diff options
Diffstat (limited to '135/CH11/EX11.13/EX13.sce')
-rwxr-xr-x | 135/CH11/EX11.13/EX13.sce | 30 |
1 files changed, 30 insertions, 0 deletions
diff --git a/135/CH11/EX11.13/EX13.sce b/135/CH11/EX11.13/EX13.sce new file mode 100755 index 000000000..84675de96 --- /dev/null +++ b/135/CH11/EX11.13/EX13.sce @@ -0,0 +1,30 @@ +// Example 11.13: (a) Amplifier type
+// (b) Input resistance, Output resistance, Transfer ratio
+clc, clear
+r_pi=1e3; // in ohms
+gm=0.1; // in mho
+
+disp("Part (a)");
+disp("Q1 is a common collector and Q2 is common emitter stage. Hence the given circuit is cascade of cc and CE stages. As the Rin of a CC is high and the Ro of the CE is low, therefore, the given circuit approximates a voltage amplifier. If RL is chosen a low resistance, the amplifier can be considered a voltage-to-current converter.")
+
+function[c]=parallel(a,b)
+ c=a*b/(a+b);
+endfunction
+
+disp("Part (b)");
+// From the Fig. 11.42
+RE1=3e3; // in ohms
+RC2=0.6e3; // in ohms
+btao=gm*r_pi;
+Ri2=r_pi; // in ohms
+Ri1=r_pi+(1+btao)*parallel(RE1,Ri2); // Input resistance in ohms
+Rout=RC2; // Output resistance (= ro of Q2)
+AV1=(1+btao)*RE1/(r_pi+(1+btao)*RE1);
+Ro1=parallel(RE1,r_pi/(1+btao)); // in ohms
+AV2=-btao*RC2/(Ro1+r_pi);
+AV=AV1*AV2;
+Ri1=Ri1*1e-3; // in kilo-ohms
+Rout=Rout*1e-3; // in kilo-ohms
+disp(Ri1,"Input resistance (Ω) =");
+disp(Rout,"Output resistance =");
+disp(AV,"Transfer ratio =");
\ No newline at end of file |