summaryrefslogtreecommitdiff
path: root/135/CH2
diff options
context:
space:
mode:
Diffstat (limited to '135/CH2')
-rwxr-xr-x135/CH2/EX2.1/EX1.sce26
-rwxr-xr-x135/CH2/EX2.11/EX11.sce35
-rwxr-xr-x135/CH2/EX2.12/EX12.sce28
-rwxr-xr-x135/CH2/EX2.13/EX13.sce9
-rwxr-xr-x135/CH2/EX2.14/EX14.sce20
-rwxr-xr-x135/CH2/EX2.18/EX18.sce10
-rwxr-xr-x135/CH2/EX2.19/EX19.sce21
-rwxr-xr-x135/CH2/EX2.2/EX2.sce13
-rwxr-xr-x135/CH2/EX2.3/EX3.sce33
-rwxr-xr-x135/CH2/EX2.4/EX4.sce24
-rwxr-xr-x135/CH2/EX2.5/EX5.sce14
-rwxr-xr-x135/CH2/EX2.6/EX6.sce12
-rwxr-xr-x135/CH2/EX2.7/EX7.sce14
-rwxr-xr-x135/CH2/EX2.8/EX8.sce23
-rwxr-xr-x135/CH2/EX2.9/EX9.sce29
15 files changed, 311 insertions, 0 deletions
diff --git a/135/CH2/EX2.1/EX1.sce b/135/CH2/EX2.1/EX1.sce
new file mode 100755
index 000000000..4432eba66
--- /dev/null
+++ b/135/CH2/EX2.1/EX1.sce
@@ -0,0 +1,26 @@
+// Example 2.1: (a) I,Vo
+// (b) I,Vo
+clc, clear
+
+disp("Part (a)");
+// Applying Thevnin's theorem at XX', in Fig. 2.5(a)
+Vth=15*20e3/(10e3+20e3); // Thevnin equivalent voltage in volts
+Zth=10e3*20e3/(10e3+20e3); // Thevnin equivalent resistance in ohms
+// From the figure 2.5(c)
+I=Vth/(Zth+20e3); // Labelled current in amperes
+Vo=I*20e3; // Labelled voltage in volts
+I=I*1e3; // Labelled current in miliamperes
+disp(I,"Labelled current I (mA) = ");
+disp(Vo,"Labelled voltage Vo (V) = ");
+
+disp("Part (b)");
+// Applying Thevnin's theorem at XX' and YY', in Fig. 2.5(b)
+Vth1=15*10e3/(10e3+10e3); // Thevnin equivalent voltage at XX' in volts
+Zth1=10e3*10e3/(10e3+10e3); // Thevnin equivalent resistance at YY' in ohms
+Vth2=5; // Thevnin equivalent voltage at YY' in volts
+Zth2=5e3; // Thevnin equivalent resistance at YY' in ohms
+// From the figure 2.5(d)
+I=0; // Labelled current in amperes
+Vo=5-7.5; // Labelled voltage in volts
+disp(I,"Labelled current I = ");
+disp(Vo,"Labelled voltage Vo (V) = "); \ No newline at end of file
diff --git a/135/CH2/EX2.11/EX11.sce b/135/CH2/EX2.11/EX11.sce
new file mode 100755
index 000000000..bd7b1e556
--- /dev/null
+++ b/135/CH2/EX2.11/EX11.sce
@@ -0,0 +1,35 @@
+// Example 2.11 (a) Alternating component of voltage acroos load resistance
+// (b) Total voltage across load resistance
+// (c) Total current
+clc, clear
+T=293; // Operating temperature in kelvins
+VT=T/11600; // Voltage equivalent to temperatue at room temperature in volts
+// In the Fig. 2.21(a)
+VAA=9; // in volts
+Vm=0.2; // in volts
+RL=2e3; // Load resistance in ohms
+Vy=0.6; // Cut-in voltage in volts
+Rf=10; // Forward resistance of diode in ohms
+eta=2;
+
+disp("Part (a)")
+// From DC model in Fig. 2.21(b)
+IDQ=(VAA-Vy)/(RL+Rf); // DC current through diode or load resistance in amperes
+rd=eta*VT/IDQ; // Dynamic resistance in ohms
+// This dynamic resistance is used in AC model in Fig. 2.21(c)
+Vom=Vm*RL/(RL+rd); // Amplitude of alternating component of the voltage across load resistance in volts
+disp(Vom,"Amplitude of alternating component of the voltage across load resistance (V) =");
+disp("Therefore, the alternating component of the voltage across load resistance is 0.199 sin ωt V");
+
+disp("Part (b)");
+VDQ=IDQ*RL; // DC component of voltage across load resistance in volts
+disp(VDQ,"DC component of voltage across load resistance (V) =");
+disp("Therefore, total voltage across load resistance is (8.36 + 0.199 sin ωt) V");
+
+disp("Part (C)");
+IDQ=IDQ*1e3; // DC current through load resistance in miliamperes
+idm=Vm/(RL+rd); // Amplitude of alternating component of the current across load resistance in amperes
+idm=idm*1e3; // Amplitude of alternating component of the current across load resistance in miliamperes
+disp(IDQ,"DC component of current across load resistance (mA) =");
+disp(idm,"Amplitude of alternating component of the current across load resistance (mA) =");
+disp("Therefore, total current across load resistance is (4.18 + 0.099 sin ωt) mA"); \ No newline at end of file
diff --git a/135/CH2/EX2.12/EX12.sce b/135/CH2/EX2.12/EX12.sce
new file mode 100755
index 000000000..7ea2f17b3
--- /dev/null
+++ b/135/CH2/EX2.12/EX12.sce
@@ -0,0 +1,28 @@
+//Example 2.12: (b) Vo
+// (c) I
+clc, clear
+
+disp("Part (b)");
+// In the Fig. 2.22 (a)
+vs=10e-3; // in volts
+Rs=1e3; // in ohms
+eta=2;
+VT=25e-3; // Voltage equivalent to temperatue at room temperature in volts
+I=1e-3; // in amperes
+Vo=vs*eta*VT/(eta*VT+I*Rs); // in volts
+Vo=Vo*1e3; // in milivolts
+disp(Vo,"Vo for I= 1 mA (mV) =");
+I=0.1e-3; // in amperes
+Vo=vs*eta*VT/(eta*VT+I*Rs); // in volts
+Vo=Vo*1e3; // in milivolts
+disp(Vo,"Vo for I= 0.1 mA (mV) =");
+I=1e-6; // in amperes
+Vo=vs*eta*VT/(eta*VT+I*Rs); // in volts
+Vo=Vo*1e3; // in milivolts
+disp(Vo,"Vo for I= 1 μA (mV) =");
+
+disp("Part (c)");
+Vo=vs/2; // in volts
+I=eta*VT*(vs-Vo)/(Vo*Rs); // in amperes
+I=I*1e6; // in micro-amperes
+disp(I,"I (μA) ="); \ No newline at end of file
diff --git a/135/CH2/EX2.13/EX13.sce b/135/CH2/EX2.13/EX13.sce
new file mode 100755
index 000000000..99eee91f9
--- /dev/null
+++ b/135/CH2/EX2.13/EX13.sce
@@ -0,0 +1,9 @@
+// Example 2.13: Barrier capacitance
+clc, clear
+A=1e-3*1e-3; // Area of p-n junction in metres square
+W=2e-6; // Space charge thickness in metres
+E=16; // Dielectric constant of Ge
+Eo=1/(36*%pi*1e9); // Absolute permittivity of air
+C=E*Eo*A/W; // Barrier capacitance in farads
+C=C*1e12; // Barrier capacitance in pico-farads
+disp(C,"Barrier capacitance (pF) ="); \ No newline at end of file
diff --git a/135/CH2/EX2.14/EX14.sce b/135/CH2/EX2.14/EX14.sce
new file mode 100755
index 000000000..ade81eeec
--- /dev/null
+++ b/135/CH2/EX2.14/EX14.sce
@@ -0,0 +1,20 @@
+// Example 2.14: (a) Change in capacitance
+// (b) Change in capacitance
+clc, clear
+C=4e-12; // Depletion capacitance in farads
+V=4; // in volts
+K=C*sqrt(V); // a constant
+
+disp("Part (a)");
+V=4+0.5; // in volts
+C_new=K/sqrt(V); // in farads
+deltaC=C_new-C; // Change in capacitande in farads
+deltaC=deltaC*1e12; // Change in capacitande in pico-farads
+disp(deltaC,"Change in capacitance (pF) =");
+
+disp("Part (b)");
+V=4-0.5; // in volts
+C_new=K/sqrt(V); // in farads
+deltaC=C_new-C; // Change in capacitande in farads
+deltaC=deltaC*1e12; // Change in capacitande in pico-farads
+disp(deltaC,"Change in capacitance (pF) ="); \ No newline at end of file
diff --git a/135/CH2/EX2.18/EX18.sce b/135/CH2/EX2.18/EX18.sce
new file mode 100755
index 000000000..2a5e56cb6
--- /dev/null
+++ b/135/CH2/EX2.18/EX18.sce
@@ -0,0 +1,10 @@
+// Example 2.18: Diffusion length
+clc, clear
+I=1e-3; // Forward bias current in amperes
+C=1e-6; // Diffusion capacitance in farads
+Dp=13; // Diffusion constant for Si
+eta=2; // for Si
+VT=26e-3; // Voltage equivalent to temperatue at room temperature in volts
+Lp=sqrt(C*Dp*eta*VT/I); // Diffusion length in metres
+Lp=Lp*1e2; // Diffusion length in centimetres
+disp(Lp,"Diffusion length (cm) ="); \ No newline at end of file
diff --git a/135/CH2/EX2.19/EX19.sce b/135/CH2/EX2.19/EX19.sce
new file mode 100755
index 000000000..97d0a5988
--- /dev/null
+++ b/135/CH2/EX2.19/EX19.sce
@@ -0,0 +1,21 @@
+// Example 2.19 (a) Vd1 and Vd2
+// (b) Current in the circuit
+clc, clear
+eta_VT=0.026; // Product of η and VT
+
+disp("Part (a)");
+// From the Fig. 2.19(a)
+Is=5e-6; // Reverse saturation current through diode D2 in amperes
+Id1=Is; // Forward current through diode D1 in amperes
+Vd1=eta_VT*log(1+(Id1/Is)); // in volts
+Vd2=5-Vd1; // in volts
+disp(Vd1,"Vd1 (V) =");
+disp(Vd2,"Vd2 (V) =");
+
+disp("Part (b)");
+// From the Fig. 2.19(b)
+Vz=4.9; // Zener voltage in volts
+Vd1=5-Vz; // in volts
+I=Is*(%e^(Vd1/eta_VT)-1); // Current in the circuit in amperes
+I=I*1e6; // Current in the circuit in micro-amperes
+disp(I,"Current in the circuit (μA) ="); \ No newline at end of file
diff --git a/135/CH2/EX2.2/EX2.sce b/135/CH2/EX2.2/EX2.sce
new file mode 100755
index 000000000..ec101240e
--- /dev/null
+++ b/135/CH2/EX2.2/EX2.sce
@@ -0,0 +1,13 @@
+// Example 2.2: Change in diode voltage
+clc, clear
+ID1=1; // Let the initial diode current be 1 A
+ID2=15*ID1; // Final diode current
+VT=25e-3; // Voltage equivalent to temperatue at room temperature in volts
+eta=1; // for Ge
+deltaVD=eta*VT*log(ID2/ID1); // Change in diode voltage in volts
+deltaVD=deltaVD*1e3; // Change in diode voltage in milivolts
+disp(deltaVD,"Change in diode voltage (for Ge) (mV) = ");
+eta=2; // for Si
+deltaVD=eta*VT*log(ID2/ID1); // Change in diode voltage in volts
+deltaVD=deltaVD*1e3; // Change in diode voltage in milivolts
+disp(deltaVD,"Change in diode voltage (for Si) (mV) = "); \ No newline at end of file
diff --git a/135/CH2/EX2.3/EX3.sce b/135/CH2/EX2.3/EX3.sce
new file mode 100755
index 000000000..e75846455
--- /dev/null
+++ b/135/CH2/EX2.3/EX3.sce
@@ -0,0 +1,33 @@
+// Example 2.3: (a) Voltage
+// (b) Ratio of current in forward bias to that in reverse bias
+// (c) Forward current
+clc, clear
+
+disp("Part (a)");
+eta=1; // for Ge
+T=300; // Room temperature in kelvins
+VT=T/11600; // Voltage equivalent to temperatue at room temperature in volts
+IS=1; // Let reverse saturation current be 1 A
+I=-0.9*IS; // Reverse current
+V=eta*VT*log(1+(I/IS)); // Voltagei in volts
+V=V*1e3; // Voltage in milivolts
+disp(V,"Voltage (mV) = ");
+
+disp("Part (b)");
+V=0.05; // Voltage in volts
+If_Ir=(%e^(V/(eta*VT))-1)/(%e^(-V/(eta*VT))-1); // Ratio of current in forward bias to that in reverse bias
+disp(If_Ir,"Ratio of current in forward bias to that in reverse bias = ");
+
+disp("Part (c)");
+IS=10e-6; // Reverse saturation current in amperes
+V=0.1; // Voltage in volts
+ID=IS*(%e^(V/(eta*VT))-1); // Forward current for 0.1 V in amperes
+ID=ID*1e6; // Forward current for 0.1 V in micro-amperes
+disp(ID,"Forward current for 0.1 V (μA) = ");
+V=0.2; // Voltage in volts
+ID=IS*(%e^(V/(eta*VT))-1); // Forward current for 0.1 V in amperes
+ID=ID*1e3; // Forward current for 0.1 V in miliamperes
+disp(ID,"Forward current for 0.1 V (mA) = ");
+V=0.3; // Voltage in volts
+ID=IS*(%e^(V/(eta*VT))-1); // Forward current for 0.1 V in amperes
+disp(ID,"Forward current for 0.1 V (A) = "); \ No newline at end of file
diff --git a/135/CH2/EX2.4/EX4.sce b/135/CH2/EX2.4/EX4.sce
new file mode 100755
index 000000000..198f83e2c
--- /dev/null
+++ b/135/CH2/EX2.4/EX4.sce
@@ -0,0 +1,24 @@
+// Example 2.4 (a) Current
+// (b) Current
+// (C) Current
+clc, clear
+IS=10e-6; // Reverse saturation current in amperes
+eta=1; // for Ge
+VT=25e-3; // Voltage equivalent to temperatue at room temperature in volts
+
+disp("Part (a)");
+VD=-24; // Reverse bias in volts
+ID=IS*(%e^(VD/(eta*VT))-1); // Current in amperes
+ID=ID*1e6; // Current in micro-amperes
+disp(ID,"Current (μA) = ");
+
+disp("Part (b)");
+VD=-0.02; // Reverse bias in volts
+ID=IS*(%e^(VD/(eta*VT))-1); // Current in amperes
+ID=ID*1e6; // Current in micro-amperes
+disp(ID,"Current (μA) = ");
+
+disp("Part (c)");
+VD=0.3; // Forward bias in volts
+ID=IS*(%e^(VD/(eta*VT))-1); // Current in amperes
+disp(ID,"Current (A) = "); \ No newline at end of file
diff --git a/135/CH2/EX2.5/EX5.sce b/135/CH2/EX2.5/EX5.sce
new file mode 100755
index 000000000..014068f15
--- /dev/null
+++ b/135/CH2/EX2.5/EX5.sce
@@ -0,0 +1,14 @@
+// Example 2.2: Change in diode voltage
+clc, clear
+T=300; // Operating temperature in kelvins
+VT=T/11600; // Voltage equivalent to temperatue at room temperature in volts
+ID1=1; // Let the initial diode current be 1 A
+ID2=10*ID1; // Final diode current
+eta=1; // for Ge
+deltaVD=eta*VT*log(ID2/ID1); // Change in diode voltage in volts
+deltaVD=deltaVD*1e3; // Change in diode voltage in milivolts
+disp(deltaVD,"Change in diode voltage (for Ge) (mV) = ");
+eta=2; // for Si
+deltaVD=eta*VT*log(ID2/ID1); // Change in diode voltage in volts
+deltaVD=deltaVD*1e3; // Change in diode voltage in milivolts
+disp(deltaVD,"Change in diode voltage (for Si) (mV) = "); \ No newline at end of file
diff --git a/135/CH2/EX2.6/EX6.sce b/135/CH2/EX2.6/EX6.sce
new file mode 100755
index 000000000..2c674eef8
--- /dev/null
+++ b/135/CH2/EX2.6/EX6.sce
@@ -0,0 +1,12 @@
+// Example 2.6: R
+clc, clear
+// In the circuit given in Fig. 2.7
+V=50e-3; // Output voltage
+VD1=0.7; // Voltage across diode 1 in volts
+I1=10e-3; // Current through diode 1 at 0.7 V in amperes
+VD2=0.8; // Voltage across diode 2 in volts
+I2=100e-3; // Current through diode 2 at 0.8 V in amperes
+eta_VT=(VD2-VD1)/log(I2/I1); // Product of η and VT
+I=10e-3/(%e^(V/eta_VT)+1); // Current through diode 1 in amperes
+R=V/I;
+disp(R,"R (Ω) = "); \ No newline at end of file
diff --git a/135/CH2/EX2.7/EX7.sce b/135/CH2/EX2.7/EX7.sce
new file mode 100755
index 000000000..ea6ac1f4f
--- /dev/null
+++ b/135/CH2/EX2.7/EX7.sce
@@ -0,0 +1,14 @@
+// Example 2.7: Current, Diode voltage
+clc, clear
+VDD=5; // Applied voltage in volts
+VD=0.7; // Diode voltage in volts
+I1=1e-3; // Current in amperes at diode voltage = 0.7 V
+R=1000; // R in ohms
+deltaVD=0.1; // Change in diode voltage in volts for every decade change in current
+ratioI=10; // Decade change in current
+eta_VT=deltaVD/log(ratioI); // Product of η and VT
+ID=(VDD-VD)/R; // Diode current in amperes
+VD2=VD+eta_VT*log(ID/I1); // Diode voltage in volts
+ID=ID*1e3; // Diode current in miliamperes
+disp(ID,"Diode current (mA) = ");
+disp(VD2,"Diode voltage (v) = "); \ No newline at end of file
diff --git a/135/CH2/EX2.8/EX8.sce b/135/CH2/EX2.8/EX8.sce
new file mode 100755
index 000000000..c3338ffcb
--- /dev/null
+++ b/135/CH2/EX2.8/EX8.sce
@@ -0,0 +1,23 @@
+// Example 2.8: (a) Output voltage
+// (b) Output voltage
+// (c) Output voltage
+clc, clear
+
+disp("Part (a)");
+// Since both the diodes are in OFF state
+Vo=5; // Output voltage in volts
+disp(Vo,"Output voltage (V) = ");
+
+disp("Part (b)");
+//Since diode D1 is in OFF state and diode D2 is in ON state
+// From Fig. 2.16(C)
+I=(5-0.6)/(4.7e3+300); // Current flowing through the diode D2 in amperes
+Vo=5-I*4.7e3; // Output voltage in volts
+disp(Vo,"Output voltage (V) = ");
+
+disp("Part (c)");
+// Since both diodes are in ON state
+// Applying KVL in Fig. 2.16(d)
+I=(5-0.6)/(2*4.7e3+300); // Current flowing through diode D1 or diode D2 in amperes
+Vo=5-2*I*4.7e3; // Output voltage in volts
+disp(Vo,"Output voltage (V) = "); \ No newline at end of file
diff --git a/135/CH2/EX2.9/EX9.sce b/135/CH2/EX2.9/EX9.sce
new file mode 100755
index 000000000..720dfd87f
--- /dev/null
+++ b/135/CH2/EX2.9/EX9.sce
@@ -0,0 +1,29 @@
+// Example 2.9 (a) Output voltage, Diode currents
+// (b) Output voltage, Diode currents
+clc, clear
+Vy=0.7; // Cut-in voltage in volts
+// In the Fig. 2.17
+R1=5e3;
+R2=10e3;
+
+disp("Part (a)");
+// Since diode D1 is OFF and diode D2 is ON
+ID2=(5-Vy-(-5))/(R1+R2); // Current through diode D2 in amperes
+Vo=5-ID2*R1; // Output voltage
+ID2=ID2*1e3; // Current through diode D2 in miliamperes
+disp(Vo,"Output voltage (V) =");
+disp(0,"Current through diode D1 =");
+disp(ID2,"Current through diode D2 (mA) =");
+
+disp("Part (b)");
+// Since both the diodes are ON
+VA=4-Vy; // In the fig.
+Vo=VA+Vy; // Output voltage
+ID2=(5-Vo)/R1; // Current through diode D2 in amperes
+IR2=(VA-(-5))/R2; // Current through diode R2 in amperes
+ID1=IR2-ID2; // Current through diode D1 in amperes
+ID1=ID1*1e3; // Current through diode D1 in miliamperes
+ID2=ID2*1e3; // Current through diode D2 in miliamperes
+disp(Vo,"Output voltage (V) =");
+disp(ID1,"Current through diode D1 (mA) =");
+disp(ID2,"Current through diode D2 (mA) ="); \ No newline at end of file