summaryrefslogtreecommitdiff
path: root/1379/CH11
diff options
context:
space:
mode:
Diffstat (limited to '1379/CH11')
-rwxr-xr-x1379/CH11/EX11.1.1/example11_1.sce34
-rwxr-xr-x1379/CH11/EX11.1.2/example11_2.sce27
-rwxr-xr-x1379/CH11/EX11.1.3/example11_3.sce38
-rwxr-xr-x1379/CH11/EX11.1.4/example11_4.sce35
-rwxr-xr-x1379/CH11/EX11.1.5/example11_5.sce27
-rwxr-xr-x1379/CH11/EX11.1.6/example11_6.sce23
-rwxr-xr-x1379/CH11/EX11.1.7/example11_7.sce17
7 files changed, 201 insertions, 0 deletions
diff --git a/1379/CH11/EX11.1.1/example11_1.sce b/1379/CH11/EX11.1.1/example11_1.sce
new file mode 100755
index 000000000..440dca88f
--- /dev/null
+++ b/1379/CH11/EX11.1.1/example11_1.sce
@@ -0,0 +1,34 @@
+
+
+//exapple 11.1
+clc; funcprot(0);
+// Initialization of Variable
+pi=3.1428;
+d=0.3/1000;
+mu=2.21/100000;
+rho=106.2;//density under operating condition
+u=2.1/100;
+rhos=2600;//density of particles
+l=3.25;
+g=9.81;
+dt=0.95//fluidising diameter
+//part 1
+//calculation
+a=u^2/d/g*d*rho*u/mu*(rhos-rho)/rho*l/dt;
+if a>100 then
+ disp(a,"Bubbling fluidisation will occur as value is ")
+end
+//part 2
+Q=2.04/100000;
+rhos=2510;
+rho=800;
+mu=2.85/1000;
+l=4.01;
+dt=0.63;
+d=0.1/1000;
+u=Q*4/pi/dt^2;
+a=u^2/d/g*d*rho*u/mu*(rhos-rho)/rho*l/dt;
+if a<100*10^-4 then//compare as value of a is much less than 100
+ disp(a,"fluidisation occur in smooth mode as value is:");
+end
+
diff --git a/1379/CH11/EX11.1.2/example11_2.sce b/1379/CH11/EX11.1.2/example11_2.sce
new file mode 100755
index 000000000..f168716fc
--- /dev/null
+++ b/1379/CH11/EX11.1.2/example11_2.sce
@@ -0,0 +1,27 @@
+
+
+//exapple 11.2
+clc; funcprot(0);
+// Initialization of Variable
+d=50/1000000;
+rhos=1850;//density of particle
+rho=880;//density of hydrocarbon
+mu=2.75/1000;//viscosity of hydrocarbon
+e=0.45;//void fraction coeff.
+g=9.81;
+h=1.37;//flow depth
+c=5.5/1000;//c=1/K
+//calculation
+//part 1
+u=c*e^3*d^2*g*(rhos-rho)/mu/(1-e);
+disp(u,"The superficial linear flow rate in (m/s):")
+//part 2
+u=d^2*g*(rhos-rho)/18/mu;
+disp(u,"Terminal Settling Velocity in (m/s):");
+Re=d*u*rho/mu;
+if Re<2 then
+ disp("Stoke law assumption is sustained with this velocity")
+end
+//part 3
+P=g*(rhos-rho)*h*(1-e);
+disp(P,"Pressure drop across fluidised bed in (N/m^2):");
diff --git a/1379/CH11/EX11.1.3/example11_3.sce b/1379/CH11/EX11.1.3/example11_3.sce
new file mode 100755
index 000000000..eef571c23
--- /dev/null
+++ b/1379/CH11/EX11.1.3/example11_3.sce
@@ -0,0 +1,38 @@
+
+
+
+//exapple 11.3
+clc; funcprot(0);
+// Initialization of Variable
+g=9.81;
+rhos=1980;//density of ore
+rho=1.218;//density of air
+e=0.4;
+mu=1.73/10^5;
+s=0;
+wp=[0 .08 .20 .40 .60 .80 .90 1.00];//weight percent
+d=[0.4 0.5 0.56 0.62 0.68 0.76 0.84 0.94]/1000;
+//part 1
+for i=1:7
+ dav(i)=d(i+1)/2+d(i)/2;//average dia
+ mf(i)=wp(i+1)-wp(i);//mass fraction
+ a(i)=mf(i)/dav(i);
+ s=s+a(i);
+end
+db=1/s;//d bar
+//quadratic coeff. ax^2 +bx +c=0
+c=-(rhos-rho)*g;
+b=150*(1-e)/e^3/db^2*mu;
+a=1.75*rho/e^3/db;
+y=poly([c b a],'U','coeff');
+U=roots(y);
+disp(abs(U(2)), "the linear air flow rate in (m/s):");
+//part 2
+d=0.4/1000;
+a=2*d^3/3/mu^2*rho*(rhos-rho)*g;
+a=log10(a);
+disp(a,"log10(Re^2/rho/U^2*R)=");
+//using chart
+Re=10^1.853;
+u=Re*mu/rho/d;
+disp(u, "speed required for smallest particle in (m/s):")
diff --git a/1379/CH11/EX11.1.4/example11_4.sce b/1379/CH11/EX11.1.4/example11_4.sce
new file mode 100755
index 000000000..faaac5c07
--- /dev/null
+++ b/1379/CH11/EX11.1.4/example11_4.sce
@@ -0,0 +1,35 @@
+
+
+//exapple 11.4
+clc; funcprot(0);
+// Initialization of Variable
+U=2.032/10^4;
+pi=3.1428;
+rho=852;
+g=9.81;
+mu=1.92/1000;
+mf=125/3600;//mass flow rate
+//calculation
+//part 1
+G=U*rho;
+A=mf/G;
+d=sqrt(4*A/pi);
+disp(d, "the diameter of vessel will be in(m):");
+//part 2
+A=0.201;
+e=0.43;
+ms=102;//mass of solids
+rhos=1500;//density of solid
+L=ms/rhos/A;
+Lmf=L/(1-e);
+disp(Lmf , "depth of bed in (m):")
+//part 3
+d1=0.2/1000;
+U=2*5.5/10^3*e^3*d1^2*(rhos-rho)*g/mu/(1-e);
+//now euating for e
+//a=e^3/(1-e)
+a=U/5.5*10^3/(d1^2*(rhos-rho)*g/mu);
+y=poly([-a a 0 1],'e',"coeff");
+e2=roots(y);
+L=Lmf*(1-e)/(1-e2(3));
+disp(L,"depth of fluidised bed under operating condition in (m):")
diff --git a/1379/CH11/EX11.1.5/example11_5.sce b/1379/CH11/EX11.1.5/example11_5.sce
new file mode 100755
index 000000000..6e29c9f17
--- /dev/null
+++ b/1379/CH11/EX11.1.5/example11_5.sce
@@ -0,0 +1,27 @@
+
+
+//exapple 11.5
+clc; funcprot(0);
+// Initialization of Variable
+g=9.81;
+pi=3.1428;
+r=0.51;
+e=0.48;//void ratio
+rhos=2280;//density of glass
+rho=1.204;//density of air
+U=0.015;//velocity of water entering bed
+L=7.32;
+gam=1.4;//gamma
+neta=0.7//efficiency
+P4=1.013*10^5;
+P1=P4;
+v1=1/1.204;//volume 1
+//calculation
+P3=P4+g*(rhos-rho)*(1-e)*L;
+P2=P3+0.1*85090;
+v2=(P1*v1^gam/P2)^(1/gam);//vlume 2
+W=1/neta*gam/(gam-1)*(P2*v2-P1*v1);//work done
+v3=P2*v2/P3;//volume 3
+M=U*pi*r^2/v3;//mass flow rate
+P=M*W;
+disp(P,"The power supplies to the blower in (W):");
diff --git a/1379/CH11/EX11.1.6/example11_6.sce b/1379/CH11/EX11.1.6/example11_6.sce
new file mode 100755
index 000000000..0f320919f
--- /dev/null
+++ b/1379/CH11/EX11.1.6/example11_6.sce
@@ -0,0 +1,23 @@
+
+
+//exapple 11.6
+clc; funcprot(0);
+// Initialization of Variable
+dt=12.7/1000;
+d=1.8/1000;
+Q=2.306/10^6;
+pi=3.1428;
+//calculation
+//part 1
+Sc=4/dt;
+S=6/d;
+f=(1+0.5*Sc/S)^2;
+U=Q*4/pi/dt^2;//velocity
+Ua=f*U;//actual velocity
+disp(Ua,"minimum fluidising velocity found using smaller glass column in (m/s):")
+//part 2
+dt=1.5;
+Sc=4/dt;
+f=(1+0.5*Sc/S)^2;
+Ua=f*U;//actual velocity
+disp(Ua,"fluidising velocity found using larger glass column in (m/s):")
diff --git a/1379/CH11/EX11.1.7/example11_7.sce b/1379/CH11/EX11.1.7/example11_7.sce
new file mode 100755
index 000000000..356377e6e
--- /dev/null
+++ b/1379/CH11/EX11.1.7/example11_7.sce
@@ -0,0 +1,17 @@
+
+
+//exapple 11.7
+clc; funcprot(0);
+// Initialization of Variable
+e=0.4;//incipent to fluidisation
+//calculation
+//part 1
+disp("for Re<500");
+disp("the ratio of terminal velocity & minimmum fluidising velocity is");
+a=3.1*1.75/e^3;
+disp(sqrt(a));
+//part 2
+disp("for Re>500");
+disp("the ratio of terminal velocity & minimmum fluidising velocity is");
+a=150*(1-e)/18/e^3;
+disp(a);