diff options
Diffstat (limited to '1892/CH2')
-rwxr-xr-x | 1892/CH2/EX2.1/Example2_1.sce | 58 | ||||
-rwxr-xr-x | 1892/CH2/EX2.2/Example2_2.sce | 40 | ||||
-rwxr-xr-x | 1892/CH2/EX2.3/Example2_3.sce | 22 | ||||
-rwxr-xr-x | 1892/CH2/EX2.4/Example2_4.sce | 21 | ||||
-rwxr-xr-x | 1892/CH2/EX2.5/Example2_5.sce | 33 |
5 files changed, 174 insertions, 0 deletions
diff --git a/1892/CH2/EX2.1/Example2_1.sce b/1892/CH2/EX2.1/Example2_1.sce new file mode 100755 index 000000000..f0150cb29 --- /dev/null +++ b/1892/CH2/EX2.1/Example2_1.sce @@ -0,0 +1,58 @@ +// Example 2.1
+
+clear; clc; close;
+format('v',6);
+
+// Given data
+Is=220;//in Ampere
+//For no load
+Vo=220;//in volt
+Io=6;//in Ampere
+wo=350;//in watt
+
+//From locked rotor test
+Vsc=125;//in volt
+Isc=15;//in Ampere
+Wsc=580;//in watt
+R1=1.5*1.2;//in Ω
+
+//Calculations
+Zeq=Vsc/Isc;//in Ω
+Req=Wsc/Isc^2;//in Ω
+Xeq=sqrt(Zeq^2-Req^2);//in Ω
+R1=1.5*1.2;//1.5 times more
+R2=Req-R1;//in Ω
+//assume X1=X2; Xeq=X1+X2=2*X2
+X2=Xeq/2;//in Ω
+X1=X2;//in Ω
+r2=R2/2;//in Ω
+x2=X2/2;//in Ω
+
+cos_fio=wo/(Vo*Io);//unitless
+fi_o=acosd(cos_fio);//in degree
+Io=Io*expm(%i*-fi_o*%pi/180);//in Ampere(polar form)
+VAB=Vo-Io*[R1+r2/2+%i*(X1+X2/2)];//in volt
+Xo=abs(VAB)/abs(Io);//in ohm
+Xeq=2*Xo;//in ohm
+S=5/100;//slip
+Zf=Xo*expm(%i*%pi/2)*(r2/S+%i*X2/2)/(r2/S+%i*(X2/2+Xo));//in ohm
+Z1=R1+%i*X1;//in ohm
+Z2=6.4819+%i*3.416;//in ohm
+Zeq=Z1+Z2+Zf;//in ohm
+I1=Vo/Zeq;//in Ampere
+PF=cos(atan(imag(I1),real(I1)));//lagging Power factor
+disp(PF,"Power factor(lagging) : ");
+Vf=I1*Zf;//in volt
+I2f=Vf/(r2/S-%i*X2/2);//in Ampere
+Zb=Zf;//in ohm
+Vb=I1*Zb;//in Volt
+I2b=Vb/(r2/(2-S)+%i*X2);//in Ampere
+Pf=abs(I2f)^2*r2/S;//in watts
+Pb=abs(I2b)^2*r2/(2-S);//in watts
+Pm=(1-S)*(Pf-Pb);//in watts
+Wo=350;//in watts
+Pout=Pm-Wo;//in watts
+Pin=Vo*abs(I1)*PF;//in watts
+Eff=Pout/Pin*100;//in %
+disp(Eff,"Efficiency in % : ");
+//Answer in the book is wrong. Lots of mistake in the solution while calculating Zf.
diff --git a/1892/CH2/EX2.2/Example2_2.sce b/1892/CH2/EX2.2/Example2_2.sce new file mode 100755 index 000000000..bd2baedb5 --- /dev/null +++ b/1892/CH2/EX2.2/Example2_2.sce @@ -0,0 +1,40 @@ +// Example 2.2
+
+clear; clc; close;
+format('v',7);
+
+// Given data
+V1=110;//in volt
+Z1=2+%i*3;//in ohm
+Zeq_rotor=2+%i*3;//in ohm
+Xo=50;//in ohm(Magnetising impedence)
+Losses=25;//in watt(friction & voltage loss)
+S=5/100;//slip
+
+//Calculations
+R1=real(Z1);//in Ω
+X1=imag(Z1);//in Ω
+R2=real(Zeq_rotor);//in Ω
+X2=imag(Zeq_rotor);//in Ω
+r2=R2/2;//in Ω
+x2=X2/2;//in Ω
+xo=Xo/2;//in ohm
+Zf=%i*xo*(r2/S+%i*x2)/(r2/S+%i*(xo+x2));//in ohm
+Zb=%i*xo*(r2/(2-S)+%i*x2)/(r2/(2-S)+%i*(xo+x2));//in ohm
+Zeq=Z1+Zf+Zb;//in ohm
+I1=V1/Zeq;//in Ampere
+InputCurrent=abs(I1);//in Ampere
+disp(InputCurrent,"Input current in Ampere : ");
+PF=cos(atan(imag(I1),real(I1)));
+disp(PF,"Power factor(lagging) : ");
+Vf=I1*Zf;//in volt
+I2f=Vf/(r2/S+%i*x2);//in Ampere
+Vb=I1*Zb;//in Volt
+I2b=Vb/(r2/(2-S)+%i*x2);//in Ampere
+Pf=abs(I2f)^2*r2/S;//in watts
+Pb=13.88;//in watts
+Pm=(1-S)*(Pf-Pb);//in watts
+Pout=Pm-Losses;//in watts
+Pin=V1*abs(I1)*PF;//in watts
+Eff=Pout/Pin*100;//in %
+disp(Eff,"Efficiency in % : ");
diff --git a/1892/CH2/EX2.3/Example2_3.sce b/1892/CH2/EX2.3/Example2_3.sce new file mode 100755 index 000000000..981cdca28 --- /dev/null +++ b/1892/CH2/EX2.3/Example2_3.sce @@ -0,0 +1,22 @@ +// Example 2.3
+
+clear; clc; close;
+format('v',7);
+
+// Given data
+Pout=250;//in watt
+V1=230;//in volt
+f=50;//in Hz
+Zm=4.5+%i*3.7;//in ohm
+Za=9.5+%i*3.5;//in ohm
+
+//Calculations
+//Za=9.5+%i*3.5-%i*Xc;//in ohm(Xc assumed to be connected in auxiliary winding)
+fi_a=90-atand(imag(Zm),real(Zm));//in degree
+Ra=real(Za);//in ohm
+Xa=imag(Za);//in ohm
+X=tand(fi_a)*Ra;//in ohm
+Xc=X+Xa;//in ohm
+C=1/2/%pi/f/Xc;//in Farad
+disp(C*10^6,"Value of capacitance in micro farad : ");
+//Note : In the book, instead of Capacitance which is asked, Torque is calculated even not asked in question and not given the sufficient data to calculate it.
diff --git a/1892/CH2/EX2.4/Example2_4.sce b/1892/CH2/EX2.4/Example2_4.sce new file mode 100755 index 000000000..201023afa --- /dev/null +++ b/1892/CH2/EX2.4/Example2_4.sce @@ -0,0 +1,21 @@ +// Example 2.4
+
+clear; clc; close;
+format('v',7);
+
+// Given data
+f=50;//in Hz
+Z1m=3+%i*2.7;//in ohm
+Z1a=7+%i*3;//in ohm
+alfa=90;//in degree
+
+//Calculations
+//Z1a=7+%i*3-%i*Xc;//in ohm(Xc assumed to be connected in auxiliary winding)
+fi_a=90-atand(imag(Z1m),real(Z1m))
+R1a=real(Z1a);//in ohm
+X1a=imag(Z1a);//in ohm
+X=tand(fi_a)*R1a;//in ohm
+Xc=X+X1a;//in ohm
+C=1/2/%pi/f/Xc;//in Farad
+disp(C*10^6,"Value of capacitance in micro farad : ");
+//Note : In the book, Torque is calculated even not asked in question and not given the sufficient data to calculate it.
diff --git a/1892/CH2/EX2.5/Example2_5.sce b/1892/CH2/EX2.5/Example2_5.sce new file mode 100755 index 000000000..bcdc3fe20 --- /dev/null +++ b/1892/CH2/EX2.5/Example2_5.sce @@ -0,0 +1,33 @@ +// Example 2.5
+
+clear; clc; close;
+format('v',7);
+
+// Given data
+V1=230;//in volt
+f=50;//in Hz
+Vm=100;//in volt
+Im=2;//in Ampere
+Wm=40;//in watts
+Va=80;//in volt
+Ia=1;//in Ampere
+Wa=50;//in watts
+
+//Calculations
+Z1em=Vm/Im;//in ohm
+R1em=Wm/Im^2;//in ohm
+X1em=sqrt(Z1em^2-R1em^2);//in ohm
+R1m=R1em/2;//in ohm
+X1m=X1em/2;//in ohm
+fi_m=atand(X1m/R1m);//in degree
+
+Z1ea=Va/Ia;//in ohm
+R1ea=Wa/Ia^2;//in ohm
+X1ea=sqrt(Z1ea^2-R1ea^2);//in ohm
+Ra=R1ea-R1m;//in ohm
+Xa=X1ea-X1m;//in ohm
+fi_a=90-fi_m;//in degree
+//after connecting capacitor
+Xc=Xa-tand(-fi_a)*Ra
+C=1/2/%pi/f/Xc;//in Farad
+disp(C*10^6,"Value of capacitance in micro farad : ");
|