summaryrefslogtreecommitdiff
path: root/1808/CH1
diff options
context:
space:
mode:
Diffstat (limited to '1808/CH1')
-rw-r--r--1808/CH1/EX1.1/Chapter1_Example1.sce19
-rw-r--r--1808/CH1/EX1.10/Chapter1_Example10.sce22
-rw-r--r--1808/CH1/EX1.11/Chapter1_Example11.sce17
-rw-r--r--1808/CH1/EX1.12/Chapter1_Example12.sce27
-rw-r--r--1808/CH1/EX1.13/Chapter1_Example13.sce42
-rw-r--r--1808/CH1/EX1.14/Chapter1_Example14.sce34
-rw-r--r--1808/CH1/EX1.15/Chapter1_Example15.sce36
-rw-r--r--1808/CH1/EX1.16/Chapter1_Example16.sce39
-rw-r--r--1808/CH1/EX1.17/Chapter1_Example17.sce31
-rw-r--r--1808/CH1/EX1.18/Chapter1_Example18.sce32
-rw-r--r--1808/CH1/EX1.19/Chapter1_Example19.sce22
-rw-r--r--1808/CH1/EX1.2/Chapter1_Example2.sce19
-rw-r--r--1808/CH1/EX1.20/Chapter1_Example20.sce18
-rw-r--r--1808/CH1/EX1.21/Chapter1_Example21.sce18
-rw-r--r--1808/CH1/EX1.22/Chapter1_Example22.sce21
-rw-r--r--1808/CH1/EX1.23/Chapter1_Example23.sce23
-rw-r--r--1808/CH1/EX1.3/Chapter1_Example3.sce18
-rw-r--r--1808/CH1/EX1.4/Chapter1_Example4.sce22
-rw-r--r--1808/CH1/EX1.5/Chapter1_Example5.sce28
-rw-r--r--1808/CH1/EX1.6/Chapter1_Example6.sce15
-rw-r--r--1808/CH1/EX1.7/Chapter1_Example7.sce20
-rw-r--r--1808/CH1/EX1.8/Chapter1_Example8.sce32
-rw-r--r--1808/CH1/EX1.9/Chapter1_Example9.sce17
23 files changed, 572 insertions, 0 deletions
diff --git a/1808/CH1/EX1.1/Chapter1_Example1.sce b/1808/CH1/EX1.1/Chapter1_Example1.sce
new file mode 100644
index 000000000..dc4b5c50f
--- /dev/null
+++ b/1808/CH1/EX1.1/Chapter1_Example1.sce
@@ -0,0 +1,19 @@
+clc
+clear
+//INPUT DATA
+Tmax=200;//Maximum Brake Torque in Nm
+N=3600;//Speed range in rpm
+Pmax=900;//Maximum engine torque in kPa
+n=2;// For Four stroke engine
+Mps=15*60;//mean piston speed in m/min
+
+//CALCULATIONS
+Vs=((2*3.14*Tmax*n)/(1000*Pmax));//Swept volume in m^3
+d=((Vs/3.14)^(1/3))*1000;//Bore diameter
+Nmax=(Mps*1000/(2*d));//Maximum crank speed in rpm
+Bpm=800*(Vs/2)*(Nmax/(60));//Maximum break power in kW
+
+//OUTPUT
+printf('(i)swept volume is %3.5f m^3 \n (ii)bore diameter is %3.i mm \n (iii)maximum break power is %3.2f kW ',Vs,d,Bpm)
+
+
diff --git a/1808/CH1/EX1.10/Chapter1_Example10.sce b/1808/CH1/EX1.10/Chapter1_Example10.sce
new file mode 100644
index 000000000..833ebad00
--- /dev/null
+++ b/1808/CH1/EX1.10/Chapter1_Example10.sce
@@ -0,0 +1,22 @@
+clc
+clear
+//INPUT DATA
+IP=50;//indicated power in kW
+pmi=7;//mean effective pressure in bar
+L=0.10;//stroke in m
+d=0.08;//bore in m
+nc=4;//number of cylinders
+n=2;//for 4 cylinders
+N=3800;//speed in rpm
+
+//CALCULATIONS
+n1=(IP*4*n*60)/(pmi*100*L*3.14*d^2*nc);//Average misfire in rpm
+n2=N/2;//Theoretical number of explosions/min
+na=N/2;//actual no.of explosion/min
+n11=n2-na;//Average number of misfires
+IP1=pmi*100*L*3.14*((0.08^2)/4)*N*nc/(n*60);//Indicated power based on actual speed
+
+//OUTPUT
+printf('(i)Average misfire is %3.d rpm \n (ii)Indicated power based on actual speed is %3.3f kW',n1,IP1)
+
+
diff --git a/1808/CH1/EX1.11/Chapter1_Example11.sce b/1808/CH1/EX1.11/Chapter1_Example11.sce
new file mode 100644
index 000000000..c72cc6dee
--- /dev/null
+++ b/1808/CH1/EX1.11/Chapter1_Example11.sce
@@ -0,0 +1,17 @@
+clc
+clear
+//INPUT DATA
+BP=50;//Brake power in kW
+nm=80;//mechanical efficiency in percentage
+pmi=6;//mean effective pressure in bar
+N=100;//no.of explosions/min
+nc=1;//number of cylinders
+n=1;//for single cylinder
+
+//CALCULATIONS
+IP=(BP*100/nm);//Indicated power in kW
+x=(IP*60)/(pmi*100*N*nc);//dimension
+d=(x*4/(3.14*1.5))^(1/3);//bore in m
+L=1.5*d;//stroke in m
+//OUTPUT
+printf('(i)Dimensions of cylinder L %3.5f m \n d %3.5f m ',L,d)
diff --git a/1808/CH1/EX1.12/Chapter1_Example12.sce b/1808/CH1/EX1.12/Chapter1_Example12.sce
new file mode 100644
index 000000000..6610b43f0
--- /dev/null
+++ b/1808/CH1/EX1.12/Chapter1_Example12.sce
@@ -0,0 +1,27 @@
+clc
+clear
+//INPUT DATA
+Vc=0.009;//clearance volume in m^3
+d=0.3;//bore in m
+L=0.5;//stroke in m
+g=1.4;//constant
+cv=20000;//calorific value in kJ/m^3
+pmi=800;//mean effective pressure in bar
+N=120;//explosions per minute
+nc=1;//number of cylinders
+n=1;//for single cylinder
+mf=30;//mass fuel consumption
+
+
+//CALCULATIONS
+Vs=(3.14*d^2*L/4);//swept volume in m^3
+Rc=((Vs+Vc)/Vc);//compression ratio
+IP=(pmi*L*(3.14*(d^2)/4)*N*nc)/(60*n);//Indicated power in kW
+nit=(IP/(mf*cv/3600))*100;//Indicated thermal efficiency in percentage
+no=(1-(1/(Rc^(g-1))))*100;//Air standard efficiency in percentage
+nr=(nit/no)*100;//relative efficiency in percentage
+
+
+//OUTPUT
+printf('(i)Compression ratio is %3.3f \n (ii)Indicated thermal efficiency is %3.2f percentage \n (iii)Air standard efficiency is %3.2f percentage \n (iv)Relative efficiency is %3.2f percentage',Rc,nit,no,nr)
+
diff --git a/1808/CH1/EX1.13/Chapter1_Example13.sce b/1808/CH1/EX1.13/Chapter1_Example13.sce
new file mode 100644
index 000000000..4ee46d1b1
--- /dev/null
+++ b/1808/CH1/EX1.13/Chapter1_Example13.sce
@@ -0,0 +1,42 @@
+clc
+clear
+//INPUT DATA
+N=450;//speed in rpm
+cv=44000;//calorific value in kJ/kg
+T=450;//torque required
+pmi=3;//mean effective pressure in bar
+L=0.27;//stroke in m
+d=0.22;//bore in m
+pa=1.014;//atm.pressure
+nc=1;//number of cylinders
+n=1;//for single cylinder
+mf=5.4;//mass flow rate in kg/hr
+ra=1.20584;//density of fuel in kg/kW.hr
+ma=167.4;//mass of air in kg/hr
+Ra=0.287;// gas constant kJ/kgk
+Te=300;//temperature in k
+mw=440;//mass of water in kg/hr
+cpw=4.187;//specific pressure
+dTc=36.1;//Rise in temperature in degree C
+Ta=20;//temperature in K
+d1=6.23;//bore
+me=172.8;//exhaust gas mass in kg/hr
+cpe=1.005;//atmospheric pressure
+
+//CALCULATIONS
+BP=(2*3.14*(N/1000)*(T/60)*(1.5/2));//Brake power in kW
+IP=(pmi*100*L*(3.14*(d^2)/4)*N*nc)/(60*n);//Indicated power in kW
+nit=(IP/((mf/3600)*cv))*100;//Indicated thermal efficiency in percentage
+bsfc=(mf/BP);//Brake specific fuel consuption in kg/kWh
+Va=(ma*Ra*(Ta+273))/(pa*100*60);//volume folw rate of air in m^3/min
+Vs=((3.14*(d^2)/4)*L*N*(nc/n));;//swept volume in m^3/min
+nv=(Va/Vs)*100;//Volumetric efficiency in percentage
+Qs=(mf*cv/3600);//Heat supplied in kW
+Qw=(mw*cpw*(dTc))/3600;//Heat loss to cooling water in kW
+Qe=(me*cpe*(Te-Ta))/3600;//Heat loss to exhaust gases in kW
+c1=(Qe/Qs)*100;// % heat lost to exhaust gases
+Qu=(Qs-(BP+Qw+Qe+d1));//Enthalpy of unaccount in kW
+e1=(Qu/Qs)*100;//unaccounted heat in percentage
+
+//OUTPUT
+printf('(i)Brake power is %3.3f kW \n (ii)Indicated power is %3.3f kW \n (iii)Indicated thermal efficiency is %3.3f percentage \n (iv)Brake specific fuel consumption is %3.4f kg/kW.hr \n (v)Volumetric efficiency is %3.1f percentage \n(vi)Draw up heat balance sheet \n (I)Heat supplied is %3.i kW \n(II)Heat utilised in the system is %3.2f perentage',BP,IP,nit,bsfc,nv,Qs,c1)
diff --git a/1808/CH1/EX1.14/Chapter1_Example14.sce b/1808/CH1/EX1.14/Chapter1_Example14.sce
new file mode 100644
index 000000000..94cc8f2c9
--- /dev/null
+++ b/1808/CH1/EX1.14/Chapter1_Example14.sce
@@ -0,0 +1,34 @@
+clc
+clear
+//INPUT DATA
+a=450;//Area of indicator diagram mm^2
+S=9.806;//Spring number
+l=50*1.2;//Length of diagram
+d=0.15;//bore in m
+L=0.25;//stroke in m
+N=400;//engine speed in rpm
+nc=1;//number of cylinders
+n=2;//for single cylinder
+mf=3;//mass flow rate in kg/h
+cv=44200;//calorific value
+dTc=42;//rise of temperature for cooling water in Degree C
+cpw=4.18;//specific pressure
+mw=4;//mass of water
+T=225;//Brake torque in Nm
+
+//CALCULATIONS
+pmi=a*S/l;//mean effective pressure in N/cm^2
+IP=((pmi/10)*L*(3.14*(d^2)/4)*N*nc)/(60*n);//Indicated power in kW
+BP=(2*3.14*N*T)/60000;//brake power in kW
+nm=(BP/IP);//Meahanical efficiency in percentage
+nbt=(BP*3600/(mf*cv))*100;//Brake thermal efficiency in percentage
+bsfc=mf/BP;//Brake specific fuel consumption in kg/kWh
+Qs=mf*cv/3600;//Heat supplied in kW
+a11=(BP/Qs)*100;//% of heat equivalent to BP
+Qw=(mw*cpw*(dTc))/60;//Heat lost to cooling water in kW
+b11=(Qw/Qs)*100;//% of heat lost to cooling water
+Qe=(Qs-(BP+Qw));//heat utilised in the system
+c11=(Qe/Qs)*100;//% of heat lost to exhaust gases and radiation
+
+//OUTPUT
+printf('(i)Mechanical efficiency is %3.2f percentage \n(ii)Brake thermal efficiency is %3.2f percentage \n (iii)Brake specific fuel consumption is %3.3f kg/kW.hr \n(iv)\n(I)heat supplied is %3.3f kW \n (II)Heat utilised in the system %3.2f \n percentage',nm,nbt,bsfc,Qs,Qe)
diff --git a/1808/CH1/EX1.15/Chapter1_Example15.sce b/1808/CH1/EX1.15/Chapter1_Example15.sce
new file mode 100644
index 000000000..c4c232781
--- /dev/null
+++ b/1808/CH1/EX1.15/Chapter1_Example15.sce
@@ -0,0 +1,36 @@
+clc
+clear
+//INPUT DATA
+pmi=3;//Mean effective pressure in bar
+L=0.27;//Stroke in m
+N=450;//spedd in rpm
+nc=1;//nuber of cylinders
+n=1;//for single cylinder
+mf=5.4;//mass flow rate in kg/h
+cv=42000;//calorific value
+d=0.22;//bore in m
+T=355;//Temperature to exhaust gases in Degree C
+mw=440;//mass of water in kg/h
+cpw=4.18;//specific pressure of water
+cpe=1.02;//specific pressure of air
+dTc=36;//Rise in temperature in Degree C
+me=172.8;//total mass flow in kg/s
+Ta=20;//room temperature in Degree C
+Tb=460;//Brake load in N
+
+//CALCULATIONS
+IP=(pmi*100*L*(3.14*(d^2)/4)*N*nc)/(60*n);//Indicated power in kW
+nit=(IP*3600/(mf*cv))*100;//Indicated thermal efficiency in percentage
+Qs=mf*cv/3600;//Heat supplied in kJ/s
+BP=(2*3.14*(N/60)*(Tb/1000)*(1.5/2));//Brake power in kW
+a11=(BP/Qs)*100;//% of heat equivalent to BP
+Qw=(mw*cpw*(dTc))/3600;//Heat loss to cooling water in kJ/s
+b11=(Qw/Qs)*100;//% of heat lost to cooling water
+Qe=(me*cpe*(T-Ta))/3600;//Heat loss to exhaust gases in kW
+c11=(Qe/Qs)*100;//% of heat lost to exhaust gases
+Qu=(Qs-(BP+Qw+Qe));//Enthalpy of unaccount in kJ/s
+d1=(Qu/Qs)*100;//unaccounted heat in percentage
+
+//OUTPUT
+printf('(i)Indicated thermal efficiency is %3.2f percentage \n (ii) \n (I)Heat supplied %3.i kJ/s \n (II)Heat utilised in the system is %3.2f',IP,Qs,Qe)
+
diff --git a/1808/CH1/EX1.16/Chapter1_Example16.sce b/1808/CH1/EX1.16/Chapter1_Example16.sce
new file mode 100644
index 000000000..ce2c7588f
--- /dev/null
+++ b/1808/CH1/EX1.16/Chapter1_Example16.sce
@@ -0,0 +1,39 @@
+clc
+clear
+//INPUT DATA
+pmi=6;//Mean effective pressure in bar
+L=0.45;//Stroke in m
+d=0.3;//Rope diameter in m
+N=12000;//Total revolutions made
+nc=1;//number of cylinders
+n=2;//for four cylinders
+D=1.8;//Brake drum diameter in m
+x=0.02136;//difference of W and S
+cpw=4.18;//specific pressure of water
+cpe=1.005;//specific pressure of air
+cv=45000;//calorific value
+two=60;//outlet water temperature
+twi=15;//inlet water temperature
+te=300;//exhaust gas temperature in Degree C
+ta=20;//room temperature in Degree C
+mf=7.6;//mass flow rate in kg/h
+mw=550;//water flo rate in kg/h
+me=367.6;//total flow rate in kg/h
+
+
+//CALCULATIONS
+IP=(pmi*102*L*(3.14*(d^2)/4)*N*nc)/(60*60*n);//Indicated power in kW
+BP=((x)*3.14*(D+d)*N)/60;//Brake power in kW
+nit=(IP/(mf*cv/3600))*100;//Indicetad thermal efficiency in percentage
+nm=(BP/IP)*100;//mechanical efficiency in percentage
+Qs=mf*cv/60;//heat supplied in kJ/min
+a11=(BP/Qs)*100;//% of heat equivalent to BP
+Qw=(mw*cpw*(two-twi))/60;//Heat loss to cooling water in kW
+b11=(Qw/Qs)*100;//% of heat lost to cooling water
+Qe=(me*cpe*(te-ta))/60;//Heat loss to exhaust gases in kW
+c11=(Qe/Qs)*100;//% of heat lost to exhaust gases
+Qu=(Qs-(BP*60+Qw+Qe));//Enthalpy of unaccount in kW
+d11=(Qu/Qs)*100;//unaccounted heat in percentage
+
+//OUTPUT
+printf('(i)Indicated power is %3.2f kW \n brake power is %3.2f kW \n (ii)Indicated thermal efficiency is %3.2f percentage \n (iii)Mechanical efficiency is %3.2f percentage \n (iv)HEAT BALANCE SHEET \n (I)Heat supplied %3.i kJ/min \n (II)Heat utilised in the system is %3.2f kW',IP,BP,nit,nm,Qs,Qu)
diff --git a/1808/CH1/EX1.17/Chapter1_Example17.sce b/1808/CH1/EX1.17/Chapter1_Example17.sce
new file mode 100644
index 000000000..dd4b3beb0
--- /dev/null
+++ b/1808/CH1/EX1.17/Chapter1_Example17.sce
@@ -0,0 +1,31 @@
+clc
+clear
+//INPUT DATA
+BP4=16.25;//Total Brake power
+BP1c=11.55;//Brake power of 1st cylinder
+BP2c=11.65;//Brake power of 2nd cylinder
+BP3c=11.70;//Brake power of 3rd cylinder
+BP4c=11.50;//Brake power of 4th cylinder
+mf=0.08;//mass flow rate in kg/s
+cv=42500;//calorific value
+d=9;//bore
+L=9;//stroke
+Vc=65;//clearance volume in cm^3
+g=1.4;//inert gas constnat
+
+
+//CALCULATIONS
+IP1=BP4-BP1c;//Indicated power of 1st cylinder
+IP2=BP4-BP2c;//Indicated power of and cylinder
+IP3=BP4-BP3c;//Indicated power of 3rd cylinder
+IP4=BP4-BP4c;//Indicated power of 4th cylinder
+IP=IP1+IP2+IP3+IP4;//Total indicated power in kW
+nbt=(BP4*100/(mf*cv))*100;//Brake thrmal efficiency in percentage
+nit=(IP*100/(mf*cv))*100;//Indicated thermal efficiency in percentage
+Vs=(3.14*(d^2)*L/4);//swept volume in cm^3
+Rc=(Vs+Vc)/Vc;//Compression ratio
+no=(1-(1/Rc^(g-1)));//Air standard efficiency in percentage
+nr=(nit/no);//Relative efficiency in percentage
+
+//OUTPUT
+printf('(i)Indicated power is %3.2f kW \n (ii)indicated thermalefficiency %3.2f percentage \n brake efficiency is %3.2f percentage \n (iii)realtive efficiency is %3.2f percentage',IP,nit,nbt,nr)
diff --git a/1808/CH1/EX1.18/Chapter1_Example18.sce b/1808/CH1/EX1.18/Chapter1_Example18.sce
new file mode 100644
index 000000000..d5ebc4e83
--- /dev/null
+++ b/1808/CH1/EX1.18/Chapter1_Example18.sce
@@ -0,0 +1,32 @@
+clc
+clear
+//INPUT DATA
+W=160;//load on dynamometer in N
+N=3000;//speed of engine in rpm
+Dy=20420;//Dynamometer constnat
+L=0.09;//stroke in m
+d=0.06;//bore in m
+nc=4;//number of cylinders
+n=2;//for four cylinders
+mf=4.95;//fuel consumption in kg/h
+cv=42500;//calorific value
+BP1c=16.5;//Brake power of 1st cylinder
+BP2c=16;//Brake power of 2nd cylinder
+BP3c=15.6;//Brake power of 3rd cylinder
+BP4c=17.6;//Brake power of 4th cylinder
+
+//CALCULATIONS
+BP4=W*N/Dy;//Brake power in kW
+pmb=(BP4*60*n)/(L*(3.14*(d^2)/4)*N*nc*4);//Brake ean effective pressure in kN/m^2
+nbt=(BP4*3600/(mf*cv))*100;//Brake thermal efficiency in percentage
+IP1=BP4-BP1c;//Indicated power of 1st cylinder
+IP2=BP4-BP2c;//Indicated power of 2nd cylinder
+IP3=BP4-BP3c;//Indicated power of 3rd cylinder
+IP4=BP4-BP4c;//Indicated power of 4th cylinder
+IP=IP1+IP2+IP3+IP4;//Total indicated power in kW
+nm=(BP4/IP)*100;//Mechanical efficiency in percentage
+bsfc=mf/BP4;//Brake specific fuel consumption in kg/kWh
+
+//OUTPUT
+printf('(i)Brake power is %3.3f kW \n (ii)Brake mean effective pressure is %3.3f kN/m^2 \n (iii)brake thermal efficiency is %3.2f percentage \n (iv)mechanical efficiency is %3.3f percentage \n (v)Brake specific fuel consumption %3.3f kg/kW.hr ',BP4,pmb,nbt,nm,bsfc)
+
diff --git a/1808/CH1/EX1.19/Chapter1_Example19.sce b/1808/CH1/EX1.19/Chapter1_Example19.sce
new file mode 100644
index 000000000..a4919ad59
--- /dev/null
+++ b/1808/CH1/EX1.19/Chapter1_Example19.sce
@@ -0,0 +1,22 @@
+clc
+clear
+//INPUT DATA
+Sp=8;//mean piston speed in m/s
+P=101.325;//atmospheric pressure in kPa
+Ra=0.287;//Gas constnat
+Ta=303;//assumed temperature in K
+x=0.5;//fuelair ratio
+nv=0.92;//volumetric efficiency in percentage
+L=0.136;//stroke in m
+d=0.125;//borre diameter in m
+nc=6;//number of cylinders
+
+//CALCULATIONS
+N=(Sp/(2*L));//Speed in rps
+Roa=(P/(Ra*Ta));//Density of air in kg/m^3
+Vs=(3.14*d^2*L*nc/4);//swept volume
+ma=(nv*Roa*Vs*N)/2;//mass flow rate of air in kg/s
+mf=ma*x;//mass flow rate of fuel
+mf1=(2*mf*10^2)/(N*nc);//mass of fuel injected per cylinder per cycle in g/cylinder/cycle
+ //OUTPUT
+ printf('(i)Mass flow rate of air is %3.4f kg/s \n (ii)mass of fuel injected per cylinder per cycle is %3.4f g/cylinder/cycle',ma,mf1)
diff --git a/1808/CH1/EX1.2/Chapter1_Example2.sce b/1808/CH1/EX1.2/Chapter1_Example2.sce
new file mode 100644
index 000000000..ddc732663
--- /dev/null
+++ b/1808/CH1/EX1.2/Chapter1_Example2.sce
@@ -0,0 +1,19 @@
+clc
+clear
+//INPUT DATA
+N=4000;//Speed in rpm
+T=150;//Torque developed in Nm
+n=2;//For Four stroke engine
+L=0.1;//Stroke in m
+D=0.07;//Diameter in m
+nc=6;//number of cylinders
+mf=20;//fuel consumption in kg/h
+cv=44000;//calorific value in kJ/kg
+
+//CALCULATIONS
+BP=(2*3.14*N*T/(60*1000));//Brake power in kW
+bmep=((BP*n)/(L*(3.14*0.07^2/4)*(N/60)*nc));//Bmep in kN/m^2
+nbt=(BP/((mf/3600)*cv))*100;//Brake thermal efficiency in percentage
+
+//OUTPUT
+printf('(i)The Brake power is %3.2f kW \n (ii)bmep is %3.2f kN/m^2 \n (iii)Brake thermal efficiency is %3.1f percentage ',BP,bmep,nbt)
diff --git a/1808/CH1/EX1.20/Chapter1_Example20.sce b/1808/CH1/EX1.20/Chapter1_Example20.sce
new file mode 100644
index 000000000..6768bf400
--- /dev/null
+++ b/1808/CH1/EX1.20/Chapter1_Example20.sce
@@ -0,0 +1,18 @@
+clc
+clear
+//INPUT DATA
+BP=200;//Brake power in kW
+Vs=10*10^-3;//swept volue
+n=2;//for four cylinders
+nc=1;//number of cylinders
+N=2100;//speed in rpm
+L=0.136;//stroke in m
+d=0.125;//bore in m
+
+//CALCULATIONS
+Sp=2*L*N/60;//Mean piston speed in m/s
+bmep=(BP*n*60)/(Vs*N);//Brake mean effective pressure in kPa
+P=BP/(3.14*d^2*6/4);//Specific power in kN/m^2
+
+//OUTPUT
+printf('Mean piston speed is %3.2f m/s \n Specific power is %3.1f kN/m^2',Sp,P)
diff --git a/1808/CH1/EX1.21/Chapter1_Example21.sce b/1808/CH1/EX1.21/Chapter1_Example21.sce
new file mode 100644
index 000000000..591e222cd
--- /dev/null
+++ b/1808/CH1/EX1.21/Chapter1_Example21.sce
@@ -0,0 +1,18 @@
+clc
+clear
+//INPUT DATA
+P=101.325;//Atmospheric pressure in kPa
+Ra=0.287;//gas constant
+Ta=303;//atm.temperature in K
+L=0.092;//stroke in m
+Sp1=10;//mean piston speed
+ma=60;//air flow in g/s
+Vs=2.2*10^-3;//capacity
+
+//CALCULATIONS
+Roa=P/(Ra*Ta);//Density of air in kg/m^3
+N=Sp1/(2*L);//speed in rpm
+nv=(2*ma)/(Roa*Vs*N*1000);//volumetric efficiency in percentage
+
+//OUTPUT
+printf('Volumetric efficiency is %3.2f percentage ',nv)
diff --git a/1808/CH1/EX1.22/Chapter1_Example22.sce b/1808/CH1/EX1.22/Chapter1_Example22.sce
new file mode 100644
index 000000000..ce7a6c545
--- /dev/null
+++ b/1808/CH1/EX1.22/Chapter1_Example22.sce
@@ -0,0 +1,21 @@
+clc
+clear
+//INPUT DATA
+BP=50;//Brake power in kW
+bmepp=700;//mean effective pressure pickup van
+bmept=850;//mean effective pressure typical
+nc=4;//4-stroke cylinder
+n=2;//for 4 cyliners
+Sp=8;//mean piston speed
+N=3000;//speed in rpm
+L=0.107;//stroke in m
+
+//CALCULATIONS
+Nm=Sp/(2*L);//Design speed in rps
+db=(BP*n/(bmepp*4*Nm*3.14/4))^(1/3);//bore diameter in m^3
+Vt=(3.14*(db^3)*nc/4);//Capacity of the engine in litres
+Tm=(bmept*Vt)/(2*3.14*n);//Maximum torque in kNm
+
+//OUTPUT
+printf('(i)Design speed %3.2f rps \n (ii)capacity of the engine %3.5f m^3 \n (iii)Maximum torque is %3.2f kNm',Nm,Vt,Tm)
+
diff --git a/1808/CH1/EX1.23/Chapter1_Example23.sce b/1808/CH1/EX1.23/Chapter1_Example23.sce
new file mode 100644
index 000000000..bcb75693c
--- /dev/null
+++ b/1808/CH1/EX1.23/Chapter1_Example23.sce
@@ -0,0 +1,23 @@
+clc
+clear
+//INPUT DATA
+Vs=1.5*10^-3;//capacity of cylinder in m^3
+N=3000;//speed in rpm
+BP=48;//break power in kW
+nv=0.92;//volumetric efficiency in percentage
+P=101.325;//atmospheric pressure in kPa
+Ra=0.287;//gas constant
+Ta=303;//atm.temperature in K
+x=21;//airfuel ratio
+
+
+//CALCULATIONS
+Roa=(P/(Ra*Ta));//Density of air in kg/m^3
+ma=(nv*Roa*Vs*N/(2*60));//mass of air in kg/s
+mf=ma/x;//mass of fuel in kg/s
+bsfc=mf*3600/BP;//Brake specific fuel consumption in kg/kWh
+me=ma+mf;;//mass rate of exhaust flow in kg/s
+bpo=(BP/Vs)/1000;//Brake output per displacement in kW/litres
+
+//OUTPUT
+printf('(i)Rate of air flowinto engine %3.5f kg/s \n (ii)Brake specific fuel consumption is %3.3f kg/kWh \n (iii)mass rate of exhaust flow is %3.5f kg/s \n (iv)Brake output per displacement is %3.i kW/litres',ma,bsfc,me,bpo)
diff --git a/1808/CH1/EX1.3/Chapter1_Example3.sce b/1808/CH1/EX1.3/Chapter1_Example3.sce
new file mode 100644
index 000000000..895eebc2b
--- /dev/null
+++ b/1808/CH1/EX1.3/Chapter1_Example3.sce
@@ -0,0 +1,18 @@
+clc
+clear
+//INPUT DATA
+pmb=15;//brake ean pressure in bar
+L=200;//Stroke in cm
+d=0.8;//bore daimeter in cm
+N=100;//speed in rpm
+nc=6;//number of cylinders
+bsfc=0.4;//brake specific fuel consumption
+cv=42000;//calorific value in kJ/kg
+
+//CALCULATIONS
+BP=(pmb*L*(3.14*0.8^2/4)*N*nc)/(60);//Brake power in kW
+mf=bsfc*BP;//Total fuel consumption in kg/h
+nbt=(BP/((mf/3600)*cv))*100;//Brake thermal efficiency in percentage
+
+//OUTPUT
+printf('(i)The Brake power is %3.2f kW \n (ii)Total fuel consumption is is %3.2f kg/hr \n (iii)Brake thermal efficiency is %3.2f percentage ',BP,mf,nbt)
diff --git a/1808/CH1/EX1.4/Chapter1_Example4.sce b/1808/CH1/EX1.4/Chapter1_Example4.sce
new file mode 100644
index 000000000..99132bb8e
--- /dev/null
+++ b/1808/CH1/EX1.4/Chapter1_Example4.sce
@@ -0,0 +1,22 @@
+clc
+clear
+//INPUT DATA
+BP=17;//Brake power in kW
+mf=6;//Mass flow rate in kg/h
+cv=44200;//calorific value in kJ/kg
+L=0.1;//Stroke in m
+d=0.06;//bore in m
+Rc=8;//copression ratio
+n=2;//for four cylinders
+nc=4;//number of cylinders
+N=50;//speed in rps
+
+//CALCULATIONS
+nbt=(BP/((mf/3600)*cv))*100;//Brake thermal efficiency in percentage
+vs=(3.14*d^2*L)/4;//swept volume in m^3
+vc=vs/7;//Clearance volume in m^3
+pmb=((BP*n)/(L*(3.14*d^2/4)*N*nc));//brake ean pressure in kPa
+no=(1-(1/(Rc^(1.4-1))))*100;//Air standard efficiency in percentage
+
+//OUTPUT
+printf('(i)Brake thermal efficiency is %3.2f percentage \n (ii)clearance volume is %3.9f m^3 \n (iii)Brake mean effective pressure is %3.2f kPa \n (iv)air standard efficiency is %3.2f percentage',nbt,vc,pmb,no)
diff --git a/1808/CH1/EX1.5/Chapter1_Example5.sce b/1808/CH1/EX1.5/Chapter1_Example5.sce
new file mode 100644
index 000000000..cd372e372
--- /dev/null
+++ b/1808/CH1/EX1.5/Chapter1_Example5.sce
@@ -0,0 +1,28 @@
+clc
+clear
+//INPUT DATA
+N=1500;//speed in rpm
+T=150;//Torque developed in Nm
+mf=6;//fuel consumption in kg/h
+cv=42000;//calorific value in kJ/kg
+L=0.15;//Stroke in m
+d=0.12;//bore in m
+n=2;//for four cylinders
+pa=1;//Atmospheric pressure in bar
+Ta=293;//Room temperature in K
+Ra=0.287;//Gas constant
+hw=0.06;//Head of orifice in m
+rw=1000;//density of water in kg/m^3
+
+//CALCULATIONS
+BP=2*3.14*(N/60)*(T/1000);//Brake power in kW
+nbt=(BP/((mf/3600)*cv))*100;//Brake thermal efficiency in percentage
+Pmb=(BP*60*n/(L*(3.14*d^2/4)*N));//brake ean pressure in kPa
+ra=(pa/(Ra*Ta))*100;//density of air in kg/m^3
+ha=((hw*rw)/ra);//Air inhaled in m
+Va=0.62*(3.14*0.03^2/4)*(2*9.81*ha)^(1/2);//Air inhaled in m^3/s
+Vs=((3.14*d^2/4)*L*N/(n*60));//Swept volume in m^3/s
+nv=(Va/Vs)*100;//Volumetric efficiency in percentage
+
+//OUTPUT
+printf('(i)Brake thermal efficiency is %3.2f percentage \n (ii)Brake mean effective pressure is %3.2f kPa \n (iv)Volumetric efficiency is %3.d percentage',nbt,Pmb,nv)
diff --git a/1808/CH1/EX1.6/Chapter1_Example6.sce b/1808/CH1/EX1.6/Chapter1_Example6.sce
new file mode 100644
index 000000000..cf9477856
--- /dev/null
+++ b/1808/CH1/EX1.6/Chapter1_Example6.sce
@@ -0,0 +1,15 @@
+clc
+clear
+//INPUT DATA
+p1=780;//pressure of gas in mm
+p2=760;//pressure of gas in mm
+v1=15;//volume of gas in m^3
+T1=288;//Temperature in k
+T2=273;//Temperature in k
+
+
+//CALCULATIONS
+v2=(p1*v1*(T2/T1))/p2;//volume of gas in m^3
+
+//OUTPUT
+printf('Gas consumption at NTP is %3.3f m^3 ',v2)
diff --git a/1808/CH1/EX1.7/Chapter1_Example7.sce b/1808/CH1/EX1.7/Chapter1_Example7.sce
new file mode 100644
index 000000000..fed73a45e
--- /dev/null
+++ b/1808/CH1/EX1.7/Chapter1_Example7.sce
@@ -0,0 +1,20 @@
+clc
+clear
+//INPUT DATA
+BP=60;//Brake power in kW
+nm=0.8;//mechanical efficiency in percentage
+d=0.15;//bore in m
+L=0.15;//stroke in m
+n=4;//for 6 cylinders
+Ps=510;//piston speed in m/min
+pmi=5;//mean effective pressure in bar
+
+
+//CALCULATIONS
+IP=(BP/nm);//indicated power in kW
+A=(3.14*d^2/4);//area
+ne=(IP*60)/(pmi*100*L*A*n);//No.of explosions
+N=(Ps/(2*L));//speed of the engine in rpm
+
+//OUTPUT
+printf('(i)No.of explosions are %3.2f /min \n (ii)speed of the engine is %3.d rpm ',ne,N)
diff --git a/1808/CH1/EX1.8/Chapter1_Example8.sce b/1808/CH1/EX1.8/Chapter1_Example8.sce
new file mode 100644
index 000000000..c870273c4
--- /dev/null
+++ b/1808/CH1/EX1.8/Chapter1_Example8.sce
@@ -0,0 +1,32 @@
+clc
+clear
+//INPUT DATA
+no=0.5;//Air standard efficiency in percenatge
+nr=0.7;//relative efficiency in percenatge
+nm=80;//mechanical efficiency in percenatge
+cv=45000;//calorific value in kJ/kg
+BP=75;//Brake power in kW
+Ra=0.287;//Gas constant
+Ta=300;//suction temperature in K
+pa=1*100;//pressure in kN/m^2
+Vs=0.10352;//swept volume in m^3/s
+N=2500;//speed in rpm
+nc=1;//number of cylinders
+n=2;//for four cylinders
+
+//CALCULATIONS
+Rc=(1/(1-no))^(1/(1.4-1));//copression ratio
+nit=(no*nr)*100;//Indicated thermal efficiency in percentage
+IP=(BP/nm)*100;//indicated power in kW
+mf=((IP*100)/(nit*cv));//mass fuel consumption in kg/s
+bsfc=(mf*3600)/BP;//Brake specific fuel consumption in kg/kWh
+nbt=(BP/(mf*cv))*100;//Brake thermal efficiency in percentage
+ma=16*mf;//mass of air in kg/s
+va=(ma*Ra*Ta)/(pa);//actual volume of air consumption
+vs=va/no;//swept volume in m^3/s
+d=(4*60*n*vs/(3.14*1.5*N))^(1/3);//bore in m
+L=1.5*d;//stroke in m
+
+//OUTPUT
+printf('(i)Compression ratio is %3.3f \n(ii)Indicated thermal efficiency is %3.2f percentage \n (iii)Brake specific fuel consumption is %3.4f kg/kWh \n(iv)Brake thermal efficiency is %3.d percentage \n(v)bore %3.2f m \n stroke is %3.2f m',Rc,nit,bsfc,nbt,d,L)
+
diff --git a/1808/CH1/EX1.9/Chapter1_Example9.sce b/1808/CH1/EX1.9/Chapter1_Example9.sce
new file mode 100644
index 000000000..c45f315fe
--- /dev/null
+++ b/1808/CH1/EX1.9/Chapter1_Example9.sce
@@ -0,0 +1,17 @@
+clc
+clear
+//INPUT DATA
+pmi=7;//mean effective pressure in bar
+L=0.45;//stroke in m
+nc=1;//number of cylinders
+N=80;//speed in rpm
+n=1;//for 2 stroke
+nm=80;//Mechanical efficiency in percentage
+
+//CALCULATIONS
+IP=(pmi*100*L*(3.14*(0.3^2)/4)*N*nc)/(60*n);//indicated power in kW
+BP=(nm*IP)/100;//Brake power in kW
+FP=IP-BP;//Frictional power in kW
+
+//OUTPUT
+printf('(i)Indicated power is %3.2f kW \n (ii)brake power is %3.2f kW \n(iii)frictional power is %3.2f kW ',IP,BP,FP)