diff options
Diffstat (limited to '1730/CH2')
38 files changed, 639 insertions, 0 deletions
diff --git a/1730/CH2/EX2.1/Exa2_1.sce b/1730/CH2/EX2.1/Exa2_1.sce new file mode 100755 index 000000000..3c00348e3 --- /dev/null +++ b/1730/CH2/EX2.1/Exa2_1.sce @@ -0,0 +1,12 @@ +//Exa2.1
+clc;
+clear;
+close;
+//given data :
+J=2.4; //in A/mm^2
+J=2.4*10^6; //in A/m^2
+n=5*10^28; //unitless
+e=1.6*10^-19; // in coulomb
+//Formula : J=e*n*v
+v=J/(e*n);//in m/s
+disp("Drift velocity is : "+string(v)+" m/s or "+string(v*10^3)+" mm/s")
diff --git a/1730/CH2/EX2.10/Exa2_10.sce b/1730/CH2/EX2.10/Exa2_10.sce new file mode 100755 index 000000000..dfe79467c --- /dev/null +++ b/1730/CH2/EX2.10/Exa2_10.sce @@ -0,0 +1,13 @@ +//Exa10
+clc;
+clear;
+close;
+//given data
+miu_e=0.17;//in m^2/V-s
+miu_h=0.035;//in m^2/V-s
+nita_i=1.1*10^16; //in /m^3
+e=1.6*10^-19;// in C (electron charge)
+// Intrinsic conductivity,
+sigma_i=(nita_i*e)*(miu_e+miu_h);
+IntrinsicResistivity=1/sigma_i;
+disp("Intrinsic resistivity is : "+string(IntrinsicResistivity)+" ohm-meter");
diff --git a/1730/CH2/EX2.11/Exa2_11.sce b/1730/CH2/EX2.11/Exa2_11.sce new file mode 100755 index 000000000..069a3305f --- /dev/null +++ b/1730/CH2/EX2.11/Exa2_11.sce @@ -0,0 +1,13 @@ +//Exa11
+clc;
+clear;
+close;
+//given data
+rho_i=2*10^-3; //in ohm-m (there is miss printed in this line in the book)
+sigma_i=1/rho_i;
+miu_e=0.3;// in m^2/V-s
+miu_h=0.1;// in m^2/V-s
+e=1.6*10^-19; // in C
+// Formula sigma_i=nita_i*e*(miu_e+miu_h)
+nita_i=sigma_i/(e*(miu_e+miu_h));
+disp("Carrier density is : "+string(nita_i)+" /m^3");
diff --git a/1730/CH2/EX2.13/Exa2_13.sce b/1730/CH2/EX2.13/Exa2_13.sce new file mode 100755 index 000000000..b03f0fd30 --- /dev/null +++ b/1730/CH2/EX2.13/Exa2_13.sce @@ -0,0 +1,12 @@ +//Exa2.13
+clc;
+clear;
+close;
+//given data
+R_15=250;// in ohm
+R_t2=300 ;// in ohm
+alpha=0.0039;// in degree C
+t1=15;
+//Formula R_t2 = R_15 * [1 + alpha1*(t2 - t1)]
+t2=((R_t2/R_15)-1)/alpha+t1;
+disp("Temperature when its resistance is 300 ohms is : "+string(t2)+" degree C");
diff --git a/1730/CH2/EX2.15/Exa2_15.sce b/1730/CH2/EX2.15/Exa2_15.sce new file mode 100755 index 000000000..c61b9c427 --- /dev/null +++ b/1730/CH2/EX2.15/Exa2_15.sce @@ -0,0 +1,12 @@ +//Exa2.15
+clc;
+clear;
+close;
+//given data
+alpha0=0.0038;// in ohm/ohm/degree C
+t1=20; //in degree C
+alpha20=1/(1/alpha0+t1);
+R1=400;//in ohm
+//Formula R2=R1*[1+alpha20*(t2-t1)]
+R2=R1*[1+alpha20*(80-20)];
+disp("Resistance of wire at 80 degree C si : "+string(R2)+" ohm")
\ No newline at end of file diff --git a/1730/CH2/EX2.16/Exa2_16.sce b/1730/CH2/EX2.16/Exa2_16.sce new file mode 100755 index 000000000..64770fa7f --- /dev/null +++ b/1730/CH2/EX2.16/Exa2_16.sce @@ -0,0 +1,11 @@ +//Exa2.16
+clc;
+clear;
+close;
+disp("Let the temperature coefficient of resistance of material at 0 degree C be alpha0");
+disp("Resistance at 25 degree C, R1 = R0 * (1+25*alpha0) (i)");
+disp("Resistance at 70 degree C, R2 = R0 * (1+70*alpha0) (ii)");
+disp("Dividing Eq.(ii) by Eq.(i), we get");
+disp("R2/R1= (1+70*alpha0)/(1+25*alpha0)");
+disp("or 57.2/50 = (1+70*alpha0)/(1+25*alpha0)");
+disp("or alpha0 = 0.00348 ohm/ohm/degree C");
diff --git a/1730/CH2/EX2.17/Exa2_17.sce b/1730/CH2/EX2.17/Exa2_17.sce new file mode 100755 index 000000000..ab9f1cef9 --- /dev/null +++ b/1730/CH2/EX2.17/Exa2_17.sce @@ -0,0 +1,12 @@ +//Exa2.17
+clc;
+clear;
+close;
+disp("Let the temperature coefficient of resistance of material coil at 0 degree C be alpha0,then");
+disp("Resistance at 25 degree C, R1 = R0 * (1+25*alpha0) (i)");
+disp("Resistance at 75 degree C, R2 = R0 * (1+75*alpha0) (ii)");
+disp("Dividing Eq.(ii) by Eq.(i), we get");
+disp("R2/R1= (1+75*alpha0)/(1+25*alpha0)");
+disp("or 49/45 = (1+75*alpha0)/(1+25*alpha0)");
+disp("or alpha0 = 0.00736 ohm/ohm/degree C");
+
diff --git a/1730/CH2/EX2.18/Exa2_18.sce b/1730/CH2/EX2.18/Exa2_18.sce new file mode 100755 index 000000000..4739e0046 --- /dev/null +++ b/1730/CH2/EX2.18/Exa2_18.sce @@ -0,0 +1,21 @@ +//Exa2.18
+clc;
+clear;
+close;
+disp("Let the temperature coefficient of resistance of platinum at 0 degree C be alpha0 and resistance of platinum coil at 0 degree C be R0,then");
+disp("Resistance at 40 degree C, R1 = R0 * (1+40*alpha0) (i)");
+disp("Resistance at 100 degree C, R2 = R0 * (1+100*alpha0) (ii)");
+disp("Dividing Eq.(ii) by Eq.(i), we have");
+disp("R2/R1= (1+100*alpha0)/(1+40*alpha0)");
+disp("or 3.767/3.146 = (1+100*alpha0)/(1+40*alpha0)");
+disp("or alpha0 = 0.00379 ohm/ohm/degree C");
+alpha0=0.00379;// in ohm/ohm/degree C
+disp("Temperature coefficient of resistance at 40 degree C,")
+alpha40=1/(1/alpha0+40);
+disp(alpha40);
+disp("Substituting R1=3.146 and alpha0=0.00379 in Eq. (i) we have")
+R1=3.146;//in ohm
+//Formula R1 = R0 * (1+40*alpha0)
+R0=R1/(1+40*alpha0);
+disp("Resistance of platinum coil at 0 degree C is : "+string(R0)+" ohm ");
+
diff --git a/1730/CH2/EX2.19/Exa2_19.sce b/1730/CH2/EX2.19/Exa2_19.sce new file mode 100755 index 000000000..1cc44cf54 --- /dev/null +++ b/1730/CH2/EX2.19/Exa2_19.sce @@ -0,0 +1,17 @@ +//Exa2.19
+clc;
+clear;
+close;
+disp("Let R0 be the resistance of the coil at 0 degree C and alpha0 be its temperature coefficient of resistance at 0 degree C");
+disp("Resistance at 20 degree C, 18 = R0 * (1+20*alpha0) (i)");
+disp("Resistance at 50 degree C, 20 = R0 * (1+50*alpha0) (ii)");
+disp("Dividing Eq.(ii) by Eq.(i), we have");
+disp("20/18= (1+50*alpha0)/(1+20*alpha0)");
+disp("or alpha0 = 1/250=0.004 ohm/ohm/degree C");
+disp("If t degree C is the temperature of coil when its resistance is 21 ohm, then");
+disp("21=R0*(1+0.004*t)");
+disp("Dividing Eq.(iii) by Eq.(ii), we have");
+disp("21/20=(1+0.004*t)/(1+50*0.004)");
+disp("or t=65 degree C");
+disp("Temperature rise = t-surrounding temperature = 65 - 15 = 50 degree C");
+
diff --git a/1730/CH2/EX2.2/Exa2_2.sce b/1730/CH2/EX2.2/Exa2_2.sce new file mode 100755 index 000000000..c27486679 --- /dev/null +++ b/1730/CH2/EX2.2/Exa2_2.sce @@ -0,0 +1,16 @@ +//Exa2
+clc;
+clear;
+close;
+//given data :
+//Electron density
+n=1*10^24;//unit less
+//Electron charge
+e=1.6*10^-19; // in coulomb
+//Drift velocity
+v=1.5*10^-2; // in meter per second
+//cross-sectional area
+A=1; // in centimeter square
+A=1*10^-4; // in meter square
+I=e*n*v*A;// in ampere
+disp("Magnitude of current is :"+string(I)+" A")
\ No newline at end of file diff --git a/1730/CH2/EX2.20/Exa2_20.sce b/1730/CH2/EX2.20/Exa2_20.sce new file mode 100755 index 000000000..c1298f663 --- /dev/null +++ b/1730/CH2/EX2.20/Exa2_20.sce @@ -0,0 +1,16 @@ +//Exa2.20
+clc;
+clear;
+close;
+//given data
+alpha20=1/254.5;// in ohm/ohm/degree C
+t2=60;//degree C
+t1=20;//degree C
+rho0=1.6*10^-6;
+alpha60=1/(1/alpha20+(t2-t1));
+disp("Temperature coefficient of resistance at 60 degree C is : "+string(alpha60)+" ohm/ohm/degree C");
+//from alpha20=1/(1/alpha0+20)
+alpha0=1/(1/alpha20-20);
+//Formula rho60=rho0*(1+alpha0*t)
+rho60=rho0*(1+alpha0*t2);
+disp("Specific resistance at 60 degree C is : "+string(rho60)+" ohm-cm")
\ No newline at end of file diff --git a/1730/CH2/EX2.21/Exa2_21.sce b/1730/CH2/EX2.21/Exa2_21.sce new file mode 100755 index 000000000..4ddfb425f --- /dev/null +++ b/1730/CH2/EX2.21/Exa2_21.sce @@ -0,0 +1,13 @@ +//Exa2.21
+clc;
+clear;
+close;
+//given data
+R=95.5;//in ohm
+l=1;//in meter
+d=0.08;//in mm
+d=d*10^-3;//in meter
+a=(%pi*d^2)/4;
+//Formula R=rho*l/a
+rho=R*a/l;
+disp("Resistance of the wire material is : "+string(rho)+" ohm-meter")
\ No newline at end of file diff --git a/1730/CH2/EX2.22/Exa2_22.sce b/1730/CH2/EX2.22/Exa2_22.sce new file mode 100755 index 000000000..c6316d9c4 --- /dev/null +++ b/1730/CH2/EX2.22/Exa2_22.sce @@ -0,0 +1,15 @@ +//Exa2.22
+clc;
+clear;
+close;
+//given data
+R=4;//in ohm
+d=0.0274;//in cm
+d=0.000274;//in meter
+rho=10.3;//in miu ohm-cm
+rho=10.3*10^-8;//in ohm-m
+a=(%pi*d^2)/4;
+
+//Formula R=rho*l/a
+l=R*a/rho;
+disp("Lenght of wire is : "+string(l)+" meters")
\ No newline at end of file diff --git a/1730/CH2/EX2.23/Exa2_23.sce b/1730/CH2/EX2.23/Exa2_23.sce new file mode 100755 index 000000000..7ed4e60c0 --- /dev/null +++ b/1730/CH2/EX2.23/Exa2_23.sce @@ -0,0 +1,15 @@ +//Exa2.23
+clc;
+clear;
+close;
+//given data
+V=220;// in V
+W=100;//in watt
+R100=V^2/W;//in ohm
+alpha20=0.005;
+t1=20;
+t2=2000;
+// since R100=R20*[1+alpha20*(t2-t1)]
+R20=R100/(1+alpha20 * (t2-t1));
+I20=V/R20;
+disp("Current flowing at the instant of switching on a 100 W metal filament lamp is : "+string(I20)+" A")
\ No newline at end of file diff --git a/1730/CH2/EX2.24/Exa2_24.sce b/1730/CH2/EX2.24/Exa2_24.sce new file mode 100755 index 000000000..fc4e8ae53 --- /dev/null +++ b/1730/CH2/EX2.24/Exa2_24.sce @@ -0,0 +1,20 @@ +//Exa2.24
+clc;
+clear;
+close;
+//given data
+t2=50;// in degree C
+t1=20; // in degree C
+R1=600;// in ohm
+R2=300;// in ohm
+
+// Let resistance of 600 ohm resistance at 50 degree C = R_600
+R_600=R1*(1+(t2-t1)*.001);// in ohm
+// Let resistance of 300 ohm resistance at 50 degree C = R_300
+R_300=R2*(1+(t2-t1)*.004);// in ohm
+R_50=R_600+R_300;// in ohm
+disp("Resistance of combination at 50degree C is : "+string(R_50)+ " ohm")
+R_20=R1+R2;// in ohm
+alpha_20=(R_50/R_20-1)/(t2-t1);
+alpha_50=1/(1/(alpha_20)+(t2-t1));
+disp("Effective temperature coefficient of combination at 50 degree C is : "+string(alpha_50)+" or 1/530 per degree C")
diff --git a/1730/CH2/EX2.25/Exa2_25.sce b/1730/CH2/EX2.25/Exa2_25.sce new file mode 100755 index 000000000..c230837cf --- /dev/null +++ b/1730/CH2/EX2.25/Exa2_25.sce @@ -0,0 +1,11 @@ +//Exa2.25
+clc;
+clear;
+close;
+//given data
+toh=1.73//in micro-ohm-cm
+tohDesh=1.74;//in micro-ohm-cm
+sigma=1/toh;// conductivities of pure metal
+sigmaDesh=1/tohDesh;//conductivities metal with impurity
+PercentImpurity=((sigma-sigmaDesh)/sigma)*100;
+disp(" Percent impurity in the rod is : "+string(PercentImpurity)+" %")
\ No newline at end of file diff --git a/1730/CH2/EX2.26/Exa2_26.sce b/1730/CH2/EX2.26/Exa2_26.sce new file mode 100755 index 000000000..0a46745e5 --- /dev/null +++ b/1730/CH2/EX2.26/Exa2_26.sce @@ -0,0 +1,12 @@ +//Exa2.26
+clc;
+clear;
+close;
+//given data
+ElectricalResistivity=2.86*10^-6;//in ohm-cm
+sigma=1/ElectricalResistivity;
+T=273+20;// in Kelvin (Temperature)
+//Formula K/(sigma*T)=2.44*10^-8
+disp("Thermal conductivity of Al ")
+K=(2.44*10^-8*T*sigma);
+disp(K);
diff --git a/1730/CH2/EX2.27/Exa2_27.sce b/1730/CH2/EX2.27/Exa2_27.sce new file mode 100755 index 000000000..960e74a3e --- /dev/null +++ b/1730/CH2/EX2.27/Exa2_27.sce @@ -0,0 +1,11 @@ +//Exa2.27
+clc;
+clear;
+close;
+//given data
+E_AC=16*10^-6;//in V per degree C
+E_BC=-34*10^-6;//in V per degree C
+//By law of successive contact (or intermediate metals)
+E_AB=E_AC-E_BC;//in V/degree C
+E_AB=E_AB*10^6;// in miu V/degree C
+disp("EMF of iron with respect to constantan is : "+string(E_AB)+" micro V/degree C")
\ No newline at end of file diff --git a/1730/CH2/EX2.28/Exa2_28.sce b/1730/CH2/EX2.28/Exa2_28.sce new file mode 100755 index 000000000..cca71a1b1 --- /dev/null +++ b/1730/CH2/EX2.28/Exa2_28.sce @@ -0,0 +1,14 @@ +//Exa2.28
+clc;
+clear;
+close;
+//given data
+E_AC=7.4;//in miu V per degree C
+E_BC=-34.4;//in miu V per degree C
+//By law of successive contact (or intermediate metals)
+E_AB=E_AC-E_BC;//in miu V/degree C
+E_AB=E_AB*10^-6;// in V/degree C
+// Let Thermo-emf for a temperature difference of 250 degree C = EMF_250
+EMF_250=E_AB*250;// in V
+EMF_250=EMF_250*10^3;//in mV
+disp("Termo-emf for a temperature difference of 250 degree C is "+string(EMF_250)+" mV");
diff --git a/1730/CH2/EX2.29/Exa2_29.sce b/1730/CH2/EX2.29/Exa2_29.sce new file mode 100755 index 000000000..b7fc82ac7 --- /dev/null +++ b/1730/CH2/EX2.29/Exa2_29.sce @@ -0,0 +1,20 @@ +//Exa2.29
+clc;
+clear;
+close;
+//given data
+//Take iron as metal A and copper as metal B with respect to lead
+//For metal A:
+p_A=16.2;
+q_A=-0.02;
+//For metal B:
+p_B=2.78;
+q_B=+0.009;
+p_AB=p_A-p_B;
+q_AB=q_A-q_B;
+T2=210;//in degree C
+T1=10;// in degree C
+E=p_AB*(T2-T1)+q_AB/2*(T2^2-T1^2);
+disp("Thermo-electric emf is : "+string(E)+" micro V");
+Tn=-p_AB/q_AB;
+disp("Neutral temperature is : "+string(Tn)+" degree C");
\ No newline at end of file diff --git a/1730/CH2/EX2.3/Exa2_3.sce b/1730/CH2/EX2.3/Exa2_3.sce new file mode 100755 index 000000000..eec2ba30c --- /dev/null +++ b/1730/CH2/EX2.3/Exa2_3.sce @@ -0,0 +1,16 @@ +//Exa2.3
+clc;
+clear;
+close;
+//given data :
+miu_e=7.04*10^-3; //in m^2/V-s
+n=5.8*10^28 ; // in /m^3
+e=1.6*10^-19; // in coulomb
+m=9.1*10^-31;//in kg
+//(i) Relaxation time,
+tau=miu_e/e*m;
+disp("Relaxation time is : "+string(tau)+" second");
+sigma=(n*e*miu_e);
+//(ii) Resistivity of conductor,
+rho=1/sigma;
+disp("Resistivity of conductor is : "+string(rho)+" ohm-meter");
\ No newline at end of file diff --git a/1730/CH2/EX2.30/Exa2_30.sce b/1730/CH2/EX2.30/Exa2_30.sce new file mode 100755 index 000000000..24843b68d --- /dev/null +++ b/1730/CH2/EX2.30/Exa2_30.sce @@ -0,0 +1,24 @@ +//Exa2.30
+clc;
+clear;
+close;
+//given data
+p_A=17.34;
+q_A=-0.0487;
+p_B=1.36;
+q_B=+0.0095;
+p_AB=p_A-p_B;
+q_AB=q_A-q_B;
+T2=210;//in degree C
+T1=10;// in degree C
+E=p_AB*(T2-T1)+q_AB/2*(T2^2-T1^2);//in miu V
+E=E*10^-3;//in m V
+disp("Thermo-electric emf is : "+string(ceil(E))+" m V");
+Tn=-p_AB/q_AB;
+disp("Neutral temperature is : "+string(ceil(Tn))+" degree C");
+Tc=10;// in degree C
+Ti=Tn+(Tn-Tc);
+disp("Temperature of inversion is : "+string(ceil(Ti))+" degree C");
+E_max=15.98*(275-10)-1/2*0.0582*[275^2-10^2];//in miu V
+E_max=E_max*10^-3;// in mV
+disp("Maximum possible thermo-electric emf at neutral temperature that is at 275 degree C is : "+string(E_max)+" mV");
\ No newline at end of file diff --git a/1730/CH2/EX2.31/Exa2_31.sce b/1730/CH2/EX2.31/Exa2_31.sce new file mode 100755 index 000000000..7d9400937 --- /dev/null +++ b/1730/CH2/EX2.31/Exa2_31.sce @@ -0,0 +1,14 @@ +//Exa2.31
+clc;
+clear;
+close;
+//given data
+rho=146*10^-6// in ohm-cm
+a=1;//in cm^2
+l=1;//in cm
+// let current = i
+i=0.06;//in amp
+R=rho*l/a;//in ohm
+// Let potential difference per degree centigrade = P
+P=i*R;// By Ohm's law
+disp("Potential difference per degree centigrade is : "+string(P)+" volt");
\ No newline at end of file diff --git a/1730/CH2/EX2.32/Exa2_32.sce b/1730/CH2/EX2.32/Exa2_32.sce new file mode 100755 index 000000000..f5d88e8e1 --- /dev/null +++ b/1730/CH2/EX2.32/Exa2_32.sce @@ -0,0 +1,23 @@ +//Exa2.32
+clc;
+clear;
+close;
+//given data
+T_lower=10;// in degree C
+T_upper=150;// in degree C
+
+// Thermo-electric power for iron at any temperature T degree C w.r.t. lead is given by (17.34-0.0487 T)*10^-6 and that for copper by (1.36-.0095 T)*10^-6
+
+// Thermo-electric power, P=dE/dT
+// or dE=P*dT
+// Thermo-emf for copper between temperature 10 degree C and 150 degree C,
+E_c= integrate('(1.36-0.0095*T)*10^-6','T',T_lower,T_upper);
+
+// Thermo-emf for iron between temperature 10 degree C and 150 degree C,
+E_i= integrate('(17.34-0.0487*T)*10^-6','T',T_lower,T_upper);
+
+// Thermo-emp for copper-iron thermo-couple
+E=E_i-E_c;
+
+disp("Thermo-emf for iron between temperature 10 degree C and 150 degree C is : "+string(E*10^6)+" micro V");
+
diff --git a/1730/CH2/EX2.34/Exa2_34.sce b/1730/CH2/EX2.34/Exa2_34.sce new file mode 100755 index 000000000..d6d5d889e --- /dev/null +++ b/1730/CH2/EX2.34/Exa2_34.sce @@ -0,0 +1,10 @@ +//Exa2.34
+clc;
+clear;
+close;
+//given data
+Hc_0=8*10^5;//in A/m
+Tc=7.26;//in K
+T=4;//in K
+Hc_T=Hc_0*[1-(T/Tc)^2]';
+disp("The critical value of magnetic field at T=4 K is : "+string(Hc_T)+" A/m");
\ No newline at end of file diff --git a/1730/CH2/EX2.35/Exa2_35.sce b/1730/CH2/EX2.35/Exa2_35.sce new file mode 100755 index 000000000..a569b8a1a --- /dev/null +++ b/1730/CH2/EX2.35/Exa2_35.sce @@ -0,0 +1,11 @@ +//Exa2.35
+clc;
+clear;
+close;
+//given data
+Hc=7900;//in A/m
+d=1;//in mm
+r=d/2;//in mm
+r=r*10^-3;//in m
+Ic=2*%pi*r*Hc;
+disp("Critical current is : "+string(Ic)+" A");
\ No newline at end of file diff --git a/1730/CH2/EX2.36/Exa2_36.sce b/1730/CH2/EX2.36/Exa2_36.sce new file mode 100755 index 000000000..36c8b477b --- /dev/null +++ b/1730/CH2/EX2.36/Exa2_36.sce @@ -0,0 +1,15 @@ +//Exa2.36
+clc;
+clear;
+close;
+//given data
+Hc_0=8*10^4;//in A/m
+Tc=7.2;//in K
+T=4.5;//in K
+d=1;//in mm
+r=d/2;//in mm
+r=r*10^-3;//in m
+Hc=Hc_0*[1-(T/Tc)^2]';
+disp("The critical field at T=4.5 K is : "+string(Hc)+" A/m");
+Ic=2*%pi*r*Hc;
+disp("Critical current is : "+string(Ic)+" A");
\ No newline at end of file diff --git a/1730/CH2/EX2.37/Exa2_37.sce b/1730/CH2/EX2.37/Exa2_37.sce new file mode 100755 index 000000000..1b1353db5 --- /dev/null +++ b/1730/CH2/EX2.37/Exa2_37.sce @@ -0,0 +1,27 @@ +//Exa2.37
+clc;
+clear;
+close;
+format('v',5)
+// Formula R=rho*l/a
+//putting value for copper wire
+R=2;// in ohm
+l=100;//in meter
+rho=1.7*10^-8;// (for copper)
+a=rho*l/R;//in meter
+a=a*10^6;// in mm
+// Formula a=%pi/4*d^2
+d_copper=sqrt(a*4/%pi); // (d_copper is diameter for copper)
+
+// Formula R=rho*l/a
+//putting value for Aluminium wire
+R=2;// in ohm
+l=100;//in meter
+rho=2.8*10^-8;// (for aluminium)
+a=rho*l/R;//in meter
+a=a*10^6;// in mm
+// Formula a=%pi/4*d^2
+d_aluminium=sqrt(a*4/%pi); // (d_aluminium is diameter for aluminium)
+DiaRatio=d_aluminium/d_copper; // (DiaRatio is ratio of diameter of aluminium and copper)
+disp("The diameter of the aluminium wire is "+string(DiaRatio)+" times that of copper wire");
+
diff --git a/1730/CH2/EX2.38/Exa2_38.sce b/1730/CH2/EX2.38/Exa2_38.sce new file mode 100755 index 000000000..2bdbe4808 --- /dev/null +++ b/1730/CH2/EX2.38/Exa2_38.sce @@ -0,0 +1,19 @@ +//Exa2.38
+clc;
+clear;
+close;
+format('v',7)
+//given data
+l=60;// in cm
+l=l*10^-2;//in meter
+d=20;// in cm
+d=d*10^-2;//in meter
+D=35;// in cm;
+D=D*10^-2;//in meter
+r1=d/2;
+r2=D/2;
+rho=8000;// in ohm-cm
+rho=80;// in ohm-m
+// Let Insulation resistance of the liquid resistor = Ir
+Ir=[rho/(2*%pi*l)]*log(r2/r1);
+disp(" Insulation resistance of the liquid resistor is : "+string(Ir)+" ohm")
\ No newline at end of file diff --git a/1730/CH2/EX2.39/Exa2_39.sce b/1730/CH2/EX2.39/Exa2_39.sce new file mode 100755 index 000000000..027ff610f --- /dev/null +++ b/1730/CH2/EX2.39/Exa2_39.sce @@ -0,0 +1,18 @@ +//Exa2.39
+clc;
+clear;
+close;
+format('v',11)
+//given data
+R_desh=1820;// in M ohm
+R_desh=R_desh*10^6;// in ohm
+d1=1.5;// in cm
+d1=d1*10^-2;// in meter
+d2=5;// in cm
+d2=d2*10^-2;// in meter
+l=3000;// in meter
+r1=d1/2;
+r2=d2/2;
+
+rho= (2*%pi*l*R_desh)/log(r2/r1);
+disp("Resistivity of dielectric is : "+string(rho)+" ohm meter")
\ No newline at end of file diff --git a/1730/CH2/EX2.4/Exa2_4.sce b/1730/CH2/EX2.4/Exa2_4.sce new file mode 100755 index 000000000..cc963a86d --- /dev/null +++ b/1730/CH2/EX2.4/Exa2_4.sce @@ -0,0 +1,17 @@ +//Exa4
+clc;
+clear;
+close;
+//given data :
+rho=1.73*10^-8;//in ohm-meter
+toh=2.42*10^-14 ; //in second
+e=1.6*10^-19; //in C
+m=9.1*10^-31;//in kg
+sigma=1/rho;
+//(i) Number of free electrons per m^3
+n=(m*sigma)/(e^2*toh);
+disp("Number of free electrons per cube meter is : "+string(n));
+//(ii) Mobility of electrons,
+miu_e=(e*toh)/m;
+disp("Mobility of electrons is : "+string(miu_e)+" m^2/V-s");
+//Note: Answer in the book is wrong
\ No newline at end of file diff --git a/1730/CH2/EX2.40/Exa2_40.sce b/1730/CH2/EX2.40/Exa2_40.sce new file mode 100755 index 000000000..9204490a5 --- /dev/null +++ b/1730/CH2/EX2.40/Exa2_40.sce @@ -0,0 +1,30 @@ +//Exa2.40
+clc;
+clear;
+close;
+format('v',9)
+// given data
+// First Case:
+r1=1.5/2;// in cm
+// let radius thickness of insulation = r1_t
+r1_t=1.5;// in cm
+r2=r1+r1_t;
+R_desh=500;// in M ohm
+R_desh=R_desh*10^6;// in ohm
+// Second case:
+r1_desh=r1;// in cm (as before)
+// let radius thickness of insulation = r2_t
+r2_t=2.5;// in cm
+r2_desh=r1+r2_t;
+// since Insulation resistance , R_desh= sigma/(2*%pi*l)*log(r2/r1) and
+// R1_desh= sigma/(2*%pi*l)*log(r2_desh/r1_desh)
+// Dividing R1_desh by R1, We get
+// R1_desh/R_desh = log(r2_desh/r1_desh)/log(r2/r1)
+// Let R = R1_desh/R_desh, Now
+R= log(r2_desh/r1_desh)/log(r2/r1);
+R1_desh=R*R_desh;
+disp("New insulation resistance is : "+string(R1_desh*10^-6)+" M ohm");
+
+
+
+
diff --git a/1730/CH2/EX2.41/Exa2_41.sce b/1730/CH2/EX2.41/Exa2_41.sce new file mode 100755 index 000000000..e42fa370e --- /dev/null +++ b/1730/CH2/EX2.41/Exa2_41.sce @@ -0,0 +1,31 @@ +//Exa2.41
+clc;
+clear;
+close;
+// given data
+t1=20;// in degree C
+t2=36;// in degree C
+alpha_20=0.0043;// in per degree C (Temperature Coefficient)
+InsulationResistance=480*10^6;// in ohm
+copper_cond_res=0.7;// in ohm (copper conductor resistance)
+l=500*10^-3;// in kilo meter (length)
+R1_desh=InsulationResistance * l;// in ohm
+
+// From Formula log(R2_desh)= log(R1_desh-K*(t2-t1))
+// K= 1/(t2-t1)*log(R1_desh/R2_desh)
+// since when t2-t1=10 degree C and R1_desh/R2_desh= 2
+
+K=1/10*log(2);
+
+// (i) Insulation resistance at any temperature t2, R2_desh is given by
+ logR2_desh= log(R1_desh)-(t2-t1)/10* log(2);
+ R2_desh= %e^logR2_desh
+
+ disp("(i) Insulation resistance at any temperature : "+string(R2_desh*10^-6)+" Mega ohm");
+
+// (ii)
+ R_20= copper_cond_res/l;// in ohm
+ R_36=R_20*[1+alpha_20*(t2-t1)];
+
+ disp("Resistance at 36 degree C is : "+string(R_36)+" ohm")
+
\ No newline at end of file diff --git a/1730/CH2/EX2.5/Exa2_5.sce b/1730/CH2/EX2.5/Exa2_5.sce new file mode 100755 index 000000000..c65585e52 --- /dev/null +++ b/1730/CH2/EX2.5/Exa2_5.sce @@ -0,0 +1,17 @@ +//Exa5
+clc;
+clear;
+close;
+//given data :
+rho=1.54*10^-8; //in ohm-meter
+//since sigma=1/roh
+sigma=1/rho;
+n=5.8*10^28 ; //unit less
+e=1.6*10^-19; //in C (electron charge)
+m=9.1*10^-31;//in kg (mass of electron)
+//(i) Relaxation time
+toh=(sigma*m)/(n*e^2);
+disp("(i) Relaxation time of electrons is : "+string(toh)+" seconds");
+//(ii) Mobility of electrons,
+miu_e=(e*toh)/m;
+disp("(ii) Mobility of electrons is : "+string(miu_e)+" m^2/V-s");
diff --git a/1730/CH2/EX2.6/Exa2_6.sce b/1730/CH2/EX2.6/Exa2_6.sce new file mode 100755 index 000000000..f18ada8d2 --- /dev/null +++ b/1730/CH2/EX2.6/Exa2_6.sce @@ -0,0 +1,14 @@ +//Exa2.6
+clc;
+clear;
+close;
+//given data :
+rho=1.7*10^-8; //in ohm-meter
+//since sigma=1/roh
+sigma=1/rho;
+n=8.5*10^28 ; //unit less
+e=1.6*10^-19; //in C (electron charge)
+m=9.1*10^-31;//in kg
+// Relaxation time
+toh=(sigma*m)/(n*e^2);
+disp(" Relaxation time of electrons is : "+string(toh)+" seconds");
diff --git a/1730/CH2/EX2.7/Exa2_7.sce b/1730/CH2/EX2.7/Exa2_7.sce new file mode 100755 index 000000000..bab2afb35 --- /dev/null +++ b/1730/CH2/EX2.7/Exa2_7.sce @@ -0,0 +1,19 @@ +//Exa2.7
+clc;
+clear;
+close;
+format('v',11);
+//given data :
+E=100;//in V/m
+rho=1.5*10^-8; //in ohm-meter
+//since sigma=1/roh
+sigma=1/rho;
+n=6*10^28 ; //unit less
+e=1.601*10^-19; //in C
+m=9.107*10^-31;//in kg
+// Relaxation time
+toh=(sigma*m)/(n*e^2);
+disp("(i) Relaxation time of electrons is : "+string(toh)+" seconds");
+//Drift velocity
+v=(e*E*toh)/m;
+disp("(ii) Drift velocity is : "+string(v)+" m/s");
diff --git a/1730/CH2/EX2.8/Exa2_8.sce b/1730/CH2/EX2.8/Exa2_8.sce new file mode 100755 index 000000000..ab35f9fc4 --- /dev/null +++ b/1730/CH2/EX2.8/Exa2_8.sce @@ -0,0 +1,32 @@ +//Exa2.8
+clc;
+clear;
+close;
+//given data :
+//Diameter of copper wire
+d=2;//in milimeter
+d=.002;//in meter
+//conductivity of copper
+nita=5.8*10^7;//in second per meter
+//Electron mobility
+miu_e=.0032;//in meter square per volt-second
+//Applied electric field
+E=20;//in mV/m
+E=.02; //in V/m
+e=1.6*10^-19;
+//(i) From eq. (2.13)
+//charge density
+n=nita/(e*miu_e);//in per meter cube
+disp("(i) Charge density is : "+string(n)+" /meter cube");
+//(ii) from eq. (2.9)
+//current density
+J=nita*E;// in A/m^2
+disp("(ii) Current density is : "+string(J)+" A/m^2");
+//(iii) Current flowing in the wire I=J* Area of x-section of wire
+// Area of x-section of wire= (%pi*d^2)/4
+I=(J*%pi*d^2)/4;
+disp("(iii) Current flowing in the wire is : "+string(I)+" A");
+//(iv) form eq.2.14
+//Electron drift velocity
+v=miu_e*E;
+disp("(iv) Electron drift velocity is :"+string(v)+" m/s");
diff --git a/1730/CH2/EX2.9/Exa2_9.sce b/1730/CH2/EX2.9/Exa2_9.sce new file mode 100755 index 000000000..39c075c54 --- /dev/null +++ b/1730/CH2/EX2.9/Exa2_9.sce @@ -0,0 +1,16 @@ +//Exa2.9
+clc;
+clear;
+close;
+//given data
+rho=0.5; // in ohm-meter
+J=100; //in A/m^2
+miu_e=0.4; //in m^2/V-s
+E=J*rho; // since E=J/sigma
+// Formula v=miu_e*E
+v=miu_e*E;
+disp(" Electron drift velocity is : "+string(v)+" m/s");
+disp("Time taken by the electron to travel 10*10^-6 m in crystal")
+// let Time taken by the electron to travel 10*10^-6 m in crystal = t
+t=(10*10^-6)/v;
+disp(string(t)+" second");
|