diff options
Diffstat (limited to '1736/CH6')
-rwxr-xr-x | 1736/CH6/EX6.1/Ch06Ex1.sce | 28 | ||||
-rwxr-xr-x | 1736/CH6/EX6.10/Ch06Ex10.sce | 8 | ||||
-rwxr-xr-x | 1736/CH6/EX6.11/Ch06Ex11.sce | 14 | ||||
-rwxr-xr-x | 1736/CH6/EX6.12/Ch06Ex12.sce | 21 | ||||
-rwxr-xr-x | 1736/CH6/EX6.13/Ch06Ex13.sce | 14 | ||||
-rwxr-xr-x | 1736/CH6/EX6.14/Ch06Ex14.sce | 20 | ||||
-rwxr-xr-x | 1736/CH6/EX6.15/Ch06Ex15.sce | 14 | ||||
-rwxr-xr-x | 1736/CH6/EX6.16/Ch06Ex16.sce | 34 | ||||
-rwxr-xr-x | 1736/CH6/EX6.2/Ch06Ex2.sce | 12 | ||||
-rwxr-xr-x | 1736/CH6/EX6.3/Ch06Ex3.sce | 19 | ||||
-rwxr-xr-x | 1736/CH6/EX6.4/Ch06Ex4.sce | 14 | ||||
-rwxr-xr-x | 1736/CH6/EX6.5/Ch06Ex5.sce | 16 | ||||
-rwxr-xr-x | 1736/CH6/EX6.6/Ch06Ex6.sce | 13 | ||||
-rwxr-xr-x | 1736/CH6/EX6.7/Ch06Ex7.sce | 22 | ||||
-rwxr-xr-x | 1736/CH6/EX6.8/Ch06Ex8.jpeg | bin | 0 -> 23238 bytes | |||
-rwxr-xr-x | 1736/CH6/EX6.8/Ch06Ex8.sce | 40 | ||||
-rwxr-xr-x | 1736/CH6/EX6.9/Ch06Ex9.sce | 17 |
17 files changed, 306 insertions, 0 deletions
diff --git a/1736/CH6/EX6.1/Ch06Ex1.sce b/1736/CH6/EX6.1/Ch06Ex1.sce new file mode 100755 index 000000000..2f79f8cb6 --- /dev/null +++ b/1736/CH6/EX6.1/Ch06Ex1.sce @@ -0,0 +1,28 @@ +// Scilab Code Ex6.1: Page-190 (2006)
+clc; clear;
+S = cell(4,2); // Declare a 4X2 cell
+// Enter material names
+S(1,1).entries = 'Si'; S(2,1).entries = 'GaAs'; S(3,1).entries = 'GaP'; S(4,1).entries = 'ZnS';
+// Enter energy band gap values
+S(1,2).entries = 1.11; S(2,2).entries = 1.42; S(3,2).entries = 2.26; S(4,2).entries = 3.60;
+h = 6.626e-034; // Planck's constant, Js
+c = 3e+08; // Speed of light, m/s
+e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
+printf("\n______________________________________________________");
+printf("\nMaterial E_g (eV) Critical Wavelength (micron)");
+printf("\n______________________________________________________");
+for i = 1:1:4
+ lambda = h*c/(S(i,2).entries*e);
+ printf("\n%8s %4.2f %5.3f", S(i, 1).entries, S(i, 2).entries, lambda/1e-06);
+end
+printf("\n______________________________________________________");
+
+// Result
+// ______________________________________________________
+// Material E_g (eV) Critical Wavelength (micron)
+// ______________________________________________________
+// Si 1.11 1.119
+// GaAs 1.42 0.875
+// GaP 2.26 0.550
+// ZnS 3.60 0.345
+// ______________________________________________________
diff --git a/1736/CH6/EX6.10/Ch06Ex10.sce b/1736/CH6/EX6.10/Ch06Ex10.sce new file mode 100755 index 000000000..81e66ac83 --- /dev/null +++ b/1736/CH6/EX6.10/Ch06Ex10.sce @@ -0,0 +1,8 @@ +// Scilab Code Ex6.10: Page-200 (2006)
+clc; clear;
+x = 0.38; // Al concentration in host GaAs
+E_g = 1.424 + 1.266*x + 0.266*x^2; // Band gap of GaAs as a function of x, eV
+printf("\nThe energy band gap of 38 percent Al doped in GaAs = %5.3f eV", E_g);
+
+// Result
+// The energy band gap of 38 percent Al doped in GaAs = 1.943 eV
diff --git a/1736/CH6/EX6.11/Ch06Ex11.sce b/1736/CH6/EX6.11/Ch06Ex11.sce new file mode 100755 index 000000000..af08f628e --- /dev/null +++ b/1736/CH6/EX6.11/Ch06Ex11.sce @@ -0,0 +1,14 @@ +// Scilab Code Ex6.11: Page-200 (2006)
+clc; clear;
+k = 1.38e-023; // Boltzmann constant, J/mol/K
+e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
+rho_40 = 0.2; // Resistivity of Ge at 40 degree celsius, ohm-m
+T1 = 40+273; // Temperature at which resistivity of Ge becomes 0.2 ohm-m, K
+T2 = 20+273; // Temperature at which resistivity of Ge is to be calculated, K
+E_g = 0.7; // Band gap of Ge, eV
+// As rho = exp(E_g/(2*k*T)), so for rho_20
+rho_20 = rho_40*exp(E_g/(2*k/e)*(1/T2-1/T1)); // Resistivity of Ge at 20 degree celsius, ohm-m
+printf("\nThe resistivity of Ge at 20 degree celsius = %3.1f ohm-m", rho_20);
+
+// Result
+// The resistivity of Ge at 20 degree celsius = 0.5 ohm-m
diff --git a/1736/CH6/EX6.12/Ch06Ex12.sce b/1736/CH6/EX6.12/Ch06Ex12.sce new file mode 100755 index 000000000..d480ae4d0 --- /dev/null +++ b/1736/CH6/EX6.12/Ch06Ex12.sce @@ -0,0 +1,21 @@ +// Scilab Code Ex6.12: Page-203 (2006)
+clc; clear;
+k = 1.38e-023; // Boltzmann constant, J/mol/K
+e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
+T = 300; // Room temperature of the material, K
+K_Si = 11.7; // Dielectric constant of Si
+K_Ge = 15.8; // Dielectric constant of Ge
+m = 9.1e-031; // Mass of an electron, kg
+m_eff = 0.2; // Effective masses of the electron in both Si and Ge, kg
+E_ion_Si = 13.6*m_eff/K_Si^2; // Donor ionization energy of Si, eV
+E_ion_Ge = 13.6*m_eff/K_Ge^2; // Donor ionization energy of Ge, eV
+E = k*T/e; // Energy available for electrons at 300 K, eV
+printf("\nThe donor ionization energy of Si = %6.4f eV", E_ion_Si);
+printf("\nThe donor ionization energy of Ge = %6.4f eV", E_ion_Ge);
+printf("\nThe energy available for electrons at 300 K = %5.3f eV", E);
+
+// Result
+// The donor ionization energy of Si = 0.0199 eV
+// The donor ionization energy of Ge = 0.0109 eV
+// The energy available for electrons at 300 K = 0.026 eV
+
diff --git a/1736/CH6/EX6.13/Ch06Ex13.sce b/1736/CH6/EX6.13/Ch06Ex13.sce new file mode 100755 index 000000000..00ecd1a80 --- /dev/null +++ b/1736/CH6/EX6.13/Ch06Ex13.sce @@ -0,0 +1,14 @@ +// Scilab Code Ex6.13: Page-203 (2006)
+clc; clear;
+e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
+epsilon = 15.8; // Dielectric constant of Ge
+m = 9.1e-031; // Mass of an electron, kg
+m_e = 0.2*m; // Effective masses of the electron in Ge, kg
+a_Ge = 5.65; // Lattice parameter of Ge, angstrom
+A_d = 0.53*epsilon*(m/m_e); // Radius of donor atom, angstrom
+printf("\nThe radius of the orbits of fifth valence electron of acceptor impurity = %2d angstrom", ceil(A_d));
+printf("\nThis radius is %d times the lattice constant of Ge", ceil(A_d/a_Ge));
+
+// Result
+// The radius of the orbits of fifth valence electron = 42 angstrom
+// This radius is 8 times the lattice constant of Ge
diff --git a/1736/CH6/EX6.14/Ch06Ex14.sce b/1736/CH6/EX6.14/Ch06Ex14.sce new file mode 100755 index 000000000..4149b3a41 --- /dev/null +++ b/1736/CH6/EX6.14/Ch06Ex14.sce @@ -0,0 +1,20 @@ +// Scilab Code Ex6.14: Page-203 (2006)
+clc; clear;
+e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
+tau = 1e-012; // Life time of electron in Ge, s
+m = 9.1e-031; // Mass of an electron, kg
+m_e = 0.5*m; // Effective masses of the electron in Ge, kg
+mu = e*tau/m_e; // Mobility of electron in Ge, m-square/V-s
+n_i = 2.5e+019; // Intrinsic carrier concentration of Ge at room temperature, per metre cube
+n_Ge = 5e+028; // Concentration of Ge atoms, per metre cube
+n_e = n_Ge/1e+06; // Concentration of impurity atoms, per metre cube
+// From law of mass action, n_e*n_h = n_i^2, solving for n_h
+n_h = n_i^2/n_e; // Concentration of holes, per metre cube
+
+printf("\nThis mobility of electron in Ge = %4d cm-square/V-s", mu/1e-04);
+printf("\nThis concentration of holes in Ge = %4.2e per metre cube", n_h);
+
+// Result
+// This mobility of electron in Ge = 3516 cm-square/V-s
+// This concentration of holes in Ge = 1.25e+016 per metre cube
+
diff --git a/1736/CH6/EX6.15/Ch06Ex15.sce b/1736/CH6/EX6.15/Ch06Ex15.sce new file mode 100755 index 000000000..1b1202621 --- /dev/null +++ b/1736/CH6/EX6.15/Ch06Ex15.sce @@ -0,0 +1,14 @@ +// Scilab Code Ex6.15: Page-204 (2006)
+clc; clear;
+n_i = 2.5e+019; // Intrinsic carrier concentration of Ge at room temperature, per metre cube
+n_Ge = 5e+028; // Concentration of Ge atoms, per metre cube
+delta_d = 1e+06; // Rate at which pentavalent impurity is doped in pure Ge, ppm
+n_e = n_Ge/delta_d; // Concentration of impurity atoms, per metre cube
+// From law of mass action, n_e*n_h = n_i^2, solving for n_h
+n_h = n_i^2/n_e; // Concentration of holes, per metre cube
+
+printf("\nThis concentration of holes in Ge = %4.2e per metre cube", n_h);
+
+// Result
+// This concentration of holes in Ge = 1.25e+016 per metre cube
+
diff --git a/1736/CH6/EX6.16/Ch06Ex16.sce b/1736/CH6/EX6.16/Ch06Ex16.sce new file mode 100755 index 000000000..31b6d9329 --- /dev/null +++ b/1736/CH6/EX6.16/Ch06Ex16.sce @@ -0,0 +1,34 @@ +// Scilab Code Ex6.16: Page-205 (2006)
+clc; clear;
+e = 1.6e-019; // Charge on an electron, C
+mu = 1400e-04; // Mobility of electron, metre-square per volt per sec
+l = 300-06; // Length of the n-type semiconductor, m
+w = 100-06; // Width of the n-type semiconductor, m
+t = 20-06; // Thickness of the n-type semiconductor, m
+N_D = 4.5e+021; // Doping concentration of donor impurities, per metre-cube
+V = 10; // Biasing voltage for semiconductor, V
+B_prep = 1; // Perpendicular magnetic field to which the semiconductor is subjected, tesla
+
+// Part (a)
+n = N_D; // Electron concentration in semiconductor, per cc
+R_H = -1/(n*e); // Hall Co-efficient, per C per metre cube
+
+// Part (b)
+rho = 1/(n*e*mu); // Resistivity of semiconductor, ohm-m
+R = rho*l/(w*t); // Resistance of the semiconductor, ohm
+I = V/R; // Current through the semiconductor, A
+V_H = R_H*I*B_prep/t; // Hall voltage, V
+
+// Part (c)
+theta_H = atand(-mu*B_prep); // Hall angle, degrees
+
+
+printf("\nHall coefficient, R_H = %4.2e per C metre cube", R_H);
+printf("\nHall voltage, V_H = %4.2f V", abs(V_H));
+printf("\nHall angle, theta_H = %4.2f degree", theta_H);
+
+// Result
+// Hall coefficient, R_H = -1.39e-003 per C metre cube
+// Hall voltage, V_H = 0.45 V
+// Hall angle, theta_H = -7.97 degree
+
diff --git a/1736/CH6/EX6.2/Ch06Ex2.sce b/1736/CH6/EX6.2/Ch06Ex2.sce new file mode 100755 index 000000000..b85c65d73 --- /dev/null +++ b/1736/CH6/EX6.2/Ch06Ex2.sce @@ -0,0 +1,12 @@ +// Scilab Code Ex6.2: Page-192 (2006)
+clc; clear;
+c = 3e+08; // Speed of light, m/s
+h = 6.626e-034; // Planck's constant, Js
+e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
+omega = 2e+014; // Wave vector involved in phonon energy, rad per sec
+f = omega/(2*%pi); // Frequency of the wave, Hz
+E = h*f/e; // Phonon energy involved in Si to lift the electron, eV
+printf("\nThe phonon energy involved in Si = %5.3f eV which is insufficient to lift an electron.", E);
+
+// Result
+// The phonon energy involved in Si = 0.132 eV which is insufficient to lift an electron.
diff --git a/1736/CH6/EX6.3/Ch06Ex3.sce b/1736/CH6/EX6.3/Ch06Ex3.sce new file mode 100755 index 000000000..8f3e35f00 --- /dev/null +++ b/1736/CH6/EX6.3/Ch06Ex3.sce @@ -0,0 +1,19 @@ +// Scilab Code Ex6.3: Page-192 (2006)
+clc; clear;
+N_A = 6.023e+023; // Avogadro's number
+// For Si
+A = 28.1; // Atomic weight of Si, g/mol
+a = 5.43e-08; // Lattice constant for Si, cm
+n = 8/a^3; // Number of atoms per unit volume, atoms/cc
+rho = n*A/N_A; // Density of Si, g/cc
+printf("\nThe density of Si = %4.2f atoms per cc", rho);
+// For GaAs
+A = 69.7+74.9; // Atomic weight of GaAs, g/mol
+a = 5.65e-08; // Lattice constant for Si, cm
+n = 4/a^3; // Number of atoms per unit volume, atoms/cc
+rho = n*A/N_A; // Density of GaAs, g/cc
+printf("\nThe density of GaAs = %5.3f atoms per cc", rho);
+
+// Result
+// The density of Si = 2.33 atoms per cc
+// The density of GaAs = 5.324 atoms per cc
diff --git a/1736/CH6/EX6.4/Ch06Ex4.sce b/1736/CH6/EX6.4/Ch06Ex4.sce new file mode 100755 index 000000000..2ac7e02a7 --- /dev/null +++ b/1736/CH6/EX6.4/Ch06Ex4.sce @@ -0,0 +1,14 @@ +// Scilab Code Ex6.4: Page-196 (2006)
+clc; clear;
+m = 9.11e-031; // Electron Rest Mass , kg
+k = 1.38e-023; // Boltzmann constant, J/mol/K
+h = 6.626e-034; // Planck's constant, Js
+T = 300; // Room temperature, K
+m_e = 0.068*m; // Mass of electron, kg
+m_h = 0.56*m; // Mass of hole, kg
+E_g = 1.42*1.6e-019; // Energy band gap for GaAs, J
+n_i = 2*(2*%pi*k*T/h^2)^(3/2)*(m_e*m_h)^(3/4)*exp(-E_g/(2*k*T));
+printf("\nThe Intrinsic carrier concentration of GaAs at 300 K = %1.0e per metre cube", n_i);
+
+// Result
+// The intrinsic carrier concentration of GaAs at 300 K = 3e+012 per metre cube
diff --git a/1736/CH6/EX6.5/Ch06Ex5.sce b/1736/CH6/EX6.5/Ch06Ex5.sce new file mode 100755 index 000000000..575e5723a --- /dev/null +++ b/1736/CH6/EX6.5/Ch06Ex5.sce @@ -0,0 +1,16 @@ +// Scilab Code Ex6.5: Page-197 (2006)
+clc; clear;
+m = 9.11e-031; // Electron Rest Mass , kg
+e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
+k = 1.38e-023; // Boltzmann constant, J/mol/K
+T = 300; // Room temperature, K
+m_e = 1.1*m; // Mass of electron, kg
+m_h = 0.56*m; // Mass of hole, kg
+E_g = 1.1; // Energy band gap for GaAs, J
+E_F = E_g/2+3/4*k*T/e*log(m_h/m_e); // Position of Fermi level of Si at room temperature, eV
+printf("\nThe position of Fermi level of Si at room temperature = %5.3f eV", E_F);
+printf("\nThe fermi level in this case is shifted downward from the midpoint (0.55 eV) in the forbiddem gap.");
+
+// Result
+// The position of Fermi level of Si at room temperature = 0.537 eV
+// The fermi level in this case is shifted downward from the midpoint (0.55 eV) in the forbiddem gap.
diff --git a/1736/CH6/EX6.6/Ch06Ex6.sce b/1736/CH6/EX6.6/Ch06Ex6.sce new file mode 100755 index 000000000..f177bb7e9 --- /dev/null +++ b/1736/CH6/EX6.6/Ch06Ex6.sce @@ -0,0 +1,13 @@ +// Scilab Code Ex6.6: Page-197 (2006)
+clc; clear;
+e = 1.6e-019; // Electronic charge, C
+n_i = 2.15e+013; // Carrier density of Ge at room temperature, per cc
+mu_e = 3900; // Mobility of electron, cm-square/V-s
+mu_h = 1900; // Mobility of hole, cm-square/V-s
+sigma_i = e*(mu_e+mu_h)*n_i; // Intrinsic conductivity of Ge, mho per m
+rho_i = 1/sigma_i; // Intrinsic resistivity of Ge at room temperature, ohm-m
+printf("\nThe intrinsic resistivity of Ge at room temperature = %2d ohm-cm", rho_i);
+
+
+// Result
+// The intrinsic resistivity of Ge at room temperature = 50 ohm-cm
diff --git a/1736/CH6/EX6.7/Ch06Ex7.sce b/1736/CH6/EX6.7/Ch06Ex7.sce new file mode 100755 index 000000000..1f3cc82ce --- /dev/null +++ b/1736/CH6/EX6.7/Ch06Ex7.sce @@ -0,0 +1,22 @@ +// Scilab Code Ex6.7: Page-197 (2006)
+clc; clear;
+m = 9.1e-031; // Mass of an electron, kg
+e = 1.6e-019; // Electronic charge, C
+k = 1.38e-023; // Boltzmann constant, J/mol/K
+T = 30; // Given temperature, K
+n = 1e+22; // Carrier density of CdS, per metre cube
+mu = 1e-02; // Mobility of electron, metre-square/V-s
+sigma = e*mu*n; // Conductivity of CdS, mho per m
+printf("\nThe conductivity of CdS sample = %2d mho per m", ceil(sigma));
+m_eff = 0.1*m; // Effective mass of the charge carries, kg
+t = m_eff*sigma/(n*e^2); // Average time between successive collisions, s
+printf("\nThe average time between successive collisions = %4.2e sec", t);
+// We have 1/2*m_eff*v^2 = 3/2*k*T, solving for v
+v = sqrt(3*k*T/m_eff); // Velocity of charrge carriers, m/s
+l = v*t; // Mean free distance travelled by the carrier, m
+printf("\nThe mean free distance travelled by the carrier = %4.2e m", l);
+
+// Result
+// The conductivity of CdS sample = 16 mho per m
+// The average time between successive collisions = 5.69e-015 sec
+// The mean free distance travelled by the carrier = 6.64e-010 m
diff --git a/1736/CH6/EX6.8/Ch06Ex8.jpeg b/1736/CH6/EX6.8/Ch06Ex8.jpeg Binary files differnew file mode 100755 index 000000000..fa710709b --- /dev/null +++ b/1736/CH6/EX6.8/Ch06Ex8.jpeg diff --git a/1736/CH6/EX6.8/Ch06Ex8.sce b/1736/CH6/EX6.8/Ch06Ex8.sce new file mode 100755 index 000000000..b12edbedd --- /dev/null +++ b/1736/CH6/EX6.8/Ch06Ex8.sce @@ -0,0 +1,40 @@ +// Scilab Code Ex6.8: Page-199 (2006)
+clc; clear;
+k = 1.38e-023; // Boltzmann constant, J/mol/K
+e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
+T = [385 455 556 714]; // Temperatures of Ge, K
+rho = [0.028 0.0061 0.0013 0.000274]; // Electrical resistivity, ohm-m
+Tinv = zeros(4); // Create an empty row matrix for 1/T
+ln_sigma = zeros(4); // Create the empty row matrix for log(sigma)
+for i = 1:1:4
+ Tinv(i) = 1/T(i);
+ log_sigma(i) = log(1/rho(i));
+end
+// Plot the graph
+plot(Tinv, log_sigma);
+a=gca(); // Handle on axes entity
+a.box="off";
+a.x_location = "origin";
+a.y_location = "origin";
+a.x_label
+a.y_label
+a.title
+type(a.title);
+x_label=a.x_label;
+x_label.text="1/T";
+x_label.font_style= 5;
+y_label=a.y_label;
+y_label.text="ln (sigma)";
+y_label.font_style= 5;
+t=a.title;
+t.foreground=9;
+t.font_size=4;
+t.font_style=5;
+t.text="Plot of ln (sigma) vs 1/T";
+// Calculate slope
+slope = (log_sigma(2)-log_sigma(1))/(Tinv(2)-Tinv(1));
+E_g = abs(2*slope*k); // Energy gap of Ge, J
+printf("\nThe energy gap of Ge = %5.3f eV", E_g/e);
+
+// Result
+// The energy gap of Ge = 0.658 eV
diff --git a/1736/CH6/EX6.9/Ch06Ex9.sce b/1736/CH6/EX6.9/Ch06Ex9.sce new file mode 100755 index 000000000..2fa7bfc96 --- /dev/null +++ b/1736/CH6/EX6.9/Ch06Ex9.sce @@ -0,0 +1,17 @@ +// Scilab Code Ex6.9: Page-199 (2006)
+clc; clear;
+h = 6.626e-34; // Planck's constant, Js
+c = 3e+08; // Speed of light, m/s
+e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
+x = 0.07; // Al concentration in host GaAs
+E_g = 1.424 + 1.266*x + 0.266*x^2; // Band gap of GaAs as a function of x, eV
+// As E_g = h*c/lambda, solving for lambda
+lambda = h*c/(E_g*e); // Emission wavelength of light, m
+printf("\nThe energy band gap of Al doped GaAs = %4.2f eV", E_g);
+printf("\nThe emission wavelength of light = %4.2f micron", lambda/1e-06);
+printf("\nThe Al atoms go as substitutional impurity in the host material.");
+
+// Result
+// The energy band gap of Al doped GaAs = 1.51 eV
+// The emission wavelength of light = 0.82 micron
+// The Al atoms go as substitutional impurity in the host material.
|