diff options
Diffstat (limited to '1730')
91 files changed, 1516 insertions, 0 deletions
diff --git a/1730/CH1/EX1.3/Exa1_3.sce b/1730/CH1/EX1.3/Exa1_3.sce new file mode 100755 index 000000000..437f0cc3d --- /dev/null +++ b/1730/CH1/EX1.3/Exa1_3.sce @@ -0,0 +1,24 @@ +//Exa3
+clc;
+clear;
+close;
+//given data
+//atomic radius
+r=1.278; //in Angstrum
+//atomic weight
+aw=63.5;
+//Avogadro's number
+an=6.023*10^23;
+//copper has FCC structure for which
+a=(4*r)/sqrt(2);// in Angstrum
+a=a*10^-10;//in m
+//Mass of one atom
+m=aw/an;//in gm
+m=m*10^-3;//in kg
+//volume of one unit cell of copper crystal,
+V=a^3;//in meter cube
+//Number of atoms present in one unit cell of Cu(FCC Structure),
+n=4;
+//Density of crystal
+rho=(m*n)/V;//in kg/m^3
+disp("Density of crystal is : "+string(rho)+"kg/m^3");
diff --git a/1730/CH1/EX1.4/Exa1_4.sce b/1730/CH1/EX1.4/Exa1_4.sce new file mode 100755 index 000000000..9f06859a4 --- /dev/null +++ b/1730/CH1/EX1.4/Exa1_4.sce @@ -0,0 +1,15 @@ +//Exa4
+clc;
+clear;
+close;
+//given data :
+//wavelength
+lamda=1.539; //in Angstrum
+//angle
+theta=22.5; // in degree
+n=1;//(first order)
+
+// Formula n*lamda=2*d*sin(theta) , so
+// interplaner distance,
+d=lamda/(2*sin(theta*%pi/180));
+disp("Interplaner distance is : "+string(d)+" Angstrum")
\ No newline at end of file diff --git a/1730/CH1/EX1.5/Exa1_5.sce b/1730/CH1/EX1.5/Exa1_5.sce new file mode 100755 index 000000000..53d30672f --- /dev/null +++ b/1730/CH1/EX1.5/Exa1_5.sce @@ -0,0 +1,12 @@ +//Exa5
+clc;
+clear;
+close;
+//given data :
+n=2;
+d=0.4;// in nenometer
+d=d*10^-9;// in meter
+theta=16.8/2;// in degree
+//using Bragg's equation we have n*lamda=2*d*sin(theta), so
+lamda=(2*d*sin(8.4*%pi/180))/n;
+disp("Wavelength of X-rays used is : "+string(lamda*10^10)+" Angstrum");
\ No newline at end of file diff --git a/1730/CH1/EX1.6/Exa1_6.sce b/1730/CH1/EX1.6/Exa1_6.sce new file mode 100755 index 000000000..b26bd2f81 --- /dev/null +++ b/1730/CH1/EX1.6/Exa1_6.sce @@ -0,0 +1,15 @@ +//Exa6
+clc;
+clear;
+close;
+//given data :
+a=3.15; //in Angstrum
+a=a*10^-10;//in meter
+//angle
+theta=20.2;//in degree
+n=1;//(first order)
+//for BCC crystal
+d110=a/sqrt(2);//in meter
+//Formula n*lamda=2*d*sin(theta)
+lamda=(2*d110*sin(theta*%pi/180))/n;//in meter
+disp("Wavelength is : "+string(lamda*10^10)+" Angstrum")
\ No newline at end of file diff --git a/1730/CH1/EX1.7/Exa1_7.sce b/1730/CH1/EX1.7/Exa1_7.sce new file mode 100755 index 000000000..2d731cb19 --- /dev/null +++ b/1730/CH1/EX1.7/Exa1_7.sce @@ -0,0 +1,17 @@ +//Exa7
+clc;
+clear;
+close;
+//given data :
+lambda=0.842; //in Angstrum
+lambda=lambda*10^-10; // in meter
+//theta=8degree 35minutes
+theta=8+35/60;//in degree
+n=1;//(first order)
+//Formula n*lamda=2*d*sin(theta)
+d=n*lambda/(2*sind(theta))
+//For third Order reflection :
+//Formula n*lamda=2*d*sin(theta)
+n=3;//order
+theta=asind(n*lambda/(2*d));
+disp(round(theta),"Angle of incidence for third order reflection in degree : ");
\ No newline at end of file diff --git a/1730/CH2/EX2.1/Exa2_1.sce b/1730/CH2/EX2.1/Exa2_1.sce new file mode 100755 index 000000000..3c00348e3 --- /dev/null +++ b/1730/CH2/EX2.1/Exa2_1.sce @@ -0,0 +1,12 @@ +//Exa2.1
+clc;
+clear;
+close;
+//given data :
+J=2.4; //in A/mm^2
+J=2.4*10^6; //in A/m^2
+n=5*10^28; //unitless
+e=1.6*10^-19; // in coulomb
+//Formula : J=e*n*v
+v=J/(e*n);//in m/s
+disp("Drift velocity is : "+string(v)+" m/s or "+string(v*10^3)+" mm/s")
diff --git a/1730/CH2/EX2.10/Exa2_10.sce b/1730/CH2/EX2.10/Exa2_10.sce new file mode 100755 index 000000000..dfe79467c --- /dev/null +++ b/1730/CH2/EX2.10/Exa2_10.sce @@ -0,0 +1,13 @@ +//Exa10
+clc;
+clear;
+close;
+//given data
+miu_e=0.17;//in m^2/V-s
+miu_h=0.035;//in m^2/V-s
+nita_i=1.1*10^16; //in /m^3
+e=1.6*10^-19;// in C (electron charge)
+// Intrinsic conductivity,
+sigma_i=(nita_i*e)*(miu_e+miu_h);
+IntrinsicResistivity=1/sigma_i;
+disp("Intrinsic resistivity is : "+string(IntrinsicResistivity)+" ohm-meter");
diff --git a/1730/CH2/EX2.11/Exa2_11.sce b/1730/CH2/EX2.11/Exa2_11.sce new file mode 100755 index 000000000..069a3305f --- /dev/null +++ b/1730/CH2/EX2.11/Exa2_11.sce @@ -0,0 +1,13 @@ +//Exa11
+clc;
+clear;
+close;
+//given data
+rho_i=2*10^-3; //in ohm-m (there is miss printed in this line in the book)
+sigma_i=1/rho_i;
+miu_e=0.3;// in m^2/V-s
+miu_h=0.1;// in m^2/V-s
+e=1.6*10^-19; // in C
+// Formula sigma_i=nita_i*e*(miu_e+miu_h)
+nita_i=sigma_i/(e*(miu_e+miu_h));
+disp("Carrier density is : "+string(nita_i)+" /m^3");
diff --git a/1730/CH2/EX2.13/Exa2_13.sce b/1730/CH2/EX2.13/Exa2_13.sce new file mode 100755 index 000000000..b03f0fd30 --- /dev/null +++ b/1730/CH2/EX2.13/Exa2_13.sce @@ -0,0 +1,12 @@ +//Exa2.13
+clc;
+clear;
+close;
+//given data
+R_15=250;// in ohm
+R_t2=300 ;// in ohm
+alpha=0.0039;// in degree C
+t1=15;
+//Formula R_t2 = R_15 * [1 + alpha1*(t2 - t1)]
+t2=((R_t2/R_15)-1)/alpha+t1;
+disp("Temperature when its resistance is 300 ohms is : "+string(t2)+" degree C");
diff --git a/1730/CH2/EX2.15/Exa2_15.sce b/1730/CH2/EX2.15/Exa2_15.sce new file mode 100755 index 000000000..c61b9c427 --- /dev/null +++ b/1730/CH2/EX2.15/Exa2_15.sce @@ -0,0 +1,12 @@ +//Exa2.15
+clc;
+clear;
+close;
+//given data
+alpha0=0.0038;// in ohm/ohm/degree C
+t1=20; //in degree C
+alpha20=1/(1/alpha0+t1);
+R1=400;//in ohm
+//Formula R2=R1*[1+alpha20*(t2-t1)]
+R2=R1*[1+alpha20*(80-20)];
+disp("Resistance of wire at 80 degree C si : "+string(R2)+" ohm")
\ No newline at end of file diff --git a/1730/CH2/EX2.16/Exa2_16.sce b/1730/CH2/EX2.16/Exa2_16.sce new file mode 100755 index 000000000..64770fa7f --- /dev/null +++ b/1730/CH2/EX2.16/Exa2_16.sce @@ -0,0 +1,11 @@ +//Exa2.16
+clc;
+clear;
+close;
+disp("Let the temperature coefficient of resistance of material at 0 degree C be alpha0");
+disp("Resistance at 25 degree C, R1 = R0 * (1+25*alpha0) (i)");
+disp("Resistance at 70 degree C, R2 = R0 * (1+70*alpha0) (ii)");
+disp("Dividing Eq.(ii) by Eq.(i), we get");
+disp("R2/R1= (1+70*alpha0)/(1+25*alpha0)");
+disp("or 57.2/50 = (1+70*alpha0)/(1+25*alpha0)");
+disp("or alpha0 = 0.00348 ohm/ohm/degree C");
diff --git a/1730/CH2/EX2.17/Exa2_17.sce b/1730/CH2/EX2.17/Exa2_17.sce new file mode 100755 index 000000000..ab9f1cef9 --- /dev/null +++ b/1730/CH2/EX2.17/Exa2_17.sce @@ -0,0 +1,12 @@ +//Exa2.17
+clc;
+clear;
+close;
+disp("Let the temperature coefficient of resistance of material coil at 0 degree C be alpha0,then");
+disp("Resistance at 25 degree C, R1 = R0 * (1+25*alpha0) (i)");
+disp("Resistance at 75 degree C, R2 = R0 * (1+75*alpha0) (ii)");
+disp("Dividing Eq.(ii) by Eq.(i), we get");
+disp("R2/R1= (1+75*alpha0)/(1+25*alpha0)");
+disp("or 49/45 = (1+75*alpha0)/(1+25*alpha0)");
+disp("or alpha0 = 0.00736 ohm/ohm/degree C");
+
diff --git a/1730/CH2/EX2.18/Exa2_18.sce b/1730/CH2/EX2.18/Exa2_18.sce new file mode 100755 index 000000000..4739e0046 --- /dev/null +++ b/1730/CH2/EX2.18/Exa2_18.sce @@ -0,0 +1,21 @@ +//Exa2.18
+clc;
+clear;
+close;
+disp("Let the temperature coefficient of resistance of platinum at 0 degree C be alpha0 and resistance of platinum coil at 0 degree C be R0,then");
+disp("Resistance at 40 degree C, R1 = R0 * (1+40*alpha0) (i)");
+disp("Resistance at 100 degree C, R2 = R0 * (1+100*alpha0) (ii)");
+disp("Dividing Eq.(ii) by Eq.(i), we have");
+disp("R2/R1= (1+100*alpha0)/(1+40*alpha0)");
+disp("or 3.767/3.146 = (1+100*alpha0)/(1+40*alpha0)");
+disp("or alpha0 = 0.00379 ohm/ohm/degree C");
+alpha0=0.00379;// in ohm/ohm/degree C
+disp("Temperature coefficient of resistance at 40 degree C,")
+alpha40=1/(1/alpha0+40);
+disp(alpha40);
+disp("Substituting R1=3.146 and alpha0=0.00379 in Eq. (i) we have")
+R1=3.146;//in ohm
+//Formula R1 = R0 * (1+40*alpha0)
+R0=R1/(1+40*alpha0);
+disp("Resistance of platinum coil at 0 degree C is : "+string(R0)+" ohm ");
+
diff --git a/1730/CH2/EX2.19/Exa2_19.sce b/1730/CH2/EX2.19/Exa2_19.sce new file mode 100755 index 000000000..1cc44cf54 --- /dev/null +++ b/1730/CH2/EX2.19/Exa2_19.sce @@ -0,0 +1,17 @@ +//Exa2.19
+clc;
+clear;
+close;
+disp("Let R0 be the resistance of the coil at 0 degree C and alpha0 be its temperature coefficient of resistance at 0 degree C");
+disp("Resistance at 20 degree C, 18 = R0 * (1+20*alpha0) (i)");
+disp("Resistance at 50 degree C, 20 = R0 * (1+50*alpha0) (ii)");
+disp("Dividing Eq.(ii) by Eq.(i), we have");
+disp("20/18= (1+50*alpha0)/(1+20*alpha0)");
+disp("or alpha0 = 1/250=0.004 ohm/ohm/degree C");
+disp("If t degree C is the temperature of coil when its resistance is 21 ohm, then");
+disp("21=R0*(1+0.004*t)");
+disp("Dividing Eq.(iii) by Eq.(ii), we have");
+disp("21/20=(1+0.004*t)/(1+50*0.004)");
+disp("or t=65 degree C");
+disp("Temperature rise = t-surrounding temperature = 65 - 15 = 50 degree C");
+
diff --git a/1730/CH2/EX2.2/Exa2_2.sce b/1730/CH2/EX2.2/Exa2_2.sce new file mode 100755 index 000000000..c27486679 --- /dev/null +++ b/1730/CH2/EX2.2/Exa2_2.sce @@ -0,0 +1,16 @@ +//Exa2
+clc;
+clear;
+close;
+//given data :
+//Electron density
+n=1*10^24;//unit less
+//Electron charge
+e=1.6*10^-19; // in coulomb
+//Drift velocity
+v=1.5*10^-2; // in meter per second
+//cross-sectional area
+A=1; // in centimeter square
+A=1*10^-4; // in meter square
+I=e*n*v*A;// in ampere
+disp("Magnitude of current is :"+string(I)+" A")
\ No newline at end of file diff --git a/1730/CH2/EX2.20/Exa2_20.sce b/1730/CH2/EX2.20/Exa2_20.sce new file mode 100755 index 000000000..c1298f663 --- /dev/null +++ b/1730/CH2/EX2.20/Exa2_20.sce @@ -0,0 +1,16 @@ +//Exa2.20
+clc;
+clear;
+close;
+//given data
+alpha20=1/254.5;// in ohm/ohm/degree C
+t2=60;//degree C
+t1=20;//degree C
+rho0=1.6*10^-6;
+alpha60=1/(1/alpha20+(t2-t1));
+disp("Temperature coefficient of resistance at 60 degree C is : "+string(alpha60)+" ohm/ohm/degree C");
+//from alpha20=1/(1/alpha0+20)
+alpha0=1/(1/alpha20-20);
+//Formula rho60=rho0*(1+alpha0*t)
+rho60=rho0*(1+alpha0*t2);
+disp("Specific resistance at 60 degree C is : "+string(rho60)+" ohm-cm")
\ No newline at end of file diff --git a/1730/CH2/EX2.21/Exa2_21.sce b/1730/CH2/EX2.21/Exa2_21.sce new file mode 100755 index 000000000..4ddfb425f --- /dev/null +++ b/1730/CH2/EX2.21/Exa2_21.sce @@ -0,0 +1,13 @@ +//Exa2.21
+clc;
+clear;
+close;
+//given data
+R=95.5;//in ohm
+l=1;//in meter
+d=0.08;//in mm
+d=d*10^-3;//in meter
+a=(%pi*d^2)/4;
+//Formula R=rho*l/a
+rho=R*a/l;
+disp("Resistance of the wire material is : "+string(rho)+" ohm-meter")
\ No newline at end of file diff --git a/1730/CH2/EX2.22/Exa2_22.sce b/1730/CH2/EX2.22/Exa2_22.sce new file mode 100755 index 000000000..c6316d9c4 --- /dev/null +++ b/1730/CH2/EX2.22/Exa2_22.sce @@ -0,0 +1,15 @@ +//Exa2.22
+clc;
+clear;
+close;
+//given data
+R=4;//in ohm
+d=0.0274;//in cm
+d=0.000274;//in meter
+rho=10.3;//in miu ohm-cm
+rho=10.3*10^-8;//in ohm-m
+a=(%pi*d^2)/4;
+
+//Formula R=rho*l/a
+l=R*a/rho;
+disp("Lenght of wire is : "+string(l)+" meters")
\ No newline at end of file diff --git a/1730/CH2/EX2.23/Exa2_23.sce b/1730/CH2/EX2.23/Exa2_23.sce new file mode 100755 index 000000000..7ed4e60c0 --- /dev/null +++ b/1730/CH2/EX2.23/Exa2_23.sce @@ -0,0 +1,15 @@ +//Exa2.23
+clc;
+clear;
+close;
+//given data
+V=220;// in V
+W=100;//in watt
+R100=V^2/W;//in ohm
+alpha20=0.005;
+t1=20;
+t2=2000;
+// since R100=R20*[1+alpha20*(t2-t1)]
+R20=R100/(1+alpha20 * (t2-t1));
+I20=V/R20;
+disp("Current flowing at the instant of switching on a 100 W metal filament lamp is : "+string(I20)+" A")
\ No newline at end of file diff --git a/1730/CH2/EX2.24/Exa2_24.sce b/1730/CH2/EX2.24/Exa2_24.sce new file mode 100755 index 000000000..fc4e8ae53 --- /dev/null +++ b/1730/CH2/EX2.24/Exa2_24.sce @@ -0,0 +1,20 @@ +//Exa2.24
+clc;
+clear;
+close;
+//given data
+t2=50;// in degree C
+t1=20; // in degree C
+R1=600;// in ohm
+R2=300;// in ohm
+
+// Let resistance of 600 ohm resistance at 50 degree C = R_600
+R_600=R1*(1+(t2-t1)*.001);// in ohm
+// Let resistance of 300 ohm resistance at 50 degree C = R_300
+R_300=R2*(1+(t2-t1)*.004);// in ohm
+R_50=R_600+R_300;// in ohm
+disp("Resistance of combination at 50degree C is : "+string(R_50)+ " ohm")
+R_20=R1+R2;// in ohm
+alpha_20=(R_50/R_20-1)/(t2-t1);
+alpha_50=1/(1/(alpha_20)+(t2-t1));
+disp("Effective temperature coefficient of combination at 50 degree C is : "+string(alpha_50)+" or 1/530 per degree C")
diff --git a/1730/CH2/EX2.25/Exa2_25.sce b/1730/CH2/EX2.25/Exa2_25.sce new file mode 100755 index 000000000..c230837cf --- /dev/null +++ b/1730/CH2/EX2.25/Exa2_25.sce @@ -0,0 +1,11 @@ +//Exa2.25
+clc;
+clear;
+close;
+//given data
+toh=1.73//in micro-ohm-cm
+tohDesh=1.74;//in micro-ohm-cm
+sigma=1/toh;// conductivities of pure metal
+sigmaDesh=1/tohDesh;//conductivities metal with impurity
+PercentImpurity=((sigma-sigmaDesh)/sigma)*100;
+disp(" Percent impurity in the rod is : "+string(PercentImpurity)+" %")
\ No newline at end of file diff --git a/1730/CH2/EX2.26/Exa2_26.sce b/1730/CH2/EX2.26/Exa2_26.sce new file mode 100755 index 000000000..0a46745e5 --- /dev/null +++ b/1730/CH2/EX2.26/Exa2_26.sce @@ -0,0 +1,12 @@ +//Exa2.26
+clc;
+clear;
+close;
+//given data
+ElectricalResistivity=2.86*10^-6;//in ohm-cm
+sigma=1/ElectricalResistivity;
+T=273+20;// in Kelvin (Temperature)
+//Formula K/(sigma*T)=2.44*10^-8
+disp("Thermal conductivity of Al ")
+K=(2.44*10^-8*T*sigma);
+disp(K);
diff --git a/1730/CH2/EX2.27/Exa2_27.sce b/1730/CH2/EX2.27/Exa2_27.sce new file mode 100755 index 000000000..960e74a3e --- /dev/null +++ b/1730/CH2/EX2.27/Exa2_27.sce @@ -0,0 +1,11 @@ +//Exa2.27
+clc;
+clear;
+close;
+//given data
+E_AC=16*10^-6;//in V per degree C
+E_BC=-34*10^-6;//in V per degree C
+//By law of successive contact (or intermediate metals)
+E_AB=E_AC-E_BC;//in V/degree C
+E_AB=E_AB*10^6;// in miu V/degree C
+disp("EMF of iron with respect to constantan is : "+string(E_AB)+" micro V/degree C")
\ No newline at end of file diff --git a/1730/CH2/EX2.28/Exa2_28.sce b/1730/CH2/EX2.28/Exa2_28.sce new file mode 100755 index 000000000..cca71a1b1 --- /dev/null +++ b/1730/CH2/EX2.28/Exa2_28.sce @@ -0,0 +1,14 @@ +//Exa2.28
+clc;
+clear;
+close;
+//given data
+E_AC=7.4;//in miu V per degree C
+E_BC=-34.4;//in miu V per degree C
+//By law of successive contact (or intermediate metals)
+E_AB=E_AC-E_BC;//in miu V/degree C
+E_AB=E_AB*10^-6;// in V/degree C
+// Let Thermo-emf for a temperature difference of 250 degree C = EMF_250
+EMF_250=E_AB*250;// in V
+EMF_250=EMF_250*10^3;//in mV
+disp("Termo-emf for a temperature difference of 250 degree C is "+string(EMF_250)+" mV");
diff --git a/1730/CH2/EX2.29/Exa2_29.sce b/1730/CH2/EX2.29/Exa2_29.sce new file mode 100755 index 000000000..b7fc82ac7 --- /dev/null +++ b/1730/CH2/EX2.29/Exa2_29.sce @@ -0,0 +1,20 @@ +//Exa2.29
+clc;
+clear;
+close;
+//given data
+//Take iron as metal A and copper as metal B with respect to lead
+//For metal A:
+p_A=16.2;
+q_A=-0.02;
+//For metal B:
+p_B=2.78;
+q_B=+0.009;
+p_AB=p_A-p_B;
+q_AB=q_A-q_B;
+T2=210;//in degree C
+T1=10;// in degree C
+E=p_AB*(T2-T1)+q_AB/2*(T2^2-T1^2);
+disp("Thermo-electric emf is : "+string(E)+" micro V");
+Tn=-p_AB/q_AB;
+disp("Neutral temperature is : "+string(Tn)+" degree C");
\ No newline at end of file diff --git a/1730/CH2/EX2.3/Exa2_3.sce b/1730/CH2/EX2.3/Exa2_3.sce new file mode 100755 index 000000000..eec2ba30c --- /dev/null +++ b/1730/CH2/EX2.3/Exa2_3.sce @@ -0,0 +1,16 @@ +//Exa2.3
+clc;
+clear;
+close;
+//given data :
+miu_e=7.04*10^-3; //in m^2/V-s
+n=5.8*10^28 ; // in /m^3
+e=1.6*10^-19; // in coulomb
+m=9.1*10^-31;//in kg
+//(i) Relaxation time,
+tau=miu_e/e*m;
+disp("Relaxation time is : "+string(tau)+" second");
+sigma=(n*e*miu_e);
+//(ii) Resistivity of conductor,
+rho=1/sigma;
+disp("Resistivity of conductor is : "+string(rho)+" ohm-meter");
\ No newline at end of file diff --git a/1730/CH2/EX2.30/Exa2_30.sce b/1730/CH2/EX2.30/Exa2_30.sce new file mode 100755 index 000000000..24843b68d --- /dev/null +++ b/1730/CH2/EX2.30/Exa2_30.sce @@ -0,0 +1,24 @@ +//Exa2.30
+clc;
+clear;
+close;
+//given data
+p_A=17.34;
+q_A=-0.0487;
+p_B=1.36;
+q_B=+0.0095;
+p_AB=p_A-p_B;
+q_AB=q_A-q_B;
+T2=210;//in degree C
+T1=10;// in degree C
+E=p_AB*(T2-T1)+q_AB/2*(T2^2-T1^2);//in miu V
+E=E*10^-3;//in m V
+disp("Thermo-electric emf is : "+string(ceil(E))+" m V");
+Tn=-p_AB/q_AB;
+disp("Neutral temperature is : "+string(ceil(Tn))+" degree C");
+Tc=10;// in degree C
+Ti=Tn+(Tn-Tc);
+disp("Temperature of inversion is : "+string(ceil(Ti))+" degree C");
+E_max=15.98*(275-10)-1/2*0.0582*[275^2-10^2];//in miu V
+E_max=E_max*10^-3;// in mV
+disp("Maximum possible thermo-electric emf at neutral temperature that is at 275 degree C is : "+string(E_max)+" mV");
\ No newline at end of file diff --git a/1730/CH2/EX2.31/Exa2_31.sce b/1730/CH2/EX2.31/Exa2_31.sce new file mode 100755 index 000000000..7d9400937 --- /dev/null +++ b/1730/CH2/EX2.31/Exa2_31.sce @@ -0,0 +1,14 @@ +//Exa2.31
+clc;
+clear;
+close;
+//given data
+rho=146*10^-6// in ohm-cm
+a=1;//in cm^2
+l=1;//in cm
+// let current = i
+i=0.06;//in amp
+R=rho*l/a;//in ohm
+// Let potential difference per degree centigrade = P
+P=i*R;// By Ohm's law
+disp("Potential difference per degree centigrade is : "+string(P)+" volt");
\ No newline at end of file diff --git a/1730/CH2/EX2.32/Exa2_32.sce b/1730/CH2/EX2.32/Exa2_32.sce new file mode 100755 index 000000000..f5d88e8e1 --- /dev/null +++ b/1730/CH2/EX2.32/Exa2_32.sce @@ -0,0 +1,23 @@ +//Exa2.32
+clc;
+clear;
+close;
+//given data
+T_lower=10;// in degree C
+T_upper=150;// in degree C
+
+// Thermo-electric power for iron at any temperature T degree C w.r.t. lead is given by (17.34-0.0487 T)*10^-6 and that for copper by (1.36-.0095 T)*10^-6
+
+// Thermo-electric power, P=dE/dT
+// or dE=P*dT
+// Thermo-emf for copper between temperature 10 degree C and 150 degree C,
+E_c= integrate('(1.36-0.0095*T)*10^-6','T',T_lower,T_upper);
+
+// Thermo-emf for iron between temperature 10 degree C and 150 degree C,
+E_i= integrate('(17.34-0.0487*T)*10^-6','T',T_lower,T_upper);
+
+// Thermo-emp for copper-iron thermo-couple
+E=E_i-E_c;
+
+disp("Thermo-emf for iron between temperature 10 degree C and 150 degree C is : "+string(E*10^6)+" micro V");
+
diff --git a/1730/CH2/EX2.34/Exa2_34.sce b/1730/CH2/EX2.34/Exa2_34.sce new file mode 100755 index 000000000..d6d5d889e --- /dev/null +++ b/1730/CH2/EX2.34/Exa2_34.sce @@ -0,0 +1,10 @@ +//Exa2.34
+clc;
+clear;
+close;
+//given data
+Hc_0=8*10^5;//in A/m
+Tc=7.26;//in K
+T=4;//in K
+Hc_T=Hc_0*[1-(T/Tc)^2]';
+disp("The critical value of magnetic field at T=4 K is : "+string(Hc_T)+" A/m");
\ No newline at end of file diff --git a/1730/CH2/EX2.35/Exa2_35.sce b/1730/CH2/EX2.35/Exa2_35.sce new file mode 100755 index 000000000..a569b8a1a --- /dev/null +++ b/1730/CH2/EX2.35/Exa2_35.sce @@ -0,0 +1,11 @@ +//Exa2.35
+clc;
+clear;
+close;
+//given data
+Hc=7900;//in A/m
+d=1;//in mm
+r=d/2;//in mm
+r=r*10^-3;//in m
+Ic=2*%pi*r*Hc;
+disp("Critical current is : "+string(Ic)+" A");
\ No newline at end of file diff --git a/1730/CH2/EX2.36/Exa2_36.sce b/1730/CH2/EX2.36/Exa2_36.sce new file mode 100755 index 000000000..36c8b477b --- /dev/null +++ b/1730/CH2/EX2.36/Exa2_36.sce @@ -0,0 +1,15 @@ +//Exa2.36
+clc;
+clear;
+close;
+//given data
+Hc_0=8*10^4;//in A/m
+Tc=7.2;//in K
+T=4.5;//in K
+d=1;//in mm
+r=d/2;//in mm
+r=r*10^-3;//in m
+Hc=Hc_0*[1-(T/Tc)^2]';
+disp("The critical field at T=4.5 K is : "+string(Hc)+" A/m");
+Ic=2*%pi*r*Hc;
+disp("Critical current is : "+string(Ic)+" A");
\ No newline at end of file diff --git a/1730/CH2/EX2.37/Exa2_37.sce b/1730/CH2/EX2.37/Exa2_37.sce new file mode 100755 index 000000000..1b1353db5 --- /dev/null +++ b/1730/CH2/EX2.37/Exa2_37.sce @@ -0,0 +1,27 @@ +//Exa2.37
+clc;
+clear;
+close;
+format('v',5)
+// Formula R=rho*l/a
+//putting value for copper wire
+R=2;// in ohm
+l=100;//in meter
+rho=1.7*10^-8;// (for copper)
+a=rho*l/R;//in meter
+a=a*10^6;// in mm
+// Formula a=%pi/4*d^2
+d_copper=sqrt(a*4/%pi); // (d_copper is diameter for copper)
+
+// Formula R=rho*l/a
+//putting value for Aluminium wire
+R=2;// in ohm
+l=100;//in meter
+rho=2.8*10^-8;// (for aluminium)
+a=rho*l/R;//in meter
+a=a*10^6;// in mm
+// Formula a=%pi/4*d^2
+d_aluminium=sqrt(a*4/%pi); // (d_aluminium is diameter for aluminium)
+DiaRatio=d_aluminium/d_copper; // (DiaRatio is ratio of diameter of aluminium and copper)
+disp("The diameter of the aluminium wire is "+string(DiaRatio)+" times that of copper wire");
+
diff --git a/1730/CH2/EX2.38/Exa2_38.sce b/1730/CH2/EX2.38/Exa2_38.sce new file mode 100755 index 000000000..2bdbe4808 --- /dev/null +++ b/1730/CH2/EX2.38/Exa2_38.sce @@ -0,0 +1,19 @@ +//Exa2.38
+clc;
+clear;
+close;
+format('v',7)
+//given data
+l=60;// in cm
+l=l*10^-2;//in meter
+d=20;// in cm
+d=d*10^-2;//in meter
+D=35;// in cm;
+D=D*10^-2;//in meter
+r1=d/2;
+r2=D/2;
+rho=8000;// in ohm-cm
+rho=80;// in ohm-m
+// Let Insulation resistance of the liquid resistor = Ir
+Ir=[rho/(2*%pi*l)]*log(r2/r1);
+disp(" Insulation resistance of the liquid resistor is : "+string(Ir)+" ohm")
\ No newline at end of file diff --git a/1730/CH2/EX2.39/Exa2_39.sce b/1730/CH2/EX2.39/Exa2_39.sce new file mode 100755 index 000000000..027ff610f --- /dev/null +++ b/1730/CH2/EX2.39/Exa2_39.sce @@ -0,0 +1,18 @@ +//Exa2.39
+clc;
+clear;
+close;
+format('v',11)
+//given data
+R_desh=1820;// in M ohm
+R_desh=R_desh*10^6;// in ohm
+d1=1.5;// in cm
+d1=d1*10^-2;// in meter
+d2=5;// in cm
+d2=d2*10^-2;// in meter
+l=3000;// in meter
+r1=d1/2;
+r2=d2/2;
+
+rho= (2*%pi*l*R_desh)/log(r2/r1);
+disp("Resistivity of dielectric is : "+string(rho)+" ohm meter")
\ No newline at end of file diff --git a/1730/CH2/EX2.4/Exa2_4.sce b/1730/CH2/EX2.4/Exa2_4.sce new file mode 100755 index 000000000..cc963a86d --- /dev/null +++ b/1730/CH2/EX2.4/Exa2_4.sce @@ -0,0 +1,17 @@ +//Exa4
+clc;
+clear;
+close;
+//given data :
+rho=1.73*10^-8;//in ohm-meter
+toh=2.42*10^-14 ; //in second
+e=1.6*10^-19; //in C
+m=9.1*10^-31;//in kg
+sigma=1/rho;
+//(i) Number of free electrons per m^3
+n=(m*sigma)/(e^2*toh);
+disp("Number of free electrons per cube meter is : "+string(n));
+//(ii) Mobility of electrons,
+miu_e=(e*toh)/m;
+disp("Mobility of electrons is : "+string(miu_e)+" m^2/V-s");
+//Note: Answer in the book is wrong
\ No newline at end of file diff --git a/1730/CH2/EX2.40/Exa2_40.sce b/1730/CH2/EX2.40/Exa2_40.sce new file mode 100755 index 000000000..9204490a5 --- /dev/null +++ b/1730/CH2/EX2.40/Exa2_40.sce @@ -0,0 +1,30 @@ +//Exa2.40
+clc;
+clear;
+close;
+format('v',9)
+// given data
+// First Case:
+r1=1.5/2;// in cm
+// let radius thickness of insulation = r1_t
+r1_t=1.5;// in cm
+r2=r1+r1_t;
+R_desh=500;// in M ohm
+R_desh=R_desh*10^6;// in ohm
+// Second case:
+r1_desh=r1;// in cm (as before)
+// let radius thickness of insulation = r2_t
+r2_t=2.5;// in cm
+r2_desh=r1+r2_t;
+// since Insulation resistance , R_desh= sigma/(2*%pi*l)*log(r2/r1) and
+// R1_desh= sigma/(2*%pi*l)*log(r2_desh/r1_desh)
+// Dividing R1_desh by R1, We get
+// R1_desh/R_desh = log(r2_desh/r1_desh)/log(r2/r1)
+// Let R = R1_desh/R_desh, Now
+R= log(r2_desh/r1_desh)/log(r2/r1);
+R1_desh=R*R_desh;
+disp("New insulation resistance is : "+string(R1_desh*10^-6)+" M ohm");
+
+
+
+
diff --git a/1730/CH2/EX2.41/Exa2_41.sce b/1730/CH2/EX2.41/Exa2_41.sce new file mode 100755 index 000000000..e42fa370e --- /dev/null +++ b/1730/CH2/EX2.41/Exa2_41.sce @@ -0,0 +1,31 @@ +//Exa2.41
+clc;
+clear;
+close;
+// given data
+t1=20;// in degree C
+t2=36;// in degree C
+alpha_20=0.0043;// in per degree C (Temperature Coefficient)
+InsulationResistance=480*10^6;// in ohm
+copper_cond_res=0.7;// in ohm (copper conductor resistance)
+l=500*10^-3;// in kilo meter (length)
+R1_desh=InsulationResistance * l;// in ohm
+
+// From Formula log(R2_desh)= log(R1_desh-K*(t2-t1))
+// K= 1/(t2-t1)*log(R1_desh/R2_desh)
+// since when t2-t1=10 degree C and R1_desh/R2_desh= 2
+
+K=1/10*log(2);
+
+// (i) Insulation resistance at any temperature t2, R2_desh is given by
+ logR2_desh= log(R1_desh)-(t2-t1)/10* log(2);
+ R2_desh= %e^logR2_desh
+
+ disp("(i) Insulation resistance at any temperature : "+string(R2_desh*10^-6)+" Mega ohm");
+
+// (ii)
+ R_20= copper_cond_res/l;// in ohm
+ R_36=R_20*[1+alpha_20*(t2-t1)];
+
+ disp("Resistance at 36 degree C is : "+string(R_36)+" ohm")
+
\ No newline at end of file diff --git a/1730/CH2/EX2.5/Exa2_5.sce b/1730/CH2/EX2.5/Exa2_5.sce new file mode 100755 index 000000000..c65585e52 --- /dev/null +++ b/1730/CH2/EX2.5/Exa2_5.sce @@ -0,0 +1,17 @@ +//Exa5
+clc;
+clear;
+close;
+//given data :
+rho=1.54*10^-8; //in ohm-meter
+//since sigma=1/roh
+sigma=1/rho;
+n=5.8*10^28 ; //unit less
+e=1.6*10^-19; //in C (electron charge)
+m=9.1*10^-31;//in kg (mass of electron)
+//(i) Relaxation time
+toh=(sigma*m)/(n*e^2);
+disp("(i) Relaxation time of electrons is : "+string(toh)+" seconds");
+//(ii) Mobility of electrons,
+miu_e=(e*toh)/m;
+disp("(ii) Mobility of electrons is : "+string(miu_e)+" m^2/V-s");
diff --git a/1730/CH2/EX2.6/Exa2_6.sce b/1730/CH2/EX2.6/Exa2_6.sce new file mode 100755 index 000000000..f18ada8d2 --- /dev/null +++ b/1730/CH2/EX2.6/Exa2_6.sce @@ -0,0 +1,14 @@ +//Exa2.6
+clc;
+clear;
+close;
+//given data :
+rho=1.7*10^-8; //in ohm-meter
+//since sigma=1/roh
+sigma=1/rho;
+n=8.5*10^28 ; //unit less
+e=1.6*10^-19; //in C (electron charge)
+m=9.1*10^-31;//in kg
+// Relaxation time
+toh=(sigma*m)/(n*e^2);
+disp(" Relaxation time of electrons is : "+string(toh)+" seconds");
diff --git a/1730/CH2/EX2.7/Exa2_7.sce b/1730/CH2/EX2.7/Exa2_7.sce new file mode 100755 index 000000000..bab2afb35 --- /dev/null +++ b/1730/CH2/EX2.7/Exa2_7.sce @@ -0,0 +1,19 @@ +//Exa2.7
+clc;
+clear;
+close;
+format('v',11);
+//given data :
+E=100;//in V/m
+rho=1.5*10^-8; //in ohm-meter
+//since sigma=1/roh
+sigma=1/rho;
+n=6*10^28 ; //unit less
+e=1.601*10^-19; //in C
+m=9.107*10^-31;//in kg
+// Relaxation time
+toh=(sigma*m)/(n*e^2);
+disp("(i) Relaxation time of electrons is : "+string(toh)+" seconds");
+//Drift velocity
+v=(e*E*toh)/m;
+disp("(ii) Drift velocity is : "+string(v)+" m/s");
diff --git a/1730/CH2/EX2.8/Exa2_8.sce b/1730/CH2/EX2.8/Exa2_8.sce new file mode 100755 index 000000000..ab35f9fc4 --- /dev/null +++ b/1730/CH2/EX2.8/Exa2_8.sce @@ -0,0 +1,32 @@ +//Exa2.8
+clc;
+clear;
+close;
+//given data :
+//Diameter of copper wire
+d=2;//in milimeter
+d=.002;//in meter
+//conductivity of copper
+nita=5.8*10^7;//in second per meter
+//Electron mobility
+miu_e=.0032;//in meter square per volt-second
+//Applied electric field
+E=20;//in mV/m
+E=.02; //in V/m
+e=1.6*10^-19;
+//(i) From eq. (2.13)
+//charge density
+n=nita/(e*miu_e);//in per meter cube
+disp("(i) Charge density is : "+string(n)+" /meter cube");
+//(ii) from eq. (2.9)
+//current density
+J=nita*E;// in A/m^2
+disp("(ii) Current density is : "+string(J)+" A/m^2");
+//(iii) Current flowing in the wire I=J* Area of x-section of wire
+// Area of x-section of wire= (%pi*d^2)/4
+I=(J*%pi*d^2)/4;
+disp("(iii) Current flowing in the wire is : "+string(I)+" A");
+//(iv) form eq.2.14
+//Electron drift velocity
+v=miu_e*E;
+disp("(iv) Electron drift velocity is :"+string(v)+" m/s");
diff --git a/1730/CH2/EX2.9/Exa2_9.sce b/1730/CH2/EX2.9/Exa2_9.sce new file mode 100755 index 000000000..39c075c54 --- /dev/null +++ b/1730/CH2/EX2.9/Exa2_9.sce @@ -0,0 +1,16 @@ +//Exa2.9
+clc;
+clear;
+close;
+//given data
+rho=0.5; // in ohm-meter
+J=100; //in A/m^2
+miu_e=0.4; //in m^2/V-s
+E=J*rho; // since E=J/sigma
+// Formula v=miu_e*E
+v=miu_e*E;
+disp(" Electron drift velocity is : "+string(v)+" m/s");
+disp("Time taken by the electron to travel 10*10^-6 m in crystal")
+// let Time taken by the electron to travel 10*10^-6 m in crystal = t
+t=(10*10^-6)/v;
+disp(string(t)+" second");
diff --git a/1730/CH3/EX3.1/Exa3_1.sce b/1730/CH3/EX3.1/Exa3_1.sce new file mode 100755 index 000000000..eb7f1e22b --- /dev/null +++ b/1730/CH3/EX3.1/Exa3_1.sce @@ -0,0 +1,11 @@ +//Exa3.1
+clc;
+clear;
+close;
+// given data
+E=2.1;//in eV
+E=E*1.602*10^-19;// in J
+m=9.107*10^-31;// in kg (mass of electron)
+// Formula E=1/2*m*v^2
+v=sqrt(2*E/m);
+disp(" Velocity of electron at Fermi-level is : "+string(v)+" m/s")
\ No newline at end of file diff --git a/1730/CH3/EX3.10/Exa3_10.sce b/1730/CH3/EX3.10/Exa3_10.sce new file mode 100755 index 000000000..4d449d744 --- /dev/null +++ b/1730/CH3/EX3.10/Exa3_10.sce @@ -0,0 +1,32 @@ +//Exa3.10
+clc;
+clear;
+close;
+// given data
+e=1.6*10^-19;//in C
+miu_e=.38;// in m^2/V-s
+miu_h=.18;// in m^2/V-s
+l=25;// in mm (length)
+l=l*10^-3;// in m
+w=4;// in mm (width)
+w=w*10^-3;// in m
+t=1.5;// in mm (thickness)
+t=t*10^-3;// in m
+V=10;// in V
+l=25;// in mm
+l=l*10^-3;//in m
+E=V/l;
+//(i)
+v_e=miu_e*E;
+v_h=miu_h*E;
+disp("Electron drift velocity is : "+string(v_e)+" m/s");
+disp("Hole drift velocity is : "+string(v_h)+" m/s");
+n_i=2.5*10^19;//in /m^3
+//(ii)
+sigma_i=n_i*e*(miu_e+miu_h);
+disp("Intrinsic conductiviry of Ge is : "+string(sigma_i)+" /ohm-cm");
+//(iii)
+a=w*t;
+I=sigma_i*E*a;// in amp
+I=I*10^3;// in m A
+disp("Total current is : "+string(I)+" mA");
diff --git a/1730/CH3/EX3.11/Exa3_11.sce b/1730/CH3/EX3.11/Exa3_11.sce new file mode 100755 index 000000000..75e607a37 --- /dev/null +++ b/1730/CH3/EX3.11/Exa3_11.sce @@ -0,0 +1,14 @@ +//Exa3.11
+clc;
+clear;
+close;
+// given data
+k_desh=1.38*10^-23;// in J degree^-1
+e=1.602*10^-19;// in C
+miu_e=3600;// in cm^2/V-s
+miu_h=1700;// in cm^2/V-s
+T=300;// in K
+D_e=miu_e*k_desh*T/e;
+disp("Diffusion constant of electrons is : "+string(D_e)+" cm^2/s");
+D_h=miu_h*k_desh*T/e;
+disp("Diffusion constant of holes is : "+string(D_h)+" cm^2/s");
diff --git a/1730/CH3/EX3.12/Exa3_12.sce b/1730/CH3/EX3.12/Exa3_12.sce new file mode 100755 index 000000000..064e187ee --- /dev/null +++ b/1730/CH3/EX3.12/Exa3_12.sce @@ -0,0 +1,15 @@ +//Exa3.12
+clc;
+clear;
+close;
+// given data
+e=1.6*10^-19;// in coulomb
+Resistivity=9*10^-3;// in ohm-m
+R_H=3.6*10^-4;// in m^3 coulomb^-1 (Hall Coefficient)
+sigma=1/Resistivity;
+rho=1/R_H;
+n=rho/e;
+disp("Density of charge carriers is : "+string(n)+" /m^3");
+miu=sigma*R_H;
+disp("Mobility is : "+string(miu)+" m^2/V-s");
+
diff --git a/1730/CH3/EX3.13/Exa3_13.sce b/1730/CH3/EX3.13/Exa3_13.sce new file mode 100755 index 000000000..b20d68c5d --- /dev/null +++ b/1730/CH3/EX3.13/Exa3_13.sce @@ -0,0 +1,15 @@ +//Exa3.13
+clc;
+clear;
+close;
+// given data
+E_x=100;// in V/m
+e=1.6*10^-19;// in C
+R_H=0.0145;// in m^3/coulomb
+miu_n=0.36;// in m^2/volt-second
+// Formula R_H=1/(n*e)
+n=1/(R_H*e);
+sigma=n*e*miu_n;
+J=sigma*E_x;
+disp("Current density is : "+string(J)+" A per m^2");
+
diff --git a/1730/CH3/EX3.14/Exa3_14.sce b/1730/CH3/EX3.14/Exa3_14.sce new file mode 100755 index 000000000..b17f98d1a --- /dev/null +++ b/1730/CH3/EX3.14/Exa3_14.sce @@ -0,0 +1,12 @@ +//Exa3.14
+clc;
+clear;
+close;
+// given data
+Resistivity=9;// in milli-ohm-m
+Resistivity=9*10^-3;// in ohm-m
+miu=0.03;// in m^2/V-s
+sigma=1/Resistivity;
+R_H=miu/sigma;
+disp("Half coefficient is : "+string(R_H)+" m^3/C");
+
diff --git a/1730/CH3/EX3.15/Exa3_15.sce b/1730/CH3/EX3.15/Exa3_15.sce new file mode 100755 index 000000000..50dcd56e3 --- /dev/null +++ b/1730/CH3/EX3.15/Exa3_15.sce @@ -0,0 +1,15 @@ +//Exa3.15
+clc;
+clear;
+close;
+// given data
+E_x=5;// in V/cm
+miu_e=3800;// in cm^2/V-s
+B_z=0.1;// in Wb/m^2
+d=4;// in mm
+d=d*10^-3;// in m
+v=miu_e*E_x;//in cm/second
+v=v*10^-2;// in m/second
+V_H=B_z*v*d;// in V
+V_H=V_H*10^3;// in m V
+disp("Hall voltage is : "+string(V_H)+" mV");
diff --git a/1730/CH3/EX3.16/Exa3_16.sce b/1730/CH3/EX3.16/Exa3_16.sce new file mode 100755 index 000000000..35f44ec8d --- /dev/null +++ b/1730/CH3/EX3.16/Exa3_16.sce @@ -0,0 +1,20 @@ +//Exa3.16
+clc;
+clear;
+close;
+// given data
+rho=200;// in Kilo ohm-cm
+rho=rho*10^-2;// in kilo ohm m
+rho=rho*10^3;// in ohm meter
+sigma=1/rho;
+V_H=50;// in mV
+V_H=V_H*10^-3;//in V
+I=10;// in miu A
+I=I*10^-6;//in A
+B_z=0.1;// in Wb/m^2
+w=3;//in mm
+w=w*10^-3;//in meter
+R_H=V_H*w/(B_z*I);
+disp("Mobility of holes in p-type silicon bar is : ")
+miu_h=sigma*R_H;
+disp(string(miu_h)+" m^2/V-s");
diff --git a/1730/CH3/EX3.17/Exa3_17.sce b/1730/CH3/EX3.17/Exa3_17.sce new file mode 100755 index 000000000..e12f638d5 --- /dev/null +++ b/1730/CH3/EX3.17/Exa3_17.sce @@ -0,0 +1,18 @@ +//Exa3.17
+clc;
+clear;
+close;
+// given data
+N_D=1*10^21;// in /m^3
+B_Z=0.2;// in T
+J=600;// in A/m^2
+n=N_D;
+d=4;//in mm
+d=d*10^-3;// in meterr
+e=1.6*10^-19;// in C (electron charge)
+// Formula V_H*w/(B_Z*I) = 1/(n*e) , hence V_H=B_Z*I/(n*e*w)
+// where I=J*w*d
+// putting I=J*w*d in V_H=B_Z*I/(n*e*w), we get
+V_H=B_Z*J*d/(n*e);// in V
+V_H=V_H*10^3;// in mV
+disp("Hall Voltage is : "+string(V_H)+" mV");
diff --git a/1730/CH3/EX3.18/Exa3_18.sce b/1730/CH3/EX3.18/Exa3_18.sce new file mode 100755 index 000000000..de16bcb0a --- /dev/null +++ b/1730/CH3/EX3.18/Exa3_18.sce @@ -0,0 +1,13 @@ +//Exa3.18
+clc;
+clear;
+close;
+// given data
+w=0.1;// in mm
+B_Z=0.6;// in T
+R_H=3.8*10^-4;// in m^3/C
+I=10;// in mA
+I=I*10^-3;//in A
+V_H=R_H*B_Z*I/w;// in V
+V_H=V_H*10^6;// in V
+disp("Hall voltage is : "+string(V_H)+" micro volt");
diff --git a/1730/CH3/EX3.19/Exa3_19.sce b/1730/CH3/EX3.19/Exa3_19.sce new file mode 100755 index 000000000..853fc63c8 --- /dev/null +++ b/1730/CH3/EX3.19/Exa3_19.sce @@ -0,0 +1,14 @@ +//Exa3.19
+clc;
+clear;
+close;
+// given data
+Resistivity=9.23*10^-3;// in ohm-m
+R_H=3.84*10^-4;//in m^3/C (Hall Coefficient)
+sigma=1/Resistivity;
+rho=1/R_H;
+e=1.6*10^-19;// in C (electron charge)
+n=rho/e;
+disp("Density of charge carriers is : "+string(n)+" /m^2");
+miu=sigma*R_H;
+disp("Mobility is : "+string(miu)+" m^2/V-s")
\ No newline at end of file diff --git a/1730/CH3/EX3.2/Exa3_2.sce b/1730/CH3/EX3.2/Exa3_2.sce new file mode 100755 index 000000000..f09908537 --- /dev/null +++ b/1730/CH3/EX3.2/Exa3_2.sce @@ -0,0 +1,22 @@ +//Exa3.2
+clc;
+clear;
+close;
+// given data
+E=5.5;// in eV; (Fermi energy)
+E=E*1.6*10^-19;// in J
+miu_e=7.04*10^-3; //in m^2/V-s (Mobility of electrons)
+n=5.8*10^28 ; // in /m^3 (Number of conduction electrons/m^3)
+e=1.6*10^-19; // in coulomb
+m=9.1*10^-31;//in kg
+//(i) Relaxation time,
+tau=miu_e/e*m;
+disp("(i) Relaxation time is : "+string(tau)+" second");
+sigma=(n*e*miu_e);
+//(ii) Resistivity of conductor,
+rho=1/sigma;
+disp("(ii) Resistivity of conductor is : "+string(rho)+" ohm-meter");
+// (iii) Let Velocity of electrons with fermi energy = v
+v=sqrt(2*E/m);
+disp("(iii) Velocity of electron with Fermi-level is : "+string(v)+" m/s");
+
diff --git a/1730/CH3/EX3.20/Exa3_20.sce b/1730/CH3/EX3.20/Exa3_20.sce new file mode 100755 index 000000000..0f2d0bacc --- /dev/null +++ b/1730/CH3/EX3.20/Exa3_20.sce @@ -0,0 +1,11 @@ +//Exa3.20
+clc;
+clear;
+close;
+// given data
+B=0.48;// in Wb/m^2
+R_H=3.55*10^-4;// in m^3/C
+Resistivity=.00912;// in ohm
+sigma=1/Resistivity;
+theta_H=atand(sigma*B*R_H);
+disp("Hall angle is : "+string(theta_H)+" degree")
\ No newline at end of file diff --git a/1730/CH3/EX3.21/Exa3_21.sce b/1730/CH3/EX3.21/Exa3_21.sce new file mode 100755 index 000000000..e61b2bb94 --- /dev/null +++ b/1730/CH3/EX3.21/Exa3_21.sce @@ -0,0 +1,17 @@ +//Exa3.21
+clc;
+clear;
+close;
+// given data
+T=27;// in degree C
+T=T+273;// in K
+// Let E_C - E_F =E_CF
+E_CF=0.3;// in eV
+// Formula E_C - E_F = k*T*log(n_C/N_D)
+// Let log(n_C/N_D) = L, so
+L=E_CF/T;
+T_desh=55;// in degree C
+T_desh=T_desh+273;// in K
+//At temperature T_desh
+new_fermi_level= T_desh*L; // where L=log(n_C/N_D)
+disp("The new position of Fermi Level is : "+string(new_fermi_level)+" V");
\ No newline at end of file diff --git a/1730/CH3/EX3.22/Exa3_22.sce b/1730/CH3/EX3.22/Exa3_22.sce new file mode 100755 index 000000000..fcaf5f3b1 --- /dev/null +++ b/1730/CH3/EX3.22/Exa3_22.sce @@ -0,0 +1,12 @@ +//Exa3.22
+clc;
+clear;
+close;
+// given data
+N_A=8*10^14;// in /cm^3
+N_D=N_A;
+n_i=2*10^13;// in /cm^3
+k=8.61*10^-5;// in eV/K
+T=300;// in K
+V_0=k*T*log(N_D*N_A/n_i^2);
+disp("Potential barrier is : "+string(V_0)+" V");
\ No newline at end of file diff --git a/1730/CH3/EX3.23/Exa3_23.sce b/1730/CH3/EX3.23/Exa3_23.sce new file mode 100755 index 000000000..16ff2d0fb --- /dev/null +++ b/1730/CH3/EX3.23/Exa3_23.sce @@ -0,0 +1,24 @@ +//Exa3.23
+clc;
+clear;
+close;
+// given data
+// (i) when
+I_D=2;// in mA
+I_D=I_D*10^-3;// in A
+V_D=0.5;// in V
+R1=V_D/I_D;
+disp("Resistace is : "+string(R1)+" ohm");
+// (ii) when
+I_D=20;// in mA
+I_D=I_D*10^-3;// in A
+V_D=0.8;// in V
+R2=V_D/I_D;
+disp("Resistace is : "+string(R2)+" ohm");
+// (ii) when
+I_D=-1;// in miu A
+I_D=I_D*10^-6;// in A
+V_D=-10;// in V
+R3=V_D/I_D;// in ohm
+R3=R3*10^-6;// in M ohm
+disp("Resistace is : "+string(R3)+" M ohm");
diff --git a/1730/CH3/EX3.24/Exa3_24.sce b/1730/CH3/EX3.24/Exa3_24.sce new file mode 100755 index 000000000..abffb465d --- /dev/null +++ b/1730/CH3/EX3.24/Exa3_24.sce @@ -0,0 +1,15 @@ +//Exa3.24
+clc;
+clear;
+close;
+format('v',12)
+// given data
+E_G=0.72;// in eV
+E_F=E_G/2;// in eV
+k=8.61*10^-5; // in eV/K
+T=300;// in K
+// Formula n_C/n = 1/1+%e^(E_G-E_F)/k*T
+// Let n_C/n = N
+N=1/(1+%e^((E_G-E_F)/(k*T)));
+
+disp("Fraction of the total number of electrons (conduction band as well as valence band) : "+string(N));
diff --git a/1730/CH3/EX3.25/Exa3_25.sce b/1730/CH3/EX3.25/Exa3_25.sce new file mode 100755 index 000000000..9b4c5cc3a --- /dev/null +++ b/1730/CH3/EX3.25/Exa3_25.sce @@ -0,0 +1,14 @@ +//Exa3.25
+clc;
+clear;
+close;
+format('v',3)
+// given data
+I_0=.15;// in micro amp
+I_0=I_0*10^-6;// in A
+V=0.12;// in V
+V_T=26;// in mV
+V_T=V_T*10^-3;// in V
+I=I_0*(%e^(V/V_T)-1);// in amp
+I=I*10^6;// in micro amp
+disp("Large reverse bias current is : "+string(I)+" micro amp");
diff --git a/1730/CH3/EX3.26/Exa3_26.sce b/1730/CH3/EX3.26/Exa3_26.sce new file mode 100755 index 000000000..1fb4c27d8 --- /dev/null +++ b/1730/CH3/EX3.26/Exa3_26.sce @@ -0,0 +1,15 @@ +//Exa3.26
+clc;
+clear;
+close;
+format('v',5)
+// given data
+I=.01;// in A
+I_0=2.5*10^-6;// in amp
+nita=2;// for silicon
+V_T=26;// in mV
+V_T=V_T*10^-3;// in V
+// Formula I=I_0*(%e^(V/(nita*V_T))-1);
+V=nita*V_T*log(I/I_0+1);
+disp("Forward voltage is : "+string(V)+" V") ;
+
\ No newline at end of file diff --git a/1730/CH3/EX3.27/Exa3_27.sce b/1730/CH3/EX3.27/Exa3_27.sce new file mode 100755 index 000000000..2e3c9f189 --- /dev/null +++ b/1730/CH3/EX3.27/Exa3_27.sce @@ -0,0 +1,19 @@ +//Exa3.27
+clc;
+clear;
+close;
+// given data
+N_D=10^21;// in m^-3
+N_A=10^22;// in m^-3
+D_e=3.4*10^-3;// in m^2/s
+D_h=1.2*10^-3;// in m^2/s
+L_e=7.1*10^-4;// in m
+L_h=3.5*10^-4;// in m
+n_i=1.602*10^16;// in /m^3
+e=1.6*10^-19;// in C (electron charge)
+// Formula I_0=a*e*[D_h/(L_h*N_D) + D_e/(L_e*N_A)]*n_i^2
+//and
+// Reverse saturation current density = I_0/a = [D_h/(L_h*N_D) + D_e/(L_e*N_A)]*e*n_i^2 , So
+CurrentDensity= [D_h/(L_h*N_D) + D_e/(L_e*N_A)]*e*n_i^2;// in A
+CurrentDensity=CurrentDensity*10^6;// in micro A
+disp("Reverse saturation current density is : "+string(CurrentDensity)+" micro amp");
diff --git a/1730/CH3/EX3.28/Exa3_28.sce b/1730/CH3/EX3.28/Exa3_28.sce new file mode 100755 index 000000000..3f1ef6ff9 --- /dev/null +++ b/1730/CH3/EX3.28/Exa3_28.sce @@ -0,0 +1,25 @@ +//Exa3.28
+clc;
+clear;
+close;
+// given data'
+format('v',13)
+N_D=10^17*10^6;// in m^-3
+N_A=0.5*10^16*10^6;// in atoms/m^3
+epsilon_r=10;// in F/m
+epsilon_o=8.85*10^-12;// in F/m
+epsilon=epsilon_r*epsilon_o;
+e=1.602*10^-19;// in C (electron charge)
+// (i) when no external voltage is applied i.e.
+V=0;
+V_B=0.7;// in V
+W=sqrt(2*epsilon*V_B/e*(1/N_A+1/N_D));
+disp("Junction width is : "+string(W)+" m");
+// (ii) when external voltage of -10 V is applied i.e.
+V=-10;// in V
+V_o=0.7;// in V
+V_B=V_o-V;
+W=sqrt(2*epsilon*V_B/e*(1/N_A+1/N_D));
+disp("Junction width is : "+string(W)+" m");
+
+// Note: Answer in the book is wrong
diff --git a/1730/CH3/EX3.3/Exa3_3.sce b/1730/CH3/EX3.3/Exa3_3.sce new file mode 100755 index 000000000..553489438 --- /dev/null +++ b/1730/CH3/EX3.3/Exa3_3.sce @@ -0,0 +1,16 @@ +//Exa3.3
+clc;
+clear;
+close;
+// given data
+n_i=2.5*10^13;// in /cm^3
+rho=0.039;// in ohm-cm
+sigma_n=1/rho;
+e=1.602*10^-19;// in C
+miu_e=3600;// in cm^2/V-s
+//since sigma_n = n*e*miu_e = N_D*e*miu_e
+N_D=sigma_n/(e*miu_e);
+n=N_D;// (approx)
+disp("Concentration of electrons is : "+string(n)+" /cm^3");
+p=n_i^2/n;
+disp("Concentration of holes is : "+string(p)+" /cm^3");
diff --git a/1730/CH3/EX3.4/Exa3_4.sce b/1730/CH3/EX3.4/Exa3_4.sce new file mode 100755 index 000000000..ca88ecd3e --- /dev/null +++ b/1730/CH3/EX3.4/Exa3_4.sce @@ -0,0 +1,34 @@ +//Exa3.4
+clc;
+clear;
+close;
+// given data
+SiliconAtom=5*10^22;// unit less (Number of silicon atom)
+DonorImpurity=1/10^6;
+n_i=1.45*10^10;// in cm^-3
+e=1.602*10^-19;// in C
+miu_e=1300;// taking miu_e for Si as 1300 cm^2/V-s
+// (i) Donor atom concentraion
+// Formula N_D= Number of silicon atoms/cm^3 * donor impurity
+N_D=SiliconAtom*DonorImpurity;
+disp("(i) Donor atom concentration is : "+string(N_D)+" per cm^3");
+
+// (ii) Mobile electron concentration
+n=N_D; // (approx.)
+disp("(ii) Mobile electron concentration is : "+string(n)+" per cm^3");
+
+// (iii) Hole concentration
+p=n_i^2/N_D;
+disp("(iii) Hole concentration is : "+string(p)+" /cm^3");
+
+//(iv) conductivity of doped silicon sample
+sigma=n*e*miu_e;
+disp("(iv) conductivity of doped silicon sample is : "+string(sigma)+" S/cm");
+
+rho=1/sigma;
+//(v) resistance of given semiconductor
+l=0.5;// in cm
+a=(50*10^-4)^2
+R=rho*l/a;
+disp("Resistance of give semiconductor is : "+string(R)+" ohm");
+
diff --git a/1730/CH3/EX3.5/Exa3_5.sce b/1730/CH3/EX3.5/Exa3_5.sce new file mode 100755 index 000000000..ca38df2e4 --- /dev/null +++ b/1730/CH3/EX3.5/Exa3_5.sce @@ -0,0 +1,12 @@ +//Exa3.5
+clc;
+clear;
+close;
+// given data
+n_i=1.4*10^18;// in m^3
+N_D=1.4*10^24;// in m^3
+n=N_D;// (approx)
+p=n_i^2/n;
+// let Ratio of electron to hole concentration = r
+r=n/p;
+disp("Ratio of electron to hole concentration is : "+string(r));
\ No newline at end of file diff --git a/1730/CH3/EX3.6/Exa3_6.sce b/1730/CH3/EX3.6/Exa3_6.sce new file mode 100755 index 000000000..0b104e44b --- /dev/null +++ b/1730/CH3/EX3.6/Exa3_6.sce @@ -0,0 +1,13 @@ +//Exa3.6
+clc;
+clear;
+close;
+// given data
+n_i=2.5*10^13;// in cm^3
+e=1.6*10^-19;// in coulomb
+miu_h=1800;// in cm^2/V-s
+miu_e=3800;// in cm^2/V-s
+sigma_i=n_i*e*(miu_e+miu_h);
+disp("Intrinsic conductivity is : "+string(sigma_i)+" /ohm-cm");
+rho_i=1/sigma_i;
+disp("Intrinsic resistiviry is : "+string(rho_i)+" ohm-cm")
diff --git a/1730/CH3/EX3.7/Exa3_7.sce b/1730/CH3/EX3.7/Exa3_7.sce new file mode 100755 index 000000000..e37365b60 --- /dev/null +++ b/1730/CH3/EX3.7/Exa3_7.sce @@ -0,0 +1,20 @@ +//Exa3.7
+clc;
+clear;
+close;
+// given data
+rho_i=0.47;// in ohm-meter
+sigma_i=1/rho_i;
+miu_e=0.39;// in m^2/V-s
+miu_h=0.19;// in m^2/V-s
+e=1.6*10^-19;// in C
+
+// since sigma_i=n_i*e*(miu_e+miu_h);
+n_i=sigma_i/(e*(miu_e+miu_h));
+// so Density of electrons = Intrinsic Concentration,n_i
+disp("Density of electons is :"+string(n_i)+" /m^3");
+E=10^4;// in V/m
+v_n=miu_e*E;
+disp("Drift velocity of electrons is : "+string(v_n)+" m/s");
+v_h=miu_h*E;
+disp("Drift velocity of holes is : "+string(v_h)+" m/s");
\ No newline at end of file diff --git a/1730/CH3/EX3.8/Exa3_8.sce b/1730/CH3/EX3.8/Exa3_8.sce new file mode 100755 index 000000000..282953e29 --- /dev/null +++ b/1730/CH3/EX3.8/Exa3_8.sce @@ -0,0 +1,15 @@ +//Exa3.8
+clc;
+clear;
+close;
+// given data
+n_i=1.5*10^10;// in /cm^3
+miu_e=1300;// in cm^2/V-s
+miu_h=450;// in cm^2/V-s
+e=1.6*10^-19;// in C (charge of electrons)
+sigma_i=n_i*e*(miu_e+miu_h);
+disp("Conductivity of silicon (intrinsic) is : "+string(sigma_i)+" /ohm-cm");
+N_A=10^18;// in /cm^3
+disp("conductivity of the resulting P-type silicon semiconductor")
+sigma_p=e*N_A*miu_h;
+disp(string(sigma_p)+" /ohm-cm");
\ No newline at end of file diff --git a/1730/CH3/EX3.9/Exa3_9.sce b/1730/CH3/EX3.9/Exa3_9.sce new file mode 100755 index 000000000..8e7c8f67c --- /dev/null +++ b/1730/CH3/EX3.9/Exa3_9.sce @@ -0,0 +1,21 @@ +//Exa3.9
+clc;
+clear;
+close;
+// given data
+n_i=2.5*10^13;// in /m^3
+miu_e=3800;// in cm^2/V-s
+miu_h=1800;// in cm^2/V-s
+e=1.6*10^-19;// in C (charge of electrons)
+sigma_i=n_i*e*(miu_e+miu_h);
+disp("Intrinsic conductivity is : "+string(sigma_i)+" /ohm-cm");
+// Let Number of germanium atoms/cm^3 = no_g
+no_g=4.41*10^22;
+// since Donor impurity = 1 donor atom / 10^7 germanium atoms, so
+DonorImpurity=10^-7;
+N_D=no_g*DonorImpurity;
+n=N_D; // (approx)
+p=n_i^2/N_D;
+// so
+sigma_n=e*N_D*miu_e;
+disp("conductivity in N-type germanium semiconductor is : "+string(sigma_n)+" /ohm-cm");
diff --git a/1730/CH4/EX4.1/Exa4_1.sce b/1730/CH4/EX4.1/Exa4_1.sce new file mode 100755 index 000000000..d325eca81 --- /dev/null +++ b/1730/CH4/EX4.1/Exa4_1.sce @@ -0,0 +1,11 @@ +//Exa 4.1
+clc;
+clear;
+close;
+//given data :
+format('v',11)
+VGS=10;//in Volt
+IG=0.001;//in uAmpere
+IG=IG*10^-6;//in Ampere
+RGS=VGS/IG;//in Ohm
+disp(RGS*10^-6,"Resistance between gate and source in Mohm : ");
\ No newline at end of file diff --git a/1730/CH4/EX4.10/Exa4_10.sce b/1730/CH4/EX4.10/Exa4_10.sce new file mode 100755 index 000000000..1c17bfb10 --- /dev/null +++ b/1730/CH4/EX4.10/Exa4_10.sce @@ -0,0 +1,15 @@ +//Exa 4.10
+clc;
+clear;
+close;
+//given data :
+VP=-4.5;//in Volt
+IDSS=9;//in mAmpere
+IDSS=IDSS*10^-3;//in Ampere
+IDS=3;//in mAmpere
+IDS=IDS*10^-3;//in Ampere
+//Formula : IDS=IDSS*[1-VGS/VP]^2
+VGS=VP*(1-sqrt(IDS/IDSS));//in Volt
+disp(VGS,"ID=3mA at VGS in Volt :");
+gm=(-2*IDSS)*(1-VGS/VP)/VP;//in mA/V or mS
+disp(gm*1000,"Transconductance in mA/V or mS: ");
\ No newline at end of file diff --git a/1730/CH4/EX4.11/Exa4_11.sce b/1730/CH4/EX4.11/Exa4_11.sce new file mode 100755 index 000000000..d730756d2 --- /dev/null +++ b/1730/CH4/EX4.11/Exa4_11.sce @@ -0,0 +1,12 @@ +//Exa 4.11
+clc;
+clear;
+close;
+//given data :
+ID_on=5;//in mAmpere
+VGS_on=8;//in Volt
+VGS=6;//in Volt
+VGST=4;//in Volt
+k=ID_on/(VGS_on-VGST)^2;//in mA/V^2
+ID=k*(VGS-VGST)^2;//in mA
+disp(ID,"Drain current in mA : ");
\ No newline at end of file diff --git a/1730/CH4/EX4.2/Exa4_2.sce b/1730/CH4/EX4.2/Exa4_2.sce new file mode 100755 index 000000000..22fd28992 --- /dev/null +++ b/1730/CH4/EX4.2/Exa4_2.sce @@ -0,0 +1,10 @@ +//Exa 4.2
+clc;
+clear;
+close;
+//given data :
+delVDS=1.5;//in Volt
+delID=120;//in uAmpere
+delID=delID*10^-6;//in Ampere
+rd=delVDS/delID;//in Ohm
+disp(rd*10^-3,"AC drain Resistance of JFET in Kohm : ");
\ No newline at end of file diff --git a/1730/CH4/EX4.3/Exa4_3.sce b/1730/CH4/EX4.3/Exa4_3.sce new file mode 100755 index 000000000..d0411240a --- /dev/null +++ b/1730/CH4/EX4.3/Exa4_3.sce @@ -0,0 +1,14 @@ +//Exa 4.3
+clc;
+clear;
+close;
+//given data :
+ID2=1.5;//in mAmpere
+ID1=1.2;//in mAmpere
+delID=ID2-ID1;//in Ampere
+VGS1=-4.25;//in Volt
+VGS2=-4.10;//in Volt
+delVGS=VGS2-VGS1;//in Volt
+gm=delID/delVGS;//in Ohm
+disp(gm,"Transconductance in mA/V : ");
+disp(gm*10^3,"Transconductance in uS : ");
\ No newline at end of file diff --git a/1730/CH4/EX4.4/Exa4_4.sce b/1730/CH4/EX4.4/Exa4_4.sce new file mode 100755 index 000000000..c73ef7cc6 --- /dev/null +++ b/1730/CH4/EX4.4/Exa4_4.sce @@ -0,0 +1,27 @@ +//Exa 4.4
+clc;
+clear;
+close;
+//given data :
+VDS1=5;//in Volt
+VDS2=12;//in Volt
+VDS3=12;//in Volt
+VGS1=0;//in Volt
+VGS2=0;//in Volt
+VGS3=-0.25;//in Volt
+ID1=8;//in mAmpere
+ID2=8.2;//in mAmpere
+ID3=7.5;//in mAmpere
+//AC drain resistance
+delVDS=VDS2-VDS1;//in Volt
+delID=ID2-ID1;//in mAmpere
+rd=delVDS/delID;//in Kohm
+disp(rd,"AC Drain resistance in Kohm : ");
+//Transconductance
+delID=ID3-ID2;//in mAmpere
+delVGS=VGS3-VGS2;//in Volt
+gm=delID/delVGS;//in mA/V or mS
+disp(gm,"Transconductance in mA/V : ");
+//Amplification Factor
+meu=rd*1000*gm*10^-3;//unitless
+disp(meu,"Amplification Factor : ");
\ No newline at end of file diff --git a/1730/CH4/EX4.5/Exa4_5.sce b/1730/CH4/EX4.5/Exa4_5.sce new file mode 100755 index 000000000..132f628fb --- /dev/null +++ b/1730/CH4/EX4.5/Exa4_5.sce @@ -0,0 +1,12 @@ +//Exa 4.5
+clc;
+clear;
+close;
+//given data :
+VP=-4.5;//in Volt
+IDSS=10;//in mAmpere
+IDS=2.5;//in mAmpere
+//Formula : IDS=IDSS*[1-VGS/VP]^2
+VGS=VP*(1-sqrt(IDS/IDSS));//in Volt
+gm=(-2*IDSS*10^-3)*(1-VGS/VP)/VP;//in mA/V or mS
+disp(gm*1000,"Transconductance in mA/V : ");
\ No newline at end of file diff --git a/1730/CH4/EX4.6/Exa4_6.sce b/1730/CH4/EX4.6/Exa4_6.sce new file mode 100755 index 000000000..c3f579e9a --- /dev/null +++ b/1730/CH4/EX4.6/Exa4_6.sce @@ -0,0 +1,13 @@ +//Exa 4.6
+clc;
+clear;
+close;
+//given data :
+gm=10;//in mS
+gm=gm*10^-3;//in S
+IDSS=10;//in uAmpere
+IDSS=IDSS*10^-6;//in Ampere
+//VGS(OFF):VGS=VP
+//Formula : gm=gmo=-2*IDSS/VP=-2*IDSS/VG(Off)
+VGS_OFF=-2*IDSS/gm;//in Volt
+disp(VGS_OFF*1000,"VGS(OFF) in mV : ");
\ No newline at end of file diff --git a/1730/CH4/EX4.7/Exa4_7.sce b/1730/CH4/EX4.7/Exa4_7.sce new file mode 100755 index 000000000..30d12930f --- /dev/null +++ b/1730/CH4/EX4.7/Exa4_7.sce @@ -0,0 +1,13 @@ +//Exa 4.7
+clc;
+clear;
+close;
+//given data :
+VP=-4;//in Volt
+VGS=-2;//in Volt
+IDSS=10;//in mAmpere
+IDSS=IDSS*10^-3;//in Ampere
+//Formula : ID=IDSS*[1-VGS/VP]^2
+ID=IDSS*[1-VGS/VP]^2;//in Ampere
+disp(ID*1000,"Drain Current in mA : ");
+disp("The minimum value of VDS for pinch-off region is equal to VP. Thus the minimum value of VDS : VDS(min) = "+string(VP)+" Volt");
\ No newline at end of file diff --git a/1730/CH4/EX4.8/Exa4_8.sce b/1730/CH4/EX4.8/Exa4_8.sce new file mode 100755 index 000000000..c5e542c81 --- /dev/null +++ b/1730/CH4/EX4.8/Exa4_8.sce @@ -0,0 +1,18 @@ +//Exa 4.8
+clc;
+clear;
+close;
+//given data :
+IDSS=8.7;//in mAmpere
+IDSS=IDSS*10^-3;//in Ampere
+VP=-3;//in Volt
+VGS=-1;//in Volt
+//ID
+ID=IDSS*[1-VGS/VP]^2
+disp(ID*1000,"Drain current ID in mA : ");
+//gmo
+gmo=-2*IDSS/VP;//in S
+disp(gmo*1000,"Transconductance for VGS=0V in mA/V or mS : ");
+//gm
+gm=gmo*(1-VGS/VP);//in S
+disp(gm*1000,"Transconductance in mA/V or mS : ");
\ No newline at end of file diff --git a/1730/CH4/EX4.9/Exa4_9.sce b/1730/CH4/EX4.9/Exa4_9.sce new file mode 100755 index 000000000..b27b62b0c --- /dev/null +++ b/1730/CH4/EX4.9/Exa4_9.sce @@ -0,0 +1,17 @@ +//Exa 4.9
+clc;
+clear;
+close;
+//given data :
+IDSS=8.4;//in mAmpere
+IDSS=IDSS*10^-3;//in Ampere
+VP=-3;//in Volt
+VGS=-1.5;//in Volt
+//ID
+ID=IDSS*[1-VGS/VP]^2
+disp(ID*1000,"Drain current ID in mA : ");
+//gmo
+gmo=-2*IDSS/VP;//in S
+disp(gmo*1000,"Transconductance for VGS=0V in mA/V or mS : ");
+gm=gmo*(1-VGS/VP);//in S
+disp(gm*1000,"Transconductance in mA/V or mS : ");
\ No newline at end of file diff --git a/1730/CH5/EX5.1/Exa5_1.sce b/1730/CH5/EX5.1/Exa5_1.sce new file mode 100755 index 000000000..f5e3555d4 --- /dev/null +++ b/1730/CH5/EX5.1/Exa5_1.sce @@ -0,0 +1,15 @@ +//Exa 5.1
+clc;
+clear;
+close;
+// given data
+Area_hysteresis_curve=9.3;//in cm^2
+Cordinate1_1cm=1000;//in AT/m
+Cordinate2_1cm=0.2;//in T
+//Part (i)
+hysteresis_loss=Area_hysteresis_curve*Cordinate1_1cm*Cordinate2_1cm;//in J/m^3/cycle
+disp(hysteresis_loss,"Hysteresis loss/m^3/cycle in J/m^3/cycle: ");
+//Part (ii)
+f=50;//in Hz
+H_LossPerCubicMeter=hysteresis_loss*f;//in Watts
+disp(H_LossPerCubicMeter*10^-3,"Hysteresis loss Per Cubic Meter in KWatts :");
diff --git a/1730/CH5/EX5.2/Exa5_2.sce b/1730/CH5/EX5.2/Exa5_2.sce new file mode 100755 index 000000000..242df5a85 --- /dev/null +++ b/1730/CH5/EX5.2/Exa5_2.sce @@ -0,0 +1,17 @@ +//Exa 5.2
+clc;
+clear;
+close;
+format('v',11)
+// given data
+Area_hysteresis_loop=93;//in cm^2
+scale1_1cm=0.1;//in Wb/m^2
+scale2_1cm=50;//in AT/m
+
+hysteresis_loss=Area_hysteresis_loop*scale1_1cm*scale2_1cm;//in J/m^3/cycle
+disp(hysteresis_loss,"Hysteresis loss/m^3/cycle in J/m^3/cycle: ");
+
+f=65;//unit less
+V=1500*10^-6;// in m^3
+P_h=hysteresis_loss*f*V;
+disp("Hysteresis loss is : "+string(P_h)+" W");
diff --git a/1730/CH5/EX5.3/Exa5_3.sce b/1730/CH5/EX5.3/Exa5_3.sce new file mode 100755 index 000000000..65cb90c9d --- /dev/null +++ b/1730/CH5/EX5.3/Exa5_3.sce @@ -0,0 +1,25 @@ +//Exa 5.3
+clc;
+clear;
+close;
+format('v', 11)
+// given data
+nita=628;// in J/m^3
+B_max=1.3;// in Wb/m^2
+f=25;// in Hz
+ironMass=50;// in kg
+densityOfIron=7.8*10^3;// in kg/m^3
+V=ironMass/densityOfIron;
+x=12.5;// in AT/m
+y=0.1;// in T
+// formula Hysteresis loss/second = nita*B_max^1.6*f*V
+H_Loss_per_second = nita*B_max^1.6*f*V ;// in J/s
+H_Loss_per_second=floor(H_Loss_per_second);
+H_Loss_per_hour= H_Loss_per_second*60*60;// in J
+disp("Hysteresis Loss per hour is : "+string(H_Loss_per_hour)+" J");
+// Let Hysteresis Loss per m^3 per cycle = H1
+H1=nita*B_max^1.6;
+// formula hysteresis loss/m^3/cycle = x*y*area of B-H loop
+Area_of_B_H_loop=H1/(x*y);
+Area_of_B_H_loop=floor(Area_of_B_H_loop);
+disp("Area of B-H loop is : "+string(Area_of_B_H_loop)+" cm^2");
diff --git a/1730/CH5/EX5.4/Exa5_4.sce b/1730/CH5/EX5.4/Exa5_4.sce new file mode 100755 index 000000000..fe045d5d2 --- /dev/null +++ b/1730/CH5/EX5.4/Exa5_4.sce @@ -0,0 +1,12 @@ +//Exa 5.4
+clc;
+clear;
+close;
+// given data
+H_L_per_M_Cube_per_C=380;// in W-S
+f=50;// unit less
+density=7800;// in kg/m^3
+V=1/density;// in m^3
+// formula Hysteresis loss = Hysteresis loss/m^3/cycle * f * V
+P_h=H_L_per_M_Cube_per_C * f * V;
+disp("Hysteresis loss is : "+string(P_h)+" W");
diff --git a/1730/CH5/EX5.5/Exa5_5.sce b/1730/CH5/EX5.5/Exa5_5.sce new file mode 100755 index 000000000..d17f77547 --- /dev/null +++ b/1730/CH5/EX5.5/Exa5_5.sce @@ -0,0 +1,13 @@ +//Exa 5.5
+clc;
+clear;
+close;
+// given data
+P_e1=1600;// in watts
+B_max1=1.2;// in T
+f1=50;// in Hz
+B_max2=1.5;// in T
+f2=60;// in Hz
+// P_e propotional to B_max^2*f^2, so
+P_e2=P_e1*(B_max2/B_max1)^2*(f2/f1)^2
+disp("Eddy current loss is : "+string(P_e2)+" watts");
diff --git a/1730/CH6/EX6.1/Exa6_1.sce b/1730/CH6/EX6.1/Exa6_1.sce new file mode 100755 index 000000000..96f46c4b0 --- /dev/null +++ b/1730/CH6/EX6.1/Exa6_1.sce @@ -0,0 +1,19 @@ +//Exa 6.1
+clc;
+clear;
+close;
+// given data
+epsilon_r=2.5;
+epsilon_o=8.854*10^-12;
+d=.2*10^-3;// in m
+A=20*10^-4;// in m^2
+omega=2*%pi*10^6;// in radians/s
+f=10^6;
+tan_delta=4*10^-4;
+C=epsilon_o*epsilon_r*A/d;// in F
+disp("Capicitance is : "+string(C*10^12)+" miu miu F");
+// Formula P=V^2/R, so
+// R=V^2/P and P= V^2*2*%pi* f * C * tan delta, putting the value of P, we get
+R=1/(2*%pi*f*C*tan_delta);// in ohm
+disp("The element of parallel R-C circuit is : "+string(R*10^-6)+" M ohm");
+
diff --git a/1730/CH6/EX6.2/Exa6_2.sce b/1730/CH6/EX6.2/Exa6_2.sce new file mode 100755 index 000000000..84d49011e --- /dev/null +++ b/1730/CH6/EX6.2/Exa6_2.sce @@ -0,0 +1,16 @@ +//Exa 6.2
+clc;
+clear;
+close;
+// given data
+g=0.055;// in V-m/N
+t=2*10^-3;// in m
+P=1.25*10^6;// in N/m^2
+epsilon=40.6*10^-12;// in F/m
+V_out=g*t*P;
+disp("Output voltage is : "+string(V_out)+" V");
+// Formula Charge Sensivity=epsilon_o*epsilon_r*g=epsilon*g
+ChargeSensivity=epsilon*g;
+disp("Charge Sensivity is : "+string(ChargeSensivity)+" C/N");
+
+
diff --git a/1730/CH6/EX6.3/Exa6_3.sce b/1730/CH6/EX6.3/Exa6_3.sce new file mode 100755 index 000000000..81ae63814 --- /dev/null +++ b/1730/CH6/EX6.3/Exa6_3.sce @@ -0,0 +1,12 @@ +//Exa 6.3
+clc;
+clear;
+close;
+// given data
+V_out=150;// in V
+t=2*10^-3;// in m
+g=0.05;// in V-m/N
+A=5*5*10^-6;// in m^2
+F=V_out*A/(g*t);// in N
+disp("Force applied is : "+string(F)+" N")
+
diff --git a/1730/CH6/EX6.4/Exa6_4.sce b/1730/CH6/EX6.4/Exa6_4.sce new file mode 100755 index 000000000..1ed59b36e --- /dev/null +++ b/1730/CH6/EX6.4/Exa6_4.sce @@ -0,0 +1,19 @@ +//Exa 6.4
+clc;
+clear;
+close;
+// given data
+g=12*10^-3;// in V-m/N
+t=1.25*10^-3;// in m
+A=5*5*10^-6;// in m^2
+F=3;// in N
+ChargeSensitivity=150*10^-12;// in C/N
+P=F/A;
+V_out=g*t*P;// in V
+Q=ChargeSensitivity*F;
+disp("Total charge developed is : "+string(Q)+" C");
+// Formula C=Q/V;
+C=Q/V_out;
+disp("Capacitance is : "+string(C*10^12)+" miu miu F");
+
+// Note: Answer in the Book is wrong
\ No newline at end of file |