculations
+disp("Tst proportional to E2^2*R2dash/(R2dash^2+X2^2)");
+disp("Tm proportional to E2^2/(2*X2)");
+//formula : TstByTm=(E2^2*R2dash/(R2dash^2+X2^2))/(E2^2/(2*X2))
+P=[TstByTm -2*X2 TstByTm*X2^2];//Polynomial for R2dash
+R2dash=roots(P);//
+R2dash=R2dash(2);//discarding higher value bcoc R2dash < X2
+Rex=R2dash-R2;//in ohm
+disp(Rex,"Extra resistance required in ohm : ");
diff --git a/1892/CH1/EX1.27/Example1_27.sce b/1892/CH1/EX1.27/Example1_27.sce new file mode 100755 index 000000000..bcd4e1c8e --- /dev/null +++ b/1892/CH1/EX1.27/Example1_27.sce @@ -0,0 +1,22 @@ +// Example 1.27
+
+clear; clc; close;
+format('v',7);
+// Given data
+VL=3300;//in volt
+f=50;//in Hz
+P=10;//no. of poles
+X2=0.25;//in ohm
+R2=0.015;//in ohm
+Sfl=2.5;//Slip in %
+
+//Calculations
+Ns=120*f/P;//in rpm
+N=Ns*(1-Sfl/100);//in rpm
+disp(N,"(1.) The speed of motor, N in rpm : ");
+Sm=R2/X2;//Max Slip
+Nm=Ns*(1-Sm);//Max speed in rpm
+disp(Nm,"(2.) Speed of motor, Ns in rpm : ");
+TmByTfl=Sm*R2/(R2^2+(Sm*X2)^2)*(R2^2+(Sfl/100*X2)^2)/(Sfl/100)/R2;//ratio
+disp(TmByTfl,"(3.) Ratio of max torque to full load torque : ");
+//Answer of 1st part is wrong in the book.
diff --git a/1892/CH1/EX1.28/Example1_28.sce b/1892/CH1/EX1.28/Example1_28.sce new file mode 100755 index 000000000..2860fde7f --- /dev/null +++ b/1892/CH1/EX1.28/Example1_28.sce @@ -0,0 +1,45 @@ +// Example 1.28
+
+clear; clc; close;
+format('v',7);
+// Given data
+V0=400;//in volt
+f=50;//in Hz
+P=10;//no. of poles
+R1=1.75;//in ohm
+X1=5.5;//in ohm
+R2dash=2.25;//in ohm
+X2dash=6.6;//in ohm
+I0=3.8;//in Ampere
+W0=310;//in watts
+S=4;//in %
+
+//Calculations
+S=S/100;//slip in ratio
+//Formula : W0=sqrt(3)*V0*I0*cos_fi0
+cos_fi0=W0/sqrt(3)/V0/I0;//power factor
+sin_fi0=sind(acosd(cos_fi0));
+Ic=I0*cos_fi0;//in Ampere
+Im=I0*sin_fi0;//in Ampere
+Vph=V0/sqrt(3);//in Volt
+R0=Vph/Ic;//in ohm
+X0=Vph/Im;//in ohm
+Ns=120*f/P;//in rpm
+RLdash=R2dash*(1-S)/S;//in ohm
+R1e=R1+R2dash;//in ohm
+X1e=X1+X2dash;//in ohm
+I2rdash=Vph/(R1e+RLdash+%i*X1e);//in Ampere
+disp(I2rdash,"Rotor Current in Ampere : ");
+I0_bar=Ic-%i*Im;//in Ampere
+I1_bar=I0_bar+I2rdash;//Supply current in Ampere
+disp(I1_bar,"Supply Current in Ampere : ");
+cosfi=cosd(atand(imag(I1_bar)/real(I1_bar)));//Lagging power factor
+disp(cosfi,"Power factor(lagging) : ");
+Pc=3*abs(I2rdash)^2*R2dash;//in watts
+//Formula : P2:Pc:Pm=1:S:1-S
+Pm=Pc*(1-S)/S;////in watts
+disp(Pm,"Mechanical power devloped in N-m : ");
+N=Ns*(1-S);//in rpm
+w=2*%pi*N/60;//in rad/sec
+T=Pm/w;//in N-m
+disp(T,"Gross load tporque in N-m : ");
diff --git a/1892/CH1/EX1.29/Example1_29.sce b/1892/CH1/EX1.29/Example1_29.sce new file mode 100755 index 000000000..bf55e133d --- /dev/null +++ b/1892/CH1/EX1.29/Example1_29.sce @@ -0,0 +1,16 @@ +// Example 1.29
+
+clear; clc; close;
+format('v',7);
+// Given data
+PA=12;//no. of poles
+Ns=500;//in rpm
+N=1440;//in rpm
+
+//Calculations
+//Formula : Ns=120*f/PA
+f=Ns/120*PA;//in Hz
+PM=4;//assumed for motor
+Ns=120*f/PM;//in rpm(For motor)
+S=(Ns-N)/Ns*100;//slip in %
+disp(S,"Slip in % :");
diff --git a/1892/CH1/EX1.3/Example1_3.sce b/1892/CH1/EX1.3/Example1_3.sce new file mode 100755 index 000000000..2aa9445b7 --- /dev/null +++ b/1892/CH1/EX1.3/Example1_3.sce @@ -0,0 +1,15 @@ +// Example 1.3
+
+clear; clc; close;
+
+format('v',6);
+// Given data
+P=4;//No. of poles
+f=50;//in Hz
+N=1470;//in rpm
+
+//Calculations
+Ns=120*f/P;//in rpm
+S=(Ns-N)/Ns;//Slip
+fr=S*f;//induced emf frequency in Hz
+disp(fr,"Induced emf frequency in Hz : ");
diff --git a/1892/CH1/EX1.30/Example1_30.sce b/1892/CH1/EX1.30/Example1_30.sce new file mode 100755 index 000000000..87f025d4d --- /dev/null +++ b/1892/CH1/EX1.30/Example1_30.sce @@ -0,0 +1,22 @@ +// Example 1.30
+
+clear; clc; close;
+format('v',7);
+// Given data
+R2=0.04;//in ohm
+X2=0.2;//in ohm
+TstByTm=50;//in %
+
+//Calculations
+Sm=1;//slip for max Torque
+R2dash=Sm*X2;//in ohm
+Rx=R2dash-R2;//in ohm
+disp(Rx,"(i) External resistance required for max Torque(ohm ): ");
+TstByTm=TstByTm/100;//in ratio
+//Formula : Tst proportional to E2^2*R2dash/(R2dash^2+X2^2)
+//Formula : Tm Proportional to E2^2/2/X2
+P=[TstByTm -2*X2 TstByTm*X2^2];//Polynomial for R2dash
+R2dash=roots(P);//
+R2dash=R2dash(2);//discarding higher value bcoc R2dash < X2
+Rx=R2dash-R2;//in ohm
+disp(Rx,"(ii) Extra resistance required for 50% max Torque at start(ohm) : ");
diff --git a/1892/CH1/EX1.31/Example1_31.sce b/1892/CH1/EX1.31/Example1_31.sce new file mode 100755 index 000000000..2e7d64859 --- /dev/null +++ b/1892/CH1/EX1.31/Example1_31.sce @@ -0,0 +1,20 @@ +// Example 1.31
+
+clear; clc; close;
+format('v',7);
+// Given data
+f=50;//in Hz
+P=8;//no. of poles
+Sf=40;//in %
+R2=0.001;//in ohm/phase
+X2=0.005;//in ohm/phase
+
+//Calculations
+Sf=Sf/100;//slip
+//Formula : T proportional to S*R2/(R2^2+(S*X2)^2)
+Sm=R2/X2;//slip for max Torque
+TmByTfl=Sm*R2/(R2^2+(Sm*X2)^2)*(R2^2+(Sf*X2)^2)/Sf/R2;//in ratio
+disp(TmByTfl,"Ratio of max torque to full load torque : ");
+Ns=120*f/P;//in rpm
+N=Ns*(1-Sm);//in rpm
+disp(N,"Speed for maximum torque in rpm : ");
diff --git a/1892/CH1/EX1.32/Example1_32.sce b/1892/CH1/EX1.32/Example1_32.sce new file mode 100755 index 000000000..958cf0bfe --- /dev/null +++ b/1892/CH1/EX1.32/Example1_32.sce @@ -0,0 +1,19 @@ +// Example 1.32
+
+clear; clc; close;
+format('v',7);
+// Given data
+f=50;//in Hz
+P=4;//no. of poles
+VL=400;//in volt
+E2=100;//in volt
+R2=50;//in milli ohm
+X2=0.5;//in ohm
+
+//Calculations
+R2=R2*10^-3;//in ohm
+Sm=R2/X2;//Maximum Slip
+ns=(120*f/P)/60;//in rpS
+Tmax=3/2/%pi/ns*Sm*E2^2*R2/(R2^2+(Sm*X2)^2);//in N-m
+disp(Tmax,"Maximum Torque in N-m : ");
+disp(Sm,"Slip at which Tmax occur : ");
diff --git a/1892/CH1/EX1.33/Example1_33.sce b/1892/CH1/EX1.33/Example1_33.sce new file mode 100755 index 000000000..5826bcaf9 --- /dev/null +++ b/1892/CH1/EX1.33/Example1_33.sce @@ -0,0 +1,24 @@ +// Example 1.33
+
+clear; clc; close;
+
+format('v',7);
+// Given data
+//Tst=100% of Tfl;//in %
+//Tm=100% of Tfl;//in %
+TstByTfl=100/100;//ratio
+TmByTfl=200/100;//ratio
+
+//Calculations
+//Formula : T proportional to S*E2^2*R2/(R2^2+(S*X2)^2)
+//Formula : TstByTm=2*Sm/(Sm^2+1)
+TstByTm=TstByTfl/TmByTfl;//Calculating TstByTm
+P=[TstByTm -2 TstByTm];//Polynomial for Sm
+Sm=roots(P);
+Sm=Sm(2);//Discarding value > 1
+disp(Sm*100,"Slip at which max Torque occurs(in %) : ");
+//Formula : 1/TstByTm=(Sm^2+Sfl^2)/(2*Sm*Sfl)
+P=[TstByTm -2*Sm Sm^2*TstByTm];//Polynomial for Sfl
+Sfl=roots(P);
+Sfl=Sfl(2);//Discarding value >= 1
+disp(Sfl*100,"Full load slip (in %) : ");
diff --git a/1892/CH1/EX1.34/Example1_34.sce b/1892/CH1/EX1.34/Example1_34.sce new file mode 100755 index 000000000..1034da9e1 --- /dev/null +++ b/1892/CH1/EX1.34/Example1_34.sce @@ -0,0 +1,21 @@ +// Example 1.34
+
+clear; clc; close;
+
+format('v',7);
+// Given data
+P=8;//no. of Poles
+f=50;//in Hz
+Tm=150;//in N-m
+N=650;//in rpm
+R2=0.6;//in ohm
+S=4;//in %
+
+//Calculations
+S=S/100;//Slip
+Ns=120*f/P;//in rpm
+Sm=(Ns-N)/Ns;//Maximum Slip
+//Formula : T proportional to S*E2^2*R2/(R2^2+(S*X2)^2)
+X2=R2/Sm;//in ohm
+T=Tm*S*(R2^2+(Sm*X2)^2)/Sm/(R2^2+(S*X2)^2);//In N-m
+disp(T,"Torque at 4% slip (in N-m) : ");
diff --git a/1892/CH1/EX1.35/Example1_35.sce b/1892/CH1/EX1.35/Example1_35.sce new file mode 100755 index 000000000..a4a97e3ee --- /dev/null +++ b/1892/CH1/EX1.35/Example1_35.sce @@ -0,0 +1,27 @@ +// Example 1.35
+
+clear; clc; close;
+
+format('v',7);
+// Given data
+V=400;//in volts
+P=4;//no. of Poles
+f=50;//in Hz
+r1=0.15;//in ohm
+x1=0.44;//in ohm
+r2dash=0.12;//in ohm
+x2dash=0.44;//in ohm
+xm=30;//in ohm
+S=4;//in %
+
+//Calculations
+S=S/100;//Slip
+RLdash=r2dash*(1-S)/S;//in ohm
+V1=V/sqrt(3);//in volt
+I2rdash=V1/(r1+r2dash+RLdash+%i*(x1+x2dash));//in Ampere
+I0=V1/(%i*xm);//in Ampere
+I1=I0+I2rdash;//in Ampere
+disp("Stator Current in Ampere : ");
+disp("Magnitude is "+string(abs(I1))+" & angle in degree is "+string(atand(imag(I1),real(I1))));
+cosfi=cosd(atand(imag(I1),real(I1)));//lagging power factor
+disp(cosfi,"Power factor(lagging) : ");
diff --git a/1892/CH1/EX1.36/Example1_36.sce b/1892/CH1/EX1.36/Example1_36.sce new file mode 100755 index 000000000..d9dc81f7f --- /dev/null +++ b/1892/CH1/EX1.36/Example1_36.sce @@ -0,0 +1,31 @@ +// Example 1.36
+
+clear; clc; close;
+
+// Given data
+VL=440;//in volts
+P=4;//no. of Poles
+f=50;//in Hz
+//Zleak=0.3+%i*5.5+0.25/S;//in ohm/phase
+K=2.5;//Stator to rotor voltage ratio
+T=150;//in N-m
+N=1250;//in rpm
+
+//Calculations
+Ns=120*f/P;//in rpm
+S=(Ns-N)/Ns;//slip
+Zleakage=1/3*(0.3+%i*5.5+0.25/S);//in ohm/phase
+V1=VL/sqrt(3);//in volt
+disp("I2rdash=V1/sqrt((0.1+Rx/S)^2+1.83^2) after adding additional resistance.");
+disp("T=1/2/%pi/ns*3*I2rdash^2*Rx/S");
+//R2x^2*T*S*2*%pi*ns/S^2+R2x*T*S*2*%pi*ns*0.2/S+T*S*2*%pi*ns*0.01+T*S*2*%pi*ns*1.83^2-3*(V1^2)*R2x=0;//equating
+ns=Ns/60;//in rps
+P=[T*S*2*%pi*ns/S^2 T*S*2*%pi*ns*0.2/S-3*(V1^2) T*S*2*%pi*ns*0.01+T*S*2*%pi*ns*1.83^2];//polynomial for value of R2xdash
+R2x=roots(P);//
+R2x=R2x(1);//neglecting lower value
+Rx_stator=R2x-0.083;//in ohm
+format('v',5);
+disp(Rx_stator,"External resistance referred to stator in ohm : ");
+Rx_rotor=Rx_stator/K^2;//in ohm/phase
+format('v',6);
+disp(Rx_rotor,"External resistance rotor side in ohm/phase : ");
diff --git a/1892/CH1/EX1.37/Example1_37.sce b/1892/CH1/EX1.37/Example1_37.sce new file mode 100755 index 000000000..0149ef8ac --- /dev/null +++ b/1892/CH1/EX1.37/Example1_37.sce @@ -0,0 +1,42 @@ +// Example 1.37
+
+clear; clc; close;
+
+format('v',7);
+// Given data
+Nnl=1485;//in rpm
+Nfl=1350;//in rpm
+f=50;//in Hz
+
+//Calculations
+Ns=1500;//nearest syn speed to Nfl in rpm(Assumed)
+//Formula : Ns=120*f/P
+P=120*f/Ns;//no. of poles
+disp("Part (i)");
+disp(P,"No. of poles : ");
+Snl=(Ns-Nnl)/Ns;//slip
+disp("Part (ii)");
+disp(Snl*100,"No load Slip in % : ");
+Sfl=(Ns-Nfl)/Ns;//slip
+disp(Sfl*100,"No load Slip in % : ");
+fr_nl=f*Snl;//in Hz
+fr_fl=f*Sfl;//in Hz
+disp("Part (iii)");
+disp(fr_nl,"No load frequency in Hz : ");
+disp(fr_fl,"Full load frequency in Hz : ");
+//Part (iv)
+disp("On No Load : ");
+N1=120*fr_nl/P;//speed of rotor field with respect to rotor conductor in rpm
+disp(N1,"Speed of rotor field with respect to rotor conductor in rpm : ");
+Rf_wrtS=1500;//in rpm
+Rf_wrtSF=0;//in rpm
+disp(Rf_wrtS,"Rotor field with respect to stator(rpm) : ");
+disp(Rf_wrtSF,"Rotor field with respect to stator field(rpm) : ");
+disp("On Full Load : ");
+N2=120*fr_fl/P;//speed of rotor field with respect to rotor conductor in rpm
+disp(N2,"Speed of rotor field with respect to rotor conductor in rpm : ");
+Rf_wrtS=1500;//in rpm
+Rf_wrtSF=0;//in rpm
+disp(Rf_wrtS,"Rotor field with respect to stator(rpm) : ");
+disp(Rf_wrtSF,"Rotor field with respect to stator field(rpm) : ");
+//Answer of no load slip is wrong in the book.
diff --git a/1892/CH1/EX1.38/Example1_38.sce b/1892/CH1/EX1.38/Example1_38.sce new file mode 100755 index 000000000..bd68b1caa --- /dev/null +++ b/1892/CH1/EX1.38/Example1_38.sce @@ -0,0 +1,21 @@ +// Example 1.38
+
+clear; clc; close;
+
+format('v',7);
+// Given data
+VL=3.3;//in KV
+P=20;//no of poles
+f=50;//in Hz
+R2=0.025;//in ohm/phase
+X2=0.28;//in ohm/phase
+N=294;//Full load speed in rpm
+
+//Calculations
+Sm=R2/X2;//Max Slip
+disp(Sm*100,"Slip at max torque(in %) : ");
+Ns=120*f/P;//in rpm
+Sfl=(Ns-N)/Ns;//Full load slip
+//Formula : T proportional to S*E2^2*R2/(R2^2+(S*X2)^2)
+TmByTfl=Sm/(R2^2+(Sm*X2)^2)*((R2^2+(Sfl*X2)^2))/Sfl;//ratio
+disp(TmByTfl,"Ratio of max to full load torqiue : ");
diff --git a/1892/CH1/EX1.39/Example1_39.sce b/1892/CH1/EX1.39/Example1_39.sce new file mode 100755 index 000000000..560b18512 --- /dev/null +++ b/1892/CH1/EX1.39/Example1_39.sce @@ -0,0 +1,18 @@ +// Example 1.39
+
+clear; clc; close;
+
+format('v',7);
+// Given data
+Pin=50;//in KW
+StatorLoss=800;//in watts
+f=50;//in Hz
+fr=90;//cycles/min
+
+//Calculations
+fr=fr/60;//in Hz
+S=fr/f;//slip
+P2=Pin*1000-StatorLoss;//watts
+//Formula : P2:Pc:Pm=1:S:1-S
+Pm=P2*(1-S);//in watts
+disp(Pm,"Total Mechanical power devloped in watts : ");
diff --git a/1892/CH1/EX1.4/Example1_4.sce b/1892/CH1/EX1.4/Example1_4.sce new file mode 100755 index 000000000..512815d02 --- /dev/null +++ b/1892/CH1/EX1.4/Example1_4.sce @@ -0,0 +1,26 @@ +// Example 1.4
+
+clear; clc; close;
+
+format('v',6);
+// Given data
+P=4;//No. of poles
+f=50;//in Hz
+K=1/2;//rotor to stator turns
+N=1455;//in rpm
+E1_line=415;//in volt
+
+
+//Calculations
+Ns=120*f/P;//in rpm
+S=(Ns-N)/Ns;//Slip
+fr=S*f;//induced emf frequency in Hz
+disp(fr,"(i) Frequency of rotor emf in running condition in Hz : ");
+N2BYN1=K;//rotor to stator turns
+N1BYN2=1/K;//stator to rotor turns
+E1ph=E1_line/sqrt(3);//
+//Formula : E2ph/E1ph=K
+E2ph=E1ph*K;//in volt
+disp(E2ph,"(ii) Rotor induced emf at standstill in volt : ");
+E2r=S*E2ph;//in volt
+disp(E2r,"(iii) Rotor induced emf at running condition in volt : ");
diff --git a/1892/CH1/EX1.40/Example1_40.sce b/1892/CH1/EX1.40/Example1_40.sce new file mode 100755 index 000000000..cb1b1d6db --- /dev/null +++ b/1892/CH1/EX1.40/Example1_40.sce @@ -0,0 +1,29 @@ +// Example 1.40
+
+clear; clc; close;
+
+format('v',8);
+// Given data
+P=4;//no. of poles
+VL=200;//in volt
+f=50;//in Hz
+R2=0.1;//in ohm/phase
+X2=0.9;//in ohm/phase
+S=4;//in %
+K=0.67;//rotor to stator turns
+
+//Calculations
+S=S/100;//slip
+E1ph=VL/sqrt(3);//in volt
+E2ph=K*E1ph;//in volt
+Ns=120*f/P;//in rpm
+ns=Ns/60;//in rps
+T=3/2/%pi/ns*S*E2ph^2*R2/(R2^2+(S*X2)^2);//in N-m
+disp(T,"Total torque at 4% slip in N-m :");
+Tm=3/2/%pi/ns*E2ph^2/2/X2;//in N-m
+disp(Tm,"Maximum torque developed in N-m :");
+Sm=R2/X2;//Max Slip
+Nm=Ns*(1-Sm);//in rpm
+disp(Nm,"Speed at max Torque in rpm : ");
+Pmax=Tm*2*%pi*Nm/60;//in watts
+disp(Pmax,"Maximum mechanical power in watts : ");
diff --git a/1892/CH1/EX1.41/Example1_41.sce b/1892/CH1/EX1.41/Example1_41.sce new file mode 100755 index 000000000..08445f242 --- /dev/null +++ b/1892/CH1/EX1.41/Example1_41.sce @@ -0,0 +1,28 @@ +// Example 1.41
+
+clear; clc; close;
+
+format('v',8);
+// Given data
+P=6;//no. of poles
+f=50;//in Hz
+Tsh=150;//in N-m
+fr=1.5;//in Hz
+Tlost=10;//in N-m
+
+//Calculations
+S=fr/f;//slip
+Ns=120*f/P;//in rpm
+N=Ns*(1-S);//in rpm
+RotationalLoss=Tlost*2*%pi*N/60;//in watts
+Pout=Tsh*2*%pi*N/60;//in watts
+Pm=Pout+RotationalLoss;//in watts
+//Formula : P2:Pc:Pm=1:S:1-S
+Pc=Pm*S/(1-S);//in watts
+disp(Pc,"Rotor Copper Loss(Watts) : ");
+P2=Pc/S;//in watts
+disp(P2 ,"Input to the rotor(Watts) : ");
+StatorLoss=700;//in watts(assumed)
+Pin=P2+StatorLoss;//in watts]
+Eff=Pout/Pin*100;//in %
+disp(Eff,"Efficiency in % : ");
diff --git a/1892/CH1/EX1.42/Example1_42.sce b/1892/CH1/EX1.42/Example1_42.sce new file mode 100755 index 000000000..da0cf3856 --- /dev/null +++ b/1892/CH1/EX1.42/Example1_42.sce @@ -0,0 +1,17 @@ +// Example 1.42
+
+clear; clc; close;
+
+format('v',6);
+// Given data
+Sfl=5;//in %
+IscByIfl=6;//ratio
+
+//Calculations
+Sfl=Sfl/100;//slip
+TstByTfl=1;//as Tfl=Tst
+//Let X= tapping on transformer
+X=sqrt(TstByTfl/(IscByIfl^2)/Sfl);//Tapping on transformer
+disp(X,"Tapping on auto transformer : ");
+IstByIfl=X^2*IscByIfl;//supply starting current to full load current
+disp("The supply starting current is "+string(IstByIfl)+" times of full load current.");
diff --git a/1892/CH1/EX1.43/Example1_43.sce b/1892/CH1/EX1.43/Example1_43.sce new file mode 100755 index 000000000..6e5da87bd --- /dev/null +++ b/1892/CH1/EX1.43/Example1_43.sce @@ -0,0 +1,15 @@ +// Example 1.43
+
+clear; clc; close;
+
+format('v',6);
+// Given data
+TmByTfl=2.5;//ratio
+R2=0.4;//in ohm/phase
+X2=4;//in ohm/phase
+
+//Calculations
+//Formula : Tm=K*E2^2/2/X2 and Tst=K*E2^2*R2/(R2^2+X2^2)
+//E2=E2/sqrt(3);//for star delta starter
+TstByTfl=(TmByTfl*2*X2)*R2/(R2^2+X2^2)/3;//calculated from above equations
+disp(TstByTfl,"ratio of starting torque to full load torque is : ");
diff --git a/1892/CH1/EX1.44/Example1_44.sce b/1892/CH1/EX1.44/Example1_44.sce new file mode 100755 index 000000000..2c73faa6b --- /dev/null +++ b/1892/CH1/EX1.44/Example1_44.sce @@ -0,0 +1,23 @@ +// Example 1.44
+
+clear; clc; close;
+
+format('v',6);
+// Given data
+Zouter=0.05+%i*0.10;//in ohm
+Zinner=0.01+%i*0.60;//in ohm
+S=3;//in %
+
+//Calculations
+R2o=real(Zouter);//in ohm
+R2i=real(Zinner);//in ohm
+X2o=imag(Zouter);//in ohm
+X2i=imag(Zinner);//in ohm
+S=S/100;//slip
+//Formula : T=3/2/%pi/ns*(S*E2^2*R2/(R2^2+(S*X2)^2))
+S=1;//at starting
+TouterByTinner=R2o/R2i*(R2i^2+X2i^2)/(R2o^2+X2o^2);//
+disp(TouterByTinner,"(i) Ratio of torque due to two cages at starting : ");
+S=3/100;//Slip at running
+TouterByTinner=R2o/R2i*(R2i^2+(S*X2i)^2)/(R2o^2+(S*X2o)^2);//
+disp(TouterByTinner,"(ii) Ratio of torque due to two cages when running at 3% slip : ");
diff --git a/1892/CH1/EX1.45/Example1_45.sce b/1892/CH1/EX1.45/Example1_45.sce new file mode 100755 index 000000000..a7e9199a3 --- /dev/null +++ b/1892/CH1/EX1.45/Example1_45.sce @@ -0,0 +1,32 @@ +// Example 1.45
+
+clear; clc; close;
+
+format('v',4);
+// Given data
+Zi=0.6+%i*7;//in ohm
+Zo=3.5+%i*1.5;//in ohm
+Sfl=6;//in %
+
+//Calculations
+//At starting S=1
+Ro=real(Zo);//in ohm
+Ri=real(Zi);//in ohm
+Xo=imag(Zo);//in ohm
+Xi=imag(Zi);//in ohm
+Zeq1=Zi*Zo/(Zi+Zo);//equivalent impedence in ohm
+Req1=real(Zeq1);//in ohm
+//I2=V/Zeq
+//Tst=I2^2*R2;//in N-m
+
+//During full load
+S=Sfl/100;//slip
+Zi=Ri/S+%i*Xi;//in ohm
+Zo=Ro/S+%i*Xo;//in ohm
+Zeq2=Zi*Zo/(Zi+Zo);//equivalent impedence in ohm
+Req2=real(Zeq2);//in ohm
+//I2=V/Zeq
+//Tfl=I2^2*R2;//in N-m
+TstByTfl=(1/abs(Zeq1)^2)/(1/abs(Zeq2)^2)*Req1/Req2;//ratio
+disp("Starting torque is "+string(TstByTfl*100)+"% of full load torque.");
+//Answer in the book is not accurate.
diff --git a/1892/CH1/EX1.46/Example1_46.sce b/1892/CH1/EX1.46/Example1_46.sce new file mode 100755 index 000000000..f5c3559b3 --- /dev/null +++ b/1892/CH1/EX1.46/Example1_46.sce @@ -0,0 +1,26 @@ +// Example 1.46
+
+clear; clc; close;
+
+format('v',6);
+// Given data
+P=4;//no. of poles
+f=50;//in Hz
+R2=0.2;//in ohm per phase
+X2=1;//in ohm per phase
+Sf=4;//full load slip in %
+N2=1260;//reduced speed in rpm
+
+//Calculations
+Sf=Sf/100;//full load slip
+Ns=120*f/P;//in rpm
+S2=(Ns-N2)/Ns;//new value of slip
+//Let new resistance is R2dash
+//Formula : T proportional to S*E2^2*R2/(R2^2+(S*X2)^2)
+//T1=T2 as load is same
+//R2dash^2*Sf*E2^2*R2-R2dash*[R2^2+(Sf*X2)^2]*(S2*E2^2)+Sf*E2^2*R2*(S2*X2)^2=0
+P=[Sf*R2 -[R2^2+(Sf*X2)^2]*(S2) Sf*R2*(S2*X2)^2];//polynomial for R2dash
+R2dash=roots(P);
+R2dash=R2dash(1);//discarding smaller value as R2dash cant be < R2
+Rex=R2dash-R2
+disp(Rex,"Extra resistance required in ohm per phase : ");
diff --git a/1892/CH1/EX1.47/Example1_47.sce b/1892/CH1/EX1.47/Example1_47.sce new file mode 100755 index 000000000..a1bbd04ba --- /dev/null +++ b/1892/CH1/EX1.47/Example1_47.sce @@ -0,0 +1,27 @@ +// Example 1.47
+
+clear; clc; close;
+
+format('v',6);
+// Given data
+P=4;//no. of poles
+V2=415;//in volt
+f=50;//in Hz
+E2ByE1=1.75;//stator to rotor turn ratio
+Z2=0.1+%i*0.9;//in ohm
+I2=60;//in Ampere at start
+
+
+X2=1;//in ohm per phase
+Sf=4;//full load slip in %
+N2=1260;//reduced speed in rpm
+
+//Calculations
+R2=real(Z2);//in ohm
+X2=imag(Z2);//in ohm
+E1ph=V2/sqrt(3);//in volt
+E2ph=E1ph/E2ByE1;//in Volt
+//Formula : I2=E2ph/sqrt(R2dash^2+X2^2)
+R2dash=sqrt((E2ph/I2)^2-X2^2);//in ohm
+Rex=R2dash-R2;//in ohm per phase
+disp(Rex,"Extra resiatance required in ohm : ");
diff --git a/1892/CH1/EX1.48/Example1_48.sce b/1892/CH1/EX1.48/Example1_48.sce new file mode 100755 index 000000000..609af93a8 --- /dev/null +++ b/1892/CH1/EX1.48/Example1_48.sce @@ -0,0 +1,27 @@ +// Example 1.48
+
+clear; clc; close;
+
+format('v',6);
+// Given data
+P=16;//no. of poles
+PM=4;//no. of poles of modulating function
+n=1;//assumed
+r=4;//assumed
+f=50;//in Hz
+
+//Calculations
+check=n/r==1/3*(1-PM/P);
+if check then
+ disp("Equation is satisfied with -ve sign.");
+ P2=P+PM;
+
+end
+check=n/r==1/3*(1+PM/P);
+if check then
+ disp("Equation is satisfied with +ve sign.")
+ P2=P-PM;
+end
+Ns1=120*f/P;//in rpm
+Ns2=120*f/P2;//in rpm
+disp(Ns2,Ns1,"Two speeds(in rpm) are : ");
diff --git a/1892/CH1/EX1.49/Example1_49.sce b/1892/CH1/EX1.49/Example1_49.sce new file mode 100755 index 000000000..99120bedc --- /dev/null +++ b/1892/CH1/EX1.49/Example1_49.sce @@ -0,0 +1,19 @@ +// Example 1.49
+
+clear; clc; close;
+
+format('v',6);
+// Given data
+PA=4;//no. of poles
+PB=6;//no. of poles
+f=50;//in Hz
+
+//Calculations
+Ns=120*f/PA;//in rpm, A running alone
+disp(Ns,"(1.) If A running alone, Speed in rpm is : ");
+Ns=120*f/PB;//in rpm, B running alone
+disp(Ns,"(2.) If B running alone, Speed in rpm is : ");
+Ns=120*f/(PA+PB);//in rpm, Cumulative cascade
+disp(Ns,"(3.) For Cumulative cascade, Speed in rpm is : ");
+Ns=120*f/(PA-PB);//in rpm, Differential cascade
+disp(Ns,"(4.) Differential cascade, Speed in rpm is : ");
diff --git a/1892/CH1/EX1.5/Example1_5.sce b/1892/CH1/EX1.5/Example1_5.sce new file mode 100755 index 000000000..d46fe0693 --- /dev/null +++ b/1892/CH1/EX1.5/Example1_5.sce @@ -0,0 +1,26 @@ +// Example 1.5
+
+clear; clc; close;
+
+format('v',6);
+// Given data
+P=4;//No. of poles
+f=50;//in Hz
+R2=0.2;//in ohm
+X2=1;//in ohm
+N=1440;//in rpm
+E2_line=120;//in volt
+
+
+//Calculations
+E2ph=E2_line/sqrt(3);//
+cosfi_2=R2/sqrt(R2^2+X2^2);//lagging power factor
+I2=E2ph/sqrt(R2^2+X2^2);//in Ampere/phase
+disp(cosfi_2,"(i) Rotor power factor(lagging) : ");
+disp(I2,"(i) Rotor Current in Ampere per phase: ");
+Ns=120*f/P;//in rpm
+S=(Ns-N)/Ns;//Slip
+cosfi_2r=R2/sqrt(R2^2+(S*X2)^2);//lagging power factor
+I2r=S*E2ph/sqrt(R2^2+(S*X2)^2);//in Ampere
+disp(cosfi_2r,"(ii) Rotor power factor(lagging) : ");
+disp(I2r,"(ii) Rotor Current in Ampere : ");
diff --git a/1892/CH1/EX1.50/Example1_50.sce b/1892/CH1/EX1.50/Example1_50.sce new file mode 100755 index 000000000..6c35a5de4 --- /dev/null +++ b/1892/CH1/EX1.50/Example1_50.sce @@ -0,0 +1,23 @@ +// Example 1.50
+
+clear; clc; close;
+
+format('v',5);
+// Given data
+PA=4;//no. of poles
+PB=6;//no. of poles
+f=50;//in Hz
+fr2=1;//in Hz
+
+//Calculations
+Nsc=120*f/(PA+PB);//synchronous speed of set in rpm
+S=1;//Slip
+N=Nsc-(S/f)*Nsc;//combined speed of set in rpm
+disp(N,"Combibned spoeed of set in rpm : ");
+NSA=120*f/PA;//in rpm
+SA=(NSA-N)/NSA;//slip
+disp(SA*100,"Slip of machines B in % : ");
+fr1=SA*f;//in Hz
+NSB=120*fr1/PB;//in rpm
+SB=(NSB-N)/NSB;//slip
+disp(SB*100,"Slip of machines B in % : ");
diff --git a/1892/CH1/EX1.51/Example1_51.sce b/1892/CH1/EX1.51/Example1_51.sce new file mode 100755 index 000000000..00c411305 --- /dev/null +++ b/1892/CH1/EX1.51/Example1_51.sce @@ -0,0 +1,25 @@ +// Example 1.51
+
+clear; clc; close;
+
+format('v',5);
+// Given data
+P=4;//no. of poles
+f=50;//in Hz
+R2=0.25;//in ohm per phase
+X2=2;//in ohm per phase
+N1=1455;//ion rpm
+N2=N1*83/100;//in rpm
+
+//Calculations
+Ns=120*f/P;//synchronous speed in rpm
+S1=(Ns-N1)/Ns;//Slip
+S2=(Ns-N2)/Ns;//Slip at reduced speed
+//Formula : T proportional to S*E2^2*R2/(R2^2+(S*X2)^2)
+T1ByT2=1;//as T1=T2 & For T2: R2dash Rex+R2
+//S1*R2*R2dash^2-R2dash(T1ByT2*S2*R2^2+T1ByT2*S2*(S1*X2)^2)+S1*R2*(S2*X2)^2=0
+P=[S1*R2 -(T1ByT2*S2*R2^2+T1ByT2*S2*(S1*X2)^2) S1*R2*(S2*X2)^2];//Polynomial for R2dash
+R2dash=roots(P);//in ohjm per phase
+R2dash=R2dash(1);//neglecting lower value
+Rex=R2dash-R2;//in ohm per phase
+disp(Rex,"External resistance required in ohm per phase : ");
diff --git a/1892/CH1/EX1.52/Example1_52.sce b/1892/CH1/EX1.52/Example1_52.sce new file mode 100755 index 000000000..dcf6d5211 --- /dev/null +++ b/1892/CH1/EX1.52/Example1_52.sce @@ -0,0 +1,21 @@ +// Example 1.52
+
+clear; clc; close;
+
+format('v',5);
+// Given data
+P=6;//no. of poles
+f=50;//in Hz
+Sf=3;//in %
+R2=0.2;//in ohm per phase
+
+//Calculations
+Sf=Sf/100;//Slip
+Ns=120*f/P;//in rpm
+N1=Ns*(1-Sf);//in rpm
+N2=N1*90/100;//in rpm
+S2=(Ns-N2)/Ns;//new slip
+//Formula : T=K*S*E2^2*R2/R2^2;//S*X2 is neglected
+//Sf/R2=S2/(R2+r); if Tfl=T20
+r=(S2*R2)/Sf-R2;//Extra resistance required in ohm
+disp(r,"Extra resistance necessery in series in ohm : ");
diff --git a/1892/CH1/EX1.53/Example1_53.sce b/1892/CH1/EX1.53/Example1_53.sce new file mode 100755 index 000000000..b45550e64 --- /dev/null +++ b/1892/CH1/EX1.53/Example1_53.sce @@ -0,0 +1,19 @@ +// Example 1.53
+
+clear; clc; close;
+
+format('v',6);
+// Given data
+IscByIfl=5;//ratio
+Sf=5;//in %
+K=50;//tapping in %
+
+//Calculations
+Sf=Sf/100;//Slip
+//(i) Start delta
+TstByTfl=1/3*IscByIfl^2*Sf;//ratio
+disp("(i) Starting torque is "+string(TstByTfl*100)+"% of full load torque.");
+//(ii) Auto Transformer having 50% tapping
+K=K/100;//tapping
+TstByTfl=K^2*IscByIfl^2*Sf;//ratio
+disp("(ii) Starting torque is "+string(TstByTfl*100)+"% of full load torque.");
diff --git a/1892/CH1/EX1.54/Example1_54.sce b/1892/CH1/EX1.54/Example1_54.sce new file mode 100755 index 000000000..a53d4a476 --- /dev/null +++ b/1892/CH1/EX1.54/Example1_54.sce @@ -0,0 +1,24 @@ +// Example 1.54
+
+clear; clc; close;
+
+format('v',6);
+// Given data
+P=6;//no. of poles
+f=50;//in Hz
+Ifl=60;//in Ampere
+N=940;//speed in rpm
+Tfl=150;//in N-m
+Isc=300;//in Ampere
+
+//Calculations
+Ns=120*f/P;//in rpm
+Sf=(Ns-N)/Ns;//Slip full load
+//Formula : Tst/Tfl=(Isc/Ifl)^2*Sf
+Tst=(Isc/Ifl)^2*Sf*Tfl;//in N-m
+disp(Tst,"Starting Torque in N-m : ");
+//For Start delta
+Tst=1/3*(Isc/Ifl)^2*Sf*Tfl;//in N-m
+disp(Tst,"Starting Torque for star delta starter in N-m : ");
+Isc=sqrt(3*Tst/Tfl/Sf)*Ifl;//in Ampere
+disp(Isc,"Starting current for star delta starter in Ampere : ");
diff --git a/1892/CH1/EX1.55/Example1_55.sce b/1892/CH1/EX1.55/Example1_55.sce new file mode 100755 index 000000000..23087d4bb --- /dev/null +++ b/1892/CH1/EX1.55/Example1_55.sce @@ -0,0 +1,21 @@ +// Example 1.55
+
+clear; clc; close;
+
+format('v',7);
+// Given data
+TmByTfl=2.2;//ratio
+R2=0.5;//in ohm per phase
+X2=5;//in ohm per phase
+K=70;//tapping in %
+
+//Calculations
+//Formula :Tst proportional to E2^2*R2/(R2^2+X2^2)
+//Formula :Tm proportional to E2^2/(2*X2)
+//Formula :Tfl proportional to 1/4.4*E2^2/X2
+TstByTfl=R2/(R2^2+X2^2)*TmByTfl*2*X2;//ratio for direct on line
+disp(TstByTfl,"Ratio of starting torque to full load torque for direct on line starter : ");
+TstByTfl=(1/sqrt(3))^2*R2/(R2^2+X2^2)*TmByTfl*2*X2;//ratio for star delta starting
+disp(TstByTfl,"Ratio of starting torque to full load torque for star delta starter : ");
+TstByTfl=(K/100)^2*R2/(R2^2+X2^2)*TmByTfl*2*X2;//ratio for auto transformer starting
+disp(TstByTfl,"Ratio of starting torque to full load torque for auto transformer starter : ");
diff --git a/1892/CH1/EX1.56/Example1_56.sce b/1892/CH1/EX1.56/Example1_56.sce new file mode 100755 index 000000000..5e22b3004 --- /dev/null +++ b/1892/CH1/EX1.56/Example1_56.sce @@ -0,0 +1,15 @@ +// Example 1.56
+
+clear; clc; close;
+
+format('v',7);
+// Given data
+TmByTfl=3;//ratio
+Sm=0.1;//slip at max Torque
+
+//Calculations
+TstByTfl_dol=2*Sm/(1+Sm^2)*TmByTfl;//ratio for D.O.L starter
+disp(TstByTfl_dol,"Ratio of starting torque to full load torque for D.O.L starter : ");
+TstByTfl=1/3*TstByTfl_dol;//ratio for star delta starting
+disp(TstByTfl,"Ratio of starting torque to full load torque for star delta starter : ");
+//Anser of first part is not given in the book.
diff --git a/1892/CH1/EX1.57/Example1_57.sce b/1892/CH1/EX1.57/Example1_57.sce new file mode 100755 index 000000000..2776d4e9b --- /dev/null +++ b/1892/CH1/EX1.57/Example1_57.sce @@ -0,0 +1,21 @@ +// Example 1.57
+
+clear; clc; close;
+
+format('v',7);
+// Given data
+VL=400;//in volt
+Ist=1200;//in Ampere
+Eff=0.85;//Efficiency
+cosfi=0.8;//power factor
+IstByIrated=5;//ratio
+
+//Calculations
+I2_rated=Ist/IstByIrated;//in Ampere
+KWrating=sqrt(3)*VL*I2_rated*cosfi*Eff;//in KW
+//To have star delta styarter tapping Xo=1/sqrt(3)
+//Ist=X0^2*IstByIrated*IL
+X0=1/sqrt(3);//tapping
+IL=Ist/X0^2/IstByIrated;//in Ampere
+KWmax=sqrt(3)*VL*IL*cosfi*Eff/1000;//in KW
+disp(KWmax,"Maximum KW rating with star delta starter : ");
diff --git a/1892/CH1/EX1.58/Example1_58.sce b/1892/CH1/EX1.58/Example1_58.sce new file mode 100755 index 000000000..5ecdd8af4 --- /dev/null +++ b/1892/CH1/EX1.58/Example1_58.sce @@ -0,0 +1,18 @@ +// Example 1.58
+
+clear; clc; close;
+
+format('v',7);
+// Given data
+IscByIfl=3*180/100;//ratio
+TstByTfl=0.35;//ratio
+X=80/100;//tapping
+
+//Calculations
+//Formula : TstByTfl=1/3*(IscByIfl^2)*Sfl
+Sfl=TstByTfl/IscByIfl^2*3;//slip at full load
+IstByIsc=X^2;//ratio
+IstByIfl=IstByIsc*IscByIfl;//ratio
+disp("Starting current is "+string(IstByIfl)+" times of full load current.");
+TstByTfl=X^2*IscByIfl^2*Sfl;//ratio
+disp("Starting torque is "+string(TstByTfl*100)+"% of full load torque.");
diff --git a/1892/CH1/EX1.59/Example1_59.sce b/1892/CH1/EX1.59/Example1_59.sce new file mode 100755 index 000000000..575483165 --- /dev/null +++ b/1892/CH1/EX1.59/Example1_59.sce @@ -0,0 +1,16 @@ +// Example 1.59
+
+clear; clc; close;
+
+format('v',6);
+// Given data
+Zouter=0.05+%i*0.11;//in ohm
+Zinner=0.015+%i*0.5;//in ohm
+
+//Calculations
+R2odash=real(Zouter);//in ohm
+X2odash=imag(Zouter);//in ohm
+R2idash=real(Zinner);//in ohm
+X2idash=imag(Zinner);//in ohm
+TouterByTinner=R2odash/(R2odash^2+X2odash^2)*(R2idash^2+X2idash^2)/R2idash;//ratio
+disp(TouterByTinner,"Ratio of Torque due to two windinga : ");
diff --git a/1892/CH1/EX1.6/Example1_6.sce b/1892/CH1/EX1.6/Example1_6.sce new file mode 100755 index 000000000..80372b632 --- /dev/null +++ b/1892/CH1/EX1.6/Example1_6.sce @@ -0,0 +1,24 @@ +// Example 1.6
+
+clear; clc; close;
+
+format('v',6);
+// Given data
+P=4;//No. of poles
+f=50;//in Hz
+R2=0.1;//in ohm
+X2=1;//in ohm
+N=1440;//in rpm
+E1_line=400;//in volt
+Kdash=2;//stator turns by rotor turns
+
+//Calculations
+K=1/Kdash;//rotor turns by stator turns
+Ns=120*f/P;//in rpm
+E1ph=E1_line/sqrt(3);//
+//Formula : E2ph/E1ph=K
+E2ph=E1ph*K;//in volt
+S=(Ns-N)/Ns;//Slip
+ns=Ns/60;//synchronous speed in rps
+T=3/(2*%pi*ns)*(S*E2ph^2*R2)/(R2^2+(S*X2)^2);//in N-m
+disp(T,"Torque devloped on full load in N-m : ");
diff --git a/1892/CH1/EX1.60/Example1_60.sce b/1892/CH1/EX1.60/Example1_60.sce new file mode 100755 index 000000000..3357750db --- /dev/null +++ b/1892/CH1/EX1.60/Example1_60.sce @@ -0,0 +1,22 @@ +// Example 1.60
+
+clc;clear;close;
+
+// Given data
+PA=4;//no. of poles
+PB=4;//no. of poles
+f=50;//in Hz
+V=440;//in volt
+
+//calculations
+//Independently with A
+Ns=120*f/PA;//in rpm
+disp(Ns,"Independently with A, Synchrpnous speed Ns in rpm is : ");
+//Independently with B
+Ns=120*f/PB;//in rpm
+disp(Ns,"Independently with B, Synchrpnous speed Ns in rpm is : ");
+//Running as cumulative cascaded
+Ns=120*f/(PA+PB);//in rpm
+disp(Ns,"Running as cumulative cascaded, Synchrpnous speed Ns in rpm is : ");
+//Running as differentially cascaded
+disp("Running as differentially cascaded, Synchrpnous speed Ns is undefined.");
diff --git a/1892/CH1/EX1.61/Example1_61.sce b/1892/CH1/EX1.61/Example1_61.sce new file mode 100755 index 000000000..4bf9f2766 --- /dev/null +++ b/1892/CH1/EX1.61/Example1_61.sce @@ -0,0 +1,23 @@ +// Example 1.61
+
+clc;clear;close;
+
+// Given data
+IscByIfl=3*180/100;//ratio
+TstByTfl=35/100;//ratio
+X=75;//tapping in %
+
+//calculations
+X=X/100;//tapping
+
+//Star delta starting
+//Formula : TstByTfl=1/3*IscByIfl*Sfl
+Sfl=TstByTfl*3/IscByIfl^2;//slip at full load
+
+//Auto transformer starting
+IstByIsc=X^2;//ratio
+IstByIfl=X^2*IscByIfl;//ratio
+disp("Starting current is "+string(IstByIfl*100)+"% of fulll load current.");
+TstByTfl=X^2*IscByIfl^2*Sfl;//ratio
+disp("Starting torque is "+string(TstByTfl*100)+"% of fulll load torque.");
+//Answer of starting current in terms of full load curremt is not given in the book.
diff --git a/1892/CH1/EX1.62/Example1_62.sce b/1892/CH1/EX1.62/Example1_62.sce new file mode 100755 index 000000000..3de99518c --- /dev/null +++ b/1892/CH1/EX1.62/Example1_62.sce @@ -0,0 +1,29 @@ +// Example 1.62
+
+clc;clear;close;
+
+// Given data
+format('v',6)
+VL=400;//in volt
+f=50;//in Hz
+I=100;//i Ampere
+
+//calculations
+//D.O.L starter
+IL=I*sqrt(3);//in Ampere
+disp(IL,"(i) The line current for direct on line starting in Ampere : ");
+//In star delta starter
+Vph=VL/sqrt(3);//in Volt
+Iph=I/sqrt(3);//in Ampere
+disp(Iph,"(ii) Starting phase current for star delta starting in Ampere : ");
+disp(Iph,"(ii) Starting line current for star delta starting in Ampere : ");
+//Auto transformer starter
+K=70/100;//tapping of auto transformer
+Vph=VL/sqrt(3);//in Volt
+Vline=K*VL;//in volt
+Ist_phase=Vline*I/VL;//in Ampere
+disp(Ist_phase,"(iii) Starting phase current of motor in Ampere : ");
+Ist_line=Ist_phase*sqrt(3);//in Ampere
+disp(Ist_line,"(iii) Starting line current of motor in Ampere : ");
+IsupplyLine=K*Ist_line;//in Ampere
+disp(IsupplyLine,"(iii) Supply line current of motor in Ampere : ");
diff --git a/1892/CH1/EX1.63/Example1_63.sce b/1892/CH1/EX1.63/Example1_63.sce new file mode 100755 index 000000000..8f1cd5e51 --- /dev/null +++ b/1892/CH1/EX1.63/Example1_63.sce @@ -0,0 +1,17 @@ +// Example 1.63
+
+clc;clear;close;
+
+// Given data
+format('v',6);
+P=12;//no. of poles
+Ns=500;//in rpm
+Nr=1440;//in rpm
+
+//calculations
+f1=P*Ns/120;//in Hz
+Nsm=1500;//in rpm (Assumed closed synchronous speed)
+S=(Nsm-Nr)/Nsm;//slip
+disp(S*100,"Slip of the motor in % : ");
+Pm=120*f1/Nsm;//no. of poles of the motor
+disp(Pm,"No. of poles of the motor : ");
diff --git a/1892/CH1/EX1.64/Example1_64.sce b/1892/CH1/EX1.64/Example1_64.sce new file mode 100755 index 000000000..88da9d185 --- /dev/null +++ b/1892/CH1/EX1.64/Example1_64.sce @@ -0,0 +1,16 @@ +// Example 1.64
+
+clc;clear;close;
+
+// Given data
+format('v',6);
+P=4;//no. of poles
+f1=50;//in Hz
+f2=1.5;//in Hz
+
+//calculations
+S=f2/f1;//slip
+disp(S*100,"Slip in % : ");
+Ns=120*f1/P;//in rpm
+N=(1-S)*Ns;//in rpm
+disp(N,"Running speed of motor in rpm : ");
diff --git a/1892/CH1/EX1.65/Example1_65.sce b/1892/CH1/EX1.65/Example1_65.sce new file mode 100755 index 000000000..8a88ecace --- /dev/null +++ b/1892/CH1/EX1.65/Example1_65.sce @@ -0,0 +1,25 @@ +// Example 1.65
+
+clc;clear;close;
+
+// Given data
+format('v',6);
+P=6;//no. of poles
+f1=50;//in Hz
+S0=1;//in %
+Sfl=3;//in %
+
+//calculations
+S0=S0/100;//slip
+Sfl=Sfl/100;//slip
+Ns=120*f1/P;//in rpm
+disp(Ns,"(a) Synchronous speed in rpm : ");
+N0=(1-S0)*Ns;//in rpm
+disp(N0,"(b) No Load speed in rpm : ");
+Nfl=(1-Sfl)*Ns;//in rpm
+disp(Ns,"(c) Full load speed in rpm : ");
+f2_st=f1*S0;//in Hz
+disp(f2_st,"(d) Frequeny of rotor current at standstill in Hz : ");
+f2_fl=f1*Sfl;//in Hz
+disp(f2_fl,"(e) Frequeny of rotor current at full load in Hz : ");
+//Answer of part (c) & part(d) is wrong. Calcultion mistake & slip is not divided by 100.
diff --git a/1892/CH1/EX1.66/Example1_66.sce b/1892/CH1/EX1.66/Example1_66.sce new file mode 100755 index 000000000..12a27c3be --- /dev/null +++ b/1892/CH1/EX1.66/Example1_66.sce @@ -0,0 +1,31 @@ +// Example 1.66
+
+clc;clear;close;
+
+// Given data
+format('v',7);
+P=4;//no. of poles
+f1=50;//in Hz
+S=4;//in %
+R2=1;//in ohm/phase
+X2=4;//in ohm/phase
+
+//calculations
+Ns=120*f1/P;//in rpm
+S=S/100;//slip
+//part (a)
+N=(1-S)*Ns;//in rpm
+disp(N,"(a) Speed of the motor in rpm : ");
+//part (b)
+f2=S*f1;//in Hz
+disp(f2,"(b) Frequency of rotor emf in Hz : ");
+//part (i)
+Z2=R2+%i*X2;//in ohm
+cosfi=cosd(atand(imag(Z2),real(Z2)));//power factor
+disp(cosfi,"(i) Power factor at standstill(lag) : ");
+//part (ii)
+N=1400;//speed in rpm (given for this part)
+S1=(Ns-N)/Ns;//slip
+Z2s1=R2+%i*S1*X2;//in ohm
+cosfi=cosd(atand(imag(Z2s1),real(Z2s1)));//power factor at 1400 rpm speed
+disp(cosfi,"(ii) Power factor at 1400 rpm(lag) : ");
diff --git a/1892/CH1/EX1.67/Example1_67.sce b/1892/CH1/EX1.67/Example1_67.sce new file mode 100755 index 000000000..f1cb8a44a --- /dev/null +++ b/1892/CH1/EX1.67/Example1_67.sce @@ -0,0 +1,24 @@ +// Example 1.67
+
+clc;clear;close;
+
+// Given data
+format('v',6);
+E=60;//in volt
+Zrotor=0.8+%i*6;//rotor impedence in ohm/phase
+Zstator=4+%i*3;//stator impedence in ohm/phase
+S=5;//in %
+
+//calculations
+E2=E/sqrt(3);//emf induced/phase in volt
+Ztotal=Zstator+Zrotor;//in ohm/phase
+//Part (a)
+I2=E2/Ztotal;//in Ampere
+disp("Part(a) Magnitude is "+string(abs(I2))+" & angle in degree is "+string(atand(imag(I2),real(I2))));
+//Part (b)
+S=S/100;//slip
+R2=real(Zrotor);//in ohm/phase
+X2=imag(Zrotor);//in ohm/phase
+I2s=S*E2/(R2+S*%i*X2);//in ampere
+disp("Part(b) Magnitude is "+string(abs(I2s))+" & angle in degree is "+string(atand(imag(I2s),real(I2s))));
+//Answer of part (b) is wrong in the book.
diff --git a/1892/CH1/EX1.68/Example1_68.sce b/1892/CH1/EX1.68/Example1_68.sce new file mode 100755 index 000000000..bf29e4680 --- /dev/null +++ b/1892/CH1/EX1.68/Example1_68.sce @@ -0,0 +1,20 @@ +// Example 1.68
+
+clc;clear;close;
+
+// Given data
+format('v',7);
+Pis=60;//in KW
+phase=3;//no. of phase
+S=3;//in %
+StatorLaser=1;//in KW
+
+//calculations
+S=S/100;//slip
+StatorOutput=Pis-StatorLaser;//in KW
+RotorInput=StatorOutput;//in KW
+RotorCuLoss=S*RotorInput;//in KW
+RotorCuLoss_phase=S*RotorInput/phase;//in KW/phase
+disp(RotorCuLoss_phase,"Rotor Copper loss per phase in KW : ");
+MechPower=RotorInput-RotorCuLoss;//in KW
+disp(MechPower,"Total mechanical lpower devloped in KW : ");
diff --git a/1892/CH1/EX1.69/Example1_69.sce b/1892/CH1/EX1.69/Example1_69.sce new file mode 100755 index 000000000..6f2e85cf7 --- /dev/null +++ b/1892/CH1/EX1.69/Example1_69.sce @@ -0,0 +1,29 @@ +// Example 1.69
+
+clc;clear;close;
+
+// Given data
+format('v',7);
+P=6;//no. of poles
+f1=50;//in Hz
+f2=1.5;//in Hz
+Zo=150;//useful Torque in N-m
+FrictionLoss=10;//in N-m
+Psc=700;//stator loss in watt
+
+//calculations
+Ns=120*f1/P;//in rpm
+S=f2/f1;//slip
+Nr=(1-S)*Ns;//in rpm
+wr=2*%pi*Nr/60;//in rad/sec
+Po=Zo*wr;//in watts
+Pmd=(Zo+FrictionLoss)*wr;//in watts
+//Part (a)
+Prc=S/(1-S)*Pmd;//in watts
+disp(Prc/1000,"(a) Rotor Copper Loss in KW : ");
+//Part (b)
+Pi=Pmd+Prc+Psc;//in watts
+disp(Pi/1000,"(b) Input to the motor in KW : ");
+//Part (c)
+Eff=Po/Pi;//Effiiency
+disp(Eff*100,"(d) Efficiency in % : ");
diff --git a/1892/CH1/EX1.7/Example1_7.sce b/1892/CH1/EX1.7/Example1_7.sce new file mode 100755 index 000000000..def6d7ef8 --- /dev/null +++ b/1892/CH1/EX1.7/Example1_7.sce @@ -0,0 +1,39 @@ +// Example 1.7
+
+clear; clc; close;
+
+format('v',6);
+// Given data
+P=4;//No. of poles
+f=50;//in Hz
+Kdash=4;//stator turns by rotor turn
+R2=0.01;//in ohm
+X2=0.1;//in ohm
+E1_line=400;//in volt
+
+//Calculations
+K=1/Kdash;//rotor turns by stator turns
+Ns=120*f/P;//in rpm
+E1ph=E1_line/sqrt(3);//
+//Formula : E2ph/E1ph=K
+E2ph=E1ph*K;//in volt
+//(i) at start S=1
+ns=Ns/60;//in rps
+K=3/2/%pi/ns;
+Tst=K*E2ph^2*R2/(R2^2+X2^2);//in N-m
+disp(Tst,"(i) Starting Torque in N-m : ");
+//part (ii)
+Sm=R2/X2;//slip for max torque
+disp(Sm*100,"(ii) Slip at which max torque devloped in % : ");
+//Part (iii)
+N=Ns*(1-Sm);//in rpm
+disp(N,"(iii) Speed at which max torque occur in rpm : ");
+//Part (iv)
+Tm=K*E2ph^2/2/X2;//in N-m
+disp(Tm,"Maximum torque in N-m : ");
+//Part (v)
+Sf=4;//in %
+Sf=Sf/100;//slip
+Tfl=K*Sf*E2ph^2*R2/(R2^2+(Sf*X2)^2);//in N-m
+disp(Tfl,"(v) Full load Torque devloped in N-m : ");
+
diff --git a/1892/CH1/EX1.70/Example1_70.sce b/1892/CH1/EX1.70/Example1_70.sce new file mode 100755 index 000000000..ca20faf58 --- /dev/null +++ b/1892/CH1/EX1.70/Example1_70.sce @@ -0,0 +1,30 @@ +// Example 1.70
+
+clc;clear;close;
+
+// Given data
+format('v',6);
+V=440;//in Volt
+f=50;//in Hz
+phase=3;//no. of phase
+P=6;//no. of poles
+Pin=80;//rotor input in KW
+f1=50;//in Hz
+f2=100;//in rotation/min
+I=65;//rotor current in Ampere
+
+//calculations
+f2=f2/60;//in Hz
+S=f2/f1;//slip
+disp(S,"Slip(p.u) : ");
+Ns=120*f/P;//in rpm
+Nr=Ns*(1-S);//in rpm
+disp(Nr,"Rotor speed in rpm : ");
+RotorCuLoss=S*Pin*1000;//in Watts
+Pmd=Pin*1000-RotorCuLoss;//Mechanical powre developed /in watts
+Pmd=Pmd/746;//in HP
+disp(Pmd,"Mechanical power developed in HP : ");
+RotorCuLoss_phase=RotorCuLoss/phase;//in watts/phase
+disp(RotorCuLoss_phase,"Rotor Coopper Loss per phase in watts : ");
+R2=RotorCuLoss_phase/I^2;//in ohm
+disp(R2,"Rotor resistance per phase in ohm : ");
diff --git a/1892/CH1/EX1.71/Example1_71.sce b/1892/CH1/EX1.71/Example1_71.sce new file mode 100755 index 000000000..f45a1548b --- /dev/null +++ b/1892/CH1/EX1.71/Example1_71.sce @@ -0,0 +1,22 @@ +// Example 1.71
+
+clc;clear;close;
+
+// Given data
+format('v',7);
+f1=50;//in Hz
+phase=3;//no. of phase
+P=6;//no. of poles
+Nr=960;//in rpm
+GearCuLoss=250;//in watt
+Power=25;//in HP
+MechLoss=1000;//in watts
+I2=35;//in Ampere
+
+//calculations
+Ns=f1*120/P;//in rpm
+S=(Ns-Nr)/Ns;//slip
+//Formula : RotorCuLoss=S/(1-S)*MechDevPower
+//3*I2^2*R2+GearCuLoss=S/(1-S)*(Power*746+MechLoss)
+R2=(S/(1-S)*(Power*746+MechLoss)-GearCuLoss)/3/I2^2;//in ohm
+disp(R2,"Resistance per phase in ohm : ");
diff --git a/1892/CH1/EX1.72/Example1_72.sce b/1892/CH1/EX1.72/Example1_72.sce new file mode 100755 index 000000000..31788b459 --- /dev/null +++ b/1892/CH1/EX1.72/Example1_72.sce @@ -0,0 +1,28 @@ +// Example 1.72
+
+clc;clear;close;
+
+// Given data
+format('v',6);
+V=500;//in Volt
+f1=50;//in Hz
+phase=3;//no. of phase
+P=6;//no. of poles
+Nr=995;//in rpm
+Pm=20;//mech power in KW
+StatorLoss=1500;//in watts
+pf=0.87;//power facator
+
+//calculations
+Ns=f1*120/P;//in rpm
+S=(Ns-Nr)/Ns;//slip
+disp(S,"(a) Slip is : ");
+Prc=S/(1-S)*Pm*1000;//in watts
+disp(Prc,"(b) Rotor I^2*R Loss in watts : ");
+RotorInput=Prc/S;//in watts
+TotalInput=RotorInput+StatorLoss;//in watts
+disp(TotalInput/1000,"(c) Total input in KW : ");
+LineCurrent=TotalInput/sqrt(3)/V/pf;//in Ampere
+disp(LineCurrent,"(d) Line current in Ampere : ")
+fr=S*f1;//in Hz
+disp(fr,"Rotor frequency in HZ : ");
diff --git a/1892/CH1/EX1.73/Example1_73.sce b/1892/CH1/EX1.73/Example1_73.sce new file mode 100755 index 000000000..9a2fd6803 --- /dev/null +++ b/1892/CH1/EX1.73/Example1_73.sce @@ -0,0 +1,18 @@ +// Example 1.73
+
+clc;clear;close;
+
+// Given data
+format('v',6);
+StatorLoss=2;//in KW
+StatorInput=90;//stator input in KW
+S=4;//in %
+
+//calculations
+S=S/100;//slip
+StatorOutput=StatorInput-StatorLoss;//in KW
+Pri=StatorOutput;//rotor input in KW
+Pcr=S*Pri;//in KW
+disp(Pcr,"Rotor Copper Loss in KW : ");
+Pm=Pri-Pcr;//in KW
+disp(Pm,"Rotor mechanical power developed in KW : ");
diff --git a/1892/CH1/EX1.74/Example1_74.sce b/1892/CH1/EX1.74/Example1_74.sce new file mode 100755 index 000000000..144945938 --- /dev/null +++ b/1892/CH1/EX1.74/Example1_74.sce @@ -0,0 +1,24 @@ +// Example 1.74
+
+clc;clear;close;
+
+// Given data
+format('v',6);
+emf=60;//in volt
+R2=0.6;//in ohm
+X2=4;//in ohm
+Rrh=5;//in ohm
+Xrh=2;//in ohm
+S=4;//in %
+
+//calculations
+S=S/100;//slip
+E2=emf/sqrt(3);//in volt
+Rt=R2+Rrh;//in ohm
+Xt=X2+Xrh;//in ohm
+I2=E2/sqrt(Rt^2+Xt^2);//in Ampere
+disp(I2,"(a) Current per phase in rotor in Ampere : ");
+E2s=S*E2;//in volt
+Z2s=sqrt(R2^2+(S*X2)^2);//in ohm
+I2s=E2s/Z2s;//in Ampere
+disp(I2s,"(b) Current per phase in rotor in Ampere : ");
diff --git a/1892/CH1/EX1.75/Example1_75.sce b/1892/CH1/EX1.75/Example1_75.sce new file mode 100755 index 000000000..2f9ed6775 --- /dev/null +++ b/1892/CH1/EX1.75/Example1_75.sce @@ -0,0 +1,13 @@ +// Example 1.75
+
+clc;clear;close;
+
+// Given data
+format('v',6);
+R2=0.05;//in ohm
+X2=0.1;//in ohm
+
+//calculations
+R2dash=X2;//for max Torque
+r=R2dash-R2;//in ohm
+disp(r,"External resistance per phase required in ohm : ");
diff --git a/1892/CH1/EX1.76/Example1_76.sce b/1892/CH1/EX1.76/Example1_76.sce new file mode 100755 index 000000000..897488c4c --- /dev/null +++ b/1892/CH1/EX1.76/Example1_76.sce @@ -0,0 +1,20 @@ +// Example 1.76
+
+clc;clear;close;
+
+// Given data
+format('v',6);
+P=6;//no. of poles
+f=50;//in Hz
+Sfl=4;//in %
+Z2=0.01+%i*0.05;//in ohm
+
+//calculations
+S=Sfl/100;//slip
+R2=real(Z2);//in ohm
+X2=imag(Z2);//in ohm
+Sm=R2/X2;//slip at max speed
+Ns=120*f/P;//in rpm
+Nm=(1-Sm)*Ns;//in rpm
+TmaxByTfl=(S^2+Sm^2)/2/S/Sm;//ratio
+disp("Maximum Torque is "+string(TmaxByTfl)+" times of full load torque.");
diff --git a/1892/CH1/EX1.77/Example1_77.sce b/1892/CH1/EX1.77/Example1_77.sce new file mode 100755 index 000000000..9ff393523 --- /dev/null +++ b/1892/CH1/EX1.77/Example1_77.sce @@ -0,0 +1,20 @@ +// Example 1.76
+
+clc;clear;close;
+
+// Given data
+format('v',6);
+P=6;//no. of poles
+f=50;//in Hz
+Tmax=30;//in N-m
+Nm=960;//in rpm
+S=5;//in %
+R2=0.6;//in ohm
+
+//calculations
+S=S/100;//slip
+Ns=120*f/P;//in rpm
+Sm=(Ns-Nm)/Ns;//slip at max speed
+X2=R2/Sm;//in ohm
+Tau_s=2*S*Sm/(S^2+Sm^2)*Tmax;//in N-m
+disp(Tau_s,"Torque exerted by the motor in N-m : ");
diff --git a/1892/CH1/EX1.78/Example1_78.sce b/1892/CH1/EX1.78/Example1_78.sce new file mode 100755 index 000000000..b690a3876 --- /dev/null +++ b/1892/CH1/EX1.78/Example1_78.sce @@ -0,0 +1,24 @@ +// Example 1.78
+
+clc;clear;close;
+
+// Given data
+format('v',6);
+P=4;//no. of poles
+f=50;//in Hz
+Tmax=110;//in N-m
+Nm=1360;//in rpm
+R2=0.25;//in ohm
+TstByTmax=1/2;//ratio
+
+//calculations
+Ns=120*f/P;//in rpm
+Sm=(Ns-Nm)/Ns;//slip at max speed
+X2=R2/Sm;//in ohm
+//Formula : Tmax=K*E2^2/2/X2 and Tst=K*E2^2*(R2+r)/((R2+r)^2+X2^2)
+//TstByTmax*RT^2+TstByTmax*X2^2-RT*2*X2=0;
+P=[TstByTmax -2*X2 X2^2*TstByTmax];//polynomial for RT
+RT=roots(P);//in ohm
+r=RT-R2;//in ohm
+r=r(2);//leaving higher value as Tmax goes with S>1 for this value
+disp(r,"Resistance required in series in ohm :");
diff --git a/1892/CH1/EX1.79/Example1_79.sce b/1892/CH1/EX1.79/Example1_79.sce new file mode 100755 index 000000000..33031c894 --- /dev/null +++ b/1892/CH1/EX1.79/Example1_79.sce @@ -0,0 +1,24 @@ +// Example 1.79
+
+clc;clear;close;
+
+// Given data
+format('v',6);
+P=16;//no. of poles
+f=50;//in Hz
+Z2=0.02+%i*0.15;//in ohm
+Nr=360;//in rpm
+
+//calculations
+Ns=120*f/P;//in rpm
+Sfl=(Ns-Nr)/Ns;//slip at full load
+R2=real(Z2);//in ohm
+X2=imag(Z2);//in ohm
+Sm=R2/X2;//slip at max torque
+Nm=(1-Sm)*Ns;//in rpm
+disp(Nm,"(a) Speed at which max Torque occurs in rpm : ");
+TmaxByTfl=(Sfl^2+Sm^2)/2/Sfl/Sm;//ratio
+disp(TmaxByTfl,"Ratio of maximum to full load torque : ");
+R2dash=X2;//for max Torque
+r=R2dash-R2;//in ohm
+disp(r,"(c) External resistance per phase required in ohm : ");
diff --git a/1892/CH1/EX1.8/Example1_8.sce b/1892/CH1/EX1.8/Example1_8.sce new file mode 100755 index 000000000..66d7fd098 --- /dev/null +++ b/1892/CH1/EX1.8/Example1_8.sce @@ -0,0 +1,20 @@ +// Example 1.8
+
+clear; clc; close;
+
+format('v',6);
+// Given data
+P=24;//No. of poles
+f=50;//in Hz
+R2=0.016;//in ohm
+X2=0.265;//in ohm
+N=247;//in rpm
+
+//Calculations
+Ns=120*f/P;//in rpm
+Sf=(Ns-N)/Ns;//full load slip
+Sm=R2/X2;//max slip
+Tfl_BY_Tm=2*Sm*Sf/(Sm^2+Sf^2);//unitless
+disp(Tfl_BY_Tm,"Ratio of full load torque to max torque : ");
+Tst_BY_Tm=2*Sm/(1+Sm^2);//unitless
+disp(Tst_BY_Tm,"Ratio of starting torque to max torque : ");
diff --git a/1892/CH1/EX1.80/Example1_80.sce b/1892/CH1/EX1.80/Example1_80.sce new file mode 100755 index 000000000..8a09763bd --- /dev/null +++ b/1892/CH1/EX1.80/Example1_80.sce @@ -0,0 +1,22 @@ +// Example 1.80
+
+clc;clear;close;
+
+// Given data
+format('v',6);
+P=6;//no. of poles
+f=50;//in Hz
+N=940;//in rpm
+Output=7;//in KW
+Nm=800;//in rpm
+TotalLaser=840;//in watts
+
+//calculations
+Ns=120*f/P;//in rpm
+S=(Ns-N)/Ns;//slip
+Sm=(Ns-Nm)/Ns;//slip at max Torque
+Pmd=Output*1000+TotalLaser;//in watts
+//Formula : Pmd=2*%pi*N*Td/60
+Tdfl=Pmd/2/%pi/N*60;//in N-m
+Tst=Tdfl*(S^2+Sm^2)/S/(1+Sm^2);//in N-m
+disp(Tst,"Starting tiorque in N-m : ");
diff --git a/1892/CH1/EX1.81/Example1_81.sce b/1892/CH1/EX1.81/Example1_81.sce new file mode 100755 index 000000000..7fcb2eba3 --- /dev/null +++ b/1892/CH1/EX1.81/Example1_81.sce @@ -0,0 +1,28 @@ +// Example 1.81
+
+clc;clear;close;
+
+// Given data
+format('v',6);
+P=4;//no. of poles
+f=50;//in Hz
+VL=200;//in volt
+R2=0.1;//in ohm
+X2=0.9;//in ohm
+Te2ByTe1=0.67;//ratio of rotor to stator turns
+S=4;//in %
+
+//calculations
+S=S/100;//slip
+Ns=120*f/P;//in rpm
+E1=VL/sqrt(3);//in volt
+E2=E1*Te2ByTe1;//in volt
+Td=3*S*E2^2*R2/2/%pi/(Ns/60)/(R2^2+(S*X2)^2);//in N-m
+disp(Td,"(a) Total torque at 4% slip in N-m : ");
+Tmax=3*E2^2/2/%pi/(Ns/60)/(2*X2);//in N-m
+disp(Tmax,"(b) Total torque at 4% slip in N-m : ");
+Sm=R2/X2;//slip at max torque
+Nm=(1-Sm)*Ns;//speed at Tmax in rpm
+disp(Nm,"(c) Speed at maximum torque in rpm : ");
+Pmd_max=2*%pi*Nm/60*Tmax;//in N-m
+disp(Pmd_max,"(d) Maximum mechanical power in N-m : ");
diff --git a/1892/CH1/EX1.82/Example1_82.sce b/1892/CH1/EX1.82/Example1_82.sce new file mode 100755 index 000000000..a1e5401e1 --- /dev/null +++ b/1892/CH1/EX1.82/Example1_82.sce @@ -0,0 +1,27 @@ +// Example 1.82
+
+clc;clear;close;
+
+// Given data
+format('v',7);
+TstByTfl=1;//ratio
+TmaxByTfl=2;//ratio
+
+//calculations
+TstByTmax=TstByTfl/TmaxByTfl;//ratio
+//Formula : TstByTmax=2*Sm/(1+Sm^2)
+//TstByTmax*Sm^2-2*Sm+TstByTmax=0
+P=[TstByTmax -2 TstByTmax];//polynomial for Sm
+Sm=roots(P);//slip at max torque
+Sm=Sm(2);//neglecting the higher value
+disp(Sm,"(a) Slip at which max torque occurs : ");
+//Formula : TflByTmax=2*S*Sm/(S^2+Sm^2)
+//S^2-TmaxByTfl*2*S*Sm+Sm^2=0
+P=[1 -TmaxByTfl*2*Sm Sm^2];//polynomial for S
+S=roots(P);//slip at max torque
+//Sm=Sm(2);//neglecting the higher value
+S=S(2);//neglecting the higher value
+disp(S,"(b) Full load slip : ");
+//I2stByI2fl^2=(Sm^2+S^2)/S^2/(1+Sm^2)
+I2stByI2fl=sqrt((Sm^2+S^2)/S^2/(1+Sm^2));//ratio
+disp(I2stByI2fl,"(c) Rotor current at starting ag full load current : ");
diff --git a/1892/CH1/EX1.83/Example1_83.sce b/1892/CH1/EX1.83/Example1_83.sce new file mode 100755 index 000000000..4b7d50f3a --- /dev/null +++ b/1892/CH1/EX1.83/Example1_83.sce @@ -0,0 +1,18 @@ +// Example 1.83
+
+clc;clear;close;
+
+// Given data
+format('v',7);
+Zst=25;//in N-m
+
+//calculations
+disp("Zst=K*R2/(R2^2+X2^2)");
+//K=2*Zst*R2
+KbyR2=2*Zst;//calculation
+//(a) Tst=K*2*R2/((2*R2)^2+R2^2)
+Tst=KbyR2*2/(2^2+1);//in N-m
+disp(Tst,"(a) Starting torque in N-m ; ");
+//(b) Tst=K/2*R2/((R2/2)^2+R2^2)
+Tst=KbyR2/2/((1/2)^2+1);//in N-m
+disp(Tst,"(b) Starting torque in N-m ; ");
diff --git a/1892/CH1/EX1.84/Example1_84.sce b/1892/CH1/EX1.84/Example1_84.sce new file mode 100755 index 000000000..ff5d3abad --- /dev/null +++ b/1892/CH1/EX1.84/Example1_84.sce @@ -0,0 +1,26 @@ +// Example 1.84
+
+clc;clear;close;
+
+// Given data
+format('v',7);
+P=4;//no. of poles
+f=50;//in Hz
+R2=0.4;//in ohm
+X2=4;//in ohm
+
+//calculations
+Ns=120*f/P;//in rpm
+Sm=R2/X2;//slip at max Torque
+Nm=Ns*(1-Sm);//in rpm
+disp(Nm,"Speed at Max Torque in N-m : ");
+TmaxByTst=(1+Sm^2)/2/Sm;//ratio
+disp(TmaxByTst,"Ratio of max Torque to starting Torque : ");
+//After adding additional resistance
+TstByTm=1/2;//given ratio
+//TstByTm=2*X2*(R2+r)/((R2+r)^2+X2^2);//ratio
+P=[TstByTm TstByTm*2*R2-2*X2 TstByTm*(R2^2+X2^2)-2*X2*R2];//polynomial for additional value of resistance
+r=roots(P);//in ohm
+r=r(2);//leaving higher value
+disp(r,"Required resistance value in ohm ; ");
+//Answer of resistance is wrong in the book.
diff --git a/1892/CH1/EX1.85/Example1_85.sce b/1892/CH1/EX1.85/Example1_85.sce new file mode 100755 index 000000000..809e44ed0 --- /dev/null +++ b/1892/CH1/EX1.85/Example1_85.sce @@ -0,0 +1,26 @@ +// Example 1.85
+
+clear; clc; close;
+
+format('v',8);
+// Given data
+VL=440;//in volt
+f=50;//in Hz
+X2byR2=3;//ratio
+TmByTfl=4;//ratio
+
+//Calculations
+Sm=1/X2byR2;//Maximum slip
+//Formula : TmByTfl=(Sm^2+S^2)/(2*S*Sm)
+P=[9 -24 1];//polynomial for value of S by avove equation
+S=roots(P);
+S=S(2);//discarding value greater than 1
+disp(S,"(i) Full load slip : ");
+TstByTfl=(Sm^2+S^2)/(S*(1+Sm^2));//ratio
+disp(TstByTfl,"(ii) Ratio of starting torque to full load torque : ");
+V1=VL/sqrt(3);//in volt
+//Tst=Tfl : K*V11^2R2/(R2^2+X2^2)=R*V1*S*R2/(R2^2+(S*X2)^2)
+V11=sqrt(S*V1^2*(1+X2byR2^2)/(1+(S*X2byR2)^2));//in volt
+Linevoltage=V11*sqrt(3);//in volt
+disp(Linevoltage,"(c) Line Voltage in Volt : ");
+//Note : Answer of line voltage is wrong in the book due to calculation mistake.
diff --git a/1892/CH1/EX1.9/Example1_9.sce b/1892/CH1/EX1.9/Example1_9.sce new file mode 100755 index 000000000..a5d197d8a --- /dev/null +++ b/1892/CH1/EX1.9/Example1_9.sce @@ -0,0 +1,22 @@ +// Example 1.9
+
+clear; clc; close;
+
+format('v',7);
+// Given data
+R2=0.04;//in ohm
+X2=0.2;//in ohm
+
+//Calculations
+R2dash=X2;//in ohm (for Tm=Tst)
+//formula : R2dash=R2+rex
+Rex=R2dash-R2;//in ohm/phase
+disp(Rex,"(i) External resistance required in ohm/phase : ");
+disp("For Tst=Tm/2, Tm=k*E2^2/2/X2 and Tst=k*E2^2*R2/(R2^2+X2^2)");
+disp("This gives a polynomial for value of R2dash.");
+P=[1 -4*X2 X2^2];//R2dash^2-4*X2*R2dash+X2^2=0
+R2dash=roots(P);//in ohm
+disp(R2dash,"Value of R2dash(ohm) are ")
+disp(R2dash(2),"But R2dash cant be greater than X2, R2dash(ohm) is : ");
+Rex=R2dash(2)-R2;//in ohm/phase
+disp(Rex,"(ii) External resistance required in ohm/phase : ");
diff --git a/1892/CH2/EX2.1/Example2_1.sce b/1892/CH2/EX2.1/Example2_1.sce new file mode 100755 index 000000000..f0150cb29 --- /dev/null +++ b/1892/CH2/EX2.1/Example2_1.sce @@ -0,0 +1,58 @@ +// Example 2.1
+
+clear; clc; close;
+format('v',6);
+
+// Given data
+Is=220;//in Ampere
+//For no load
+Vo=220;//in volt
+Io=6;//in Ampere
+wo=350;//in watt
+
+//From locked rotor test
+Vsc=125;//in volt
+Isc=15;//in Ampere
+Wsc=580;//in watt
+R1=1.5*1.2;//in Ω
+
+//Calculations
+Zeq=Vsc/Isc;//in Ω
+Req=Wsc/Isc^2;//in Ω
+Xeq=sqrt(Zeq^2-Req^2);//in Ω
+R1=1.5*1.2;//1.5 times more
+R2=Req-R1;//in Ω
+//assume X1=X2; Xeq=X1+X2=2*X2
+X2=Xeq/2;//in Ω
+X1=X2;//in Ω
+r2=R2/2;//in Ω
+x2=X2/2;//in Ω
+
+cos_fio=wo/(Vo*Io);//unitless
+fi_o=acosd(cos_fio);//in degree
+Io=Io*expm(%i*-fi_o*%pi/180);//in Ampere(polar form)
+VAB=Vo-Io*[R1+r2/2+%i*(X1+X2/2)];//in volt
+Xo=abs(VAB)/abs(Io);//in ohm
+Xeq=2*Xo;//in ohm
+S=5/100;//slip
+Zf=Xo*expm(%i*%pi/2)*(r2/S+%i*X2/2)/(r2/S+%i*(X2/2+Xo));//in ohm
+Z1=R1+%i*X1;//in ohm
+Z2=6.4819+%i*3.416;//in ohm
+Zeq=Z1+Z2+Zf;//in ohm
+I1=Vo/Zeq;//in Ampere
+PF=cos(atan(imag(I1),real(I1)));//lagging Power factor
+disp(PF,"Power factor(lagging) : ");
+Vf=I1*Zf;//in volt
+I2f=Vf/(r2/S-%i*X2/2);//in Ampere
+Zb=Zf;//in ohm
+Vb=I1*Zb;//in Volt
+I2b=Vb/(r2/(2-S)+%i*X2);//in Ampere
+Pf=abs(I2f)^2*r2/S;//in watts
+Pb=abs(I2b)^2*r2/(2-S);//in watts
+Pm=(1-S)*(Pf-Pb);//in watts
+Wo=350;//in watts
+Pout=Pm-Wo;//in watts
+Pin=Vo*abs(I1)*PF;//in watts
+Eff=Pout/Pin*100;//in %
+disp(Eff,"Efficiency in % : ");
+//Answer in the book is wrong. Lots of mistake in the solution while calculating Zf.
diff --git a/1892/CH2/EX2.2/Example2_2.sce b/1892/CH2/EX2.2/Example2_2.sce new file mode 100755 index 000000000..bd2baedb5 --- /dev/null +++ b/1892/CH2/EX2.2/Example2_2.sce @@ -0,0 +1,40 @@ +// Example 2.2
+
+clear; clc; close;
+format('v',7);
+
+// Given data
+V1=110;//in volt
+Z1=2+%i*3;//in ohm
+Zeq_rotor=2+%i*3;//in ohm
+Xo=50;//in ohm(Magnetising impedence)
+Losses=25;//in watt(friction & voltage loss)
+S=5/100;//slip
+
+//Calculations
+R1=real(Z1);//in Ω
+X1=imag(Z1);//in Ω
+R2=real(Zeq_rotor);//in Ω
+X2=imag(Zeq_rotor);//in Ω
+r2=R2/2;//in Ω
+x2=X2/2;//in Ω
+xo=Xo/2;//in ohm
+Zf=%i*xo*(r2/S+%i*x2)/(r2/S+%i*(xo+x2));//in ohm
+Zb=%i*xo*(r2/(2-S)+%i*x2)/(r2/(2-S)+%i*(xo+x2));//in ohm
+Zeq=Z1+Zf+Zb;//in ohm
+I1=V1/Zeq;//in Ampere
+InputCurrent=abs(I1);//in Ampere
+disp(InputCurrent,"Input current in Ampere : ");
+PF=cos(atan(imag(I1),real(I1)));
+disp(PF,"Power factor(lagging) : ");
+Vf=I1*Zf;//in volt
+I2f=Vf/(r2/S+%i*x2);//in Ampere
+Vb=I1*Zb;//in Volt
+I2b=Vb/(r2/(2-S)+%i*x2);//in Ampere
+Pf=abs(I2f)^2*r2/S;//in watts
+Pb=13.88;//in watts
+Pm=(1-S)*(Pf-Pb);//in watts
+Pout=Pm-Losses;//in watts
+Pin=V1*abs(I1)*PF;//in watts
+Eff=Pout/Pin*100;//in %
+disp(Eff,"Efficiency in % : ");
diff --git a/1892/CH2/EX2.3/Example2_3.sce b/1892/CH2/EX2.3/Example2_3.sce new file mode 100755 index 000000000..981cdca28 --- /dev/null +++ b/1892/CH2/EX2.3/Example2_3.sce @@ -0,0 +1,22 @@ +// Example 2.3
+
+clear; clc; close;
+format('v',7);
+
+// Given data
+Pout=250;//in watt
+V1=230;//in volt
+f=50;//in Hz
+Zm=4.5+%i*3.7;//in ohm
+Za=9.5+%i*3.5;//in ohm
+
+//Calculations
+//Za=9.5+%i*3.5-%i*Xc;//in ohm(Xc assumed to be connected in auxiliary winding)
+fi_a=90-atand(imag(Zm),real(Zm));//in degree
+Ra=real(Za);//in ohm
+Xa=imag(Za);//in ohm
+X=tand(fi_a)*Ra;//in ohm
+Xc=X+Xa;//in ohm
+C=1/2/%pi/f/Xc;//in Farad
+disp(C*10^6,"Value of capacitance in micro farad : ");
+//Note : In the book, instead of Capacitance which is asked, Torque is calculated even not asked in question and not given the sufficient data to calculate it.
diff --git a/1892/CH2/EX2.4/Example2_4.sce b/1892/CH2/EX2.4/Example2_4.sce new file mode 100755 index 000000000..201023afa --- /dev/null +++ b/1892/CH2/EX2.4/Example2_4.sce @@ -0,0 +1,21 @@ +// Example 2.4
+
+clear; clc; close;
+format('v',7);
+
+// Given data
+f=50;//in Hz
+Z1m=3+%i*2.7;//in ohm
+Z1a=7+%i*3;//in ohm
+alfa=90;//in degree
+
+//Calculations
+//Z1a=7+%i*3-%i*Xc;//in ohm(Xc assumed to be connected in auxiliary winding)
+fi_a=90-atand(imag(Z1m),real(Z1m))
+R1a=real(Z1a);//in ohm
+X1a=imag(Z1a);//in ohm
+X=tand(fi_a)*R1a;//in ohm
+Xc=X+X1a;//in ohm
+C=1/2/%pi/f/Xc;//in Farad
+disp(C*10^6,"Value of capacitance in micro farad : ");
+//Note : In the book, Torque is calculated even not asked in question and not given the sufficient data to calculate it.
diff --git a/1892/CH2/EX2.5/Example2_5.sce b/1892/CH2/EX2.5/Example2_5.sce new file mode 100755 index 000000000..bcdc3fe20 --- /dev/null +++ b/1892/CH2/EX2.5/Example2_5.sce @@ -0,0 +1,33 @@ +// Example 2.5
+
+clear; clc; close;
+format('v',7);
+
+// Given data
+V1=230;//in volt
+f=50;//in Hz
+Vm=100;//in volt
+Im=2;//in Ampere
+Wm=40;//in watts
+Va=80;//in volt
+Ia=1;//in Ampere
+Wa=50;//in watts
+
+//Calculations
+Z1em=Vm/Im;//in ohm
+R1em=Wm/Im^2;//in ohm
+X1em=sqrt(Z1em^2-R1em^2);//in ohm
+R1m=R1em/2;//in ohm
+X1m=X1em/2;//in ohm
+fi_m=atand(X1m/R1m);//in degree
+
+Z1ea=Va/Ia;//in ohm
+R1ea=Wa/Ia^2;//in ohm
+X1ea=sqrt(Z1ea^2-R1ea^2);//in ohm
+Ra=R1ea-R1m;//in ohm
+Xa=X1ea-X1m;//in ohm
+fi_a=90-fi_m;//in degree
+//after connecting capacitor
+Xc=Xa-tand(-fi_a)*Ra
+C=1/2/%pi/f/Xc;//in Farad
+disp(C*10^6,"Value of capacitance in micro farad : ");
diff --git a/1892/CH3/EX3.1.s/Example3_1_at_page196.sce b/1892/CH3/EX3.1.s/Example3_1_at_page196.sce new file mode 100755 index 000000000..2f5da443e --- /dev/null +++ b/1892/CH3/EX3.1.s/Example3_1_at_page196.sce @@ -0,0 +1,17 @@ +// Sp_Example 3.1
+
+clear; clc; close;
+
+format('v',7);
+// Given data
+Ns=12;//poles
+q=3;//no. of phase
+Nr=8;//poles
+speed=6000;//speed in rpm
+
+//Calculations
+Beta=360/q/Nr;//in degree
+disp(Beta,"Step Angle in degree : ");
+fc=Nr*speed*2*%pi/2/%pi/60;//in Hz
+disp(fc,"Commutation frequency at each phase in Hz : ");
+
diff --git a/1892/CH3/EX3.1/Example3_1.sce b/1892/CH3/EX3.1/Example3_1.sce new file mode 100755 index 000000000..911ba76a7 --- /dev/null +++ b/1892/CH3/EX3.1/Example3_1.sce @@ -0,0 +1,16 @@ +// Example 3.1
+
+clear; clc; close;
+
+format('v',8);
+// Given data
+Lm=30;//in mH
+Iph=3;//in Ampere
+Rm=15;//in Ohm
+
+//Calculations
+tau_ed=Lm/Rm;//in ms
+tdash=1/2*tau_ed;//in ms
+disp(tdash,"(i) Time taken by the phase current to decay to zero in ms : ");
+Energy=1/4*Lm*Iph^2;//in mW
+disp(Energy,"(ii) Energy returned to supply in mW : ");
diff --git a/1892/CH3/EX3.10/Example3_10.sce b/1892/CH3/EX3.10/Example3_10.sce new file mode 100755 index 000000000..01e2be388 --- /dev/null +++ b/1892/CH3/EX3.10/Example3_10.sce @@ -0,0 +1,14 @@ +// Example 3.10
+
+clear; clc; close;
+
+format('v',6);
+// Given data
+Resolution=500;//steps/res
+theta=72;//rotator turn angle in degree
+//Calculations
+Hmod_Res=Resolution*2;//half step mode resolution in steps/res
+disp(Hmod_Res,"Half step mode resolution in steps/res : ");
+Beta=360/Hmod_Res;//in degree
+steps=theta/Beta;//in steps
+disp(steps,"No. of steps required : ");
diff --git a/1892/CH3/EX3.11/Example3_11.sce b/1892/CH3/EX3.11/Example3_11.sce new file mode 100755 index 000000000..83f6e75f8 --- /dev/null +++ b/1892/CH3/EX3.11/Example3_11.sce @@ -0,0 +1,12 @@ +// Example 3.11
+
+clear; clc; close;
+
+format('v',6);
+// Given data
+Beta=1.8;//in dcegree
+revolution=10;//no. of revolution
+//Calculations
+resolution=360/Beta;//in steps/rev
+steps=resolution*revolution;//no. of steps in 10 evolution
+disp("No. of steps = "+string(steps)+" should be encoded.");
diff --git a/1892/CH3/EX3.12/Example3_12.sce b/1892/CH3/EX3.12/Example3_12.sce new file mode 100755 index 000000000..d6be21aef --- /dev/null +++ b/1892/CH3/EX3.12/Example3_12.sce @@ -0,0 +1,16 @@ +// Example 3.12
+
+clear; clc; close;
+
+format('v',6);
+// Given data
+J=10^-4;//in Kgm^2;
+w1=200;//in rad/sec
+w2=300;//in rad/sec
+delf=0.2;//in sec
+Tf=0.06;//in N-m
+
+//Calculations
+dwBYdf=(w2-w1)/delf;//
+Tm=J*dwBYdf+Tf;//in N-m
+disp(Tm,"Motor Torque in N-m : ");
diff --git a/1892/CH3/EX3.13/Example3_13.sce b/1892/CH3/EX3.13/Example3_13.sce new file mode 100755 index 000000000..cd3c192ff --- /dev/null +++ b/1892/CH3/EX3.13/Example3_13.sce @@ -0,0 +1,21 @@ +// Example 3.13
+
+clear; clc; close;
+
+format('v',7);
+// Given data
+J=3*10^-4;//in Kgm^2;
+f1=1000;//in Hz
+f2=2000;//in Hz
+delt=100;//in ms
+Tf=0.05;//in N-m
+Qs=1.8;//in degree
+
+//Calculations
+delt=100*10^-3;//in sec
+Qs=Qs*%pi/180;//in radian
+w1=Qs*f1;//in rad/sec
+w2=Qs*f2;//in rad/sec
+dwBYdt=(w2-w1)/delt;//
+Tm=J*dwBYdt+Tf;//in N-m
+disp(Tm,"Motor Torque in N-m : ");
diff --git a/1892/CH3/EX3.14/Example3_14.sce b/1892/CH3/EX3.14/Example3_14.sce new file mode 100755 index 000000000..1dde8b0a5 --- /dev/null +++ b/1892/CH3/EX3.14/Example3_14.sce @@ -0,0 +1,15 @@ +// Example 3.14
+
+clear; clc; close;
+
+format('v',7);
+// Given data
+J=4*10^-4;//in Kgm^2;
+Tm=0.3;//in N-m
+Qs=3;//in degree
+
+//Calculations
+Qs=Qs*%pi/180;//in radian
+//Formula : Tm=J*Qs*dfBYdt;//in N-m
+dfBYdt=Tm/J/Qs;//in step/sec^2
+disp(dfBYdt,"Maximum acceleration in steps/sec^2 : ");
diff --git a/1892/CH3/EX3.2.s/Example3_2_at_page196.sce b/1892/CH3/EX3.2.s/Example3_2_at_page196.sce new file mode 100755 index 000000000..c292d90e7 --- /dev/null +++ b/1892/CH3/EX3.2.s/Example3_2_at_page196.sce @@ -0,0 +1,17 @@ +// Sp_Example 3.2
+
+clear; clc; close;
+
+format('v',7);
+// Given data
+Ns=10;//poles
+q=5;//no. of phase
+Nr=4;//poles
+w=600;//speed in rpm
+
+//Calculations
+Beta=360/q/Nr;//in degree
+disp(Beta,"Step Angle in degree : ");
+fc=Nr*w/60;//in Hz
+disp(fc,"Commutation frequency at each phase in Hz : ");
+//Note : Answer is wrong in the book.
diff --git a/1892/CH3/EX3.2/Example3_2.sce b/1892/CH3/EX3.2/Example3_2.sce new file mode 100755 index 000000000..a3c214c4d --- /dev/null +++ b/1892/CH3/EX3.2/Example3_2.sce @@ -0,0 +1,13 @@ +// Example 3.2
+
+clear; clc; close;
+
+format('v',8);
+// Given data
+n=4;//no. of phase
+Ns=12;//stator teeth
+Nr=3;//rotor teeth
+
+//Calculations
+Beta=360/n/Nr;//in degree
+disp(Beta,"Step Angle in degree : ");
diff --git a/1892/CH3/EX3.3.s/Example3_3_at_page196.sce b/1892/CH3/EX3.3.s/Example3_3_at_page196.sce new file mode 100755 index 000000000..5f803e3e3 --- /dev/null +++ b/1892/CH3/EX3.3.s/Example3_3_at_page196.sce @@ -0,0 +1,31 @@ +// Sp_Example 3.3
+
+clear; clc; close;
+
+format('v',6);
+// Given data
+
+Ns=6;//poles
+Nr=4;//poles
+Beta_s=30;//in degree
+Beta_r=32;//in degree
+La=10.7;//in mH
+LU=1.5;//in mH
+i=7;//in A
+q=3;//phase
+
+//Calculations
+thetaK=2*180/4-(Beta_r+Beta_s)/2;//in degree
+theta1=thetaK;//in degree
+thetaY=2*180/2-(Beta_r-Beta_s)/2;//in degree
+theta2=thetaY;//in degree
+dTheta=theta2-theta1;//in degree
+dL=La-LU;//in mH
+T=i^2/2*dL/dTheta;//in N-m
+lambda_a=La*i*10^-3;//in m
+lambda_u=LU*i*10^-3;//in m
+Wm=(lambda_a-lambda_u)/2*i;//in joules
+//Formula : Power transfered = Energy 1 sec
+//Pm=2*%pi*N*T/60=Wm*Nr*q*N/60
+T=Wm*Nr*q/2/%pi;//in N-m
+disp(T,"Averagge torque in N-m : ");
diff --git a/1892/CH3/EX3.3/Example3_3.sce b/1892/CH3/EX3.3/Example3_3.sce new file mode 100755 index 000000000..207c72ed3 --- /dev/null +++ b/1892/CH3/EX3.3/Example3_3.sce @@ -0,0 +1,14 @@ +// Example 3.3
+
+clear; clc; close;
+
+format('v',6);
+// Given data
+MainPoles=10;//no. of main poles
+teeth=7;//no. of teeth/pole
+Nr=60;//rotor teeth
+
+//Calculations
+Ns=MainPoles*teeth;//stator teeth
+Beta=(Ns-Nr)*360/Ns/Nr;//in degree
+disp(Beta,"Step Angle in degree : ");
diff --git a/1892/CH3/EX3.4.s/Example3_4_at_page198.sce b/1892/CH3/EX3.4.s/Example3_4_at_page198.sce new file mode 100755 index 000000000..00ca0c6c2 --- /dev/null +++ b/1892/CH3/EX3.4.s/Example3_4_at_page198.sce @@ -0,0 +1,20 @@ +// Sp_Example 3.4
+
+clear; clc; close;
+
+format('v',6);
+// Given data
+Nr=4;//poles
+La=10.7;//in mH
+Lu=1.5;//in mH
+i=7;//in A
+q=3;//phase
+
+//Calculations
+lambda_a=La*10^-3*i;//in Wb/T
+lambda_u=lambda_a;//in Wb/T
+i2=lambda_u/Lu/10^-3;//in Ampere
+Wm=(i2-i)*lambda_u/2;//in Jooules
+disp(Wm,"Energy conversion per stroke in Joules : ");
+T=Wm*q*Nr/2/%pi;//in N-m
+disp(T,"Average Tourque in N-m : ");
diff --git a/1892/CH3/EX3.4/Example3_4.sce b/1892/CH3/EX3.4/Example3_4.sce new file mode 100755 index 000000000..8403fb0c6 --- /dev/null +++ b/1892/CH3/EX3.4/Example3_4.sce @@ -0,0 +1,17 @@ +// Example 3.4
+
+clear; clc; close;
+
+format('v',6);
+// Given data
+Beta=3;//in degree
+Revolution=25;//no. of revolutions
+f=3600;//stepping frequency in pps
+
+//Calculations
+Resolution=360/Beta;//in step/res
+disp(Resolution,"(a) Resolution(step/res) : ");
+steps=Resolution*Revolution;//no. of steps
+disp(steps,"(b) No. of steps required : ");
+speed=Beta*f/360;//in nps
+disp(speed,"(c) Shaft speed in nps : ");
diff --git a/1892/CH3/EX3.5/Example3_5.sce b/1892/CH3/EX3.5/Example3_5.sce new file mode 100755 index 000000000..1cdbe1e28 --- /dev/null +++ b/1892/CH3/EX3.5/Example3_5.sce @@ -0,0 +1,19 @@ +// Example 3.5
+
+clear; clc; close;
+
+format('v',6);
+// Given data
+Beta=1.8;//in degree
+Revolution=25;//no. of revolutions
+f=4000;//stepping frequency in pps
+theta=54;//required shaft rotation in degree
+
+//Calculations
+Resolution=360/Beta;//in step/res
+disp(Resolution,"(i) Resolution(step/res) : ");
+speed=Beta*f/360;//in rps
+disp(speed,"(ii) Motor speed in rps : ");
+pulses=theta/Beta;//pulses
+disp(pulses,"(iii) No. of pulses required to rotate the shaft through 54 degree : ");
+
diff --git a/1892/CH3/EX3.6/Example3_6.sce b/1892/CH3/EX3.6/Example3_6.sce new file mode 100755 index 000000000..568595445 --- /dev/null +++ b/1892/CH3/EX3.6/Example3_6.sce @@ -0,0 +1,14 @@ +// Example 3.6
+
+clear; clc; close;
+
+format('v',6);
+// Given data
+Ns=8;//stator teeth
+Nr=6;//rotor teeth
+
+//Calculations
+Beta=(Ns-Nr)/Ns/Nr*360;//in degree
+disp(Beta,"Step angle(degree) : ");
+Resolution=360/Beta;//steps/revolution
+disp(Resolution,"Resolution(steps/revolution) : ");
diff --git a/1892/CH3/EX3.7/Example3_7.sce b/1892/CH3/EX3.7/Example3_7.sce new file mode 100755 index 000000000..34286e316 --- /dev/null +++ b/1892/CH3/EX3.7/Example3_7.sce @@ -0,0 +1,20 @@ +// Example 3.7
+
+clear; clc; close;
+
+format('v',6);
+// Given data
+Beta=15;//in degree
+m=3;//no. of phase(1-Beta*Nr/360)
+
+//Calculations
+//Formula : Beta=360/m/Nr
+Nr=360/m/Beta;//no. of rotor teeth
+disp(Nr,"No. of rotor teeth ; ");
+//Formula : Beta=(Ns~Nr)/Ns/Nr*360;//in degree
+//When Ns>Nr
+Ns=Nr/(1-Beta*Nr/360);//no. of stator teeth
+disp(Ns,"When Ns>Nr, No. of stator teeth : ");
+//When Nr>Ns
+Ns=Nr/(1+Beta*Nr/360)
+disp(Ns,"When Nr>Ns, No. of stator teeth : ");
diff --git a/1892/CH3/EX3.8/Example3_8.sce b/1892/CH3/EX3.8/Example3_8.sce new file mode 100755 index 000000000..2c41a01bb --- /dev/null +++ b/1892/CH3/EX3.8/Example3_8.sce @@ -0,0 +1,15 @@ +// Example 3.8
+
+clear; clc; close;
+
+format('v',6);
+// Given data
+m=4;//phases
+Beta=1.5;//in degree
+
+//Calculations
+//Formula : Beta=360/m/Nr
+Nr=360/m/Beta;//no. of rotor teeth
+disp(Nr,"No. of rotor teeth ; ");
+Ns=Nr;//no. of stator teeth
+disp(Ns,"In multi stack motor, Stator teeth = rotor teeth = ");
diff --git a/1892/CH3/EX3.9/Example3_9.sce b/1892/CH3/EX3.9/Example3_9.sce new file mode 100755 index 000000000..d979c95b8 --- /dev/null +++ b/1892/CH3/EX3.9/Example3_9.sce @@ -0,0 +1,15 @@ +// Example 3.9
+
+clear; clc; close;
+
+format('v',6);
+// Given data
+Speed=2400;//in rpm
+Resolution=200;//steps/res
+
+//Calculations
+n=Speed/60;//in rps
+Beta=360/Resolution;//in degree
+//Formula : n=Beta*f/360;
+f=n*360/Beta;//in pps
+disp(f,"Required pulse rate in pps : ");
diff --git a/1892/CH4/EX4.1/Example4_1.sce b/1892/CH4/EX4.1/Example4_1.sce new file mode 100755 index 000000000..04f2248f5 --- /dev/null +++ b/1892/CH4/EX4.1/Example4_1.sce @@ -0,0 +1,13 @@ +// Example 4.1
+
+clear; clc; close;
+format('v',7);
+
+// Given data
+kf=0.12; // in Nm/A
+V=48;//in volt
+
+//Calculations
+omega_mo=V/kf//in radian/sec
+No=omega_mo*60/(2*%pi)//in rpm
+disp(floor(No),"No load speed in rpm = ");
diff --git a/1892/CH4/EX4.2/Example4_2.sce b/1892/CH4/EX4.2/Example4_2.sce new file mode 100755 index 000000000..cabb19466 --- /dev/null +++ b/1892/CH4/EX4.2/Example4_2.sce @@ -0,0 +1,15 @@ +// Example 4.2
+
+clear; clc; close;
+format('v',7);
+
+// Given data
+Tst=1; // in N-m
+Ist=5;//in Ampere
+V=28;//in volt
+
+//Calculations
+kf=Tst/Ist;//in Nm/A
+omega_m=V/kf//in radian/sec
+No=omega_m*60/(2*%pi)//in rpm
+disp(No,"No load speed in rpm = ");
diff --git a/1892/CH4/EX4.3/Example4_3.sce b/1892/CH4/EX4.3/Example4_3.sce new file mode 100755 index 000000000..6a2fac9e2 --- /dev/null +++ b/1892/CH4/EX4.3/Example4_3.sce @@ -0,0 +1,22 @@ +// Example 4.3
+
+clear; clc; close;
+format('v',6);
+
+// Given data
+Ra=0.8;//in Ω
+Vdd=2;//in volt
+V=28;//in volt
+T1=0.3; // in N-m
+Tst=1; // in N-m
+Ist=5;//in Ampere
+
+//Calculations
+//We know : Tst = fi_1*Ist and T1 = IL*fi_2
+//Deviding these two eqn we have
+IL=(T1/Tst)*Ist/0.8;//in Ampere
+Ebo=V;//in volt
+NLbyNo=(V-IL*Ra-Vdd)/(0.8*Ebo);// temporary calculation for NL
+No=1337;//in rpm
+NL=NLbyNo*No;//in rpm
+disp(NL,"Speed of motor in rpm =");
diff --git a/1892/CH4/EX4.4/Example4_4.sce b/1892/CH4/EX4.4/Example4_4.sce new file mode 100755 index 000000000..9df27c2bf --- /dev/null +++ b/1892/CH4/EX4.4/Example4_4.sce @@ -0,0 +1,20 @@ +// Example 4.4
+
+clear; clc; close;
+format('v',7);
+
+// Given data
+ke=0.12;//in Nm/A
+V=48;//in volt
+Rph=0.15;//in Ω
+Vdd=2;//in volt
+
+//Calculations
+omega_mo=V/ke//in radian/sec
+No=omega_mo*60/(2*%pi)//in rpm
+disp(No,"No load speed in rpm = ");
+
+Ist=(V-Vdd)/(2*Rph);//in Ampere
+Tst=ke*Ist; // in N-m
+disp(Tst,"Starting Torque in N-m = ");
+//Note : answer is wrong in the book.
diff --git a/1892/CH4/EX4.5/Example4_5.sce b/1892/CH4/EX4.5/Example4_5.sce new file mode 100755 index 000000000..f260872be --- /dev/null +++ b/1892/CH4/EX4.5/Example4_5.sce @@ -0,0 +1,22 @@ +// Example 4.5
+
+clear; clc; close;
+format('v',7);
+
+// Given data
+Vs=120;//in volt
+V=60;//in volt
+Ra=2.5;//in Ω
+T=0.5; // in N-m
+N=6000//in rpm
+
+//Calculations
+
+omega_mo=2*%pi*N/60//in radian/sec
+ke=Vs/omega_mo;//in Nm/A
+Ia=T/ke;//in Ampere
+E=V-Ia*Ra;//in Volt
+omega_m=E/ke//in radian/sec
+N=omega_m/(2*%pi/60);//in rpm
+disp(N,"Speed in rpm = ");
+//Note : answer is wrong in the book because calculation is not accurate. .
diff --git a/1892/CH4/EX4.6/Example4_6.sce b/1892/CH4/EX4.6/Example4_6.sce new file mode 100755 index 000000000..801233c1c --- /dev/null +++ b/1892/CH4/EX4.6/Example4_6.sce @@ -0,0 +1,32 @@ +// Example 4.6
+
+clear; clc; close;
+format('v',9);
+
+// Given data
+lm=6*10^-3;//magnet length in m
+g=2*10^-3;//in m
+Tph=200;//turns
+Br=0.3;//in T
+l=50*10^-3;//in m
+n=25*10^-3;//in m
+I=10*10^-3;//in A
+N=200;//turns
+mo=4*%pi*10^-7;//permittivity
+//Calculations
+Am=(2/3)*%pi*[n-g-lm/2]*l;//in m^2
+Ag=[(2/3)*%pi*(n-g/2)+2*g]*(l+2*g);//in m^2
+Cfi=Am/Ag;//unitless
+//For normal BLDG motor, HC=606 KA/M
+HC=606;//in KA/M
+Hm=N*I/l;//KA/M
+Bm=Br*[1-Hm/HC];//in T
+Mrec=(Br-Bm)*10^-3/(4*%pi*10^-7*40);
+Pmo=mo*Mrec*Am/lm;//in m-Wb/AT
+Pmo=Pmo*10^-3;//in Wb/AT
+Kc=1.05;//given constant
+g_dash=Kc*g;//in m
+Rg=g_dash/mo/Am;
+Bg=Cfi*Br/(1+Pmo*Rg);//in T
+Torque=2*Tph*Bg*l*n*I;//in N-m
+disp(Torque,"Torque per phase in N-m : ");
diff --git a/1892/CH4/EX4.7/Example4_7.sce b/1892/CH4/EX4.7/Example4_7.sce new file mode 100755 index 000000000..8dafbaed2 --- /dev/null +++ b/1892/CH4/EX4.7/Example4_7.sce @@ -0,0 +1,27 @@ +// Example 4.7
+
+clear; clc; close;
+format('v',6);
+
+// Given data
+P=16;//no.of poles
+slots=144;//no. of slotes
+conductors=10;//per slot
+fi=0.03;//in mb/pole
+N=375//in rpm
+
+//Calculations
+f=P*N/120;//in Hz
+disp(f,"Frequency in Hz = ");
+kc=1;//for full pitcheed coil
+n=slots/P;//slots per pole
+Beta=180/n;//in degree
+m=n/3;//slots per pole per phase
+kd=sind(3*Beta/2)/[m*sind(Beta/2)];//Distribution factor
+Z=conductors*slots;//total no. of conductors
+Zph=Z/3;// no. of armature per phase conductions
+Tph=Zph/2;//turns/ph
+Eph=4.44*kc*kd*f*fi*Tph;//in volts
+disp(Eph,"Phase Voltage in volts = ");
+VL=sqrt(3)*Eph;//in volt
+disp(VL,"Line Voltage in volts = ");
diff --git a/1892/CH4/EX4.8/Example4_8.sce b/1892/CH4/EX4.8/Example4_8.sce new file mode 100755 index 000000000..1e6ae7b3b --- /dev/null +++ b/1892/CH4/EX4.8/Example4_8.sce @@ -0,0 +1,27 @@ +// Example 4.8
+
+clear; clc; close;
+format('v',6);
+
+// Given data
+P=4;//no.of poles
+phase=3;//no. of phase
+slots=36;//no. of stator slotes
+turns=20;//turns per coil
+conductors=10;//per slot
+fi_m=1.8;//in m wb
+N=3000//in rpm
+
+//Calculations
+f=P*N/120;//in Hz
+Tph=turns*phase*P;//no. of turns per phase
+m=slots/(phase*P);//slots per pole per phase
+n=slots/P;//slots per pole
+Beta=180/n;//in degree
+kd1=sind(3*Beta/2)/[m*sind(Beta/2)];//Distribution factor
+alfa=2*Beta;//in degree(Short Pitched by 2slots)
+kp1=cosd(alfa/2);//unitless
+ks1=1;//coefficient
+kn1=kd1*kp1*ks1;//winding factor
+Eq=4.44*f*fi_m*10^-3*kn1*Tph;//in volts
+disp(Eq,"Open Circuit Phase emf in volts = ");
|