summaryrefslogtreecommitdiff
path: root/1271
diff options
context:
space:
mode:
Diffstat (limited to '1271')
-rwxr-xr-x1271/CH1/EX1.1/1.txt1
-rwxr-xr-x1271/CH1/EX1.1/example1_1.sce9
-rwxr-xr-x1271/CH1/EX1.10/10.txt1
-rwxr-xr-x1271/CH1/EX1.10/example1_10.sce10
-rwxr-xr-x1271/CH1/EX1.11/11.txt2
-rwxr-xr-x1271/CH1/EX1.11/example1_11.sce13
-rwxr-xr-x1271/CH1/EX1.12/12.txt1
-rwxr-xr-x1271/CH1/EX1.12/example1_12.sce12
-rwxr-xr-x1271/CH1/EX1.13/13.txt1
-rwxr-xr-x1271/CH1/EX1.13/example1_13.sce12
-rwxr-xr-x1271/CH1/EX1.14/14.txt1
-rwxr-xr-x1271/CH1/EX1.14/example1_14.sce12
-rwxr-xr-x1271/CH1/EX1.15/15.txt1
-rwxr-xr-x1271/CH1/EX1.15/example1_15.sce17
-rwxr-xr-x1271/CH1/EX1.16/16.txt1
-rwxr-xr-x1271/CH1/EX1.16/example1_16.sce13
-rwxr-xr-x1271/CH1/EX1.17/17.txt1
-rwxr-xr-x1271/CH1/EX1.17/example1_17.sce11
-rwxr-xr-x1271/CH1/EX1.18/18.txt1
-rwxr-xr-x1271/CH1/EX1.18/example1_18.sce10
-rwxr-xr-x1271/CH1/EX1.19/19.txt3
-rwxr-xr-x1271/CH1/EX1.19/example1_19.sce13
-rwxr-xr-x1271/CH1/EX1.2/2.txt2
-rwxr-xr-x1271/CH1/EX1.2/example1_2.sce11
-rwxr-xr-x1271/CH1/EX1.20/20.txt1
-rwxr-xr-x1271/CH1/EX1.20/example1_20.sce13
-rwxr-xr-x1271/CH1/EX1.21/21.txt1
-rwxr-xr-x1271/CH1/EX1.21/example1_21.sce12
-rwxr-xr-x1271/CH1/EX1.22/22.txt2
-rwxr-xr-x1271/CH1/EX1.22/example1_22.sce12
-rwxr-xr-x1271/CH1/EX1.23/23.txt1
-rwxr-xr-x1271/CH1/EX1.23/example1_23.sce15
-rwxr-xr-x1271/CH1/EX1.24/24.txt1
-rwxr-xr-x1271/CH1/EX1.24/example1_24.sce11
-rwxr-xr-x1271/CH1/EX1.25/25.txt1
-rwxr-xr-x1271/CH1/EX1.25/example1_25.sce13
-rwxr-xr-x1271/CH1/EX1.26/26.txt1
-rwxr-xr-x1271/CH1/EX1.26/example1_26.sce12
-rwxr-xr-x1271/CH1/EX1.27/27.txt1
-rwxr-xr-x1271/CH1/EX1.27/example1_27.sce13
-rwxr-xr-x1271/CH1/EX1.28/28.txt1
-rwxr-xr-x1271/CH1/EX1.28/example1_28.sce12
-rwxr-xr-x1271/CH1/EX1.29/29.txt1
-rwxr-xr-x1271/CH1/EX1.29/example1_29.sce14
-rwxr-xr-x1271/CH1/EX1.3/3.txt3
-rwxr-xr-x1271/CH1/EX1.3/example1_3.sce15
-rwxr-xr-x1271/CH1/EX1.30/30.txt1
-rwxr-xr-x1271/CH1/EX1.30/example1_30.sce10
-rwxr-xr-x1271/CH1/EX1.31/31.txt2
-rwxr-xr-x1271/CH1/EX1.31/example1_31.sce14
-rwxr-xr-x1271/CH1/EX1.32/32.txt1
-rwxr-xr-x1271/CH1/EX1.32/example1_32.sce13
-rwxr-xr-x1271/CH1/EX1.33/33.txt2
-rwxr-xr-x1271/CH1/EX1.33/example1_33.sce12
-rwxr-xr-x1271/CH1/EX1.34/34.txt1
-rwxr-xr-x1271/CH1/EX1.34/example1_34.sce11
-rwxr-xr-x1271/CH1/EX1.35/35.txt1
-rwxr-xr-x1271/CH1/EX1.35/example1_35.sce17
-rwxr-xr-x1271/CH1/EX1.36/36.txt2
-rwxr-xr-x1271/CH1/EX1.36/example1_36.sce13
-rwxr-xr-x1271/CH1/EX1.37/37.txt1
-rwxr-xr-x1271/CH1/EX1.37/example1_37.sce11
-rwxr-xr-x1271/CH1/EX1.38/38.txt1
-rwxr-xr-x1271/CH1/EX1.38/example1_38.sce11
-rwxr-xr-x1271/CH1/EX1.39/39.txt7
-rwxr-xr-x1271/CH1/EX1.39/example1_39.sce11
-rwxr-xr-x1271/CH1/EX1.4/4.txt2
-rwxr-xr-x1271/CH1/EX1.4/example1_4.sce9
-rwxr-xr-x1271/CH1/EX1.40/40.txt2
-rwxr-xr-x1271/CH1/EX1.40/example1_40.sce11
-rwxr-xr-x1271/CH1/EX1.41/41.txt7
-rwxr-xr-x1271/CH1/EX1.41/example1_41.sce11
-rwxr-xr-x1271/CH1/EX1.42/42.txt2
-rwxr-xr-x1271/CH1/EX1.42/example1_42.sce10
-rwxr-xr-x1271/CH1/EX1.43/43.txt1
-rwxr-xr-x1271/CH1/EX1.43/example1_43.sce8
-rwxr-xr-x1271/CH1/EX1.44/44.txt1
-rwxr-xr-x1271/CH1/EX1.44/example1_44.sce10
-rwxr-xr-x1271/CH1/EX1.45/45.txt1
-rwxr-xr-x1271/CH1/EX1.45/example1_45.sce8
-rwxr-xr-x1271/CH1/EX1.46/46.txt1
-rwxr-xr-x1271/CH1/EX1.46/example1_46.sce13
-rwxr-xr-x1271/CH1/EX1.47/47.txt1
-rwxr-xr-x1271/CH1/EX1.47/example1_47.sce9
-rwxr-xr-x1271/CH1/EX1.48/48.txt1
-rwxr-xr-x1271/CH1/EX1.48/example1_48.sce9
-rwxr-xr-x1271/CH1/EX1.49/49.txt2
-rwxr-xr-x1271/CH1/EX1.49/example1_49.sce10
-rwxr-xr-x1271/CH1/EX1.5/5.txt2
-rwxr-xr-x1271/CH1/EX1.5/example1_5.sce15
-rwxr-xr-x1271/CH1/EX1.50/50.txt1
-rwxr-xr-x1271/CH1/EX1.50/example1_50.sce10
-rwxr-xr-x1271/CH1/EX1.51/51.txt1
-rwxr-xr-x1271/CH1/EX1.51/example1_51.sce9
-rwxr-xr-x1271/CH1/EX1.52/52.txt2
-rwxr-xr-x1271/CH1/EX1.52/example1_52.sce9
-rwxr-xr-x1271/CH1/EX1.53/53.txt1
-rwxr-xr-x1271/CH1/EX1.53/example1_53.sce9
-rwxr-xr-x1271/CH1/EX1.54/54.txt1
-rwxr-xr-x1271/CH1/EX1.54/example1_54.sce10
-rwxr-xr-x1271/CH1/EX1.6/6.txt1
-rwxr-xr-x1271/CH1/EX1.6/example1_6.sce8
-rwxr-xr-x1271/CH1/EX1.7/7.txt3
-rwxr-xr-x1271/CH1/EX1.7/example1_7.sce11
-rwxr-xr-x1271/CH1/EX1.8/8.txt2
-rwxr-xr-x1271/CH1/EX1.8/example1_8.sce10
-rwxr-xr-x1271/CH1/EX1.9/9.txt1
-rwxr-xr-x1271/CH1/EX1.9/example1_9.sce10
-rwxr-xr-x1271/CH10/EX10.15/15.txt4
-rwxr-xr-x1271/CH10/EX10.15/example10_15.sce11
-rwxr-xr-x1271/CH10/EX10.16/16.txt1
-rwxr-xr-x1271/CH10/EX10.16/example10_16.sce11
-rwxr-xr-x1271/CH10/EX10.17/17.txt2
-rwxr-xr-x1271/CH10/EX10.17/example10_17.sce12
-rwxr-xr-x1271/CH10/EX10.18/18.txt1
-rwxr-xr-x1271/CH10/EX10.18/example10_18.sce10
-rwxr-xr-x1271/CH10/EX10.19/19.txt8
-rwxr-xr-x1271/CH10/EX10.19/example10_19.sce14
-rwxr-xr-x1271/CH10/EX10.20/20.txt4
-rwxr-xr-x1271/CH10/EX10.20/example10_20.sce10
-rwxr-xr-x1271/CH10/EX10.21/21.txt5
-rwxr-xr-x1271/CH10/EX10.21/example10_21.sce10
-rwxr-xr-x1271/CH10/EX10.22/22.txt3
-rwxr-xr-x1271/CH10/EX10.22/example10_22.sce13
-rwxr-xr-x1271/CH10/EX10.23/23.txt4
-rwxr-xr-x1271/CH10/EX10.23/example10_23.sce10
-rwxr-xr-x1271/CH10/EX10.24/24.txt1
-rwxr-xr-x1271/CH10/EX10.24/example10_24.sce10
-rwxr-xr-x1271/CH10/EX10.28/28.txt2
-rwxr-xr-x1271/CH10/EX10.28/example10_28.sce14
-rwxr-xr-x1271/CH10/EX10.29/29.txt5
-rwxr-xr-x1271/CH10/EX10.29/example10_29.sce12
-rwxr-xr-x1271/CH10/EX10.31/31.txt1
-rwxr-xr-x1271/CH10/EX10.31/example10_31.sce14
-rwxr-xr-x1271/CH10/EX10.32/32.txt2
-rwxr-xr-x1271/CH10/EX10.32/example10_32.sce11
-rwxr-xr-x1271/CH11/EX11.10/10.txt1
-rwxr-xr-x1271/CH11/EX11.10/example11_10.sce9
-rwxr-xr-x1271/CH11/EX11.11/11.txt2
-rwxr-xr-x1271/CH11/EX11.11/example11_11.sce9
-rwxr-xr-x1271/CH11/EX11.12/12.txt1
-rwxr-xr-x1271/CH11/EX11.12/example11_12.sce9
-rwxr-xr-x1271/CH11/EX11.13/13.txt2
-rwxr-xr-x1271/CH11/EX11.13/example11_13.sce10
-rwxr-xr-x1271/CH11/EX11.14/14.txt1
-rwxr-xr-x1271/CH11/EX11.14/example11_14.sce10
-rwxr-xr-x1271/CH11/EX11.15/15.txt2
-rwxr-xr-x1271/CH11/EX11.15/example11_15.sce10
-rwxr-xr-x1271/CH11/EX11.17/17.txt2
-rwxr-xr-x1271/CH11/EX11.17/example11_17.sce11
-rwxr-xr-x1271/CH11/EX11.19/19.txt2
-rwxr-xr-x1271/CH11/EX11.19/example11_19.sce10
-rwxr-xr-x1271/CH11/EX11.20/20.txt1
-rwxr-xr-x1271/CH11/EX11.20/example11_20.sce9
-rwxr-xr-x1271/CH11/EX11.21/21.txt1
-rwxr-xr-x1271/CH11/EX11.21/example11_21.sce9
-rwxr-xr-x1271/CH11/EX11.22/22.txt1
-rwxr-xr-x1271/CH11/EX11.22/example11_22.sce9
-rwxr-xr-x1271/CH11/EX11.23/23.txt1
-rwxr-xr-x1271/CH11/EX11.23/example11_23.sce13
-rwxr-xr-x1271/CH11/EX11.24/24.txt2
-rwxr-xr-x1271/CH11/EX11.24/example11_24.sce12
-rwxr-xr-x1271/CH11/EX11.25/25.txt1
-rwxr-xr-x1271/CH11/EX11.25/example11_25.sce10
-rwxr-xr-x1271/CH11/EX11.26/26.txt2
-rwxr-xr-x1271/CH11/EX11.26/example11_26.sce10
-rwxr-xr-x1271/CH11/EX11.27/27.txt1
-rwxr-xr-x1271/CH11/EX11.27/example11_27.sce16
-rwxr-xr-x1271/CH11/EX11.28/28.txt1
-rwxr-xr-x1271/CH11/EX11.28/example11_28.sce9
-rwxr-xr-x1271/CH11/EX11.29/29.txt2
-rwxr-xr-x1271/CH11/EX11.29/example11_29.sce16
-rwxr-xr-x1271/CH11/EX11.30/30.txt1
-rwxr-xr-x1271/CH11/EX11.30/example11_30.sce10
-rwxr-xr-x1271/CH11/EX11.31/31.txt2
-rwxr-xr-x1271/CH11/EX11.31/example11_31.sce16
-rwxr-xr-x1271/CH11/EX11.32/32.txt1
-rwxr-xr-x1271/CH11/EX11.32/example11_32.sce9
-rwxr-xr-x1271/CH11/EX11.33/33.txt1
-rwxr-xr-x1271/CH11/EX11.33/example11_33.sce11
-rwxr-xr-x1271/CH11/EX11.34/34.txt2
-rwxr-xr-x1271/CH11/EX11.34/example11_34.sce10
-rwxr-xr-x1271/CH11/EX11.35/35.txt2
-rwxr-xr-x1271/CH11/EX11.35/example11_35.sce11
-rwxr-xr-x1271/CH11/EX11.36/36.txt2
-rwxr-xr-x1271/CH11/EX11.36/example11_36.sce9
-rwxr-xr-x1271/CH11/EX11.37/37.txt3
-rwxr-xr-x1271/CH11/EX11.37/example11_37.sce11
-rwxr-xr-x1271/CH11/EX11.38/38.txt1
-rwxr-xr-x1271/CH11/EX11.38/example11_38.sce11
-rwxr-xr-x1271/CH11/EX11.39/39.txt1
-rwxr-xr-x1271/CH11/EX11.39/example11_39.sce12
-rwxr-xr-x1271/CH11/EX11.40/40.txt1
-rwxr-xr-x1271/CH11/EX11.40/example11_40.sce12
-rwxr-xr-x1271/CH11/EX11.5/5.txt3
-rwxr-xr-x1271/CH11/EX11.5/example11_5.sce22
-rwxr-xr-x1271/CH11/EX11.6/6.txt1
-rwxr-xr-x1271/CH11/EX11.6/example11_6.sce9
-rwxr-xr-x1271/CH11/EX11.7/7.txt1
-rwxr-xr-x1271/CH11/EX11.7/example11_7.sce9
-rwxr-xr-x1271/CH11/EX11.9/9.txt2
-rwxr-xr-x1271/CH11/EX11.9/example11_9.sce10
-rwxr-xr-x1271/CH12/EX12.1/1.txt2
-rwxr-xr-x1271/CH12/EX12.1/example12_1.sce14
-rwxr-xr-x1271/CH12/EX12.10/10.txt1
-rwxr-xr-x1271/CH12/EX12.10/example12_10.sce14
-rwxr-xr-x1271/CH12/EX12.11/11.txt1
-rwxr-xr-x1271/CH12/EX12.11/example12_11.sce9
-rwxr-xr-x1271/CH12/EX12.12/12.txt1
-rwxr-xr-x1271/CH12/EX12.12/example12_12.sce11
-rwxr-xr-x1271/CH12/EX12.13/13.txt3
-rwxr-xr-x1271/CH12/EX12.13/example12_13.sce16
-rwxr-xr-x1271/CH12/EX12.14/14.txt1
-rwxr-xr-x1271/CH12/EX12.14/example12_14.sce11
-rwxr-xr-x1271/CH12/EX12.15/15.txt1
-rwxr-xr-x1271/CH12/EX12.15/example12_15.sce11
-rwxr-xr-x1271/CH12/EX12.16/16.txt1
-rwxr-xr-x1271/CH12/EX12.16/example12_16.sce12
-rwxr-xr-x1271/CH12/EX12.17/17.txt1
-rwxr-xr-x1271/CH12/EX12.17/example12_17.sce11
-rwxr-xr-x1271/CH12/EX12.18/18.txt2
-rwxr-xr-x1271/CH12/EX12.18/example12_18.sce14
-rwxr-xr-x1271/CH12/EX12.19/19.txt1
-rwxr-xr-x1271/CH12/EX12.19/example12_19.sce18
-rwxr-xr-x1271/CH12/EX12.2/2.txt2
-rwxr-xr-x1271/CH12/EX12.2/example12_2.sce14
-rwxr-xr-x1271/CH12/EX12.20/20.txt1
-rwxr-xr-x1271/CH12/EX12.20/example12_20.sce11
-rwxr-xr-x1271/CH12/EX12.21/21.txt1
-rwxr-xr-x1271/CH12/EX12.21/example12_21.sce12
-rwxr-xr-x1271/CH12/EX12.22/22.txt1
-rwxr-xr-x1271/CH12/EX12.22/example12_22.sce14
-rwxr-xr-x1271/CH12/EX12.23/23.txt2
-rwxr-xr-x1271/CH12/EX12.23/example12_23.sce14
-rwxr-xr-x1271/CH12/EX12.24/24.txt1
-rwxr-xr-x1271/CH12/EX12.24/example12_24.sce11
-rwxr-xr-x1271/CH12/EX12.25/25.txt1
-rwxr-xr-x1271/CH12/EX12.25/example12_25.sce14
-rwxr-xr-x1271/CH12/EX12.26/26.txt1
-rwxr-xr-x1271/CH12/EX12.26/example12_26.sce14
-rwxr-xr-x1271/CH12/EX12.27/27.txt1
-rwxr-xr-x1271/CH12/EX12.27/example12_27.sce12
-rwxr-xr-x1271/CH12/EX12.28/28.txt1
-rwxr-xr-x1271/CH12/EX12.28/example12_28.sce17
-rwxr-xr-x1271/CH12/EX12.29/29.txt2
-rwxr-xr-x1271/CH12/EX12.29/example12_29.sce15
-rwxr-xr-x1271/CH12/EX12.3/3.txt1
-rwxr-xr-x1271/CH12/EX12.3/example12_3.sce11
-rwxr-xr-x1271/CH12/EX12.30/30.txt1
-rwxr-xr-x1271/CH12/EX12.30/example12_30.sce11
-rwxr-xr-x1271/CH12/EX12.31/31.txt3
-rwxr-xr-x1271/CH12/EX12.31/example12_31.sce13
-rwxr-xr-x1271/CH12/EX12.32/32.txt3
-rwxr-xr-x1271/CH12/EX12.32/example12_32.sce15
-rwxr-xr-x1271/CH12/EX12.33/33.txt1
-rwxr-xr-x1271/CH12/EX12.33/example12_33.sce12
-rwxr-xr-x1271/CH12/EX12.34/34.txt1
-rwxr-xr-x1271/CH12/EX12.34/example12_34.sce13
-rwxr-xr-x1271/CH12/EX12.35/35.txt1
-rwxr-xr-x1271/CH12/EX12.35/example12_35.sce11
-rwxr-xr-x1271/CH12/EX12.36/36.txt2
-rwxr-xr-x1271/CH12/EX12.36/example12_36.sce13
-rwxr-xr-x1271/CH12/EX12.37/37.txt1
-rwxr-xr-x1271/CH12/EX12.37/example12_37.sce11
-rwxr-xr-x1271/CH12/EX12.38/38.txt1
-rwxr-xr-x1271/CH12/EX12.38/example12_38.sce13
-rwxr-xr-x1271/CH12/EX12.39/39.txt1
-rwxr-xr-x1271/CH12/EX12.39/example12_39.sce13
-rwxr-xr-x1271/CH12/EX12.4/4.txt1
-rwxr-xr-x1271/CH12/EX12.4/example12_4.sce11
-rwxr-xr-x1271/CH12/EX12.40/40.txt2
-rwxr-xr-x1271/CH12/EX12.40/example12_40.sce13
-rwxr-xr-x1271/CH12/EX12.41/41.txt2
-rwxr-xr-x1271/CH12/EX12.41/example12_41.sce13
-rwxr-xr-x1271/CH12/EX12.5/5.txt1
-rwxr-xr-x1271/CH12/EX12.5/example12_5.sce11
-rwxr-xr-x1271/CH12/EX12.6/6.txt1
-rwxr-xr-x1271/CH12/EX12.6/example12_6.sce11
-rwxr-xr-x1271/CH12/EX12.7/7.txt2
-rwxr-xr-x1271/CH12/EX12.7/example12_7.sce10
-rwxr-xr-x1271/CH12/EX12.8/8.txt1
-rwxr-xr-x1271/CH12/EX12.8/example12_8.sce11
-rwxr-xr-x1271/CH12/EX12.9/9.txt1
-rwxr-xr-x1271/CH12/EX12.9/example12_9.sce10
-rwxr-xr-x1271/CH13/EX13.1/1.txt1
-rwxr-xr-x1271/CH13/EX13.1/example13_1.sce14
-rwxr-xr-x1271/CH13/EX13.10/10.txt1
-rwxr-xr-x1271/CH13/EX13.10/example13_10.sce10
-rwxr-xr-x1271/CH13/EX13.11/11.txt1
-rwxr-xr-x1271/CH13/EX13.11/example13_11.sce13
-rwxr-xr-x1271/CH13/EX13.12/12.txt1
-rwxr-xr-x1271/CH13/EX13.12/example13_12.sce13
-rwxr-xr-x1271/CH13/EX13.13/13.txt1
-rwxr-xr-x1271/CH13/EX13.13/example13_13.sce15
-rwxr-xr-x1271/CH13/EX13.14/14.txt2
-rwxr-xr-x1271/CH13/EX13.14/example13_14.sce14
-rwxr-xr-x1271/CH13/EX13.15/15.txt1
-rwxr-xr-x1271/CH13/EX13.15/example13_15.sce12
-rwxr-xr-x1271/CH13/EX13.16/16.txt1
-rwxr-xr-x1271/CH13/EX13.16/example13_16.sce16
-rwxr-xr-x1271/CH13/EX13.17/17.txt2
-rwxr-xr-x1271/CH13/EX13.17/example13_17.sce17
-rwxr-xr-x1271/CH13/EX13.18/18.txt3
-rwxr-xr-x1271/CH13/EX13.18/example13_18.sce13
-rwxr-xr-x1271/CH13/EX13.19/19.txt2
-rwxr-xr-x1271/CH13/EX13.19/example13_19.sce17
-rwxr-xr-x1271/CH13/EX13.2/2.txt1
-rwxr-xr-x1271/CH13/EX13.2/example13_2.sce14
-rwxr-xr-x1271/CH13/EX13.20/20.txt5
-rwxr-xr-x1271/CH13/EX13.20/example13_20.sce23
-rwxr-xr-x1271/CH13/EX13.21/21.txt1
-rwxr-xr-x1271/CH13/EX13.21/example13_21.sce10
-rwxr-xr-x1271/CH13/EX13.22/22.txt1
-rwxr-xr-x1271/CH13/EX13.22/example13_22.sce14
-rwxr-xr-x1271/CH13/EX13.23/23.txt2
-rwxr-xr-x1271/CH13/EX13.23/example13_23.sce12
-rwxr-xr-x1271/CH13/EX13.3/3.txt1
-rwxr-xr-x1271/CH13/EX13.3/example13_3.sce26
-rwxr-xr-x1271/CH13/EX13.4/4.txt2
-rwxr-xr-x1271/CH13/EX13.4/example13_4.sce16
-rwxr-xr-x1271/CH13/EX13.5/5.txt3
-rwxr-xr-x1271/CH13/EX13.5/example13_5.sce20
-rwxr-xr-x1271/CH13/EX13.6/6.txt8
-rwxr-xr-x1271/CH13/EX13.6/example13_6.sce14
-rwxr-xr-x1271/CH13/EX13.7/7.txt2
-rwxr-xr-x1271/CH13/EX13.7/example13_7.sce14
-rwxr-xr-x1271/CH13/EX13.8/8.txt6
-rwxr-xr-x1271/CH13/EX13.8/example13_8.sce25
-rwxr-xr-x1271/CH13/EX13.9/9.txt1
-rwxr-xr-x1271/CH13/EX13.9/example13_9.sce10
-rwxr-xr-x1271/CH14/EX1.1/1.txt6
-rwxr-xr-x1271/CH14/EX1.1/example14_1.sce14
-rwxr-xr-x1271/CH14/EX14.10/10.txt5
-rwxr-xr-x1271/CH14/EX14.10/example14_10.sce14
-rwxr-xr-x1271/CH14/EX14.11/11.txt6
-rwxr-xr-x1271/CH14/EX14.11/example14_11.sce15
-rwxr-xr-x1271/CH14/EX14.12/12.txt9
-rwxr-xr-x1271/CH14/EX14.12/example14_12.sce18
-rwxr-xr-x1271/CH14/EX14.13/13.txt6
-rwxr-xr-x1271/CH14/EX14.13/example14_13.sce16
-rwxr-xr-x1271/CH14/EX14.14/14.txt7
-rwxr-xr-x1271/CH14/EX14.14/example14_14.sce17
-rwxr-xr-x1271/CH14/EX14.15/15.txt6
-rwxr-xr-x1271/CH14/EX14.15/example14_15.sce16
-rwxr-xr-x1271/CH14/EX14.16/16.txt5
-rwxr-xr-x1271/CH14/EX14.16/example14_16.sce15
-rwxr-xr-x1271/CH14/EX14.17/17.txt7
-rwxr-xr-x1271/CH14/EX14.17/example14_17.sce15
-rwxr-xr-x1271/CH14/EX14.18/18.txt5
-rwxr-xr-x1271/CH14/EX14.18/example14_18.sce13
-rwxr-xr-x1271/CH14/EX14.19/19.txt5
-rwxr-xr-x1271/CH14/EX14.19/example14_19.sce13
-rwxr-xr-x1271/CH14/EX14.2/2.txt5
-rwxr-xr-x1271/CH14/EX14.2/example14_2.sce15
-rwxr-xr-x1271/CH14/EX14.20/20.txt7
-rwxr-xr-x1271/CH14/EX14.20/example14_20.sce15
-rwxr-xr-x1271/CH14/EX14.21/21.txt6
-rwxr-xr-x1271/CH14/EX14.21/example14_21.sce20
-rwxr-xr-x1271/CH14/EX14.22/22.txt5
-rwxr-xr-x1271/CH14/EX14.22/example14_22.sce15
-rwxr-xr-x1271/CH14/EX14.23/23.txt5
-rwxr-xr-x1271/CH14/EX14.23/example14_23.sce15
-rwxr-xr-x1271/CH14/EX14.24/24.txt6
-rwxr-xr-x1271/CH14/EX14.24/example14_24.sce16
-rwxr-xr-x1271/CH14/EX14.25/25.txt5
-rwxr-xr-x1271/CH14/EX14.25/example14_25.sce16
-rwxr-xr-x1271/CH14/EX14.26/26.txt7
-rwxr-xr-x1271/CH14/EX14.26/example14_26.sce16
-rwxr-xr-x1271/CH14/EX14.27/27.txt7
-rwxr-xr-x1271/CH14/EX14.27/example14_27.sce16
-rwxr-xr-x1271/CH14/EX14.28/28.txt7
-rwxr-xr-x1271/CH14/EX14.28/example14_28.sce20
-rwxr-xr-x1271/CH14/EX14.29/29.txt5
-rwxr-xr-x1271/CH14/EX14.29/example14_29.sce14
-rwxr-xr-x1271/CH14/EX14.3/3.txt5
-rwxr-xr-x1271/CH14/EX14.3/example14_3.sce13
-rwxr-xr-x1271/CH14/EX14.30/30.txt6
-rwxr-xr-x1271/CH14/EX14.30/example14_30.sce14
-rwxr-xr-x1271/CH14/EX14.31/31.txt6
-rwxr-xr-x1271/CH14/EX14.31/example14_31.sce14
-rwxr-xr-x1271/CH14/EX14.32/32.txt5
-rwxr-xr-x1271/CH14/EX14.32/example14_32.sce13
-rwxr-xr-x1271/CH14/EX14.33/33.txt6
-rwxr-xr-x1271/CH14/EX14.33/example14_33.sce12
-rwxr-xr-x1271/CH14/EX14.34/34.txt6
-rwxr-xr-x1271/CH14/EX14.34/example14_34.sce14
-rwxr-xr-x1271/CH14/EX14.35/35.txt6
-rwxr-xr-x1271/CH14/EX14.35/example14_35.sce14
-rwxr-xr-x1271/CH14/EX14.36/36.txt5
-rwxr-xr-x1271/CH14/EX14.36/example14_36.sce13
-rwxr-xr-x1271/CH14/EX14.37/37.txt6
-rwxr-xr-x1271/CH14/EX14.37/example14_37.sce16
-rwxr-xr-x1271/CH14/EX14.38/38.txt7
-rwxr-xr-x1271/CH14/EX14.38/example14_38.sce17
-rwxr-xr-x1271/CH14/EX14.39/39.txt5
-rwxr-xr-x1271/CH14/EX14.39/example14_39.sce16
-rwxr-xr-x1271/CH14/EX14.4/4.txt5
-rwxr-xr-x1271/CH14/EX14.4/example14_4.sce15
-rwxr-xr-x1271/CH14/EX14.40/40.txt5
-rwxr-xr-x1271/CH14/EX14.40/example14_40.sce17
-rwxr-xr-x1271/CH14/EX14.41/41.txt6
-rwxr-xr-x1271/CH14/EX14.41/example14_41.sce13
-rwxr-xr-x1271/CH14/EX14.42/42.txt5
-rwxr-xr-x1271/CH14/EX14.42/example14_42.sce15
-rwxr-xr-x1271/CH14/EX14.43/43.txt11
-rwxr-xr-x1271/CH14/EX14.43/example14_43.sce17
-rwxr-xr-x1271/CH14/EX14.44/44.txt5
-rwxr-xr-x1271/CH14/EX14.44/example14_44.sce15
-rwxr-xr-x1271/CH14/EX14.45/45.txt5
-rwxr-xr-x1271/CH14/EX14.45/example14_45.sce18
-rwxr-xr-x1271/CH14/EX14.47/47.txt6
-rwxr-xr-x1271/CH14/EX14.47/example14_47.sce15
-rwxr-xr-x1271/CH14/EX14.5/5.txt5
-rwxr-xr-x1271/CH14/EX14.5/example14_5.sce13
-rwxr-xr-x1271/CH14/EX14.6/6.txt5
-rwxr-xr-x1271/CH14/EX14.6/example14_6.sce14
-rwxr-xr-x1271/CH14/EX14.7/7.txt5
-rwxr-xr-x1271/CH14/EX14.7/example14_7.sce15
-rwxr-xr-x1271/CH14/EX14.8/8.txt5
-rwxr-xr-x1271/CH14/EX14.8/example14_8.sce15
-rwxr-xr-x1271/CH14/EX14.9/9.txt8
-rwxr-xr-x1271/CH14/EX14.9/example14_9.sce17
-rwxr-xr-x1271/CH15/EX15.1/1.txt5
-rwxr-xr-x1271/CH15/EX15.1/example15_1.sce15
-rwxr-xr-x1271/CH15/EX15.10/10.txt6
-rwxr-xr-x1271/CH15/EX15.10/example15_10.sce14
-rwxr-xr-x1271/CH15/EX15.11/11.txt5
-rwxr-xr-x1271/CH15/EX15.11/example15_11.sce10
-rwxr-xr-x1271/CH15/EX15.12/12.txt5
-rwxr-xr-x1271/CH15/EX15.12/example15_12.sce10
-rwxr-xr-x1271/CH15/EX15.13/13.txt5
-rwxr-xr-x1271/CH15/EX15.13/example15_13.sce16
-rwxr-xr-x1271/CH15/EX15.14/14.txt7
-rwxr-xr-x1271/CH15/EX15.14/example15_14.sce16
-rwxr-xr-x1271/CH15/EX15.15/15.txt5
-rwxr-xr-x1271/CH15/EX15.15/example15_15.sce17
-rwxr-xr-x1271/CH15/EX15.16/16.txt8
-rwxr-xr-x1271/CH15/EX15.16/example15_16.sce18
-rwxr-xr-x1271/CH15/EX15.17/17.txt7
-rwxr-xr-x1271/CH15/EX15.17/example15_17.sce16
-rwxr-xr-x1271/CH15/EX15.18/18.txt5
-rwxr-xr-x1271/CH15/EX15.18/example15_18.sce14
-rwxr-xr-x1271/CH15/EX15.19/19.txt11
-rwxr-xr-x1271/CH15/EX15.19/example15_19.sce18
-rwxr-xr-x1271/CH15/EX15.20/20.txt13
-rwxr-xr-x1271/CH15/EX15.20/example15_20.sce20
-rwxr-xr-x1271/CH15/EX15.21/21.txt8
-rwxr-xr-x1271/CH15/EX15.21/example15_21.sce19
-rwxr-xr-x1271/CH15/EX15.22/22.txt8
-rwxr-xr-x1271/CH15/EX15.22/example15_22.sce18
-rwxr-xr-x1271/CH15/EX15.23/23.txt14
-rwxr-xr-x1271/CH15/EX15.23/example15_23.sce25
-rwxr-xr-x1271/CH15/EX15.3/3.txt5
-rwxr-xr-x1271/CH15/EX15.3/example15_3.sce15
-rwxr-xr-x1271/CH15/EX15.4/4.txt5
-rwxr-xr-x1271/CH15/EX15.4/example15_4.sce11
-rwxr-xr-x1271/CH15/EX15.5/5.txt5
-rwxr-xr-x1271/CH15/EX15.5/example15_5.sce12
-rwxr-xr-x1271/CH15/EX15.6/6.txt5
-rwxr-xr-x1271/CH15/EX15.6/example15_6.sce14
-rwxr-xr-x1271/CH15/EX15.7/7.txt6
-rwxr-xr-x1271/CH15/EX15.7/example15_7.sce13
-rwxr-xr-x1271/CH15/EX15.8/8.txt5
-rwxr-xr-x1271/CH15/EX15.8/example15_8.sce15
-rwxr-xr-x1271/CH15/EX15.9/9.txt5
-rwxr-xr-x1271/CH15/EX15.9/example15_9.sce15
-rwxr-xr-x1271/CH16/EX16.1/1.txt6
-rwxr-xr-x1271/CH16/EX16.1/example16_1.sce13
-rwxr-xr-x1271/CH16/EX16.10/10.txt5
-rwxr-xr-x1271/CH16/EX16.10/example16_10.sce16
-rwxr-xr-x1271/CH16/EX16.2/2.txt6
-rwxr-xr-x1271/CH16/EX16.2/example16_2.sce13
-rwxr-xr-x1271/CH16/EX16.3/3.txt7
-rwxr-xr-x1271/CH16/EX16.3/example16_3.sce14
-rwxr-xr-x1271/CH16/EX16.4/4.txt7
-rwxr-xr-x1271/CH16/EX16.4/example16_4.sce19
-rwxr-xr-x1271/CH16/EX16.5/5.txt5
-rwxr-xr-x1271/CH16/EX16.5/example16_5.sce17
-rwxr-xr-x1271/CH16/EX16.6/6.txt8
-rwxr-xr-x1271/CH16/EX16.6/example16_6.sce18
-rwxr-xr-x1271/CH16/EX16.7/7.txt6
-rwxr-xr-x1271/CH16/EX16.7/example16_7.sce13
-rwxr-xr-x1271/CH16/EX16.8/8.txt7
-rwxr-xr-x1271/CH16/EX16.8/example16_8.sce17
-rwxr-xr-x1271/CH16/EX16.9/9.txt8
-rwxr-xr-x1271/CH16/EX16.9/example16_9.sce27
-rwxr-xr-x1271/CH17/EX17.1/1.txt8
-rwxr-xr-x1271/CH17/EX17.1/example17_1.sce13
-rwxr-xr-x1271/CH17/EX17.2/2.txt5
-rwxr-xr-x1271/CH17/EX17.2/example17_2.sce14
-rwxr-xr-x1271/CH17/EX17.3/3.txt5
-rwxr-xr-x1271/CH17/EX17.3/example17_3.sce15
-rwxr-xr-x1271/CH17/EX17.4/4.txt5
-rwxr-xr-x1271/CH17/EX17.4/example17_4.sce14
-rwxr-xr-x1271/CH17/EX17.5/5.txt5
-rwxr-xr-x1271/CH17/EX17.5/example17_5.sce10
-rwxr-xr-x1271/CH17/EX17.6/6.txt5
-rwxr-xr-x1271/CH17/EX17.6/example17_6.sce11
-rwxr-xr-x1271/CH18/EX18.1/1.txt6
-rwxr-xr-x1271/CH18/EX18.1/example18_1.sce14
-rwxr-xr-x1271/CH18/EX18.10/10.txt5
-rwxr-xr-x1271/CH18/EX18.10/example18_10.sce13
-rwxr-xr-x1271/CH18/EX18.11/11.txt5
-rwxr-xr-x1271/CH18/EX18.11/example18_11.sce16
-rwxr-xr-x1271/CH18/EX18.12/12.txt5
-rwxr-xr-x1271/CH18/EX18.12/example18_12.sce16
-rwxr-xr-x1271/CH18/EX18.13/13.txt5
-rwxr-xr-x1271/CH18/EX18.13/example18_13.sce16
-rwxr-xr-x1271/CH18/EX18.14/14.txt5
-rwxr-xr-x1271/CH18/EX18.14/example18_14.sce18
-rwxr-xr-x1271/CH18/EX18.15/15.txt5
-rwxr-xr-x1271/CH18/EX18.15/example18_15.sce14
-rwxr-xr-x1271/CH18/EX18.16/16.txt5
-rwxr-xr-x1271/CH18/EX18.16/example18_16.sce12
-rwxr-xr-x1271/CH18/EX18.17/17.txt5
-rwxr-xr-x1271/CH18/EX18.17/example18_17.sce14
-rwxr-xr-x1271/CH18/EX18.18/18.txt6
-rwxr-xr-x1271/CH18/EX18.18/example18_18.sce14
-rwxr-xr-x1271/CH18/EX18.19/19.txt5
-rwxr-xr-x1271/CH18/EX18.19/example18_19.sce11
-rwxr-xr-x1271/CH18/EX18.2/2.txt7
-rwxr-xr-x1271/CH18/EX18.2/example18_2.sce13
-rwxr-xr-x1271/CH18/EX18.20/20.txt5
-rwxr-xr-x1271/CH18/EX18.20/example18_20.sce14
-rwxr-xr-x1271/CH18/EX18.21/21.txt5
-rwxr-xr-x1271/CH18/EX18.21/example18_21.sce15
-rwxr-xr-x1271/CH18/EX18.3/3.txt5
-rwxr-xr-x1271/CH18/EX18.3/example18_3.sce9
-rwxr-xr-x1271/CH18/EX18.4/4.txt6
-rwxr-xr-x1271/CH18/EX18.4/example18_4.sce12
-rwxr-xr-x1271/CH18/EX18.5/5.txt5
-rwxr-xr-x1271/CH18/EX18.5/example18_5.sce11
-rwxr-xr-x1271/CH18/EX18.6/6.txt6
-rwxr-xr-x1271/CH18/EX18.6/example18_6.sce11
-rwxr-xr-x1271/CH18/EX18.7/7.txt6
-rwxr-xr-x1271/CH18/EX18.7/example18_7.sce11
-rwxr-xr-x1271/CH18/EX18.8/8.txt6
-rwxr-xr-x1271/CH18/EX18.8/example18_8.sce14
-rwxr-xr-x1271/CH18/EX18.9/9.txt6
-rwxr-xr-x1271/CH18/EX18.9/example18_9.sce14
-rwxr-xr-x1271/CH19/EX19.1/1.txt5
-rwxr-xr-x1271/CH19/EX19.1/example19_1.sce11
-rwxr-xr-x1271/CH19/EX19.2/2.txt6
-rwxr-xr-x1271/CH19/EX19.2/example19_2.sce16
-rwxr-xr-x1271/CH19/EX19.3/3.txt6
-rwxr-xr-x1271/CH19/EX19.3/example19_3.sce14
-rwxr-xr-x1271/CH19/EX19.4/4.txt5
-rwxr-xr-x1271/CH19/EX19.4/example19_4.sce11
-rwxr-xr-x1271/CH19/EX19.5/5.txt5
-rwxr-xr-x1271/CH19/EX19.5/example19_5.sce11
-rwxr-xr-x1271/CH19/EX19.6/6.txt5
-rwxr-xr-x1271/CH19/EX19.6/example19_6.sce12
-rwxr-xr-x1271/CH19/EX19.7/7.txt5
-rwxr-xr-x1271/CH19/EX19.7/example19_7.sce11
-rwxr-xr-x1271/CH19/EX19.8/8.txt7
-rwxr-xr-x1271/CH19/EX19.8/example19_8.sce13
-rwxr-xr-x1271/CH2/EX2.1/1.txt2
-rwxr-xr-x1271/CH2/EX2.1/example2_1.sce11
-rwxr-xr-x1271/CH2/EX2.10/10.txt1
-rwxr-xr-x1271/CH2/EX2.10/example2_10.sce12
-rwxr-xr-x1271/CH2/EX2.11/11.txt2
-rwxr-xr-x1271/CH2/EX2.11/example2_11.sce13
-rwxr-xr-x1271/CH2/EX2.12/12.txt2
-rwxr-xr-x1271/CH2/EX2.12/example2_12.sce8
-rwxr-xr-x1271/CH2/EX2.13/13.txt1
-rwxr-xr-x1271/CH2/EX2.13/example2_13.sce11
-rwxr-xr-x1271/CH2/EX2.14/14.txt1
-rwxr-xr-x1271/CH2/EX2.14/example2_14.sce10
-rwxr-xr-x1271/CH2/EX2.15/15.txt1
-rwxr-xr-x1271/CH2/EX2.15/example2_15.sce12
-rwxr-xr-x1271/CH2/EX2.16/16.txt1
-rwxr-xr-x1271/CH2/EX2.16/example2_16.sce11
-rwxr-xr-x1271/CH2/EX2.17/17.txt2
-rwxr-xr-x1271/CH2/EX2.17/example2_17.sce12
-rwxr-xr-x1271/CH2/EX2.18/18.txt1
-rwxr-xr-x1271/CH2/EX2.18/example2_18.sce11
-rwxr-xr-x1271/CH2/EX2.2/2.txt1
-rwxr-xr-x1271/CH2/EX2.2/example2_2.sce10
-rwxr-xr-x1271/CH2/EX2.20/20.txt1
-rwxr-xr-x1271/CH2/EX2.20/example2_20.sce11
-rwxr-xr-x1271/CH2/EX2.21/21.txt1
-rwxr-xr-x1271/CH2/EX2.21/example2_21.sce14
-rwxr-xr-x1271/CH2/EX2.22/22.txt1
-rwxr-xr-x1271/CH2/EX2.22/example2_22.sce10
-rwxr-xr-x1271/CH2/EX2.23/23.txt1
-rwxr-xr-x1271/CH2/EX2.23/example2_23.sce15
-rwxr-xr-x1271/CH2/EX2.24/24.txt2
-rwxr-xr-x1271/CH2/EX2.24/example2_24.sce18
-rwxr-xr-x1271/CH2/EX2.25/25.txt1
-rwxr-xr-x1271/CH2/EX2.25/example2_25.sce10
-rwxr-xr-x1271/CH2/EX2.26/26.txt1
-rwxr-xr-x1271/CH2/EX2.26/example2_26.sce10
-rwxr-xr-x1271/CH2/EX2.27/27.txt3
-rwxr-xr-x1271/CH2/EX2.27/example2_27.sce11
-rwxr-xr-x1271/CH2/EX2.28/28.txt1
-rwxr-xr-x1271/CH2/EX2.28/example2_28.sce11
-rwxr-xr-x1271/CH2/EX2.29/29.txt1
-rwxr-xr-x1271/CH2/EX2.29/example2_29.sce14
-rwxr-xr-x1271/CH2/EX2.3/3.txt2
-rwxr-xr-x1271/CH2/EX2.3/example2_3.sce10
-rwxr-xr-x1271/CH2/EX2.30/30.txt1
-rwxr-xr-x1271/CH2/EX2.30/example2_30.sce14
-rwxr-xr-x1271/CH2/EX2.31/31.txt1
-rwxr-xr-x1271/CH2/EX2.31/example2_31.sce11
-rwxr-xr-x1271/CH2/EX2.32/32.txt1
-rwxr-xr-x1271/CH2/EX2.32/example2_32.sce10
-rwxr-xr-x1271/CH2/EX2.33/33.txt1
-rwxr-xr-x1271/CH2/EX2.33/example2_33.sce10
-rwxr-xr-x1271/CH2/EX2.34/34.txt1
-rwxr-xr-x1271/CH2/EX2.34/example2_34.sce10
-rwxr-xr-x1271/CH2/EX2.35/35.txt1
-rwxr-xr-x1271/CH2/EX2.35/example2_35.sce11
-rwxr-xr-x1271/CH2/EX2.36/36.txt1
-rwxr-xr-x1271/CH2/EX2.36/example2_36.sce10
-rwxr-xr-x1271/CH2/EX2.37/37.txt1
-rwxr-xr-x1271/CH2/EX2.37/example2_37.sce10
-rwxr-xr-x1271/CH2/EX2.38/38.txt1
-rwxr-xr-x1271/CH2/EX2.38/example2_38.sce10
-rwxr-xr-x1271/CH2/EX2.39/39.txt2
-rwxr-xr-x1271/CH2/EX2.39/example2_39.sce13
-rwxr-xr-x1271/CH2/EX2.4/4.txt2
-rwxr-xr-x1271/CH2/EX2.4/example2_4.sce12
-rwxr-xr-x1271/CH2/EX2.40/40.txt1
-rwxr-xr-x1271/CH2/EX2.40/example2_40.sce11
-rwxr-xr-x1271/CH2/EX2.41/41.txt1
-rwxr-xr-x1271/CH2/EX2.41/example2_41.sce9
-rwxr-xr-x1271/CH2/EX2.42/42.txt1
-rwxr-xr-x1271/CH2/EX2.42/example2_42.sce9
-rwxr-xr-x1271/CH2/EX2.43/43.txt1
-rwxr-xr-x1271/CH2/EX2.43/example2_43.sce11
-rwxr-xr-x1271/CH2/EX2.44/44.txt1
-rwxr-xr-x1271/CH2/EX2.44/example2_44.sce9
-rwxr-xr-x1271/CH2/EX2.45/45.txt1
-rwxr-xr-x1271/CH2/EX2.45/example2_45.sce9
-rwxr-xr-x1271/CH2/EX2.5/5.txt1
-rwxr-xr-x1271/CH2/EX2.5/example2_5.sce10
-rwxr-xr-x1271/CH2/EX2.6/6.txt2
-rwxr-xr-x1271/CH2/EX2.6/example2_6.sce14
-rwxr-xr-x1271/CH2/EX2.7/7.txt2
-rwxr-xr-x1271/CH2/EX2.7/example2_7.sce10
-rwxr-xr-x1271/CH2/EX2.8/8.txt3
-rwxr-xr-x1271/CH2/EX2.8/example2_8.sce14
-rwxr-xr-x1271/CH2/EX2.9/9.txt1
-rwxr-xr-x1271/CH2/EX2.9/example2_9.sce10
-rwxr-xr-x1271/CH20/EX20.1/1.txt10
-rwxr-xr-x1271/CH20/EX20.1/example20_1.sce16
-rwxr-xr-x1271/CH20/EX20.10/10.txt6
-rwxr-xr-x1271/CH20/EX20.10/example20_10.sce11
-rwxr-xr-x1271/CH20/EX20.11/11.txt6
-rwxr-xr-x1271/CH20/EX20.11/example20_11.sce15
-rwxr-xr-x1271/CH20/EX20.12/12.txt5
-rwxr-xr-x1271/CH20/EX20.12/example20_12.sce9
-rwxr-xr-x1271/CH20/EX20.13/13.txt3
-rwxr-xr-x1271/CH20/EX20.13/example20_13.sce11
-rwxr-xr-x1271/CH20/EX20.14/14.txt5
-rwxr-xr-x1271/CH20/EX20.14/example20_14.sce11
-rwxr-xr-x1271/CH20/EX20.15/15.txt5
-rwxr-xr-x1271/CH20/EX20.15/example20_15.sce11
-rwxr-xr-x1271/CH20/EX20.16/16.txt5
-rwxr-xr-x1271/CH20/EX20.16/example20_16.sce13
-rwxr-xr-x1271/CH20/EX20.17/17.txt5
-rwxr-xr-x1271/CH20/EX20.17/example20_17.sce15
-rwxr-xr-x1271/CH20/EX20.18/18.txt5
-rwxr-xr-x1271/CH20/EX20.18/example20_18.sce11
-rwxr-xr-x1271/CH20/EX20.19/19.txt6
-rwxr-xr-x1271/CH20/EX20.19/example20_19.sce14
-rwxr-xr-x1271/CH20/EX20.2/2.txt5
-rwxr-xr-x1271/CH20/EX20.2/example20_2.sce12
-rwxr-xr-x1271/CH20/EX20.3/3.txt5
-rwxr-xr-x1271/CH20/EX20.3/example20_3.sce9
-rwxr-xr-x1271/CH20/EX20.4/4.txt5
-rwxr-xr-x1271/CH20/EX20.4/example20_4.sce9
-rwxr-xr-x1271/CH20/EX20.5/5.txt5
-rwxr-xr-x1271/CH20/EX20.5/example20_5.sce10
-rwxr-xr-x1271/CH20/EX20.6/6.txt6
-rwxr-xr-x1271/CH20/EX20.6/example20_6.sce12
-rwxr-xr-x1271/CH20/EX20.7/7.txt7
-rwxr-xr-x1271/CH20/EX20.7/example20_7.sce12
-rwxr-xr-x1271/CH20/EX20.8/8.txt7
-rwxr-xr-x1271/CH20/EX20.8/example20_8.sce12
-rwxr-xr-x1271/CH20/EX20.9/9.txt5
-rwxr-xr-x1271/CH20/EX20.9/example20_9.sce11
-rwxr-xr-x1271/CH22/EX22.1/1.txt3
-rwxr-xr-x1271/CH22/EX22.1/example22_1.sce12
-rwxr-xr-x1271/CH3/EX3.1/1.txt2
-rwxr-xr-x1271/CH3/EX3.1/example3_1.sce9
-rwxr-xr-x1271/CH3/EX3.10/10.txt5
-rwxr-xr-x1271/CH3/EX3.10/example3_10.sce15
-rwxr-xr-x1271/CH3/EX3.11/11.txt2
-rwxr-xr-x1271/CH3/EX3.11/example3_11.sce10
-rwxr-xr-x1271/CH3/EX3.12/12.txt1
-rwxr-xr-x1271/CH3/EX3.12/example3_12.sce10
-rwxr-xr-x1271/CH3/EX3.13/13.txt1
-rwxr-xr-x1271/CH3/EX3.13/example3_13.sce10
-rwxr-xr-x1271/CH3/EX3.14/14.txt2
-rwxr-xr-x1271/CH3/EX3.14/example3_14.sce14
-rwxr-xr-x1271/CH3/EX3.15/15.txt2
-rwxr-xr-x1271/CH3/EX3.15/example3_15.sce10
-rwxr-xr-x1271/CH3/EX3.16/16.txt2
-rwxr-xr-x1271/CH3/EX3.16/example3_16.sce10
-rwxr-xr-x1271/CH3/EX3.17/17.txt1
-rwxr-xr-x1271/CH3/EX3.17/example3_17.sce10
-rwxr-xr-x1271/CH3/EX3.18/18.txt1
-rwxr-xr-x1271/CH3/EX3.18/example3_18.sce10
-rwxr-xr-x1271/CH3/EX3.19/19.txt1
-rwxr-xr-x1271/CH3/EX3.19/example3_19.sce10
-rwxr-xr-x1271/CH3/EX3.2/2.txt1
-rwxr-xr-x1271/CH3/EX3.2/example3_2.sce8
-rwxr-xr-x1271/CH3/EX3.20/20.txt1
-rwxr-xr-x1271/CH3/EX3.20/example3_20.sce10
-rwxr-xr-x1271/CH3/EX3.21/21.txt1
-rwxr-xr-x1271/CH3/EX3.21/example3_21.sce10
-rwxr-xr-x1271/CH3/EX3.22/22.txt1
-rwxr-xr-x1271/CH3/EX3.22/example3_22.sce10
-rwxr-xr-x1271/CH3/EX3.23/23.txt1
-rwxr-xr-x1271/CH3/EX3.23/example3_23.sce12
-rwxr-xr-x1271/CH3/EX3.24/24.txt1
-rwxr-xr-x1271/CH3/EX3.24/example3_24.sce10
-rwxr-xr-x1271/CH3/EX3.25/25.txt1
-rwxr-xr-x1271/CH3/EX3.25/example3_25.sce10
-rwxr-xr-x1271/CH3/EX3.26/26.txt1
-rwxr-xr-x1271/CH3/EX3.26/example3_26.sce11
-rwxr-xr-x1271/CH3/EX3.3/3.txt3
-rwxr-xr-x1271/CH3/EX3.3/example3_3.sce11
-rwxr-xr-x1271/CH3/EX3.4/4.txt1
-rwxr-xr-x1271/CH3/EX3.4/example3_4.sce10
-rwxr-xr-x1271/CH3/EX3.5/5.txt1
-rwxr-xr-x1271/CH3/EX3.5/example3_5.sce10
-rwxr-xr-x1271/CH3/EX3.6/6.txt2
-rwxr-xr-x1271/CH3/EX3.6/example3_6.sce9
-rwxr-xr-x1271/CH3/EX3.7/7.txt1
-rwxr-xr-x1271/CH3/EX3.7/example3_7.sce8
-rwxr-xr-x1271/CH3/EX3.8/8.txt2
-rwxr-xr-x1271/CH3/EX3.8/example3_8.sce11
-rwxr-xr-x1271/CH3/EX3.9/9.txt1
-rwxr-xr-x1271/CH3/EX3.9/example3_9.sce8
-rwxr-xr-x1271/CH4/EX4.1/1.txt2
-rwxr-xr-x1271/CH4/EX4.1/example4_1.sce18
-rwxr-xr-x1271/CH4/EX4.2/2.txt2
-rwxr-xr-x1271/CH4/EX4.2/example4_2.sce12
-rwxr-xr-x1271/CH4/EX4.3/3.txt1
-rwxr-xr-x1271/CH4/EX4.3/example4_3.sce19
-rwxr-xr-x1271/CH4/EX4.4/4.txt1
-rwxr-xr-x1271/CH4/EX4.4/example4_4.sce11
-rwxr-xr-x1271/CH4/EX4.5/5.txt2
-rwxr-xr-x1271/CH4/EX4.5/example4_5.sce12
-rwxr-xr-x1271/CH4/EX4.6/6.txt2
-rwxr-xr-x1271/CH4/EX4.6/example4_6.sce14
-rwxr-xr-x1271/CH4/EX4.7/7.txt1
-rwxr-xr-x1271/CH4/EX4.7/example4_7.sce11
-rwxr-xr-x1271/CH5/EX5.1/1.txt3
-rwxr-xr-x1271/CH5/EX5.1/example5_1.sce11
-rwxr-xr-x1271/CH5/EX5.10/10.txt2
-rwxr-xr-x1271/CH5/EX5.10/example5_10.sce11
-rwxr-xr-x1271/CH5/EX5.11/11.txt1
-rwxr-xr-x1271/CH5/EX5.11/example5_11.sce11
-rwxr-xr-x1271/CH5/EX5.12/12.txt1
-rwxr-xr-x1271/CH5/EX5.12/example5_12.sce10
-rwxr-xr-x1271/CH5/EX5.13/13.txt1
-rwxr-xr-x1271/CH5/EX5.13/example5_13.sce11
-rwxr-xr-x1271/CH5/EX5.2/2.txt2
-rwxr-xr-x1271/CH5/EX5.2/example5_2.sce10
-rwxr-xr-x1271/CH5/EX5.3/3.txt4
-rwxr-xr-x1271/CH5/EX5.3/example5_3.sce13
-rwxr-xr-x1271/CH5/EX5.4/4.txt2
-rwxr-xr-x1271/CH5/EX5.4/example5_4.sce10
-rwxr-xr-x1271/CH5/EX5.5/5.txt2
-rwxr-xr-x1271/CH5/EX5.5/example5_5.sce10
-rwxr-xr-x1271/CH5/EX5.6/6.txt4
-rwxr-xr-x1271/CH5/EX5.6/example5_6.sce15
-rwxr-xr-x1271/CH5/EX5.7/7.txt2
-rwxr-xr-x1271/CH5/EX5.7/example5_7.sce11
-rwxr-xr-x1271/CH5/EX5.8/8.txt2
-rwxr-xr-x1271/CH5/EX5.8/example5_8.sce12
-rwxr-xr-x1271/CH5/EX5.9/9.txt2
-rwxr-xr-x1271/CH5/EX5.9/example5_9.sce12
-rwxr-xr-x1271/CH6/EX6.1/1.txt3
-rwxr-xr-x1271/CH6/EX6.1/example6_1.sce12
-rwxr-xr-x1271/CH6/EX6.10/10.txt1
-rwxr-xr-x1271/CH6/EX6.10/example6_10.sce9
-rwxr-xr-x1271/CH6/EX6.12/12.txt1
-rwxr-xr-x1271/CH6/EX6.12/example6_12.sce8
-rwxr-xr-x1271/CH6/EX6.2/2.txt1
-rwxr-xr-x1271/CH6/EX6.2/example6_2.sce10
-rwxr-xr-x1271/CH6/EX6.4/4.txt3
-rwxr-xr-x1271/CH6/EX6.4/example6_4.sce13
-rwxr-xr-x1271/CH6/EX6.5/5.txt1
-rwxr-xr-x1271/CH6/EX6.5/example6_5.sce10
-rwxr-xr-x1271/CH6/EX6.6/6.txt1
-rwxr-xr-x1271/CH6/EX6.6/example6_6.sce12
-rwxr-xr-x1271/CH6/EX6.7/7.txt1
-rwxr-xr-x1271/CH6/EX6.7/example6_7.sce11
-rwxr-xr-x1271/CH6/EX6.8/8.txt1
-rwxr-xr-x1271/CH6/EX6.8/example6_8.sce13
-rwxr-xr-x1271/CH6/EX6.9/9.txt1
-rwxr-xr-x1271/CH6/EX6.9/example6_9.sce9
-rwxr-xr-x1271/CH7/EX7.1/1.txt2
-rwxr-xr-x1271/CH7/EX7.1/example7_1.sce12
-rwxr-xr-x1271/CH7/EX7.10/10.txt2
-rwxr-xr-x1271/CH7/EX7.10/example7_10.sce10
-rwxr-xr-x1271/CH7/EX7.11/11.txt7
-rwxr-xr-x1271/CH7/EX7.11/example7_11.sce14
-rwxr-xr-x1271/CH7/EX7.12/12.txt3
-rwxr-xr-x1271/CH7/EX7.12/example7_12.sce16
-rwxr-xr-x1271/CH7/EX7.13/13.txt1
-rwxr-xr-x1271/CH7/EX7.13/example7_13.sce12
-rwxr-xr-x1271/CH7/EX7.14/14.txt2
-rwxr-xr-x1271/CH7/EX7.14/example7_14.sce13
-rwxr-xr-x1271/CH7/EX7.2/2.txt1
-rwxr-xr-x1271/CH7/EX7.2/example7_2.sce9
-rwxr-xr-x1271/CH7/EX7.3/3.txt2
-rwxr-xr-x1271/CH7/EX7.3/example7_3.sce13
-rwxr-xr-x1271/CH7/EX7.4/4.txt1
-rwxr-xr-x1271/CH7/EX7.4/example7_4.sce11
-rwxr-xr-x1271/CH7/EX7.5/5.txt2
-rwxr-xr-x1271/CH7/EX7.5/example7_5.sce10
-rwxr-xr-x1271/CH7/EX7.6/6.txt1
-rwxr-xr-x1271/CH7/EX7.6/example7_6.sce9
-rwxr-xr-x1271/CH7/EX7.7/7.txt2
-rwxr-xr-x1271/CH7/EX7.7/example7_7.sce9
-rwxr-xr-x1271/CH7/EX7.8/8.txt1
-rwxr-xr-x1271/CH7/EX7.8/example7_8.sce10
-rwxr-xr-x1271/CH7/EX7.9/9.txt1
-rwxr-xr-x1271/CH7/EX7.9/example7_9.sce8
-rwxr-xr-x1271/CH8/EX8.1/1.txt1
-rwxr-xr-x1271/CH8/EX8.1/example8_1.sce12
-rwxr-xr-x1271/CH8/EX8.2/2.txt1
-rwxr-xr-x1271/CH8/EX8.2/example8_2.sce17
-rwxr-xr-x1271/CH8/EX8.3/3.txt1
-rwxr-xr-x1271/CH8/EX8.3/example8_3.sce18
-rwxr-xr-x1271/CH8/EX8.4/4.txt2
-rwxr-xr-x1271/CH8/EX8.4/example8_4.sce17
-rwxr-xr-x1271/CH8/EX8.5/5.txt1
-rwxr-xr-x1271/CH8/EX8.5/example8_5.sce10
-rwxr-xr-x1271/CH8/EX8.6/6.txt1
-rwxr-xr-x1271/CH8/EX8.6/example8_6.sce25
-rwxr-xr-x1271/CH8/EX8.7/7.txt1
-rwxr-xr-x1271/CH8/EX8.7/example8_7.sce26
-rwxr-xr-x1271/CH8/EX8.8/8.txt1
-rwxr-xr-x1271/CH8/EX8.8/example8_8.sce19
-rwxr-xr-x1271/CH8/EX8.9/9.txt1
-rwxr-xr-x1271/CH8/EX8.9/example8_9.sce12
-rwxr-xr-x1271/CH9/EX9.1/1.txt2
-rwxr-xr-x1271/CH9/EX9.1/example9_1.sce13
-rwxr-xr-x1271/CH9/EX9.2/2.txt5
-rwxr-xr-x1271/CH9/EX9.2/example9_2.sce11
-rwxr-xr-x1271/CH9/EX9.3/3.txt3
-rwxr-xr-x1271/CH9/EX9.3/example9_3.sce14
-rwxr-xr-x1271/CH9/EX9.4/4.txt2
-rwxr-xr-x1271/CH9/EX9.4/example9_4.sce15
-rwxr-xr-x1271/CH9/EX9.5/5.txt1
-rwxr-xr-x1271/CH9/EX9.5/example9_5.sce14
-rwxr-xr-x1271/CH9/EX9.6/6.txt1
-rwxr-xr-x1271/CH9/EX9.6/example9_6.sce10
854 files changed, 6677 insertions, 0 deletions
diff --git a/1271/CH1/EX1.1/1.txt b/1271/CH1/EX1.1/1.txt
new file mode 100755
index 000000000..fb6e0ad80
--- /dev/null
+++ b/1271/CH1/EX1.1/1.txt
@@ -0,0 +1 @@
+Coherence time = 4.400000e-14 sec \ No newline at end of file
diff --git a/1271/CH1/EX1.1/example1_1.sce b/1271/CH1/EX1.1/example1_1.sce
new file mode 100755
index 000000000..4aec05f44
--- /dev/null
+++ b/1271/CH1/EX1.1/example1_1.sce
@@ -0,0 +1,9 @@
+clc
+// Given that
+lambda = 6.6e-7 // wavelength of light in meter
+L = 1.32e-5 // coherence length in meter
+// Sample Problem 1 on page no. 1.40
+printf("\n # PROBLEM 1 # \n")
+printf("\n Standard formulae used \n delta_L = c * delta_t \n")
+coherence_time = L / (3 * 10 ^ 8)//calculation for coherence time
+printf("\n Coherence time = %e sec",coherence_time)
diff --git a/1271/CH1/EX1.10/10.txt b/1271/CH1/EX1.10/10.txt
new file mode 100755
index 000000000..0573c52c3
--- /dev/null
+++ b/1271/CH1/EX1.10/10.txt
@@ -0,0 +1 @@
+ Wavelength of light = 5000.000000 A. \ No newline at end of file
diff --git a/1271/CH1/EX1.10/example1_10.sce b/1271/CH1/EX1.10/example1_10.sce
new file mode 100755
index 000000000..37d5604be
--- /dev/null
+++ b/1271/CH1/EX1.10/example1_10.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+d = 0.0001 // distance between two slits in meter
+Beta = 0.005 // width of the fringes formed in meter
+D = 1 // distance between slit and screen in meter
+// Sample Problem 10 on page no. 1.43
+printf("\n # PROBLEM 10 # \n")
+lambda = (Beta * d) / D // calculation for wavelength of light = %e meter
+printf("\n Standard formula used \n lambda = (Beta * d) / D.\n")
+printf("\n Wavelength of light = %f A. ",lambda*1e10)
diff --git a/1271/CH1/EX1.11/11.txt b/1271/CH1/EX1.11/11.txt
new file mode 100755
index 000000000..a4676dcab
--- /dev/null
+++ b/1271/CH1/EX1.11/11.txt
@@ -0,0 +1,2 @@
+
+ Fringe width = 8.441101e-05 meter.
diff --git a/1271/CH1/EX1.11/example1_11.sce b/1271/CH1/EX1.11/example1_11.sce
new file mode 100755
index 000000000..4b183b36c
--- /dev/null
+++ b/1271/CH1/EX1.11/example1_11.sce
@@ -0,0 +1,13 @@
+clc
+// Given that
+alpha = %pi / 180 // angle of bi prism in radian
+mu = 1.5 // refractive index of biprism
+a = 0.4 // distance of bi prism from slit in meter
+b = 0.6 // distance of bi prism from screen in meter
+lambda = 5.893e-7 // wavelength of light in meter
+// Sample Problem 11 on page no. 1.43
+printf("\n # PROBLEM 11 # \n")
+D = a + b // calculation for distance between slits and screen
+fringe_width = (lambda * D) / (2 * a * (mu - 1) * alpha) // calculation for fringe width
+printf("\n Standard formula used \nD = a + b.\n fringe_width = (lambda * D) / (2 * a * (mu - 1) * alpha).\n ")
+printf("\n Fringe width = %e meter.",fringe_width)
diff --git a/1271/CH1/EX1.12/12.txt b/1271/CH1/EX1.12/12.txt
new file mode 100755
index 000000000..6ad2db600
--- /dev/null
+++ b/1271/CH1/EX1.12/12.txt
@@ -0,0 +1 @@
+ Fringe width = 0.171953 mm \ No newline at end of file
diff --git a/1271/CH1/EX1.12/example1_12.sce b/1271/CH1/EX1.12/example1_12.sce
new file mode 100755
index 000000000..24f9eb54b
--- /dev/null
+++ b/1271/CH1/EX1.12/example1_12.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+d1 = 4.05e-3 // distance between slits in first position in meter
+d2 = 2.90e-3 // distance between slits in second position in meter
+lambda = 5.893e-7 // wavelength of light in meter
+D = 1 // distance between slit and screen
+// Sample Problem 12 on page no. 1.44
+printf("\n # PROBLEM 12 # \n")
+d = sqrt(d1 * d2)// calculation for distance between fringe
+fringe_width = (lambda * D) / d // calculation for fringe width
+printf("\n Standard formula used \n d = sqrt(d1*d2),\n beta = lambda*D/d \n")
+printf("\n Fringe width = %f mm",fringe_width*1000)
diff --git a/1271/CH1/EX1.13/13.txt b/1271/CH1/EX1.13/13.txt
new file mode 100755
index 000000000..96bcd306f
--- /dev/null
+++ b/1271/CH1/EX1.13/13.txt
@@ -0,0 +1 @@
+Thickness of glass sheet = 6.520295e-06 meter. \ No newline at end of file
diff --git a/1271/CH1/EX1.13/example1_13.sce b/1271/CH1/EX1.13/example1_13.sce
new file mode 100755
index 000000000..bdc0fe02a
--- /dev/null
+++ b/1271/CH1/EX1.13/example1_13.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+fringe_width = 3.42e-4 // fringe width in meter
+mu = 1.542 // refractive index of glass
+Xn = 2.143e-3 // shift of central fringe in meter
+lambda = 5.89e-7 // wavelength of light in meter
+// Sample Problem 13 on page no. 1.44
+printf("\n # PROBLEM 13 # \n")
+n = Xn / fringe_width // calculation for order of the fringe
+t = (floor(n) * lambda) / (mu - 1) // calculation for thickness of the glass
+printf("\n Standard formula used \n (mu - 1)*t = n*lambda \n")
+printf("\n Thickness of glass sheet = %e meter. ",t)
diff --git a/1271/CH1/EX1.14/14.txt b/1271/CH1/EX1.14/14.txt
new file mode 100755
index 000000000..398a3f2a1
--- /dev/null
+++ b/1271/CH1/EX1.14/14.txt
@@ -0,0 +1 @@
+Distance between coherent sources = 6.551111e-04 meter. . \ No newline at end of file
diff --git a/1271/CH1/EX1.14/example1_14.sce b/1271/CH1/EX1.14/example1_14.sce
new file mode 100755
index 000000000..2fa15b581
--- /dev/null
+++ b/1271/CH1/EX1.14/example1_14.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+fringe_width = 9e-4 // fringe width in meter
+a = 0.1 // distance of bi prism from slit in meter
+b = 0.9 // distance of bi prism from screen in meter
+lambda = 5.896e-7 // wavelength of light in meter
+// Sample Problem 14 on page no. 1.45
+printf("\n # PROBLEM 14 # \n")
+D = a + b // calculation for distance between slits and screen
+d = (lambda * D) / fringe_width // calculation for distance between coherent sources
+printf("\n Standard formula used \n D = a + b. \n d = (lambda * D) / fringe_width.\n")
+printf("\n Distance between coherent sources = %e meter. ",d)
diff --git a/1271/CH1/EX1.15/15.txt b/1271/CH1/EX1.15/15.txt
new file mode 100755
index 000000000..8dc327467
--- /dev/null
+++ b/1271/CH1/EX1.15/15.txt
@@ -0,0 +1 @@
+ Wavelength of light = 589048.622548 A. \ No newline at end of file
diff --git a/1271/CH1/EX1.15/example1_15.sce b/1271/CH1/EX1.15/example1_15.sce
new file mode 100755
index 000000000..5c8dac0c0
--- /dev/null
+++ b/1271/CH1/EX1.15/example1_15.sce
@@ -0,0 +1,17 @@
+
+clc
+// Given that
+fringe_width = 1.35e-2 // fringe width in meter
+a = 0.5 // distance of bi prism from slits in meter
+b = 0.5 // distance of bi prism from screen in meter
+mu = 1.5 // refractive index of bi prism
+alpha = %pi / 360 // angle of bi prism in radian
+// Sample Problem 15 on page no. 1.45
+printf("\n # PROBLEM 15 # \n")
+D = a + b // calculation for distance between slits and screen
+lambda = (2 * a * (mu - 1) * alpha * fringe_width) / D // calculation for wavelength of light = %e meter
+printf("\n Standard formula used \n D = a + b. \nlambda = (2 * a * (mu - 1) * alpha * fringe_width) / D.\n ")
+printf("\n Wavelength of light = %f A. ",lambda*1e10)
+//Answer in the book:5893 A
+//Answer in the program:589048.622541 A
+
diff --git a/1271/CH1/EX1.16/16.txt b/1271/CH1/EX1.16/16.txt
new file mode 100755
index 000000000..4a7401d22
--- /dev/null
+++ b/1271/CH1/EX1.16/16.txt
@@ -0,0 +1 @@
+ Wavelength of light = 13613.568166 A. \ No newline at end of file
diff --git a/1271/CH1/EX1.16/example1_16.sce b/1271/CH1/EX1.16/example1_16.sce
new file mode 100755
index 000000000..28179fe08
--- /dev/null
+++ b/1271/CH1/EX1.16/example1_16.sce
@@ -0,0 +1,13 @@
+clc
+// Given That
+a = 0.45 // distance between slit and bi prism in meter
+b = 0.45 // distance between screen and bi prism in meter
+alpha = %pi / 180 // angle of bi prism in radian
+Mu = 1.5 // refractive index of bi prism
+fringe_width = 1.56e-4 // fringe width in meter
+// Sample Problem 16 on page no. 1.45
+printf("\n # PROBLEM 16 # \n")
+D = a + b // calculation for distance between screen and slit
+lambda = (fringe_width * 2 * a * (Mu - 1) * alpha) / D // calculation for wavelength
+printf("\n Standard formula used \n lambda = (2a*(mu-1)*alpha*beta)/D. \n")
+printf("\n Wavelength of light = %f A.", lambda*1e10)
diff --git a/1271/CH1/EX1.17/17.txt b/1271/CH1/EX1.17/17.txt
new file mode 100755
index 000000000..da0c562cb
--- /dev/null
+++ b/1271/CH1/EX1.17/17.txt
@@ -0,0 +1 @@
+ Wavelength of light = 4750.000000 A. \ No newline at end of file
diff --git a/1271/CH1/EX1.17/example1_17.sce b/1271/CH1/EX1.17/example1_17.sce
new file mode 100755
index 000000000..2f7671e97
--- /dev/null
+++ b/1271/CH1/EX1.17/example1_17.sce
@@ -0,0 +1,11 @@
+clc
+// Given That
+D = 1.20 // distance between source and eye piece in meter
+Xn = 1.9e-2 // distance move by eye piece for 20 fringe in meter
+n = 20 // no. of fringes
+d = 6e-4 // distance between slits in meter
+// Sample Problem 17 on page no. 1.45
+printf("\n # PROBLEM 17 # \n")
+lambda = (Xn * d) / (D * n)// calculation for wavelength
+printf("\n Standard formula used \n beta = lambda*D/d.")
+printf("\n Wavelength of light = %f A.", lambda*1e10)
diff --git a/1271/CH1/EX1.18/18.txt b/1271/CH1/EX1.18/18.txt
new file mode 100755
index 000000000..31fff45c1
--- /dev/null
+++ b/1271/CH1/EX1.18/18.txt
@@ -0,0 +1 @@
+No. of fringes observed in field of view in second case = 54. \ No newline at end of file
diff --git a/1271/CH1/EX1.18/example1_18.sce b/1271/CH1/EX1.18/example1_18.sce
new file mode 100755
index 000000000..43dd339c3
--- /dev/null
+++ b/1271/CH1/EX1.18/example1_18.sce
@@ -0,0 +1,10 @@
+clc
+// Given That
+lambda1 = 5.890e-7 // wavelength of first light in meter
+lambda2 = 4.358e-7 // wavelength of second light in meter
+n1 = 40 // no. of fringes observed in the field of in first case
+// Sample Problem 18 on page no. 1.46
+printf("\n # PROBLEM 18 # \n")
+n2 = (n1 * lambda1) / lambda2 // by using formula n1*lambda1=n2*lambda2
+printf("\n Standard formula used \n n1*lambda1=n2*lambda2. \n")
+printf("\n No. of fringes observed in field of view in second case = %d. ", floor(n2))
diff --git a/1271/CH1/EX1.19/19.txt b/1271/CH1/EX1.19/19.txt
new file mode 100755
index 000000000..febbb8045
--- /dev/null
+++ b/1271/CH1/EX1.19/19.txt
@@ -0,0 +1,3 @@
+ Least thickness of soap film -
+ (a) For bright fringe = 1.037500e-04 mem.
+ (b) For dark fringe = 2.075000e-04 mm.
diff --git a/1271/CH1/EX1.19/example1_19.sce b/1271/CH1/EX1.19/example1_19.sce
new file mode 100755
index 000000000..791191b36
--- /dev/null
+++ b/1271/CH1/EX1.19/example1_19.sce
@@ -0,0 +1,13 @@
+clc
+// Given That
+lambda = 5.893e-7 // wavelength of light in meter
+Mu = 1.42 // refractive index of soap film
+i = 0 // incidence angle in radian
+r = 0 // refracted angle in radian
+// Sample Problem 19 on page no. 1.46
+printf("\n # PROBLEM 19 # \n")
+n = 1 // for smallest thickness
+t1 = ((2 * n - 1) * lambda) / (4 * Mu * cos(r)) // calculation for east thickness of soap film for bright fringe
+t2 = (n * lambda) / (2 * Mu * cos(r)) // calculation for east thickness of soap film for dark fringe
+printf("\n Standard formula used \n thickness for bright fringe = ((2 * n - 1) * lambda) / (4 * Mu * cos(r)). \n thickness for dark fringe = (n * lambda) / (2 * Mu * cos(r)).\n ")
+printf("\n Least thickness of soap film -\n (a) For bright fringe = %e mm. \n (b) For dark fringe = %e mm.",t1*1000,t2*1000)
diff --git a/1271/CH1/EX1.2/2.txt b/1271/CH1/EX1.2/2.txt
new file mode 100755
index 000000000..bcef089d0
--- /dev/null
+++ b/1271/CH1/EX1.2/2.txt
@@ -0,0 +1,2 @@
+ Coherence time = 9.816667e-11 sec.
+ No. of oscillations = 4.994912e+04.
diff --git a/1271/CH1/EX1.2/example1_2.sce b/1271/CH1/EX1.2/example1_2.sce
new file mode 100755
index 000000000..843a98c78
--- /dev/null
+++ b/1271/CH1/EX1.2/example1_2.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+lambda = 5.896e-7 // wavelength of light in meter
+L = 2.945e-2 // coherence length in meter
+// Sample Problem 2 on page no. 1.40
+printf("\n # PROBLEM 2 # \n")
+printf("\n Standard formula used \n delta_L = c*delta_t. \n")
+coherence_time = L / (3 * 10 ^ 8) // calculation for coherence time
+n = L / lambda // calculation for number of oscillations
+printf("\n Coherence time = %e sec.",coherence_time)
+printf("\n No. of oscillations = %e.",n)
diff --git a/1271/CH1/EX1.20/20.txt b/1271/CH1/EX1.20/20.txt
new file mode 100755
index 000000000..02a069857
--- /dev/null
+++ b/1271/CH1/EX1.20/20.txt
@@ -0,0 +1 @@
+Thickness of oil film = 1.351259e-03 mm. \ No newline at end of file
diff --git a/1271/CH1/EX1.20/example1_20.sce b/1271/CH1/EX1.20/example1_20.sce
new file mode 100755
index 000000000..33a8606ac
--- /dev/null
+++ b/1271/CH1/EX1.20/example1_20.sce
@@ -0,0 +1,13 @@
+clc
+// Given That
+lambda = 5.89e-7 // wavelength of light in meter
+Mu_o = 1.4 // refractive index of oil film
+Mu_w = 1.33 // refractive index of water
+i = %pi / 6 // incidence angle in radian
+n = 6 // no. of fringes seen
+// Sample Problem 20 on page no. 1.46
+printf("\n # PROBLEM 20 # \n")
+r = asin(sin(i) / Mu_o) // calculation for angle of refraction
+t = (n * lambda) / (2 * Mu_o * cos(r)) // calculation for thickness of film
+printf("\n Standard formula used \n mu = sin(i)/sin(r),\n 1*mu*t*cos(r) = n*lambda. \n")
+printf("\n Thickness of oil film = %e mm.",t*1000)
diff --git a/1271/CH1/EX1.21/21.txt b/1271/CH1/EX1.21/21.txt
new file mode 100755
index 000000000..fbd94fb33
--- /dev/null
+++ b/1271/CH1/EX1.21/21.txt
@@ -0,0 +1 @@
+ Least thickness of soap film for bright fringe = 1.025290e-04 mm. \ No newline at end of file
diff --git a/1271/CH1/EX1.21/example1_21.sce b/1271/CH1/EX1.21/example1_21.sce
new file mode 100755
index 000000000..e578a9db1
--- /dev/null
+++ b/1271/CH1/EX1.21/example1_21.sce
@@ -0,0 +1,12 @@
+clc
+// Given That
+lambda = 6e-7 // wavelength of light in meter
+Mu = 1.463 // refractive index of soap film
+i = 0 // incidence angle in radian
+r = 0 // refracted angle in radian
+// Sample Problem 21 on page no. 1.47
+printf("\n # PROBLEM 21 # \n")
+n = 1 // for smallest thickness
+t = ((2 * n - 1) * lambda) / (4 * Mu * cos(r)) // calculation for least thickness of soap film for bright fringe
+printf("\n Standard formula used \n t = ((2 * n - 1) * lambda) / (4 * Mu * cos(r)).\n")
+printf("\n Least thickness of soap film for bright fringe = %e mm. ",t*1000)
diff --git a/1271/CH1/EX1.22/22.txt b/1271/CH1/EX1.22/22.txt
new file mode 100755
index 000000000..8502797d7
--- /dev/null
+++ b/1271/CH1/EX1.22/22.txt
@@ -0,0 +1,2 @@
+
+ Thickness of oil film = 1.717559e-03 mm.
diff --git a/1271/CH1/EX1.22/example1_22.sce b/1271/CH1/EX1.22/example1_22.sce
new file mode 100755
index 000000000..3cadf8de3
--- /dev/null
+++ b/1271/CH1/EX1.22/example1_22.sce
@@ -0,0 +1,12 @@
+clc
+// Given That
+lambda = 5.89e-7 // wavelength of light
+Mu_o = 1.46 // refractive index of oil film
+i = %pi / 6 // incidence angle in radian
+n = 8 // no. of fringe is seen
+// Sample Problem 22 on page no. 1.47
+printf("\n # PROBLEM 22 # \n")
+r = asin(sin(i) / Mu_o) // calculation for angle of refraction
+t = (n * lambda) / (2 * Mu_o * cos(r)) // calculation for thickness of oil film
+printf("\n Standard formula used \n r = asin(sin(i) / Mu_o.\n t = (n * lambda) / (2 * Mu_o * cos(r)).\n")
+printf("\n Thickness of oil film = %e mm. ",t*1000)
diff --git a/1271/CH1/EX1.23/23.txt b/1271/CH1/EX1.23/23.txt
new file mode 100755
index 000000000..c7ea4c6c9
--- /dev/null
+++ b/1271/CH1/EX1.23/23.txt
@@ -0,0 +1 @@
+ No. of dark bands seen between wavelengths. = 12 \ No newline at end of file
diff --git a/1271/CH1/EX1.23/example1_23.sce b/1271/CH1/EX1.23/example1_23.sce
new file mode 100755
index 000000000..4856d4abd
--- /dev/null
+++ b/1271/CH1/EX1.23/example1_23.sce
@@ -0,0 +1,15 @@
+clc
+// Given That
+lambda1 = 4e-7 // max. wavelength of light in meter
+lambda2 = 5e-7 // min. wavelength of light in meter
+Mu = 1.4 // refractive index of soap film
+i = %pi / 4 // incidence angle in radian
+t = 1e-5 // thickness of oil film in meter
+// Sample Problem 23 on page no. 1.47
+printf("\n # PROBLEM 23 # \n")
+r = asin(sin(i) / Mu) // calculation for angle of refraction
+n1 = (2 * Mu * t * cos(r)) / lambda1 // calculation for no. of dark bands seen in the case of max. wavelength
+n2 = (2 * t * Mu * cos(r)) / lambda2 // calculation for no. of dark seen in the case of min. wavelength
+n = floor(n1) - floor(n2) // claculation for no. of dark bands seen between wavelengths
+printf("\n Standard formula used \n r = asin(sin(i) / Mu).\n n = (2 * Mu * t * cos(r)) / lambda.\n")
+printf("\n No. of dark bands seen between wavelengths. = %d",n)
diff --git a/1271/CH1/EX1.24/24.txt b/1271/CH1/EX1.24/24.txt
new file mode 100755
index 000000000..bb01b2d58
--- /dev/null
+++ b/1271/CH1/EX1.24/24.txt
@@ -0,0 +1 @@
+Least thickness of soap film for bright fringe = 3.926667e-07 meter. \ No newline at end of file
diff --git a/1271/CH1/EX1.24/example1_24.sce b/1271/CH1/EX1.24/example1_24.sce
new file mode 100755
index 000000000..a451810a9
--- /dev/null
+++ b/1271/CH1/EX1.24/example1_24.sce
@@ -0,0 +1,11 @@
+clc
+// Given That
+lambda = 5.89e-7 // wavelength of light in meter
+Mu = 1.5 // refractive index of soap film
+r = %pi / 3 // refracted angle in radian
+// Sample Problem 24 on page no. 1.48
+printf("\n # PROBLEM 24 # \n")
+n = 1 // for smallest thickness
+t = (n * lambda) / (2 * Mu * cos(r)) // calculation for least thickness of soap film for bright fringe
+printf("\n Standard formula used \n t = (n * lambda) / (2 * Mu * cos(r)).\n")
+printf("\n Least thickness of soap film for bright fringe = %e meter. ",t)
diff --git a/1271/CH1/EX1.25/25.txt b/1271/CH1/EX1.25/25.txt
new file mode 100755
index 000000000..9394bacb3
--- /dev/null
+++ b/1271/CH1/EX1.25/25.txt
@@ -0,0 +1 @@
+Thickness of the film = 1.619476e-05 meter. \ No newline at end of file
diff --git a/1271/CH1/EX1.25/example1_25.sce b/1271/CH1/EX1.25/example1_25.sce
new file mode 100755
index 000000000..c0ffe6bfc
--- /dev/null
+++ b/1271/CH1/EX1.25/example1_25.sce
@@ -0,0 +1,13 @@
+clc
+// Given That
+lambda1 = 6.1e-7 // max. wavelength of light in meter
+lambda2 = 6e-7 // min. wavelength of light in meter
+Mu = 1.333 // refractive index of film
+i = %pi / 4 // incidence angle in radian
+// Sample Problem 25 on page no. 1.48
+printf("\n # PROBLEM 25 # \n")
+r = asin(sin(i) / Mu) // calculation for angle of refraction
+n = lambda2 / (lambda1 - lambda2) // calculation for no. of bright band
+t = (n * lambda1) / (2 * Mu * cos(r)) // calculation for thickness of the film
+printf("\n Standard formulae used \n r = asin(sin(i) / Mu).\n n = lambda2 / (lambda1 - lambda2).\n t = (n * lambda1) / (2 * Mu * cos(r)).\n")
+printf("\n Thickness of the film = %e meter. ",t)
diff --git a/1271/CH1/EX1.26/26.txt b/1271/CH1/EX1.26/26.txt
new file mode 100755
index 000000000..161ce13cc
--- /dev/null
+++ b/1271/CH1/EX1.26/26.txt
@@ -0,0 +1 @@
+ Least thickness of soap film for bright fringe = 1.025290e-07 meter. \ No newline at end of file
diff --git a/1271/CH1/EX1.26/example1_26.sce b/1271/CH1/EX1.26/example1_26.sce
new file mode 100755
index 000000000..3ea4cc0a2
--- /dev/null
+++ b/1271/CH1/EX1.26/example1_26.sce
@@ -0,0 +1,12 @@
+clc
+// Given That
+lambda = 6e-7 // wavelength of light in meter
+Mu = 1.463 // refractive index of soap film
+i = 0 // incidence angle in radian
+r = 0 // refracted angle in radian
+// Sample Problem 26 on page no. 1.49
+printf("\n # PROBLEM 26 # \n")
+n = 1 // for smallest thickness
+t = ((2 * n - 1) * lambda) / (4 * Mu * cos(r)) // calculation for thickness of soap film
+printf("\n Standard formula used \n 2*mu*t*cos(r)=(2n-1)*lambda/2. \n")
+printf("\n Least thickness of soap film for bright fringe = %e meter. ",t)
diff --git a/1271/CH1/EX1.27/27.txt b/1271/CH1/EX1.27/27.txt
new file mode 100755
index 000000000..0d80eae7a
--- /dev/null
+++ b/1271/CH1/EX1.27/27.txt
@@ -0,0 +1 @@
+ Thickness of the film = 1.715625e-02 mm. \ No newline at end of file
diff --git a/1271/CH1/EX1.27/example1_27.sce b/1271/CH1/EX1.27/example1_27.sce
new file mode 100755
index 000000000..fbce12b00
--- /dev/null
+++ b/1271/CH1/EX1.27/example1_27.sce
@@ -0,0 +1,13 @@
+clc
+// Given That
+lambda1 = 6.1e-7 // max. wavelength of light in meter
+lambda2 = 6e-7 // min. wavelength of light in meter
+Mu = 4 / 3 // refractive index of film
+i = asin(4 / 5) // incidence angle in radian
+// Sample Problem 27 on page no. 1.49
+printf("\n # PROBLEM 27 # \n")
+r = asin(sin(i) / Mu) // calculation for angle of refraction
+n = lambda2 / (lambda1 - lambda2) // calculation for order of fringe
+t = (n * lambda1) / (2 * Mu * cos(r)) // calculation for thickness of film
+printf("\n Standard formula used \n mu = sin(i)/sin(r),\n 2*mu*t*cos(r) = n*lambda. \n")
+printf("\n Thickness of the film = %e mm. ",t*1000)
diff --git a/1271/CH1/EX1.28/28.txt b/1271/CH1/EX1.28/28.txt
new file mode 100755
index 000000000..ba56ac40c
--- /dev/null
+++ b/1271/CH1/EX1.28/28.txt
@@ -0,0 +1 @@
+Thickness of wire = 5.893000e-03 mm. \ No newline at end of file
diff --git a/1271/CH1/EX1.28/example1_28.sce b/1271/CH1/EX1.28/example1_28.sce
new file mode 100755
index 000000000..ebbb69c4c
--- /dev/null
+++ b/1271/CH1/EX1.28/example1_28.sce
@@ -0,0 +1,12 @@
+clc
+// Given That
+lambda = 5.893e-7 // wavelenth of light in meter
+n = 20 // no. of interference fringes are observed
+Mu = 1 // refractive index of air
+i = 0 // incidence angle in radian
+r = 0 // refracted angle in radian
+// Sample Problem 28 on page no. 1.50
+printf("\n # PROBLEM 28 # \n")
+t = (n * lambda) / (2 * Mu) // calculation for thickness of fringe
+printf("\n Standard formula used \n w = lambda/(2*mu*theta).\n")
+printf("\n Thickness of wire = %e mm. ",t*1000)
diff --git a/1271/CH1/EX1.29/29.txt b/1271/CH1/EX1.29/29.txt
new file mode 100755
index 000000000..864b0dfca
--- /dev/null
+++ b/1271/CH1/EX1.29/29.txt
@@ -0,0 +1 @@
+ Fringe width = 0.750000 mm. \ No newline at end of file
diff --git a/1271/CH1/EX1.29/example1_29.sce b/1271/CH1/EX1.29/example1_29.sce
new file mode 100755
index 000000000..98a48459e
--- /dev/null
+++ b/1271/CH1/EX1.29/example1_29.sce
@@ -0,0 +1,14 @@
+clc
+// Given That
+lambda = 6e-7 // wavelength of light in meter
+Mu = 1 // refractive index of air film
+l = 6e-5 // diameter of wire in meter
+L = 0.15 // distance of wire from edge in meter
+i = 0 // incidence angle in radian
+r = 0 // refracted angle in radian
+// Sample Problem 29 on page no. 1.50
+printf("\n # PROBLEM 29 # \n")
+theta = l / L //calculation for theta
+fringe_width = lambda / (2 * Mu * theta) // calculation for fringe width
+printf("\n Standard formula used \n w = lambda/(2*mu*theta).\n")
+printf("\n Fringe width = %f mm.",fringe_width*1000)
diff --git a/1271/CH1/EX1.3/3.txt b/1271/CH1/EX1.3/3.txt
new file mode 100755
index 000000000..2ee2d639f
--- /dev/null
+++ b/1271/CH1/EX1.3/3.txt
@@ -0,0 +1,3 @@
+ Coherence time = 6.666667e-10 sec
+ Line width = 1.834968e-12 meter
+ Frequency stability = 3.029000e-06
diff --git a/1271/CH1/EX1.3/example1_3.sce b/1271/CH1/EX1.3/example1_3.sce
new file mode 100755
index 000000000..02c12488f
--- /dev/null
+++ b/1271/CH1/EX1.3/example1_3.sce
@@ -0,0 +1,15 @@
+clc
+// Given that
+lambda = 6.058e-7 // wavelength of light in meter
+L = 0.2 // coherence length in meter
+// Sample Problem 3 on page no. 1.40
+printf("\n # PROBLEM 3 # \n")
+printf("\n Standard formula used \n f = c/lambda. \n")
+line_width = (lambda ^ 2) / L//calculation for line width
+f_spread = (3 * 10 ^ 8) / L// calculation for frequency spread
+f = (3 * 10 ^ 8) / lambda // calculation for frequency
+f_stability = f_spread / f // calculation for frequency stability
+coherence_time = L / (3 * 10 ^ 8) // calculation for coherence time
+printf("\n Coherence time = %e sec",coherence_time)
+printf("\n Line width = %e meter",line_width)
+printf("\n Frequency stability = %e", f_stability)
diff --git a/1271/CH1/EX1.30/30.txt b/1271/CH1/EX1.30/30.txt
new file mode 100755
index 000000000..d13bcfbc0
--- /dev/null
+++ b/1271/CH1/EX1.30/30.txt
@@ -0,0 +1 @@
+ Fringe width = 1.200000 mm. \ No newline at end of file
diff --git a/1271/CH1/EX1.30/example1_30.sce b/1271/CH1/EX1.30/example1_30.sce
new file mode 100755
index 000000000..3e715f07a
--- /dev/null
+++ b/1271/CH1/EX1.30/example1_30.sce
@@ -0,0 +1,10 @@
+clc
+// Given That
+lambda = 4.56e-7 // wavelength of light in meter
+theta = 1.9e-4 // angle of wedge in radian
+Mu = 1 // refractive index of air
+// Sample Problem 30 on page no. 1.51
+printf("\n # PROBLEM 30 # \n")
+fringe_width = lambda / (2 * Mu * theta)// calculation for fringe width
+printf("\n Standard formula used \n w = lambda/(2*mu*alpha).\n")
+printf("\n Fringe width = %f mm.",fringe_width*1000)
diff --git a/1271/CH1/EX1.31/31.txt b/1271/CH1/EX1.31/31.txt
new file mode 100755
index 000000000..23312aef5
--- /dev/null
+++ b/1271/CH1/EX1.31/31.txt
@@ -0,0 +1,2 @@
+
+ Fringe width = 1.500000 mm.
diff --git a/1271/CH1/EX1.31/example1_31.sce b/1271/CH1/EX1.31/example1_31.sce
new file mode 100755
index 000000000..a8d7b61f8
--- /dev/null
+++ b/1271/CH1/EX1.31/example1_31.sce
@@ -0,0 +1,14 @@
+clc
+// Given That
+lambda = 6e-7 // wavelength of light in meter
+Mu = 1 // refractive index of air film
+l = 3e-5 // diameter of wire in meter
+L = 0.15 // distance of wire from edge in meter
+i = 0 // incidence angle in radian
+r = 0 // refracted angle in radian
+// Sample Problem 31 on page no. 1.51
+printf("\n # PROBLEM 31 # \n")
+theta = l / L // calculation for theta
+fringe_width = lambda / (2 * Mu * theta) // calculation for fringe width
+printf("\n Standard formula used \n w = lambda/ (2*mu*theta).\n")
+printf("\n Fringe width = %f mm.",fringe_width*1000)
diff --git a/1271/CH1/EX1.32/32.txt b/1271/CH1/EX1.32/32.txt
new file mode 100755
index 000000000..7f2a31d3f
--- /dev/null
+++ b/1271/CH1/EX1.32/32.txt
@@ -0,0 +1 @@
+Distance = 0.353400 mm. \ No newline at end of file
diff --git a/1271/CH1/EX1.32/example1_32.sce b/1271/CH1/EX1.32/example1_32.sce
new file mode 100755
index 000000000..9f4116ac3
--- /dev/null
+++ b/1271/CH1/EX1.32/example1_32.sce
@@ -0,0 +1,13 @@
+clc
+// Given That
+lambda = 5.890e-7 // wavelength of light in meter
+theta = 1e-2 // angle of wedge in radian
+n = 12 // no. of dark fringe
+Mu = 1 // refractive index of air
+i = 0 // incidence angle in radian
+r = 0 // refracted angle in radian
+// Sample Problem 32 on page no. 1.51
+printf("\n # PROBLEM 32 # \n")
+x = ( n * lambda) / (2 * theta) // calculation for distance
+printf("\n Standard formula used \n x = n*lambda/(2*theta).\n")
+printf("\n Distance = %f mm. ",x*1000)
diff --git a/1271/CH1/EX1.33/33.txt b/1271/CH1/EX1.33/33.txt
new file mode 100755
index 000000000..c3fc4b987
--- /dev/null
+++ b/1271/CH1/EX1.33/33.txt
@@ -0,0 +1,2 @@
+
+ Angle of wedge = 0.525211 degree.
diff --git a/1271/CH1/EX1.33/example1_33.sce b/1271/CH1/EX1.33/example1_33.sce
new file mode 100755
index 000000000..e7e3e142c
--- /dev/null
+++ b/1271/CH1/EX1.33/example1_33.sce
@@ -0,0 +1,12 @@
+clc
+// Given That
+lambda = 5.5e-7 // wavelength of light in meter
+w = 2e-5 // fringe width in meter
+Mu = 1.5 // refractive index of film
+i = 0 // incidence angle in radian
+r = 0 // refracted angle in radian
+// Sample Problem 33 on page no. 1.52
+printf("\n # PROBLEM 33 # \n")
+theta = lambda / (2 * Mu * w)// calculation for the angle of the film
+printf("\n Standard formula used \n w = lambda/(2*mu*theta).\n")
+printf("\n Angle of wedge = %f degree. ",theta * 180/ %pi)
diff --git a/1271/CH1/EX1.34/34.txt b/1271/CH1/EX1.34/34.txt
new file mode 100755
index 000000000..ac12ea2e1
--- /dev/null
+++ b/1271/CH1/EX1.34/34.txt
@@ -0,0 +1 @@
+Wavelength of light = 5880.100000 A. \ No newline at end of file
diff --git a/1271/CH1/EX1.34/example1_34.sce b/1271/CH1/EX1.34/example1_34.sce
new file mode 100755
index 000000000..e48611db9
--- /dev/null
+++ b/1271/CH1/EX1.34/example1_34.sce
@@ -0,0 +1,11 @@
+clc
+// Given That
+d1 = 5.9e-3 // diameter of 15th ring in meter
+d2 = 3.36e-3 // diameter of 5th ring in meter
+R = 1 // redius of the plano-convex lens in meter
+// Sample Problem 34 on page no. 1.52
+printf("\n # PROBLEM 34 # \n")
+p = 15 - 5
+lambda = ((d1^2) - (d2^2)) / (4 * p * R) // calculation for wavelength of light
+printf("\n Standard formula used \n lambda = (d1^2-d2^2)/(4*p*R).\n")
+printf("\n Wavelength of light = %f A.",lambda*1e10)
diff --git a/1271/CH1/EX1.35/35.txt b/1271/CH1/EX1.35/35.txt
new file mode 100755
index 000000000..dc2fdc5f3
--- /dev/null
+++ b/1271/CH1/EX1.35/35.txt
@@ -0,0 +1 @@
+ Wavelength of light = 277.777778 nm. \ No newline at end of file
diff --git a/1271/CH1/EX1.35/example1_35.sce b/1271/CH1/EX1.35/example1_35.sce
new file mode 100755
index 000000000..2565d60b5
--- /dev/null
+++ b/1271/CH1/EX1.35/example1_35.sce
@@ -0,0 +1,17 @@
+
+clc
+// Given That
+d1 = 2e-3 // diameter of 10th ring in meter
+d2 = 3e-3 // diameter of 20th ring in meter
+f = 0.9 // focal length of the plano-convex lens in meter
+mu = 1.5 // refractive index of lens
+// Sample Problem 35 on page no. 1.52
+printf("\n # PROBLEM 35 # \n")
+p = 20 - 10
+R = (f * (mu - 1)) // calculation for radius of convex surface of lens
+lambda = ((d2^2) - (d1^2)) / (4 * p * R)
+printf("\n Standard formula used \n lambda = ((d2^2) - (d1^2)) / (4 * p * R).\n")
+printf("\n Wavelength of light = %f nm.",lambda*1e9)
+//Answer in the book:2777 nm
+//Answer in the program:277.77778 nm
+
diff --git a/1271/CH1/EX1.36/36.txt b/1271/CH1/EX1.36/36.txt
new file mode 100755
index 000000000..f1444864f
--- /dev/null
+++ b/1271/CH1/EX1.36/36.txt
@@ -0,0 +1,2 @@
+
+ Diameter of 7th bright ring = 4.063102e-03 meter.
diff --git a/1271/CH1/EX1.36/example1_36.sce b/1271/CH1/EX1.36/example1_36.sce
new file mode 100755
index 000000000..7debe72cf
--- /dev/null
+++ b/1271/CH1/EX1.36/example1_36.sce
@@ -0,0 +1,13 @@
+clc
+// Given That
+lambda = 5.896e-7 // wavelength of light in meter
+f = 1 // focal length of the plano-convex lens in meter
+mu = 1.5 // refractive index of lens
+n = 7 // no. of bright ring
+// Sample Problem 36 on page no. 1.53
+printf("\n # PROBLEM 36 # \n")
+p = 20 - 10
+R = (f * (mu - 1)) * 2 // calculation for radius of lens
+D = sqrt(4 * n * lambda * R) // calculation for diameter of 7th ring
+printf("\n Standard formula used \n Dn^2 = 4n*lambda*R. \n")
+printf("\n Diameter of 7th bright ring = %e meter.",D)
diff --git a/1271/CH1/EX1.37/37.txt b/1271/CH1/EX1.37/37.txt
new file mode 100755
index 000000000..ec15c4157
--- /dev/null
+++ b/1271/CH1/EX1.37/37.txt
@@ -0,0 +1 @@
+ Diameter of (n +1)th dark ring of lambda2. = 3.035787e-03 meter. \ No newline at end of file
diff --git a/1271/CH1/EX1.37/example1_37.sce b/1271/CH1/EX1.37/example1_37.sce
new file mode 100755
index 000000000..5304a400d
--- /dev/null
+++ b/1271/CH1/EX1.37/example1_37.sce
@@ -0,0 +1,11 @@
+clc
+// Given That
+lambda1 = 6e-7 // wavelength of first light in meter
+lambda2 = 4.8e-7 // wavelength of second light in meter
+r = 0.96 // radius of curvature of curved surface of lens in meter
+// Sample Problem 37 on page no. 1.53
+printf("\n # PROBLEM 37 # \n")
+n = lambda2 / (lambda1 - lambda2) // calculation for order of fringe
+D = sqrt(4 * (n + 1) * lambda2 * r) // calculation for diameter of ring
+printf("\n Standard formula used \n n^2 = 4n*lambda*R. \n")
+printf("\n Diameter of (n +1)th dark ring of lambda2. = %e meter.",D)
diff --git a/1271/CH1/EX1.38/38.txt b/1271/CH1/EX1.38/38.txt
new file mode 100755
index 000000000..a8bdfac04
--- /dev/null
+++ b/1271/CH1/EX1.38/38.txt
@@ -0,0 +1 @@
+Diameter of nth dark ring of lambda1 = 0.011384 meter. \ No newline at end of file
diff --git a/1271/CH1/EX1.38/example1_38.sce b/1271/CH1/EX1.38/example1_38.sce
new file mode 100755
index 000000000..5bb350f74
--- /dev/null
+++ b/1271/CH1/EX1.38/example1_38.sce
@@ -0,0 +1,11 @@
+clc
+// Given That
+lambda1 = 6e-7 // wavelength of first light in meter
+lambda2 = 5.9e-7 // wavelength of second light in meter
+r = 0.9 // radius of curvature of curved surface of lens in meter
+// Sample Problem 38 on page no. 1.54
+printf("\n # PROBLEM 38 # \n")
+n = lambda2 / (lambda1 - lambda2) // calculation for order of ring
+D = sqrt(4 * (n + 1) * lambda1 * r) // calculation for diameter of ring
+printf("\n Standard formula used \n n^2 = 4n*lambda*R.\n")
+printf("\n Diameter of nth dark ring of lambda1 = %f meter.",D)
diff --git a/1271/CH1/EX1.39/39.txt b/1271/CH1/EX1.39/39.txt
new file mode 100755
index 000000000..6dbf73261
--- /dev/null
+++ b/1271/CH1/EX1.39/39.txt
@@ -0,0 +1,7 @@
+
+ # PROBLEM 39 #
+
+ Standard formula used
+ mu = 2*(2*n-1)*lambda*R / D^2.
+
+ Refractive index of liquid = 0.958100. \ No newline at end of file
diff --git a/1271/CH1/EX1.39/example1_39.sce b/1271/CH1/EX1.39/example1_39.sce
new file mode 100755
index 000000000..95d38d922
--- /dev/null
+++ b/1271/CH1/EX1.39/example1_39.sce
@@ -0,0 +1,11 @@
+clc
+// Given That
+lambda = 5.896e-7 // wavelength of light in meter
+D = 4e-3 // diameter of 7th brighter fringe in m
+R = 1 // radius of curvature in m
+// Sample Problem 39 on page no. 1.54
+printf("\n # PROBLEM 39 # \n")
+n = 7 // for seventh brighter fringe
+mu = 2*(2*n-1)*lambda*R / D^2 // calculation for refractive index of liquid
+printf("\n Standard formula used \n mu = 2*(2*n-1)*lambda*R / D^2.\n")
+printf("\n Refractive index of liquid = %f.",mu)
diff --git a/1271/CH1/EX1.4/4.txt b/1271/CH1/EX1.4/4.txt
new file mode 100755
index 000000000..274a7d8d2
--- /dev/null
+++ b/1271/CH1/EX1.4/4.txt
@@ -0,0 +1,2 @@
+
+ Coherence length = 0.667261 meter
diff --git a/1271/CH1/EX1.4/example1_4.sce b/1271/CH1/EX1.4/example1_4.sce
new file mode 100755
index 000000000..0c7b44965
--- /dev/null
+++ b/1271/CH1/EX1.4/example1_4.sce
@@ -0,0 +1,9 @@
+clc
+// Given that
+lambda_D = 5.5e-13 // Doppler width of orange light in meter
+lambda = 6.058e-7 // wavelength of light in meter
+// Sample Problem 4 on page no. 1.41
+printf("\n # PROBLEM 4 # \n")
+printf("\n Standard formula used \n delta_L = lambda^2/delta_lambda. \n")
+coherence_length = (lambda ^ 2) / lambda_D// calculation for coherence light
+printf("\n Coherence length = %f meter",coherence_length)
diff --git a/1271/CH1/EX1.40/40.txt b/1271/CH1/EX1.40/40.txt
new file mode 100755
index 000000000..9c543a0fd
--- /dev/null
+++ b/1271/CH1/EX1.40/40.txt
@@ -0,0 +1,2 @@
+ Refractive index of liquid = 1.440000.
+ velocity of light in the liquid = 2.083333e+08 m/sec.
diff --git a/1271/CH1/EX1.40/example1_40.sce b/1271/CH1/EX1.40/example1_40.sce
new file mode 100755
index 000000000..6316a1c6e
--- /dev/null
+++ b/1271/CH1/EX1.40/example1_40.sce
@@ -0,0 +1,11 @@
+clc
+// Given That
+D1 = 3e-3 // diameter of nth dark fringe when liquid is absent between the lens and the plate in m
+D2 = 2.5e-3 // diameter of nth dark fringe when liquid is introduced between the lens and the plate in m
+c = 3e8 // velocity of light in vacuum in m/sed
+// Sample Problem 40 on page no. 1.54
+printf("\n # PROBLEM 40 # \n")
+mu = D1^2 / D2^2// calculation for refractive index
+v = 3e8 / mu // calculation for velocity of light
+printf("\n Standard formula used \n mu = D1^2 / D2^2. \n v = 3e8 / mu. \n")
+printf("\n Refractive index of liquid = %f.\n velocity of light in the liquid = %e m/sec.",mu,v)
diff --git a/1271/CH1/EX1.41/41.txt b/1271/CH1/EX1.41/41.txt
new file mode 100755
index 000000000..620863d8c
--- /dev/null
+++ b/1271/CH1/EX1.41/41.txt
@@ -0,0 +1,7 @@
+
+ # PROBLEM 41 #
+
+ Standard formula used
+ mu = 4*n*lambda*R / D^2.
+
+ Refractive index of liquid = 1.450765. \ No newline at end of file
diff --git a/1271/CH1/EX1.41/example1_41.sce b/1271/CH1/EX1.41/example1_41.sce
new file mode 100755
index 000000000..fabd9f5b2
--- /dev/null
+++ b/1271/CH1/EX1.41/example1_41.sce
@@ -0,0 +1,11 @@
+clc
+// Given That
+lambda = 5.896e-7 // wavelength of light in meter
+D = 5.1e-3 // diameter of 16th brighter fringe in m
+R = 1 // radius of curvature in m
+// Sample Problem 41 on page no. 1.55
+printf("\n # PROBLEM 41 # \n")
+n = 16 // for sixteenth brighter fringe
+mu = 4*n*lambda*R / D^2 // calculation for refractive index of liquid
+printf("\n Standard formula used \n mu = 4*n*lambda*R / D^2.\n")
+printf("\n Refractive index of liquid = %f.",mu)
diff --git a/1271/CH1/EX1.42/42.txt b/1271/CH1/EX1.42/42.txt
new file mode 100755
index 000000000..0263a27c5
--- /dev/null
+++ b/1271/CH1/EX1.42/42.txt
@@ -0,0 +1,2 @@
+
+ The radius of smallest dark ring = 0.589790 mm.
diff --git a/1271/CH1/EX1.42/example1_42.sce b/1271/CH1/EX1.42/example1_42.sce
new file mode 100755
index 000000000..fd870cd27
--- /dev/null
+++ b/1271/CH1/EX1.42/example1_42.sce
@@ -0,0 +1,10 @@
+clc
+// Given That
+lambda = 6.3e-7 // wavelength of light in meter
+mu = 1.63 // refractive index of liquid
+R = 0.9 // the radius of curvature of convex lens in meter
+// Sample Problem 42 on page no. 1.55
+printf("\n # PROBLEM 42 # \n")
+r = sqrt(lambda*R/mu) // calculation for the radius of smallest dark ring
+printf("\n Standard formula used \n r = sqrt(n*lambda*R/mu). \n")
+printf("\n The radius of smallest dark ring = %f mm.",r*1000)
diff --git a/1271/CH1/EX1.43/43.txt b/1271/CH1/EX1.43/43.txt
new file mode 100755
index 000000000..c1c5acde9
--- /dev/null
+++ b/1271/CH1/EX1.43/43.txt
@@ -0,0 +1 @@
+ the ratio refractive index of media = 49.000000:100. \ No newline at end of file
diff --git a/1271/CH1/EX1.43/example1_43.sce b/1271/CH1/EX1.43/example1_43.sce
new file mode 100755
index 000000000..9e377e949
--- /dev/null
+++ b/1271/CH1/EX1.43/example1_43.sce
@@ -0,0 +1,8 @@
+clc
+// Given That
+r = 10/7 // ratio of nth ring diameter for two media
+// Sample Problem 43 on page no. 1.55
+printf("\n # PROBLEM 43 # \n")
+R = (1/r)^2 // calculation for the ratio of refractive index of media
+printf("\n Standard formula used \n mu1/mu2 = D2/D1. \n")
+printf("\n the ratio refractive index of media = %f:100.",R*100)
diff --git a/1271/CH1/EX1.44/44.txt b/1271/CH1/EX1.44/44.txt
new file mode 100755
index 000000000..0c2293dd4
--- /dev/null
+++ b/1271/CH1/EX1.44/44.txt
@@ -0,0 +1 @@
+ Wavelength of light = 6400.000000 A. \ No newline at end of file
diff --git a/1271/CH1/EX1.44/example1_44.sce b/1271/CH1/EX1.44/example1_44.sce
new file mode 100755
index 000000000..8034cc3bc
--- /dev/null
+++ b/1271/CH1/EX1.44/example1_44.sce
@@ -0,0 +1,10 @@
+clc
+// Given That
+R = 0.9 // radius of curvature of the lower face of the lens in meter
+D = 4.8e-3 // diameter of the 10th dark ring in meter
+// Sample Problem 44 on page no. 1.56
+printf("\n # PROBLEM 44 # \n")
+n = 10 // for 10th dark ring
+lambda = D^2 / (4 * n * R) // calculation for wavelength of light
+printf("\n Standard formula used \n lambda = D^2 / (4 * n * R). \n")
+printf("\n Wavelength of light = %f A.",lambda * 1e10)
diff --git a/1271/CH1/EX1.45/45.txt b/1271/CH1/EX1.45/45.txt
new file mode 100755
index 000000000..e968f65c6
--- /dev/null
+++ b/1271/CH1/EX1.45/45.txt
@@ -0,0 +1 @@
+ Refractive index of liquid = 4.000000. \ No newline at end of file
diff --git a/1271/CH1/EX1.45/example1_45.sce b/1271/CH1/EX1.45/example1_45.sce
new file mode 100755
index 000000000..7f2d2bef7
--- /dev/null
+++ b/1271/CH1/EX1.45/example1_45.sce
@@ -0,0 +1,8 @@
+clc
+// Given That
+r = 1/2 // ratio of 5th ring diameter when no liquid between plane glass plate and convex lens and when the liquid between glass plate and convex lens
+// Sample Problem 45 on page no. 1.56
+printf("\n # PROBLEM 45 # \n")
+R = (1/r)^2 // calculation for refractive index of liquid
+printf("\n Standard formula used \n mu1/mu2 = D2/D1. \n")
+printf("\n Refractive index of liquid = %f. ",R)
diff --git a/1271/CH1/EX1.46/46.txt b/1271/CH1/EX1.46/46.txt
new file mode 100755
index 000000000..4ed7bc3e4
--- /dev/null
+++ b/1271/CH1/EX1.46/46.txt
@@ -0,0 +1 @@
+ Distance between 5th and 15th dark ring = 0.085057 cm. \ No newline at end of file
diff --git a/1271/CH1/EX1.46/example1_46.sce b/1271/CH1/EX1.46/example1_46.sce
new file mode 100755
index 000000000..c4eeedab4
--- /dev/null
+++ b/1271/CH1/EX1.46/example1_46.sce
@@ -0,0 +1,13 @@
+clc
+// Given That
+R = 1 // radius of curvature of lens of both side in meter
+lambda = 5.4e-7 // wavelength of monochromatic light in meter
+// Sample Problem 46 on page no. 1.56
+printf("\n # PROBLEM 46 # \n")
+n1 = 5 // for 5th dark ring
+n2 = 15 // for 10th dark ring
+r1 = sqrt((n1*lambda)/(1/R + 1/R)) // calculation for radius of 5th dark ring
+r2 = sqrt((n2*lambda)/(1/R + 1/R)) // calculation for radius of 15th dark ring
+d = r2 - r1 // calculation for distance between 5th and 15th dark ring
+printf("\n Standard formula used \n r = sqrt((n*lambda)/(1/R + 1/R)). \n")
+printf("\n Distance between 5th and 15th dark ring = %f cm.",d * 100)
diff --git a/1271/CH1/EX1.47/47.txt b/1271/CH1/EX1.47/47.txt
new file mode 100755
index 000000000..6a08425b7
--- /dev/null
+++ b/1271/CH1/EX1.47/47.txt
@@ -0,0 +1 @@
+ Refractive index of mica = 1.500000. \ No newline at end of file
diff --git a/1271/CH1/EX1.47/example1_47.sce b/1271/CH1/EX1.47/example1_47.sce
new file mode 100755
index 000000000..ad983a603
--- /dev/null
+++ b/1271/CH1/EX1.47/example1_47.sce
@@ -0,0 +1,9 @@
+clc
+// Given That
+x = 2.5e-5 // distance moved by movable mirror in meter
+t = 5e-5 // thickness of mica sheet in meter
+// Sample Problem 47 on page no. 1.57
+printf("\n # PROBLEM 47 # \n")
+mu = x / t + 1 // calculation for refractive index of mica
+printf("\n Standard formula used \n mu = x / t + 1. \n")
+printf("\n Refractive index of mica = %f.",mu)
diff --git a/1271/CH1/EX1.48/48.txt b/1271/CH1/EX1.48/48.txt
new file mode 100755
index 000000000..e611ad79f
--- /dev/null
+++ b/1271/CH1/EX1.48/48.txt
@@ -0,0 +1 @@
+Wavelength of light = 6000.000000 A. \ No newline at end of file
diff --git a/1271/CH1/EX1.48/example1_48.sce b/1271/CH1/EX1.48/example1_48.sce
new file mode 100755
index 000000000..7a9118d16
--- /dev/null
+++ b/1271/CH1/EX1.48/example1_48.sce
@@ -0,0 +1,9 @@
+clc
+// Given That
+x = 6e-5 // distance moved by movable mirror in meter
+N = 200 // no. of fringes crossed the field of view
+// Sample Problem 48 on page no. 1.57
+printf("\n # PROBLEM 48 # \n")
+lambda = (2 * x) / N // calculation for wavelength of light
+printf("\n Standard formula used \n lambda = (2 * X) / N. \n")
+printf("\n Wavelength of light = %f A.",lambda * 1e10)
diff --git a/1271/CH1/EX1.49/49.txt b/1271/CH1/EX1.49/49.txt
new file mode 100755
index 000000000..772e4ace1
--- /dev/null
+++ b/1271/CH1/EX1.49/49.txt
@@ -0,0 +1,2 @@
+
+ Thickness of the plate = 3.685000e-05 m.
diff --git a/1271/CH1/EX1.49/example1_49.sce b/1271/CH1/EX1.49/example1_49.sce
new file mode 100755
index 000000000..a82dd774b
--- /dev/null
+++ b/1271/CH1/EX1.49/example1_49.sce
@@ -0,0 +1,10 @@
+clc
+// Given That
+n = 50 // no. of bands crosses the line of observation
+lambda = 5.896e-7 // wavelength of light in meter
+mu = 1.4 // refractive index
+// Sample Problem 49 on page no. 1.57
+printf("\n # PROBLEM 49 # \n")
+t = n*lambda / (2*(mu-1)) // calculation for thickness of the plate
+printf("\n Standard formula used \n t = n*lambda /2*(mu-1)\n")
+printf("\n Thickness of the plate = %e m.",t)
diff --git a/1271/CH1/EX1.5/5.txt b/1271/CH1/EX1.5/5.txt
new file mode 100755
index 000000000..a68d8c180
--- /dev/null
+++ b/1271/CH1/EX1.5/5.txt
@@ -0,0 +1,2 @@
+
+ The ratio of coherence length of mercury vapour lamp to the coherence length of He Ne laser = 1:600.
diff --git a/1271/CH1/EX1.5/example1_5.sce b/1271/CH1/EX1.5/example1_5.sce
new file mode 100755
index 000000000..22d5d1ccf
--- /dev/null
+++ b/1271/CH1/EX1.5/example1_5.sce
@@ -0,0 +1,15 @@
+clc
+// Given that
+lambda1 = 5.461e-7 // wavelength of light emitted by mercury vapour lamp in meter
+band_width1 = 6e8 // band width for mercury vapour lamp in Hz
+lambda2 = 6.328e-7 // the operating wavelength of light for He Ne laser
+band_width2 = 1e6 // band width for laser in Hz
+// Sample Problem 5 on page no. 1.41
+printf("\n # PROBLEM 5 # \n")
+delta_lambda1 = (lambda1^2 * band_width1) / 3e8 // calculation for difference between two wavelength for mercury vapour
+delta_L1 = lambda1^2 / delta_lambda1 // calculation for coherence length for mercury vapour lamp
+delta_lambda2 = (lambda2^2 * band_width2) / 3e8 // calculation for difference between two wavelength for He Ne laser
+delta_L2 = lambda2^2 / delta_lambda2 // calculation for coherence length for He Ne laser
+R = delta_L1/delta_L2 // calculation for ratio of coherence length of mercury vapour lamp to the coherence length of He Ne laser
+printf("\n Standard formula used \n delta_lambda = lambda^2*band_width / c, \n coherence length = lambda^2/delta_lambda.\n")
+printf("\n The ratio of coherence length of mercury vapour lamp to the coherence length of He Ne laser = 1:%d. ",1/R)
diff --git a/1271/CH1/EX1.50/50.txt b/1271/CH1/EX1.50/50.txt
new file mode 100755
index 000000000..82d293fc8
--- /dev/null
+++ b/1271/CH1/EX1.50/50.txt
@@ -0,0 +1 @@
+ The path difference = 0.578791 mm. \ No newline at end of file
diff --git a/1271/CH1/EX1.50/example1_50.sce b/1271/CH1/EX1.50/example1_50.sce
new file mode 100755
index 000000000..648a8fc93
--- /dev/null
+++ b/1271/CH1/EX1.50/example1_50.sce
@@ -0,0 +1,10 @@
+clc
+// Given That
+n = 50 // no. of bands crosses the line of observation
+lambda1 = 5.896e-7 // max. wavelength of light in meter
+lambda2 = 5.89e-7 // min. wavelength of light in meter
+// Sample Problem 50 on page no. 1.57
+printf("\n # PROBLEM 50 # \n")
+x = lambda1 * lambda2 /(lambda1 - lambda2) // calculation for the path difference
+printf("\n Standard formula used \n t = n*lambda /2*(mu-1)\n")
+printf("\n The path difference = %f mm.",x*10^3)
diff --git a/1271/CH1/EX1.51/51.txt b/1271/CH1/EX1.51/51.txt
new file mode 100755
index 000000000..951a74e5e
--- /dev/null
+++ b/1271/CH1/EX1.51/51.txt
@@ -0,0 +1 @@
+Wavelength of monochromatic light = 5896.000000 A.
diff --git a/1271/CH1/EX1.51/example1_51.sce b/1271/CH1/EX1.51/example1_51.sce
new file mode 100755
index 000000000..aca0208e8
--- /dev/null
+++ b/1271/CH1/EX1.51/example1_51.sce
@@ -0,0 +1,9 @@
+clc
+// Given That
+x = 2.948e-5 // distance moved by movable mirror in meter
+n = 100 // no. of fringes cross the field of view
+// Sample Problem 51 on page no. 1.58
+printf("\n # PROBLEM 51 # \n")
+lambda = 2*x/n // calculation for wavelength of monochromatic light
+printf("\n Standard formula used \n lambda = 2*x/n. \n")
+printf("\n Wavelength of monochromatic light = %f A.",lambda * 1e10)
diff --git a/1271/CH1/EX1.52/52.txt b/1271/CH1/EX1.52/52.txt
new file mode 100755
index 000000000..e99d71d93
--- /dev/null
+++ b/1271/CH1/EX1.52/52.txt
@@ -0,0 +1,2 @@
+
+ The distance through which the movable mirror is move = 0.289395 mm.
diff --git a/1271/CH1/EX1.52/example1_52.sce b/1271/CH1/EX1.52/example1_52.sce
new file mode 100755
index 000000000..7a060f3f0
--- /dev/null
+++ b/1271/CH1/EX1.52/example1_52.sce
@@ -0,0 +1,9 @@
+clc
+// Given That
+lambda1 = 5.896e-7 // max. wavelength of light in meter
+lambda2 = 5.89e-7 // min. wavelength of light in meter
+// Sample Problem 52 on page no. 1.58
+printf("\n # PROBLEM 52 # \n")
+x = lambda1 * lambda2 /(2*(lambda1 - lambda2)) // calculation for the path difference
+printf("\n Standard formula used \n x = lambda1 * lambda2 /2*(lambda1 - lambda2).\n")
+printf("\n The distance through which the movable mirror is move = %f mm.",x*10^3)
diff --git a/1271/CH1/EX1.53/53.txt b/1271/CH1/EX1.53/53.txt
new file mode 100755
index 000000000..70198e71f
--- /dev/null
+++ b/1271/CH1/EX1.53/53.txt
@@ -0,0 +1 @@
+ Difference between two wavelengths = 5.896002 A. \ No newline at end of file
diff --git a/1271/CH1/EX1.53/example1_53.sce b/1271/CH1/EX1.53/example1_53.sce
new file mode 100755
index 000000000..9b17ca143
--- /dev/null
+++ b/1271/CH1/EX1.53/example1_53.sce
@@ -0,0 +1,9 @@
+clc
+// Given That
+x = 2.945e-4 // distance moved by movable mirror in meter
+lambda = 5.893e-7 // mean wavelength of light in meter
+// Sample Problem 53 on page no. 1.58
+printf("\n # PROBLEM 53 # \n")
+delta_lambda = lambda^2 / (2*x) // calculation for difference between two wavelengths
+printf("\n Standard formula used \n delta_lambda = lambda^2 / (2*x). \n")
+printf("\n Difference between two wavelengths = %f A.",delta_lambda*1e10)
diff --git a/1271/CH1/EX1.54/54.txt b/1271/CH1/EX1.54/54.txt
new file mode 100755
index 000000000..3a98bb1b9
--- /dev/null
+++ b/1271/CH1/EX1.54/54.txt
@@ -0,0 +1 @@
+ Refractive index of gas = 1.000191. \ No newline at end of file
diff --git a/1271/CH1/EX1.54/example1_54.sce b/1271/CH1/EX1.54/example1_54.sce
new file mode 100755
index 000000000..a3bffa254
--- /dev/null
+++ b/1271/CH1/EX1.54/example1_54.sce
@@ -0,0 +1,10 @@
+clc
+// Given That
+n = 140 // no. of shift in fringe
+lambda = 5.46e-7 // wavelength of light in meter
+t = 0.2 // length of tube in meter
+// Sample Problem 54 on page no. 1.58
+printf("\n # PROBLEM 54 # \n")
+mu = (n*lambda)/(2*t) + 1 // calculation for refractive index of gas
+printf("\n Standard formula used \n mu = (n*lambda)/(2*t) + 1. \n")
+printf("\n Refractive index of gas = %f.",mu)
diff --git a/1271/CH1/EX1.6/6.txt b/1271/CH1/EX1.6/6.txt
new file mode 100755
index 000000000..27de5f7c2
--- /dev/null
+++ b/1271/CH1/EX1.6/6.txt
@@ -0,0 +1 @@
+ Coherence length of laser = 1.000000e+05 meter. \ No newline at end of file
diff --git a/1271/CH1/EX1.6/example1_6.sce b/1271/CH1/EX1.6/example1_6.sce
new file mode 100755
index 000000000..b9ed772bd
--- /dev/null
+++ b/1271/CH1/EX1.6/example1_6.sce
@@ -0,0 +1,8 @@
+clc
+// Given that
+band_width = 3000 // band width of laser in hertz
+ // Sample Problem 6 on page no. 1.42
+printf("\n # PROBLEM 6 # \n")
+printf("\n Standard formula used \n delta_L = c*delta_t. \n")
+coherence_length = (3 * 10 ^ 8) / band_width//calculation for coherence length
+printf("\n Coherence length of laser = %e meter.",coherence_length)
diff --git a/1271/CH1/EX1.7/7.txt b/1271/CH1/EX1.7/7.txt
new file mode 100755
index 000000000..f24369b29
--- /dev/null
+++ b/1271/CH1/EX1.7/7.txt
@@ -0,0 +1,3 @@
+Coherence length of monochromatic light = 3.000000e-02 meter.
+ band width = 1.000000e+10 Hz.
+ line width = 0.133479 A.
diff --git a/1271/CH1/EX1.7/example1_7.sce b/1271/CH1/EX1.7/example1_7.sce
new file mode 100755
index 000000000..0c897bc2e
--- /dev/null
+++ b/1271/CH1/EX1.7/example1_7.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+lambda = 6.328e-7 // wavelength of monochromatic light in meter
+t = 1e-10 // chopping time in sec
+// Sample Problem 7 on page no. 1.42
+printf("\n # PROBLEM 7 # \n")
+coherence_length = (3 * 10 ^ 8) * t // calculation for coherence length of monochromatic light
+band_width = 1 / t // calculation for band width
+line_width = ((lambda ^ 2) * band_width) / (3 * 10 ^ 8) // calculation for line width
+printf("\n Standard formula used \n coherence_length = (3 * 10 ^ 8) * t. \n line_width = ((lambda ^ 2) * band_width) / (3 * 10 ^ 8). \n")
+printf("\n Coherence length of monochromatic light = %e meter. \n band width = %e Hz. \n line width = %f A.",coherence_length, band_width, line_width*1e10)
diff --git a/1271/CH1/EX1.8/8.txt b/1271/CH1/EX1.8/8.txt
new file mode 100755
index 000000000..9739afdc6
--- /dev/null
+++ b/1271/CH1/EX1.8/8.txt
@@ -0,0 +1,2 @@
+Coherence time of red cadmium line = 1.266667e-09 sec.
+ Spectral line width = 1.090733e-12 meter.
diff --git a/1271/CH1/EX1.8/example1_8.sce b/1271/CH1/EX1.8/example1_8.sce
new file mode 100755
index 000000000..0e5663349
--- /dev/null
+++ b/1271/CH1/EX1.8/example1_8.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+lambda = 6.438e-7 // wavelength of red cadmium line in meter
+L = 3.8e-1 // coherence length in meter
+// Sample Problem 8 on page no. 1.42
+printf("\n # PROBLEM 8 # \n")
+printf("\n Standard formula used \n delta_L = c*delta_t. \n")
+coherence_time = L / (3 * 10 ^ 8)// calculation for coherence time
+spectral_line_width = (lambda ^ 2) / L // calculation for spectral line width
+printf("\n Coherence time of red cadmium line = %e sec. \n Spectral line width = %e meter.",coherence_time,spectral_line_width)
diff --git a/1271/CH1/EX1.9/9.txt b/1271/CH1/EX1.9/9.txt
new file mode 100755
index 000000000..b2ac0d59d
--- /dev/null
+++ b/1271/CH1/EX1.9/9.txt
@@ -0,0 +1 @@
+Ratio of maximum intensity with minimum intensity = 2.777778 \ No newline at end of file
diff --git a/1271/CH1/EX1.9/example1_9.sce b/1271/CH1/EX1.9/example1_9.sce
new file mode 100755
index 000000000..d41aefd3e
--- /dev/null
+++ b/1271/CH1/EX1.9/example1_9.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+ratio = 16 // ratio of intensities of two waves
+// Sample Problem 9 on page no. 1.43
+printf("\n # PROBLEM 9 # \n")
+printf("\n Standard formula used \n I = k*a^2. \n")
+a1 = sqrt(ratio) // by the formula amplitude = sqrt(intensity)
+a2 = 1
+R = ((a1 + a2) ^ 2) / ((a1 - a2) ^ 2)// calculation for ratio of maximum intensity with minimum intensity
+printf("\n Ratio of maximum intensity with minimum intensity = %f",R)
diff --git a/1271/CH10/EX10.15/15.txt b/1271/CH10/EX10.15/15.txt
new file mode 100755
index 000000000..c21f65e4e
--- /dev/null
+++ b/1271/CH10/EX10.15/15.txt
@@ -0,0 +1,4 @@
+ The total charge within volume(in C) =
+
+ 1.770D-08
+
diff --git a/1271/CH10/EX10.15/example10_15.sce b/1271/CH10/EX10.15/example10_15.sce
new file mode 100755
index 000000000..f24bc2fa8
--- /dev/null
+++ b/1271/CH10/EX10.15/example10_15.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+n = 2000 // flux lines enter in given volume in Vm
+n_ = 4000 // flux lines diverge from given volume in Vm
+e0 = 8.85e-12 // permittivity of space
+// Sample Problem 15 on page no. 10.42
+printf("\n # PROBLEM 15 # \n")
+fi = n_ - n
+q = e0 * fi
+printf("Standard formula used \n fi = q/e_")
+disp(q,' The total charge within volume(in C) = ')
diff --git a/1271/CH10/EX10.16/16.txt b/1271/CH10/EX10.16/16.txt
new file mode 100755
index 000000000..fc1111b17
--- /dev/null
+++ b/1271/CH10/EX10.16/16.txt
@@ -0,0 +1 @@
+The total charge enclosed by closed surface = 2.212500e-07 C. \ No newline at end of file
diff --git a/1271/CH10/EX10.16/example10_16.sce b/1271/CH10/EX10.16/example10_16.sce
new file mode 100755
index 000000000..8c7c3a27e
--- /dev/null
+++ b/1271/CH10/EX10.16/example10_16.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+n = 20000 // flux lines entering in given volume in Vm
+n_ = 45000 // flux lines entering out from given volume in Vm
+e0 = 8.85e-12 // permittivity of space
+// Sample Problem 16 on page no. 10.42
+printf("\n # PROBLEM 16 # \n")
+fi = n_ - n
+q = e0 * fi
+printf("Standard formula used \n fi= q/e_. \n")
+printf("The total charge enclosed by closed surface is %e C.",q)
diff --git a/1271/CH10/EX10.17/17.txt b/1271/CH10/EX10.17/17.txt
new file mode 100755
index 000000000..af4017b40
--- /dev/null
+++ b/1271/CH10/EX10.17/17.txt
@@ -0,0 +1,2 @@
+Electric flux through the whole volume of the cube = 1.525424e+06 Nm^2/C,
+ Electric flux through one face of the cube = 2.542373e+05 Nm^2/C
diff --git a/1271/CH10/EX10.17/example10_17.sce b/1271/CH10/EX10.17/example10_17.sce
new file mode 100755
index 000000000..e18d1c788
--- /dev/null
+++ b/1271/CH10/EX10.17/example10_17.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+q = 13.5e-6 // charge enclosed at the centre of cube in C
+l = 6 // length of the side of cube in cm
+e0 = 8.85e-12 // permittivity of space
+// Sample Problem 17 on page no. 10.43
+printf("\n # PROBLEM 17 # \n")
+fi = q / e0
+fi_ = fi / 6
+q = e0 * fi
+printf("Standard formula used \n fi=q/e_.\n")
+printf("Electric flux through the whole volume of the cube is %e Nm^2/C.\n Electric flux through one face of the cube is %e Nm^2/C.",fi,fi_)
diff --git a/1271/CH10/EX10.18/18.txt b/1271/CH10/EX10.18/18.txt
new file mode 100755
index 000000000..dd11fa108
--- /dev/null
+++ b/1271/CH10/EX10.18/18.txt
@@ -0,0 +1 @@
+Electric flux through each surface of the cube = 2.071563e+11 Nm^2/C. \ No newline at end of file
diff --git a/1271/CH10/EX10.18/example10_18.sce b/1271/CH10/EX10.18/example10_18.sce
new file mode 100755
index 000000000..7cbd14fee
--- /dev/null
+++ b/1271/CH10/EX10.18/example10_18.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+q = 11 // charge enclosed at the centre of cube in C
+l = 5 // length of the side of cube in cm
+e0 = 8.85e-12 // permittivity of space
+// Sample Problem 18 on page no. 10.43
+printf("\n # PROBLEM 18 # \n")
+fi_ = (q / e0) / 6
+printf("\nStandard formula used \n fi=q/e_\n")
+printf(" Electric flux through each surface of the cube = %e Nm^2/C.",fi_)
diff --git a/1271/CH10/EX10.19/19.txt b/1271/CH10/EX10.19/19.txt
new file mode 100755
index 000000000..03342a6cd
--- /dev/null
+++ b/1271/CH10/EX10.19/19.txt
@@ -0,0 +1,8 @@
+
+ # PROBLEM 19 #
+Standard formula used
+ E = (1 / (4 * pi * e0) * (q / r^2)).
+ Electric field intensity-
+ (1) On the surface of the sphere = 8.991805e+03 N/C,
+ (2) At first point = 0 N/C,
+ (3) At second point = 3.596722e+02 N/C \ No newline at end of file
diff --git a/1271/CH10/EX10.19/example10_19.sce b/1271/CH10/EX10.19/example10_19.sce
new file mode 100755
index 000000000..c211333ba
--- /dev/null
+++ b/1271/CH10/EX10.19/example10_19.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+q = 1e-8 // charge uniformly spread over metallic sphere in C
+r = .1 //radius of sphere in m
+d = 7 // distance of a point from centre of the sphere in cm
+d_ = .5 // distance of another point from centre of the sphere in m
+e0 = 8.85e-12 // permittivity of space
+// Sample Problem 19 on page no. 10.43
+printf("\n # PROBLEM 19 # \n")
+E1 = (1 / (4 * %pi * e0) * (q / r^2))
+E2 = 0 //because sphere is metallic
+E3 = (1 / (4 * %pi * e0) * (q / d_^2))
+printf("Standard formula used \n E = (1 / (4 * pi * e0) * (q / r^2)). \n")
+printf(" Electric field intensity-\n (1) On the surface of the sphere = %e N/C,\n (2) At first point = %d N/C,\n (3) At second point = %e N/C",E1,E2,E3)
diff --git a/1271/CH10/EX10.20/20.txt b/1271/CH10/EX10.20/20.txt
new file mode 100755
index 000000000..12bf3aaa2
--- /dev/null
+++ b/1271/CH10/EX10.20/20.txt
@@ -0,0 +1,4 @@
+# PROBLEM 20 #
+Standard formula used
+ E = (1 / (4 * pi * e0)) * (q / d^2).
+ Electric field = 1.438689e+11 V/m. \ No newline at end of file
diff --git a/1271/CH10/EX10.20/example10_20.sce b/1271/CH10/EX10.20/example10_20.sce
new file mode 100755
index 000000000..ccdeaaf05
--- /dev/null
+++ b/1271/CH10/EX10.20/example10_20.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+q = 1.6e-19 // charge on a proton in C
+d = 1e-10 // distance of a point from proton in m
+e0 = 8.85e-12 // permittivity of space
+// Sample Problem 20 on page no. 10.44
+printf("\n # PROBLEM 20 # \n")
+E = (1 / (4 * %pi * e0)) * (q / d^2)
+printf("Standard formula used \n E = (1 / (4 * pi * e0)) * (q / d^2).\n")
+printf(" Electric field = %e V/m.",E)
diff --git a/1271/CH10/EX10.21/21.txt b/1271/CH10/EX10.21/21.txt
new file mode 100755
index 000000000..ef0387051
--- /dev/null
+++ b/1271/CH10/EX10.21/21.txt
@@ -0,0 +1,5 @@
+
+ # PROBLEM 21 #
+Standard formula used
+ E = q * v.
+ Energy gained by alpha particle = 3.200000e-16 J. \ No newline at end of file
diff --git a/1271/CH10/EX10.21/example10_21.sce b/1271/CH10/EX10.21/example10_21.sce
new file mode 100755
index 000000000..1d0445224
--- /dev/null
+++ b/1271/CH10/EX10.21/example10_21.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+v = 1000 // potential through which alpha particle accelerated in V
+q = 3.2e-19 // charge on an alpha particle in C
+e0 = 8.85e-12 // electric permittivity of space
+// Sample Problem 21 on page no. 10.44
+printf("\n # PROBLEM 21 # \n")
+E = q * v
+printf("Standard formula used \n E = q * v.\n")
+printf(" Energy gained by alpha particle = %e J.",E)
diff --git a/1271/CH10/EX10.22/22.txt b/1271/CH10/EX10.22/22.txt
new file mode 100755
index 000000000..490f695f4
--- /dev/null
+++ b/1271/CH10/EX10.22/22.txt
@@ -0,0 +1,3 @@
+ Potential at first point = 14.386888 V,
+ Potential energy at first point = -14.386888 eV.
+ Potential difference between points = 57.547550 V.
diff --git a/1271/CH10/EX10.22/example10_22.sce b/1271/CH10/EX10.22/example10_22.sce
new file mode 100755
index 000000000..4cdc97713
--- /dev/null
+++ b/1271/CH10/EX10.22/example10_22.sce
@@ -0,0 +1,13 @@
+clc
+// Given that
+q = 1.6e-19 // charge on a proton in C
+d = 1e-10 // distance of a point from proton in m
+d_ = 2e-11 // distance of another point from proton in m
+e0 = 8.85e-12 // permittivity of space
+// Sample Problem 22 on page no. 10.44
+printf("\n # PROBLEM 22 # \n")
+v = (1 / (4 * %pi * e0)) * (q / d)//calculation for potential at first point
+E = -q * v//calculation for energy at first point in J
+delta_v = (1 / (4 * %pi * e0)) * q * ((1 / d_) - (1 / d))//calculation for potential difference between points
+printf("Standard formula used \n V=(1/(4*pi*e_))*q/r,\n E=-(1/(4*pi*e_))*q^2/r.\n")
+printf(" Potential energy at first point = %f eV.\n Potential difference between points = %f V.",E/q,delta_v)
diff --git a/1271/CH10/EX10.23/23.txt b/1271/CH10/EX10.23/23.txt
new file mode 100755
index 000000000..2315cf41c
--- /dev/null
+++ b/1271/CH10/EX10.23/23.txt
@@ -0,0 +1,4 @@
+ # PROBLEM 23 #
+Standard formula used
+ v = (1/(4*pi*e_)*(q/r)).
+ Radius of equipotential surface = 450 m. \ No newline at end of file
diff --git a/1271/CH10/EX10.23/example10_23.sce b/1271/CH10/EX10.23/example10_23.sce
new file mode 100755
index 000000000..4b1e68a87
--- /dev/null
+++ b/1271/CH10/EX10.23/example10_23.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+q = 1.5e-6 // charge in C
+v = 30 // potential of a surface in V
+e0 = 8.85e-12 // permittivity of space
+// Sample Problem 23 on page no. 10.45
+printf("\n # PROBLEM 23 # \n")
+r = (1 / (4 * %pi * e0)) * (q / v)
+printf("Standard formula used \n v = (1/(4*pi*e_)*(q/r)).\n")
+printf(" Radius of equipotential surface = %d m.",ceil(r))
diff --git a/1271/CH10/EX10.24/24.txt b/1271/CH10/EX10.24/24.txt
new file mode 100755
index 000000000..e116459b5
--- /dev/null
+++ b/1271/CH10/EX10.24/24.txt
@@ -0,0 +1 @@
+ The value of poynting vector at the surface of the sun = 6.171314e+07 W/m^2. \ No newline at end of file
diff --git a/1271/CH10/EX10.24/example10_24.sce b/1271/CH10/EX10.24/example10_24.sce
new file mode 100755
index 000000000..cfba928a8
--- /dev/null
+++ b/1271/CH10/EX10.24/example10_24.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+p = 3.8e26 // power radiated by sun in W
+r = 7e8 // radius of sun in m
+e0 = 8.85e-12 // permittivity of space
+// Sample Problem 24 on page no. 10.45
+printf("\n # PROBLEM 24 # \n")
+s = p / (4 * %pi * r^2)
+printf("Standard formula used \n s = p / (4 * pi * r^2).\n")
+printf(" The value of poynting vector at the surface of the sun = %e W/m^2.",s)
diff --git a/1271/CH10/EX10.28/28.txt b/1271/CH10/EX10.28/28.txt
new file mode 100755
index 000000000..9bc2ed04a
--- /dev/null
+++ b/1271/CH10/EX10.28/28.txt
@@ -0,0 +1,2 @@
+ Magnitude of electric field vector = 1027.190755 v/m.
+ Magnitude of magnetic field vector = 2.725881 A/m.
diff --git a/1271/CH10/EX10.28/example10_28.sce b/1271/CH10/EX10.28/example10_28.sce
new file mode 100755
index 000000000..54bd78251
--- /dev/null
+++ b/1271/CH10/EX10.28/example10_28.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+s = 2 // energy received by the earth in cal/cm^2.min
+e0 = 8.85e-12 // electric permittivity of space
+mu0 = 1.2567e-6 // magnetic permittivity of space
+c = 3e8 // speed of light in meter/sec
+// Sample Problem 28 on page no. 10.47
+printf("\n # PROBLEM 28 # \n")
+r = sqrt(mu0 / e0)
+P = s*4.2/(60*1e-4)
+E = sqrt(P*r)
+H = E/r
+printf("Standard formula used \n P = E*H.\n")
+printf(" Magnitude of electric field vector = %f v/m.\n Magnitude of magnetic field vector = %f A/m.",E * sqrt(2),H*sqrt(2))
diff --git a/1271/CH10/EX10.29/29.txt b/1271/CH10/EX10.29/29.txt
new file mode 100755
index 000000000..89413e8bc
--- /dev/null
+++ b/1271/CH10/EX10.29/29.txt
@@ -0,0 +1,5 @@
+
+ # PROBLEM 29 #
+Standard formula used
+ H_/E_=sqrt(e_/mu_).
+ Magnitude of electric field vector = 376.828874 v/m. \ No newline at end of file
diff --git a/1271/CH10/EX10.29/example10_29.sce b/1271/CH10/EX10.29/example10_29.sce
new file mode 100755
index 000000000..3d8d876e9
--- /dev/null
+++ b/1271/CH10/EX10.29/example10_29.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+H = 1 // magnitude of magnetic field vector A/m
+e0 = 8.85e-12 // electric permittivity of space
+mu0 = 1.2567e-6 // magnetic permittivity of space
+c = 3e8 // speed of light in meter/sec
+// Sample Problem 29 on page no. 10.48
+printf("\n # PROBLEM 29 # \n")
+r = sqrt(mu0 / e0) // ratio of E,H
+E = H * r
+printf("Standard formula used \n H_/E_=sqrt(e_/mu_).\n")
+printf(" Magnitude of electric field vector = %f v/m.",E)
diff --git a/1271/CH10/EX10.31/31.txt b/1271/CH10/EX10.31/31.txt
new file mode 100755
index 000000000..701bb54ad
--- /dev/null
+++ b/1271/CH10/EX10.31/31.txt
@@ -0,0 +1 @@
+ Average value of the intensity of electric field of radiation = 86.583903 v/m. \ No newline at end of file
diff --git a/1271/CH10/EX10.31/example10_31.sce b/1271/CH10/EX10.31/example10_31.sce
new file mode 100755
index 000000000..d4623cf15
--- /dev/null
+++ b/1271/CH10/EX10.31/example10_31.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+p = 1000 // power of lamp in W
+d = 2 // distance of a point from lamp in meter
+e0 = 8.85e-12 // electric permittivity of space
+mu0 = 1.2567e-6 // magnetic permittivity of space
+c = 3e8 // speed of light in meter/sec
+// Sample Problem 31 on page no. 10.48
+printf("\n # PROBLEM 31 # \n")
+s = p / (4 * %pi * d^2) //calculation for
+r = sqrt(mu0 / e0) // ratio of E,H
+E = sqrt(s * r)//calculation for average value of intensity of electric field of radiation
+printf("Standard formula used \n E_/H_=sqrt(mu_/e_),\nP=E*H.\n")
+printf(" Average value of the intensity of electric field of radiation = %f v/m.",E)
diff --git a/1271/CH10/EX10.32/32.txt b/1271/CH10/EX10.32/32.txt
new file mode 100755
index 000000000..84408c41d
--- /dev/null
+++ b/1271/CH10/EX10.32/32.txt
@@ -0,0 +1,2 @@
+ Refractive index of distilled water is 9 .
+ Speed of light in water is 3.333333e+07 m/sec.
diff --git a/1271/CH10/EX10.32/example10_32.sce b/1271/CH10/EX10.32/example10_32.sce
new file mode 100755
index 000000000..11f853273
--- /dev/null
+++ b/1271/CH10/EX10.32/example10_32.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+k = 81 // relative permittivity of water
+c = 3e8 // speed of light in meter/sec
+// Sample Problem 32 on page no. 10.49
+printf("\n # PROBLEM 32 # \n")
+printf(" Standard formula used \n")
+printf(" mu_ = ( mu*epsilon /(mu_0/*psilon_0))^1/2 \n \n" )
+mu = sqrt(k)
+v = c / mu
+printf(" Refractive index of distilled water is %d .\n Speed of light in water is %e m/sec.",mu,v)
diff --git a/1271/CH11/EX11.10/10.txt b/1271/CH11/EX11.10/10.txt
new file mode 100755
index 000000000..575bf67da
--- /dev/null
+++ b/1271/CH11/EX11.10/10.txt
@@ -0,0 +1 @@
+ Velocity is 1*c, hence we can say that no signal can travel faster than light. \ No newline at end of file
diff --git a/1271/CH11/EX11.10/example11_10.sce b/1271/CH11/EX11.10/example11_10.sce
new file mode 100755
index 000000000..f2649662e
--- /dev/null
+++ b/1271/CH11/EX11.10/example11_10.sce
@@ -0,0 +1,9 @@
+clc
+// Given that
+u = 3e8 // speed of signal in meter/sec
+// Sample Problem 10 on page no. 11.21
+printf("\n # PROBLEM 10 # \n")
+printf(" Standard formula used \n")
+printf(" u_x = u_x_ + v / (1+ v*u_x_/c^2). \n ")
+u_ = (u + 3e8) / (1 + (u * 3e8) / 3e8^2)
+printf("\n Velocity is %d*c, hence we can say that no signal can travel faster than light.",u_/3e8)
diff --git a/1271/CH11/EX11.11/11.txt b/1271/CH11/EX11.11/11.txt
new file mode 100755
index 000000000..7f7927a3e
--- /dev/null
+++ b/1271/CH11/EX11.11/11.txt
@@ -0,0 +1,2 @@
+
+ Speed of particle is 2.687419e+08 meter/sec.
diff --git a/1271/CH11/EX11.11/example11_11.sce b/1271/CH11/EX11.11/example11_11.sce
new file mode 100755
index 000000000..ab99be388
--- /dev/null
+++ b/1271/CH11/EX11.11/example11_11.sce
@@ -0,0 +1,9 @@
+clc
+// Given that
+r = 2.25 // ratio of mass of particle to the rest mass
+// Sample Problem 11 on page no. 11.22
+printf("\n # PROBLEM 11 # \n")
+printf(" Standard formula used \n")
+printf(" m = m_0/((1-v^2/c^2)^1/2) \n ")
+v = 3e8 * sqrt(1 - (1 / r)^2)
+printf("\n Speed of particle is %e meter/sec.",v)
diff --git a/1271/CH11/EX11.12/12.txt b/1271/CH11/EX11.12/12.txt
new file mode 100755
index 000000000..b44733a31
--- /dev/null
+++ b/1271/CH11/EX11.12/12.txt
@@ -0,0 +1 @@
+ Velocity of particle is 0.942809 c. \ No newline at end of file
diff --git a/1271/CH11/EX11.12/example11_12.sce b/1271/CH11/EX11.12/example11_12.sce
new file mode 100755
index 000000000..a86659995
--- /dev/null
+++ b/1271/CH11/EX11.12/example11_12.sce
@@ -0,0 +1,9 @@
+clc
+// Given that
+r = 2 // ratio of kinetic energy of body to its rest mass
+// Sample Problem 12 on page no. 11.22
+printf("\n # PROBLEM 12 # \n")
+printf(" Standard formula used \n")
+printf(" m = m_0/((1-v^2/c^2)^1/2) \n KE = (m-m_0)*c^2 \n ")
+v = 3e8 * sqrt(1 - (1 / (r + 1))^2)
+printf("\n Velocity of particle is %f c.",v/3e8)
diff --git a/1271/CH11/EX11.13/13.txt b/1271/CH11/EX11.13/13.txt
new file mode 100755
index 000000000..9ff0e05f5
--- /dev/null
+++ b/1271/CH11/EX11.13/13.txt
@@ -0,0 +1,2 @@
+ Kinetic energy of electron is 5.118750 MeV.
+ Momentum of particle is 2.990565e-21 N-sec.
diff --git a/1271/CH11/EX11.13/example11_13.sce b/1271/CH11/EX11.13/example11_13.sce
new file mode 100755
index 000000000..23108c8d8
--- /dev/null
+++ b/1271/CH11/EX11.13/example11_13.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+r = 11 // ratio of mass of particle to the rest mass of electron
+// Sample Problem 13 on page no. 11.22
+printf("\n # PROBLEM 13 # \n")
+printf(" Standard formula used \n")
+printf(" m = m_0/((1-v^2/c^2)^1/2) \n KE = (m-m_0)*c^2 \n ")
+KE = (r - 1) * 9.1e-31 * 3e8^2 / (1.6e-19)
+m = 3e8 * sqrt(1 - (1 / r)^2) * 9.1e-31 * 11
+printf("\n Kinetic energy of electron is %f MeV.\n Momentum of particle is %e N-sec.",KE/1e6,m)
diff --git a/1271/CH11/EX11.14/14.txt b/1271/CH11/EX11.14/14.txt
new file mode 100755
index 000000000..96b33635c
--- /dev/null
+++ b/1271/CH11/EX11.14/14.txt
@@ -0,0 +1 @@
+Velocity of electron is 299999955.460931 meter/sec. \ No newline at end of file
diff --git a/1271/CH11/EX11.14/example11_14.sce b/1271/CH11/EX11.14/example11_14.sce
new file mode 100755
index 000000000..cae313967
--- /dev/null
+++ b/1271/CH11/EX11.14/example11_14.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+m = 1.67e-27 // mass of electron in kg
+m_ = 9.1e-31 // rest mass of electron in kg
+// Sample Problem 14 on page no. 11.23
+printf("\n # PROBLEM 14 # \n")
+printf(" Standard formula used \n")
+printf(" m = m_0/((1-v^2/c^2)^1/2) \n ")
+v = 3e8 * sqrt(1 - (m_ / m)^2)
+printf("\n Velocity of electron is %f meter/sec.",v)
diff --git a/1271/CH11/EX11.15/15.txt b/1271/CH11/EX11.15/15.txt
new file mode 100755
index 000000000..7cd08dc10
--- /dev/null
+++ b/1271/CH11/EX11.15/15.txt
@@ -0,0 +1,2 @@
+ Speed according to classical mechanics is 1.875229e+08 meter/sec.
+ Speed according to relativistic mechanics is 1.643590e+08 meter/sec.
diff --git a/1271/CH11/EX11.15/example11_15.sce b/1271/CH11/EX11.15/example11_15.sce
new file mode 100755
index 000000000..87d02cdb2
--- /dev/null
+++ b/1271/CH11/EX11.15/example11_15.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+E = 0.1 // kinetic speed of electron in Mev
+// Sample Problem 15 on page no. 11.23
+printf("\n # PROBLEM 15 # \n")
+printf(" Standard formula used \n")
+printf(" m = m_0/((1-v^2/c^2)^1/2) \n KE = (m-m_0)*c^2 \n KE = 1/2*m*v^2 \n")
+v_ = sqrt(2 * (E * 1.6e-13) / 9.1e-31)
+v = 3e8 * sqrt(1 - (1 / (1 + (1.6e-13 * E) / (9.1e-31 * 3e8^2)))^2)
+printf("\n Speed according to classical mechanics is %e meter/sec.\n Speed according to relativistic mechanics is %e meter/sec.",v_,v)
diff --git a/1271/CH11/EX11.17/17.txt b/1271/CH11/EX11.17/17.txt
new file mode 100755
index 000000000..c8aab0507
--- /dev/null
+++ b/1271/CH11/EX11.17/17.txt
@@ -0,0 +1,2 @@
+ Velocity of particle if kinetic energy is 3 times of rest mass energy is 2.904738e+08 meter/sec.
+ Velocity of particle if kinetic energy is 1 times of rest mass energy is 2.598076e+08 meter/sec.
diff --git a/1271/CH11/EX11.17/example11_17.sce b/1271/CH11/EX11.17/example11_17.sce
new file mode 100755
index 000000000..a3322c81b
--- /dev/null
+++ b/1271/CH11/EX11.17/example11_17.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+r1 = 3 // ratio of kinetic energy of body to its rest mass in first case
+r2 = 1 // ratio of kinetic energy of body to its rest mass in second case
+// Sample Problem 17 on page no. 11.24
+printf("\n # PROBLEM 17 # \n")
+printf(" Standard formula used \n")
+printf(" m = m_0/((1-v^2/c^2)^1/2) \n KE = (m-m_0)*c^2 \n")
+v1 = 3e8 * sqrt(1 - (1 / (r1 + 1))^2)
+v2 = 3e8 * sqrt(1 - (1 / (r2 + 1))^2)
+printf("\n Velocity of particle if kinetic energy is %d times of rest mass energy is %e meter/sec.\n Velocity of particle if kinetic energy is %d times of rest mass energy is %e meter/sec.\n",r1,v1,r2,v2)
diff --git a/1271/CH11/EX11.19/19.txt b/1271/CH11/EX11.19/19.txt
new file mode 100755
index 000000000..e5f527c03
--- /dev/null
+++ b/1271/CH11/EX11.19/19.txt
@@ -0,0 +1,2 @@
+ Speed of electron is 2.937049e+08 meter/sec.
+ Mass of electron is 3.576667e-30 kg.
diff --git a/1271/CH11/EX11.19/example11_19.sce b/1271/CH11/EX11.19/example11_19.sce
new file mode 100755
index 000000000..3cb19b9bc
--- /dev/null
+++ b/1271/CH11/EX11.19/example11_19.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+E = 1.5 // kinetic energy of electron in Mev
+// Sample Problem 19 on page no. 11.25
+printf("\n # PROBLEM 19 # \n")
+printf(" Standard formula used \n")
+printf(" m = m_0/((1-v^2/c^2)^1/2) \n KE = (m-m_0)*c^2 \n")
+v = 3e8 * sqrt(1 - (1 / (1 + (1.6e-19 * 2e6) / (9.1e-31 * 3e8^2)))^2)
+m = (E * 1.6e-13 / (3e8)^2) + 9.1e-31
+printf("\n Speed of electron is %e meter/sec.\n Mass of electron is %e kg.",v,m)
diff --git a/1271/CH11/EX11.20/20.txt b/1271/CH11/EX11.20/20.txt
new file mode 100755
index 000000000..097302590
--- /dev/null
+++ b/1271/CH11/EX11.20/20.txt
@@ -0,0 +1 @@
+ Length of meter stick is 0.666667 meter if mass is 1.500000 times of its rest mass. \ No newline at end of file
diff --git a/1271/CH11/EX11.20/example11_20.sce b/1271/CH11/EX11.20/example11_20.sce
new file mode 100755
index 000000000..57be0e938
--- /dev/null
+++ b/1271/CH11/EX11.20/example11_20.sce
@@ -0,0 +1,9 @@
+clc
+// Given that
+r = 3 / 2 // ratio of mass of metre stick to the rest mass of metre stick
+// Sample Problem 20 on page no. 11.26
+printf("\n # PROBLEM 20 # \n")
+printf(" Standard formula used \n")
+printf(" m = m_0/((1-v^2/c^2)^1/2) \n l = l_0/((1-v^2/c^2)^1/2) \n")
+l = 1 * (1 / r)
+printf("\n Length of meter stick is %f meter if mass is %f times of its rest mass.",l,r)
diff --git a/1271/CH11/EX11.21/21.txt b/1271/CH11/EX11.21/21.txt
new file mode 100755
index 000000000..658d00b72
--- /dev/null
+++ b/1271/CH11/EX11.21/21.txt
@@ -0,0 +1 @@
+ Velocity of frame S_ w.r.t. frame S is 2.598076e+08 meter/sec. \ No newline at end of file
diff --git a/1271/CH11/EX11.21/example11_21.sce b/1271/CH11/EX11.21/example11_21.sce
new file mode 100755
index 000000000..4ecf2fcf4
--- /dev/null
+++ b/1271/CH11/EX11.21/example11_21.sce
@@ -0,0 +1,9 @@
+clc
+// Given that
+r = 1 / 2 // ratio of area of circular lamina in frame S_ to the ratio of area of circular lamina in frame S
+// Sample Problem 21 on page no. 11.26
+printf("\n # PROBLEM 21 # \n")
+printf(" Standard formula used \n")
+printf(" d = d_0/((1-v^2/c^2)^1/2) \n")
+v = 3e8 * sqrt(1 - r^2)
+printf("\n Velocity of frame S_ w.r.t. frame S is %e meter/sec.",v)
diff --git a/1271/CH11/EX11.22/22.txt b/1271/CH11/EX11.22/22.txt
new file mode 100755
index 000000000..b3c9a34b1
--- /dev/null
+++ b/1271/CH11/EX11.22/22.txt
@@ -0,0 +1 @@
+ Speed of clock is 5.454356e+07 meter/sec. \ No newline at end of file
diff --git a/1271/CH11/EX11.22/example11_22.sce b/1271/CH11/EX11.22/example11_22.sce
new file mode 100755
index 000000000..9593c470b
--- /dev/null
+++ b/1271/CH11/EX11.22/example11_22.sce
@@ -0,0 +1,9 @@
+clc
+// Given that
+t = 1 // lose in time in an hour in minute
+// Sample Problem 22 on page no. 11.27
+printf("\n # PROBLEM 22 # \n")
+printf(" Standard formula used \n")
+printf(" t = t_0/((1-v^2/c^2)^1/2) \n")
+v = 3e8 * sqrt(1 - ((60 - t) / 60)^2)
+printf("\n Speed of clock is %e meter/sec.",v)
diff --git a/1271/CH11/EX11.23/23.txt b/1271/CH11/EX11.23/23.txt
new file mode 100755
index 000000000..90eb63f54
--- /dev/null
+++ b/1271/CH11/EX11.23/23.txt
@@ -0,0 +1 @@
+Distance travel by the beam is 20.000000 meter. \ No newline at end of file
diff --git a/1271/CH11/EX11.23/example11_23.sce b/1271/CH11/EX11.23/example11_23.sce
new file mode 100755
index 000000000..ba3d9e38e
--- /dev/null
+++ b/1271/CH11/EX11.23/example11_23.sce
@@ -0,0 +1,13 @@
+clc
+// Given that
+t_ = 2.5e-8 // proper life of pi+ mesons in sec
+v = 2.4e8 // velocity of beam of mesons in m/sec
+r = 1 / exp(2) // ratio of final flux to initial flux of the meson beam
+// Sample Problem 23 on page no. 11.27
+printf("\n # PROBLEM 23 # \n")
+printf(" Standard formula used \n")
+printf(" t = t_0/((1-v^2/c^2)^1/2) \n N = N_0*e^(-t/tau) \n")
+t = t_ / sqrt(1 - (v / 3e8)^2)
+T = t * log(1 / r)
+d = T * v
+printf("\n Distance travel by the beam is %f meter.",d)
diff --git a/1271/CH11/EX11.24/24.txt b/1271/CH11/EX11.24/24.txt
new file mode 100755
index 000000000..927b50372
--- /dev/null
+++ b/1271/CH11/EX11.24/24.txt
@@ -0,0 +1,2 @@
+Velocity of rocket w.r.t. earth in first case = 0.915493 c away from the earth.
+ Velocity of rocket w.r.t. earth in second case = -0.172414 c away from the earth
diff --git a/1271/CH11/EX11.24/example11_24.sce b/1271/CH11/EX11.24/example11_24.sce
new file mode 100755
index 000000000..0e1ae4458
--- /dev/null
+++ b/1271/CH11/EX11.24/example11_24.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+v = 1.8e8 // velocity of space ship away from the earth in m/sec
+v1 = 2.1e8 // velocity of rocket w.r.t. space ship away from the earth in first case in m/sec
+v2 = -2.1e8 // velocity of rocket w.r.t. space ship away from the earth in second case in m/sec
+// Sample Problem 24 on page no. 11.27
+printf("\n # PROBLEM 24 # \n")
+printf(" Standard formula used \n")
+printf(" u_x = u_x_ + v / (1+ v*u_x_/c^2) \n ")
+u1 = (v1 + v) / (1 + ((v1 * v) / (3e8)^2))
+u2 = (v2 + v) / (1 + ((v2 * v) / (3e8)^2))
+printf("\n Velocity of rocket w.r.t. earth in first case = %f c away from the earth.\n Velocity of rocket w.r.t. earth in second case = %f c away from the earth ",u1/3e8,u2/3e8)
diff --git a/1271/CH11/EX11.25/25.txt b/1271/CH11/EX11.25/25.txt
new file mode 100755
index 000000000..7604406f2
--- /dev/null
+++ b/1271/CH11/EX11.25/25.txt
@@ -0,0 +1 @@
+ Length as it appear to the observer is 0.800000 meter. \ No newline at end of file
diff --git a/1271/CH11/EX11.25/example11_25.sce b/1271/CH11/EX11.25/example11_25.sce
new file mode 100755
index 000000000..ba036ef32
--- /dev/null
+++ b/1271/CH11/EX11.25/example11_25.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+l = 1 // length of the rod in meter
+v = 1.8e8 // speed of rod along its length in meter/sec
+// Sample Problem 25 on page no. 11.28
+printf("\n # PROBLEM 25 # \n")
+printf(" Standard formula used \n")
+printf(" l = l_0/((1-v^2/c^2)^1/2) \n")
+L = l * sqrt(1- (v / 3e8)^2)
+printf("\n Length as it appear to the observer is %f meter. ",L)
diff --git a/1271/CH11/EX11.26/26.txt b/1271/CH11/EX11.26/26.txt
new file mode 100755
index 000000000..c18143c87
--- /dev/null
+++ b/1271/CH11/EX11.26/26.txt
@@ -0,0 +1,2 @@
+
+ Length as it appear to the observer is 0.871780 meter.
diff --git a/1271/CH11/EX11.26/example11_26.sce b/1271/CH11/EX11.26/example11_26.sce
new file mode 100755
index 000000000..6b785d8bc
--- /dev/null
+++ b/1271/CH11/EX11.26/example11_26.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+l = 2 // length of the rod in meter
+v = 2.7e8 // speed of rod along its length in meter/sec
+// Sample Problem 26 on page no. 11.28
+printf("\n # PROBLEM 26 # \n")
+printf(" Standard formula used \n")
+printf(" l = l_0/((1-v^2/c^2)^1/2) \n")
+L = l * sqrt(1- (v / 3e8)^2)
+printf("\n Length as it appear to the observer is %f meter.",L)
diff --git a/1271/CH11/EX11.27/27.txt b/1271/CH11/EX11.27/27.txt
new file mode 100755
index 000000000..d2bdda423
--- /dev/null
+++ b/1271/CH11/EX11.27/27.txt
@@ -0,0 +1 @@
+Percentage length contraction is 8.348486 percent. \ No newline at end of file
diff --git a/1271/CH11/EX11.27/example11_27.sce b/1271/CH11/EX11.27/example11_27.sce
new file mode 100755
index 000000000..cf3bf75b4
--- /dev/null
+++ b/1271/CH11/EX11.27/example11_27.sce
@@ -0,0 +1,16 @@
+clc
+// Given that
+l = 100 // consider the length of the rod in meter
+v = 2.4e8 // speed of rod in meter/sec
+theta = %pi / 3 // direction of velocity of rod along its length in radian
+// Sample Problem 27 on page no. 11.28
+printf("\n # PROBLEM 27 # \n")
+printf(" Standard formula used \n")
+printf(" l = l_0/((1-v^2/c^2)^1/2) \n l^2 = l_x^2 + l_y^2 \n")
+Lx = l * cos(theta)
+Ly = l * sin(theta)
+L_x = Lx * sqrt(1 - (v / 3e8)^2)
+L_y = Ly
+L = sqrt(L_x^2 + L_y^2)
+p_l = ((l - L) / l) * 100
+printf("\n Percentage length contraction is %f percent.",p_l)
diff --git a/1271/CH11/EX11.28/28.txt b/1271/CH11/EX11.28/28.txt
new file mode 100755
index 000000000..5ea596ad5
--- /dev/null
+++ b/1271/CH11/EX11.28/28.txt
@@ -0,0 +1 @@
+ Speed of the rod relative to observer is 0.866025 c. \ No newline at end of file
diff --git a/1271/CH11/EX11.28/example11_28.sce b/1271/CH11/EX11.28/example11_28.sce
new file mode 100755
index 000000000..fbe9f6168
--- /dev/null
+++ b/1271/CH11/EX11.28/example11_28.sce
@@ -0,0 +1,9 @@
+clc
+// Given that
+r = 0.5 // ratio of length of rod when it is in motion to the length of the rod when it is in rest
+// Sample Problem 28 on page no. 11.29
+printf("\n # PROBLEM 28 # \n")
+printf(" Standard formula used \n")
+printf(" l = l_0/((1-v^2/c^2)^1/2) \n")
+v = 3e8 * sqrt(1 - r^2)
+printf("\n Speed of the rod relative to observer is %f c.",v/3e8)
diff --git a/1271/CH11/EX11.29/29.txt b/1271/CH11/EX11.29/29.txt
new file mode 100755
index 000000000..7b7d781e3
--- /dev/null
+++ b/1271/CH11/EX11.29/29.txt
@@ -0,0 +1,2 @@
+ Length of the rod in moving frame is 4.272002 meter.
+ Orientation of the rod is 35.817526 degree.
diff --git a/1271/CH11/EX11.29/example11_29.sce b/1271/CH11/EX11.29/example11_29.sce
new file mode 100755
index 000000000..1f32e6ec2
--- /dev/null
+++ b/1271/CH11/EX11.29/example11_29.sce
@@ -0,0 +1,16 @@
+clc
+// Given that
+l = 5 // length of the rod in meter
+v = 1.8e8 // speed of rod in meter/sec
+theta = %pi / 6 // direction of velocity of rod along its length in radian
+// Sample Problem 29 on page no. 11.30
+printf("\n # PROBLEM 29 # \n")
+printf(" Standard formula used \n")
+printf(" l = l_0/((1-v^2/c^2)^1/2) \n l^2 = l_x^2 + l_y^2 \n")
+Lx = l * cos(theta)
+Ly = l * sin(theta)
+L_x = Lx * sqrt(1 - (v / 3e8)^2)
+L_y = Ly
+L = sqrt(L_x^2 + L_y^2)
+orientation = atan(L_y / L_x) * (180 / %pi)
+printf("\n Length of the rod in moving frame is %f meter.\n Orientation of the rod is %f degree.",L,orientation)
diff --git a/1271/CH11/EX11.30/30.txt b/1271/CH11/EX11.30/30.txt
new file mode 100755
index 000000000..61e6fbef4
--- /dev/null
+++ b/1271/CH11/EX11.30/30.txt
@@ -0,0 +1 @@
+ New half-life of particle is 29.666667 nanosec. \ No newline at end of file
diff --git a/1271/CH11/EX11.30/example11_30.sce b/1271/CH11/EX11.30/example11_30.sce
new file mode 100755
index 000000000..77524efda
--- /dev/null
+++ b/1271/CH11/EX11.30/example11_30.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+T = 17.8e-9 // half-life of prticle at rest in sec
+v = 2.4e8 // speed of particle in meter/sec
+// Sample Problem 30 on page no. 11.30
+printf("\n # PROBLEM 30 # \n")
+printf(" Standard formula used \n")
+printf(" t = t_0/((1-v^2/c^2)^1/2) \n")
+t = T / (sqrt(1 - (v / 3e8)^2))
+printf("\n New half-life of particle is %f nanosec.",t/1e-9)
diff --git a/1271/CH11/EX11.31/31.txt b/1271/CH11/EX11.31/31.txt
new file mode 100755
index 000000000..b5cf28d11
--- /dev/null
+++ b/1271/CH11/EX11.31/31.txt
@@ -0,0 +1,2 @@
+
+ Time lost per day is 1 hours 22 minute 21 sec. \ No newline at end of file
diff --git a/1271/CH11/EX11.31/example11_31.sce b/1271/CH11/EX11.31/example11_31.sce
new file mode 100755
index 000000000..05f6cf85e
--- /dev/null
+++ b/1271/CH11/EX11.31/example11_31.sce
@@ -0,0 +1,16 @@
+
+clc
+// Given that
+T = 24 // no. of hours in a day
+v = 1e8 // speed of spaceship in meter/sec
+// Sample Problem 31 on page no. 11.30
+printf("\n # PROBLEM 31 # \n")
+printf(" Standard formula used \n")
+printf(" t = t_0/((1-v^2/c^2)^1/2) \n")
+t = T * (sqrt(1 - (v / 3e8)^2))
+T_ = T - t
+m=(T_-1)*60
+s=(m-22)*60
+printf("\n Time lost per day is %d hours %d minute %d sec.",T_,m,s)
+//Answer in the book:1 hr 22 min 12 sec
+//Answer in the program:1.372583 e+00 hours
diff --git a/1271/CH11/EX11.32/32.txt b/1271/CH11/EX11.32/32.txt
new file mode 100755
index 000000000..8852d3634
--- /dev/null
+++ b/1271/CH11/EX11.32/32.txt
@@ -0,0 +1 @@
+ Speed of rocket is 0.968246 c. \ No newline at end of file
diff --git a/1271/CH11/EX11.32/example11_32.sce b/1271/CH11/EX11.32/example11_32.sce
new file mode 100755
index 000000000..12a38e259
--- /dev/null
+++ b/1271/CH11/EX11.32/example11_32.sce
@@ -0,0 +1,9 @@
+clc
+// Given that
+T = 4 // no. of year when rocket is moving corresponding to one year
+// Sample Problem 32 on page no. 11.30
+printf("\n # PROBLEM 32 # \n")
+printf(" Standard formula used \n")
+printf(" t = t_0/((1-v^2/c^2)^1/2) \n")
+v = 3e8 * sqrt(1 - (1 / T)^2)
+printf("\n Speed of rocket is %f c.",v/3e8)
diff --git a/1271/CH11/EX11.33/33.txt b/1271/CH11/EX11.33/33.txt
new file mode 100755
index 000000000..a09447f47
--- /dev/null
+++ b/1271/CH11/EX11.33/33.txt
@@ -0,0 +1 @@
+ Time taken by the rocket is 0.080004 year. \ No newline at end of file
diff --git a/1271/CH11/EX11.33/example11_33.sce b/1271/CH11/EX11.33/example11_33.sce
new file mode 100755
index 000000000..c22e0954b
--- /dev/null
+++ b/1271/CH11/EX11.33/example11_33.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+d = 4 // distance of star from the earth in light years
+v = 3e8 * sqrt(0.9999) // speed of rocket in meter/sec
+// Sample Problem 33 on page no. 11.31
+printf("\n # PROBLEM 33 # \n")
+printf(" Standard formula used \n")
+printf(" t = t_0/((1-v^2/c^2)^1/2) \n")
+t = (2 * d * 3e8) / v
+T_ = t * sqrt(1 - (v / 3e8)^2)
+printf("\n Time taken by the rocket is %f year.",T_)
diff --git a/1271/CH11/EX11.34/34.txt b/1271/CH11/EX11.34/34.txt
new file mode 100755
index 000000000..03d7dd45d
--- /dev/null
+++ b/1271/CH11/EX11.34/34.txt
@@ -0,0 +1,2 @@
+
+ Proper life time of particle is 7.180220e-08 sec.
diff --git a/1271/CH11/EX11.34/example11_34.sce b/1271/CH11/EX11.34/example11_34.sce
new file mode 100755
index 000000000..b0371ed05
--- /dev/null
+++ b/1271/CH11/EX11.34/example11_34.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+t = 2e-7 // life time of particle when it is moving in sec
+v = 2.8e8 // speed of particle in meter/sec
+// Sample Problem 34 on page no. 11.31
+printf("\n # PROBLEM 34 # \n")
+printf(" Standard formula used \n")
+printf(" t = t_0/((1-v^2/c^2)^1/2) \n")
+T_ = t * sqrt(1 - (v / 3e8)^2)
+printf("\n Proper life time of particle is %e sec.",T_)
diff --git a/1271/CH11/EX11.35/35.txt b/1271/CH11/EX11.35/35.txt
new file mode 100755
index 000000000..98cac38d3
--- /dev/null
+++ b/1271/CH11/EX11.35/35.txt
@@ -0,0 +1,2 @@
+ Velocity of electrons beam w.r.t. another electron beam according to Newtonian mechanics is 1.800000 c.
+ Velocity of electrons beam measured by the observer moving with other electron beam = 0.994475 c.
diff --git a/1271/CH11/EX11.35/example11_35.sce b/1271/CH11/EX11.35/example11_35.sce
new file mode 100755
index 000000000..6d0fb6e72
--- /dev/null
+++ b/1271/CH11/EX11.35/example11_35.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+v1 = 2.7e8 // velocity of first electron beam in meter/sec
+v2 = -2.7e8 // velocity of second electron beam in meter/sec
+// Sample Problem 35 on page no. 11.31
+printf("\n # PROBLEM 35 # \n")
+printf(" Standard formula used \n")
+printf(" u_x = u_x_ + v / (1+ v*u_x_/c^2) \n ")
+u = v1 - v2
+u_ = (v1 - v2) / (1 - (v1 * v2) / (3e8)^2)
+printf("\n Velocity of electrons beam w.r.t. another electron beam according to Newtonian mechanics is %f c.\n Velocity of electrons beam measured by the observer moving with other electron beam = %f c.",u/3e8,u_/3e8)
diff --git a/1271/CH11/EX11.36/36.txt b/1271/CH11/EX11.36/36.txt
new file mode 100755
index 000000000..256fafde3
--- /dev/null
+++ b/1271/CH11/EX11.36/36.txt
@@ -0,0 +1,2 @@
+
+ Relative velocity of photons is 3.000000e+08 meter/sec.
diff --git a/1271/CH11/EX11.36/example11_36.sce b/1271/CH11/EX11.36/example11_36.sce
new file mode 100755
index 000000000..a68742a04
--- /dev/null
+++ b/1271/CH11/EX11.36/example11_36.sce
@@ -0,0 +1,9 @@
+clc
+// Given that
+c = 3e8 // velocity of photon in meter/sec
+// Sample Problem 36 on page no. 11.32
+printf("\n # PROBLEM 36 # \n")
+printf(" Standard formula used \n")
+printf(" u_x = u_x_ + v / (1+ v*u_x_/c^2) \n ")
+u = (c + c) / ( 1 + (c / 3e8)^2)
+printf("\n Relative velocity of photons is %e meter/sec.",u)
diff --git a/1271/CH11/EX11.37/37.txt b/1271/CH11/EX11.37/37.txt
new file mode 100755
index 000000000..be2b99528
--- /dev/null
+++ b/1271/CH11/EX11.37/37.txt
@@ -0,0 +1,3 @@
+ Relativistic mass of proton is 1.600000e-27 kg,
+ Here relativistic mass is same as rest mass
+ hence proton is at rest and speed and kinetic energy of proton will be zero
diff --git a/1271/CH11/EX11.37/example11_37.sce b/1271/CH11/EX11.37/example11_37.sce
new file mode 100755
index 000000000..c53736985
--- /dev/null
+++ b/1271/CH11/EX11.37/example11_37.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+E = 900 // total relativistic energy of proton in Mev
+m = 1.63-27 // rest mass of proton in kg
+c = 3e8 // velocity of photon in meter/sec
+// Sample Problem 37 on page no. 11.32
+printf("\n # PROBLEM 37 # \n")
+printf(" Standard formula used \n")
+printf(" E = m*c^2 \n ")
+m_ = (E * 1.6e-13) / (c)^2
+printf("\n Relativistic mass of proton is %e kg,\n Here relativistic mass is same as rest mass\n hence proton is at rest and speed and kinetic energy of proton will be zero",m_)
diff --git a/1271/CH11/EX11.38/38.txt b/1271/CH11/EX11.38/38.txt
new file mode 100755
index 000000000..ba8fd3b4c
--- /dev/null
+++ b/1271/CH11/EX11.38/38.txt
@@ -0,0 +1 @@
+ Fraction of total energy content in it is 6.000000e-11 per kg. \ No newline at end of file
diff --git a/1271/CH11/EX11.38/example11_38.sce b/1271/CH11/EX11.38/example11_38.sce
new file mode 100755
index 000000000..7bffdb746
--- /dev/null
+++ b/1271/CH11/EX11.38/example11_38.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+E = 5.4e6 // energy liberates during dynamite explosion in J/kg
+c = 3e8 // velocity of photon in meter/sec
+// Sample Problem 38 on page no. 11.32
+printf("\n # PROBLEM 38 # \n")
+printf(" Standard formula used \n")
+printf(" E = m*c^2 \n ")
+E_ = 1 * c^2 // energy liberated by 1 kg content in J
+f = E / E_
+printf("\n Fraction of total energy content in it is %e per kg.",f)
diff --git a/1271/CH11/EX11.39/39.txt b/1271/CH11/EX11.39/39.txt
new file mode 100755
index 000000000..c9fc7c6c7
--- /dev/null
+++ b/1271/CH11/EX11.39/39.txt
@@ -0,0 +1 @@
+Speed of the electron is 2.828427e+08 meter/sec. \ No newline at end of file
diff --git a/1271/CH11/EX11.39/example11_39.sce b/1271/CH11/EX11.39/example11_39.sce
new file mode 100755
index 000000000..b8b0b133b
--- /dev/null
+++ b/1271/CH11/EX11.39/example11_39.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+k = 1.02 // kinetic energy of electron in Mev
+E_ = 0.51 // rest mass energy of electron in Mev
+c = 3e8 // velocity of photon in meter/sec
+// Sample Problem 39 on page no. 11.32
+printf("\n # PROBLEM 39 # \n")
+printf(" Standard formula used \n")
+printf(" E = KE + m*c^2 \n m = m_0/((1-v^2/c^2)^1/2) \n")
+E = k + E_
+v = c * sqrt(1 - (E_ / E)^2)
+printf("\n Speed of the electron is %e meter/sec.",v)
diff --git a/1271/CH11/EX11.40/40.txt b/1271/CH11/EX11.40/40.txt
new file mode 100755
index 000000000..d5c4239ff
--- /dev/null
+++ b/1271/CH11/EX11.40/40.txt
@@ -0,0 +1 @@
+ Rate of decrement of mass of the sun is 4.398230e+09 kg/sec. \ No newline at end of file
diff --git a/1271/CH11/EX11.40/example11_40.sce b/1271/CH11/EX11.40/example11_40.sce
new file mode 100755
index 000000000..7d4ecd62e
--- /dev/null
+++ b/1271/CH11/EX11.40/example11_40.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+E = 1400 // solar energy receives by the earth in W/square meter
+d = 1.5e11 // distance between earth and the sun in meter
+c = 3e8 // velocity of photon in meter/sec
+// Sample Problem 40 on page no. 11.33
+printf("\n # PROBLEM 40 # \n")
+printf(" Standard formula used \n")
+printf(" E = m*c^2 \n ")
+E_ = 4 * %pi * d^2 * E
+m = E_ / c^2
+printf("\n Rate of decrement of mass of the sun is %e kg/sec.",m)
diff --git a/1271/CH11/EX11.5/5.txt b/1271/CH11/EX11.5/5.txt
new file mode 100755
index 000000000..cd923e4df
--- /dev/null
+++ b/1271/CH11/EX11.5/5.txt
@@ -0,0 +1,3 @@
+
+ Coordinate of the event in reference frame F_ using (a)Galilean transformation-x=-26900.000000 m, y=10.000000 m, z = 5.000000 m, t = 1.000000e-04 sec.
+ (b)Lorentz transformation-x=-61712.832411 m,y =10.000000 m, z = 5.000000 m, t=2.287275e-04 sec.
diff --git a/1271/CH11/EX11.5/example11_5.sce b/1271/CH11/EX11.5/example11_5.sce
new file mode 100755
index 000000000..0e6e98c67
--- /dev/null
+++ b/1271/CH11/EX11.5/example11_5.sce
@@ -0,0 +1,22 @@
+clc
+// Given that
+x = 100 // in meter
+y = 10 // in meter
+z = 5 // in meter
+t = 1e-4 // in sec
+// coordinates of point in frame F
+v = 2.7e8 // velocity of frame F_ w.r.t. frame F in m/sed
+c=3e8 // speed of light in m/sec
+// Sample Problem 5 on page no. 11.19
+printf("\n # PROBLEM 5 # \n")
+// according to Galilean transformation
+x__ = x-v*t
+y__=y
+z__=z
+t__=t
+// according to Lorentz transformation
+x_ = (x-v*t)/sqrt(1-(v/c)^2)
+y_=y
+z_=z
+t_=(t-(v*x/c^2))/sqrt(1-(v/c)^2)
+printf("\n Coordinate of the event in reference frame F_ using (a)Galilean transformation-x=%f m, y=%f m, z = %f m, t = %e sec. \n (b)Lorentz transformation-x=%f m,y =%f m, z = %f m, t=%e sec. ",x__,y__,z__,t__,x_,y_,z_,t_)
diff --git a/1271/CH11/EX11.6/6.txt b/1271/CH11/EX11.6/6.txt
new file mode 100755
index 000000000..7a4fc796e
--- /dev/null
+++ b/1271/CH11/EX11.6/6.txt
@@ -0,0 +1 @@
+ Speed of particle is 2.904738e+08 meter/sec. \ No newline at end of file
diff --git a/1271/CH11/EX11.6/example11_6.sce b/1271/CH11/EX11.6/example11_6.sce
new file mode 100755
index 000000000..57a1b01b9
--- /dev/null
+++ b/1271/CH11/EX11.6/example11_6.sce
@@ -0,0 +1,9 @@
+clc
+// Given that
+r = 4 // ratio of mass of particle to the rest mass
+// Sample Problem 6 on page no. 11.20
+printf("\n # PROBLEM 6 # \n")
+printf(" Standard formula used \n")
+printf(" m = m_0/((1-v^2/c^2)^1/2) \n ")
+v = 3e8 * sqrt(1 - (1 / r)^2)
+printf("\n Speed of particle is %e meter/sec.",v)
diff --git a/1271/CH11/EX11.7/7.txt b/1271/CH11/EX11.7/7.txt
new file mode 100755
index 000000000..5cd098a0a
--- /dev/null
+++ b/1271/CH11/EX11.7/7.txt
@@ -0,0 +1 @@
+Speed of particle is 0.552771 c. \ No newline at end of file
diff --git a/1271/CH11/EX11.7/example11_7.sce b/1271/CH11/EX11.7/example11_7.sce
new file mode 100755
index 000000000..c8b99fc0c
--- /dev/null
+++ b/1271/CH11/EX11.7/example11_7.sce
@@ -0,0 +1,9 @@
+clc
+// Given that
+r = 1.2 // ratio of mass of particle to the rest mass
+// Sample Problem 7 on page no. 11.20
+printf("\n # PROBLEM 7 # \n")
+printf(" Standard formula used \n")
+printf(" m = m_0/((1-v^2/c^2)^1/2) \n ")
+v = 3e8 * sqrt(1 - (1 / r)^2)
+printf("\n Speed of particle is %f c.",v/3e8)
diff --git a/1271/CH11/EX11.9/9.txt b/1271/CH11/EX11.9/9.txt
new file mode 100755
index 000000000..e235fa6fa
--- /dev/null
+++ b/1271/CH11/EX11.9/9.txt
@@ -0,0 +1,2 @@
+ Speed of electron is 0.979016 c.
+ Mass of electron is 4.465556e-30 kg.
diff --git a/1271/CH11/EX11.9/example11_9.sce b/1271/CH11/EX11.9/example11_9.sce
new file mode 100755
index 000000000..c1a403b34
--- /dev/null
+++ b/1271/CH11/EX11.9/example11_9.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+E = 2 // kinetic energy of electron in Mev
+// Sample Problem 9 on page no. 11.20
+printf("\n # PROBLEM 9 # \n")
+printf(" Standard formula used \n")
+printf(" m = m_0/((1-v^2/c^2)^1/2) \n KE = m*c^2 - m_0*c^2 \n")
+v = 3e8 * sqrt(1 - (1 / (1 + (1.6e-19 * 2e6) / (9.1e-31 * 3e8^2)))^2)
+m = (9.1e-31) / sqrt(1 - (v / 3e8)^2)
+printf("\n Speed of electron is %f c.\n Mass of electron is %e kg.",v/3e8,m)
diff --git a/1271/CH12/EX12.1/1.txt b/1271/CH12/EX12.1/1.txt
new file mode 100755
index 000000000..efcebd6c1
--- /dev/null
+++ b/1271/CH12/EX12.1/1.txt
@@ -0,0 +1,2 @@
+ Mass absorption coefficient of Al for this radiation is 0.006494 m^2/kg.
+ Half value thickness is 0.039526 meter.
diff --git a/1271/CH12/EX12.1/example12_1.sce b/1271/CH12/EX12.1/example12_1.sce
new file mode 100755
index 000000000..fe1deb87d
--- /dev/null
+++ b/1271/CH12/EX12.1/example12_1.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+E = 1.14 // energy of gamma radiation in Mev
+l = 0.2 // length of aluminium in meter
+p = 0.03 // reduce in intensity in beam
+d = 2700 // density of aluminium in kg/m^3
+// Sample Problem 1 on page no. 12.31
+printf("\n # PROBLEM 1 # \n")
+printf("Standard formula used \n")
+printf("I = I_0*e^(-mu*x) \n")
+mu = (1 / l) * log(1 / p)
+k = mu / d
+x = 0.693 / mu
+printf("\n Mass absorption coeffiecient of Al for this radiation is %f m^2/kg.\n Half value thickness is %f meter.",k,x)
diff --git a/1271/CH12/EX12.10/10.txt b/1271/CH12/EX12.10/10.txt
new file mode 100755
index 000000000..b3a2086d4
--- /dev/null
+++ b/1271/CH12/EX12.10/10.txt
@@ -0,0 +1 @@
+ Activity of sample is 1.159450e+09 decays/sec. \ No newline at end of file
diff --git a/1271/CH12/EX12.10/example12_10.sce b/1271/CH12/EX12.10/example12_10.sce
new file mode 100755
index 000000000..0cbccd651
--- /dev/null
+++ b/1271/CH12/EX12.10/example12_10.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+t = 2.7 // half-life of Au(198) in days
+m = 1e-6 // mass of sample in gm
+T = 8 * 86400 // time in seconds
+// Sample Problem 10 on page no. 12.35
+printf("\n # PROBLEM 10 # \n")
+printf("Standard formula used \n")
+printf(" lambda = 0.693 / t_1/2 (Decay constant) \n A =lambda*N (Activity of sample) \n")
+lambda = 0.693 / (t * 86400)
+N = (m * 6.023e23) / 198 // by the formula (N = mass*Avogadro number/molar mass)
+A_ = lambda * N
+A = A_ * (1 / exp(lambda * T))
+printf("\n Activity of sample is %e decays/sec.",A)
diff --git a/1271/CH12/EX12.11/11.txt b/1271/CH12/EX12.11/11.txt
new file mode 100755
index 000000000..8a8138c96
--- /dev/null
+++ b/1271/CH12/EX12.11/11.txt
@@ -0,0 +1 @@
+ Fraction of sample left after 3 half lives is 0.125000 . \ No newline at end of file
diff --git a/1271/CH12/EX12.11/example12_11.sce b/1271/CH12/EX12.11/example12_11.sce
new file mode 100755
index 000000000..ca8635870
--- /dev/null
+++ b/1271/CH12/EX12.11/example12_11.sce
@@ -0,0 +1,9 @@
+clc
+// Given that
+n = 3 // no. of half lives
+// Sample Problem 11 on page no. 12.35
+printf("\n # PROBLEM 11 # \n")
+printf("Standard formula used \n")
+printf(" N = 2^(-n) ...... fraction after n half lives.\n")
+f = (1 / 2)^n
+printf("\n Fraction of sample left after %d half lives is %f . ",n,f)
diff --git a/1271/CH12/EX12.12/12.txt b/1271/CH12/EX12.12/12.txt
new file mode 100755
index 000000000..1802f673d
--- /dev/null
+++ b/1271/CH12/EX12.12/12.txt
@@ -0,0 +1 @@
+ Substance remained unchanged after 4 years is 2.500000 mg. \ No newline at end of file
diff --git a/1271/CH12/EX12.12/example12_12.sce b/1271/CH12/EX12.12/example12_12.sce
new file mode 100755
index 000000000..9d079d4c6
--- /dev/null
+++ b/1271/CH12/EX12.12/example12_12.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+t = 2 // life period of radioactive substance in years
+T = 4 // time in years
+m = 10 // mass of substance in mg
+// Sample Problem 12 on page no. 12.35
+printf("\n # PROBLEM 12 # \n")
+printf("Standard formula used \n")
+printf(" N = N_0/2^(n) ...... fraction after n half lives.\n")
+N = m / T // in mg
+printf("\n Substance remained unchanged after 4 years is %f mg.",N)
diff --git a/1271/CH12/EX12.13/13.txt b/1271/CH12/EX12.13/13.txt
new file mode 100755
index 000000000..b1954af25
--- /dev/null
+++ b/1271/CH12/EX12.13/13.txt
@@ -0,0 +1,3 @@
+ Decay constant is 0.000420 per year.
+ Half life of sample is 1648.266893 years.
+ Average life of sample is 2378.451505 years.
diff --git a/1271/CH12/EX12.13/example12_13.sce b/1271/CH12/EX12.13/example12_13.sce
new file mode 100755
index 000000000..99eeec323
--- /dev/null
+++ b/1271/CH12/EX12.13/example12_13.sce
@@ -0,0 +1,16 @@
+
+clc
+// Given that
+m = 1 // initial mass of radium in gm
+m_ = 0.0021 // final mass of radium in gm
+t = 5 // time for decay from m to m_ in years
+// Sample Problem 13 on page no. 12.36
+printf("\n # PROBLEM 13 # \n")
+printf("Standard formula used \n")
+printf(" lambda = 0.693 / t_1/2 (Decay constant) \n N =N_0*e^(-lambda*t) \n")
+lambda = log(m / (1 - m_)) / t
+T = 0.693 / lambda
+T_ = 1 / lambda
+printf("\n Decay constant is %f per year.\n Half life of sample is %f years.\n Average life of sample is %f years.",lambda,T,T_)
+//Answer in the book:2500 years
+//Answer in the program:2378.451405 years
diff --git a/1271/CH12/EX12.14/14.txt b/1271/CH12/EX12.14/14.txt
new file mode 100755
index 000000000..5bc6bd09c
--- /dev/null
+++ b/1271/CH12/EX12.14/14.txt
@@ -0,0 +1 @@
+ Half life of sample is 3.652905 days. \ No newline at end of file
diff --git a/1271/CH12/EX12.14/example12_14.sce b/1271/CH12/EX12.14/example12_14.sce
new file mode 100755
index 000000000..a102bd7ba
--- /dev/null
+++ b/1271/CH12/EX12.14/example12_14.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+t = 10 // time in days
+r = 15 // percentage fraction of sample which remain
+// Sample Problem 14 on page no. 12.36
+printf("\n # PROBLEM 14 # \n")
+printf("Standard formula used \n")
+printf(" lambda = 0.693 / t_1/2 (Decay constant) \n N =N_0*e^(-lambda*t) \n")
+lambda = log(100 / 15) / t
+T = 0.693 / lambda
+printf("\n Half life of sample is %f days.",T)
diff --git a/1271/CH12/EX12.15/15.txt b/1271/CH12/EX12.15/15.txt
new file mode 100755
index 000000000..0c4e417c8
--- /dev/null
+++ b/1271/CH12/EX12.15/15.txt
@@ -0,0 +1 @@
+Fraction of radioactive isotope remained is 0.059781 . \ No newline at end of file
diff --git a/1271/CH12/EX12.15/example12_15.sce b/1271/CH12/EX12.15/example12_15.sce
new file mode 100755
index 000000000..c99506d09
--- /dev/null
+++ b/1271/CH12/EX12.15/example12_15.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+t = 12.3 // half life in year
+T = 50 // time in year
+// Sample Problem 15 on page no. 12.36
+printf("\n # PROBLEM 15 # \n")
+printf("Standard formula used \n")
+printf(" lambda = 0.693 / t_1/2 (Decay constant) \n N =N_0*e^(-lambda*t) \n")
+lambda = 0.693 / t
+f = 1 / exp(lambda * T)
+printf("\n Fraction of radioactive isotope remained is %f .",f)
diff --git a/1271/CH12/EX12.16/16.txt b/1271/CH12/EX12.16/16.txt
new file mode 100755
index 000000000..de62cd340
--- /dev/null
+++ b/1271/CH12/EX12.16/16.txt
@@ -0,0 +1 @@
+ Mass of Pb(214)is 3.050391e-08 gm. \ No newline at end of file
diff --git a/1271/CH12/EX12.16/example12_16.sce b/1271/CH12/EX12.16/example12_16.sce
new file mode 100755
index 000000000..5af33ce97
--- /dev/null
+++ b/1271/CH12/EX12.16/example12_16.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+R = 1 // radioactivity of Pb(214) in curie
+t = 26.8 // half life in minute
+// Sample Problem 16 on page no. 12.37
+printf("\n # PROBLEM 16 # \n")
+printf("Standard formula used \n")
+printf(" lambda = 0.693 / t_1/2 (Decay constant) \n A =N*lambda (Activity of sample) \n")
+lambda = 0.693 / (t * 60)
+R = 1 * 3.7e10 // in disintegration per sec
+m = (R * 214) / (6.023e23 * lambda)
+printf("\n Mass of Pb(214)is %e gm.",m)
diff --git a/1271/CH12/EX12.17/17.txt b/1271/CH12/EX12.17/17.txt
new file mode 100755
index 000000000..7ed67b93e
--- /dev/null
+++ b/1271/CH12/EX12.17/17.txt
@@ -0,0 +1 @@
+Mass of Pb(214) is 8.244299e-13 gm. \ No newline at end of file
diff --git a/1271/CH12/EX12.17/example12_17.sce b/1271/CH12/EX12.17/example12_17.sce
new file mode 100755
index 000000000..7e25295e9
--- /dev/null
+++ b/1271/CH12/EX12.17/example12_17.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+R = 1e6 // radioactivity of Pb(214) in disintegrations per sec
+t = 26.8 // half life in minute
+// Sample Problem 17 on page no. 12.37
+printf("\n # PROBLEM 17 # \n")
+printf("Standard formula used \n")
+printf(" lambda = 0.693 / t_1/2 (Decay constant) \n A =N*lambda (Activity of sample) \n")
+lambda = 0.693 / (t * 60)
+m = (R * 214) / (6.023e23 * lambda)
+printf("\n Mass of Pb(214) is %e gm.",m)
diff --git a/1271/CH12/EX12.18/18.txt b/1271/CH12/EX12.18/18.txt
new file mode 100755
index 000000000..14d935eb0
--- /dev/null
+++ b/1271/CH12/EX12.18/18.txt
@@ -0,0 +1,2 @@
+ Mean life of radium is 7.202822e+10 year.
+ Half life of radium is 4.991556e+10 year.
diff --git a/1271/CH12/EX12.18/example12_18.sce b/1271/CH12/EX12.18/example12_18.sce
new file mode 100755
index 000000000..33c419913
--- /dev/null
+++ b/1271/CH12/EX12.18/example12_18.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+m = 1 // mass of Ra(226) in gm
+R = 1 // radioactivity of Ra(226) in curie
+// Sample Problem 18 on page no. 12.37
+printf("\n # PROBLEM 18 # \n")
+printf("Standard formula used \n")
+printf(" lambda = 0.693 / t_1/2 (Decay constant) \n tau = 1/lambda \n A =N*lambda (Activity of sample) \n")
+r = R * 3.7e10 // in disintegrations per sec
+N = 6.023e23 * m / 226
+lambda = r * 226 / 6.023e23
+T = 1 / lambda
+T_ = 0.693 / lambda
+printf("\n Mean life of radium is %e year.\n Half life of radium is %e year.",T,T_)
diff --git a/1271/CH12/EX12.19/19.txt b/1271/CH12/EX12.19/19.txt
new file mode 100755
index 000000000..bd71c5351
--- /dev/null
+++ b/1271/CH12/EX12.19/19.txt
@@ -0,0 +1 @@
+ Activity of Sr is 4.726955e+09 disintegration/sec. \ No newline at end of file
diff --git a/1271/CH12/EX12.19/example12_19.sce b/1271/CH12/EX12.19/example12_19.sce
new file mode 100755
index 000000000..c74ef8d3f
--- /dev/null
+++ b/1271/CH12/EX12.19/example12_19.sce
@@ -0,0 +1,18 @@
+
+clc
+// Given that
+m = 0.0001 // mass of Sr(90) in gm
+t = 28 // half life of Sr(90) in year
+t_ = 9 // time in sec
+// Sample Problem 19 on page no. 12.38
+printf("\n # PROBLEM 19 # \n")
+printf("Standard formula used \n")
+printf(" lambda = 0.693 / t_1/2 (Decay constant) \n del_N = N_0*lambda*t (disintegration of sample) \n")
+lambda = 0.693 / (t * 86400 * 365)
+N_ = 6.023e23 * m / 90
+n = N_ * lambda * t_
+printf("\n Activity of Sr is %e disintegration/sec.",n)
+//Answer in the book:5.25 X 10^8
+//Answer in the program:4.726955 e+09
+
+
diff --git a/1271/CH12/EX12.2/2.txt b/1271/CH12/EX12.2/2.txt
new file mode 100755
index 000000000..7956decfa
--- /dev/null
+++ b/1271/CH12/EX12.2/2.txt
@@ -0,0 +1,2 @@
+ Mass attenuation coefficient of Al for this radiation is 5.795590e-03 m^2/kg.
+ Half value thickness is 0.044287 meter.
diff --git a/1271/CH12/EX12.2/example12_2.sce b/1271/CH12/EX12.2/example12_2.sce
new file mode 100755
index 000000000..8d1589525
--- /dev/null
+++ b/1271/CH12/EX12.2/example12_2.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+E = 1.1 // energy of gamma radiation in Mev
+l = 0.25 // length of aluminium in meter
+p = 0.02 // reduce in intensity in beam
+d = 2700 // density of aluminium in kg/m^3
+// Sample Problem 2 on page no. 12.32
+printf("\n # PROBLEM 2 # \n")
+printf("Standard formula used \n")
+printf("I = I_0*e^(-mu*x) \n")
+mu = (1 / l) * log(1 / p)
+k = mu / d
+x = 0.693 / mu
+printf("\n Mass attenuation coefficient of Al for this radiation is %e m^2/kg.\n Half value thickness is %f meter.",k,x)
diff --git a/1271/CH12/EX12.20/20.txt b/1271/CH12/EX12.20/20.txt
new file mode 100755
index 000000000..47596f0ec
--- /dev/null
+++ b/1271/CH12/EX12.20/20.txt
@@ -0,0 +1 @@
+ Mass of radon is 6.391684e-06 gm. \ No newline at end of file
diff --git a/1271/CH12/EX12.20/example12_20.sce b/1271/CH12/EX12.20/example12_20.sce
new file mode 100755
index 000000000..11c379302
--- /dev/null
+++ b/1271/CH12/EX12.20/example12_20.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+t = 1600 // the half life of radium(226) in year
+t1 = 3.8 // the half life of radon(222) in days
+m = 1 // mass of Ra(226) in gm
+// Sample Problem 20 on page no. 12.38
+printf("\n # PROBLEM 20 # \n")
+printf(" Standard formula used \n")
+printf(" N_1*lambda_1 = N_2*lambda_2 \n")
+m_ = (222 * t1 * m) / (226 * 365 * t) // by the formula N1*t = N2*t1
+printf("\n Mass of radon is %e gm.",m_)
diff --git a/1271/CH12/EX12.21/21.txt b/1271/CH12/EX12.21/21.txt
new file mode 100755
index 000000000..bfe73c49d
--- /dev/null
+++ b/1271/CH12/EX12.21/21.txt
@@ -0,0 +1 @@
+ Energy of gamma ray photon is 19.298699 MeV. \ No newline at end of file
diff --git a/1271/CH12/EX12.21/example12_21.sce b/1271/CH12/EX12.21/example12_21.sce
new file mode 100755
index 000000000..7f7d13c49
--- /dev/null
+++ b/1271/CH12/EX12.21/example12_21.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+m1 = 4.002603 // mass of He(4) in a.m.u.
+m2 = 3.016056 // mass of H(3) in a.m.u.
+m3 = 1.007276 // mass of H(1) in a.m.u.
+// Sample Problem 21 on page no. 12.39
+printf("\n # PROBLEM 21 # \n")
+printf("Standard law used \n")
+printf(" Law of conservation of Energy \n")
+k = m2 + m3 - m1
+E = k * 931
+printf("\n Energy of gamma ray photon is %f MeV.",E)
diff --git a/1271/CH12/EX12.22/22.txt b/1271/CH12/EX12.22/22.txt
new file mode 100755
index 000000000..2e8903f25
--- /dev/null
+++ b/1271/CH12/EX12.22/22.txt
@@ -0,0 +1 @@
+ Q value of reaction is -1.275223 MeV. \ No newline at end of file
diff --git a/1271/CH12/EX12.22/example12_22.sce b/1271/CH12/EX12.22/example12_22.sce
new file mode 100755
index 000000000..eb3ebe7c9
--- /dev/null
+++ b/1271/CH12/EX12.22/example12_22.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+E = 3 // kinetic energy of proton in Mev
+m1 = 1.007276 // mass of H(1) in a.m.u.
+m2 = 3.016056 // mass of H(3) in a.m.u.
+m3 = 1.008665 // mass of neutron in a.m.u.
+m4 = 3.016036 // mass of He(3) in a.m.u.
+// Sample Problem 22 on page no. 12.39
+printf("\n # PROBLEM 22 # \n")
+printf("Standard law used \n")
+printf(" Law of conservation of Energy \n")
+k = m1 + m2 - m3 - m4
+E = k * 931.5
+printf("\n Q value of reaction is %f MeV.",E)
diff --git a/1271/CH12/EX12.23/23.txt b/1271/CH12/EX12.23/23.txt
new file mode 100755
index 000000000..eef9e4a7e
--- /dev/null
+++ b/1271/CH12/EX12.23/23.txt
@@ -0,0 +1,2 @@
+ Heat produce by complete disintegration is 1.967738e+08 cal.
+ Energy released is 3.200000e-11 J.
diff --git a/1271/CH12/EX12.23/example12_23.sce b/1271/CH12/EX12.23/example12_23.sce
new file mode 100755
index 000000000..5880b03e1
--- /dev/null
+++ b/1271/CH12/EX12.23/example12_23.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+E = 200 // energy released per fission in Mev
+m = 0.01 // mass of U(235) in gm
+n = 235 // atomic no of sample
+N_0=6.023e23 // Avogadro constant
+// Sample Problem 23 on page no. 12.40
+printf("\n # PROBLEM 23 # \n")
+printf("Standard formula used \n")
+printf(" E_total = E*N_0/n \n")
+E_ = E * 1.6e-13
+k = E_ * N_0 * m / n
+H = k / 4.168
+printf("\n Heat produce by complete disintegration is %e cal.\n Energy released is %e J.",H,E_)
diff --git a/1271/CH12/EX12.24/24.txt b/1271/CH12/EX12.24/24.txt
new file mode 100755
index 000000000..49b00fdc5
--- /dev/null
+++ b/1271/CH12/EX12.24/24.txt
@@ -0,0 +1 @@
+ Energy released by fission of 1 kg of U(235)is 8.201532e+13 J. \ No newline at end of file
diff --git a/1271/CH12/EX12.24/example12_24.sce b/1271/CH12/EX12.24/example12_24.sce
new file mode 100755
index 000000000..d396e9c0a
--- /dev/null
+++ b/1271/CH12/EX12.24/example12_24.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+E = 200 // energy released per fission in Mev
+m = 1 // mass of U(235) in kg
+// Sample Problem 24 on page no. 12.40
+printf("\n # PROBLEM 24 # \n")
+printf("Standard formula used \n")
+printf(" E_total = E*N_0/n \n")
+E_ = E * 1.6e-13
+k = E_ * 6.023e26 * m / 235
+printf("\n Energy released by fission of 1 kg of U(235)is %e J.",k)
diff --git a/1271/CH12/EX12.25/25.txt b/1271/CH12/EX12.25/25.txt
new file mode 100755
index 000000000..68dcefc0f
--- /dev/null
+++ b/1271/CH12/EX12.25/25.txt
@@ -0,0 +1 @@
+ Amount of fuel required per day is 3.511539 kg. \ No newline at end of file
diff --git a/1271/CH12/EX12.25/example12_25.sce b/1271/CH12/EX12.25/example12_25.sce
new file mode 100755
index 000000000..7cd98caac
--- /dev/null
+++ b/1271/CH12/EX12.25/example12_25.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+P = 1e9 // power required for enlighten the city in watt
+e = 30 // percentage efficiency of nuclear reactor
+E = 3.2e-11 // energy released per fission in J
+// Sample Problem 25 on page no. 12.40
+printf("\n # PROBLEM 25 # \n")
+printf("Standard formula used \n")
+printf(" E_total = E*N_0/n \n")
+E_ = E * 30 / 100
+N = P / E_
+N_ = N * 24 * 3600
+m = N_ * 235 / 6.023e26
+printf("\n Amount of fuel required per day is %f kg.",m)
diff --git a/1271/CH12/EX12.26/26.txt b/1271/CH12/EX12.26/26.txt
new file mode 100755
index 000000000..606b739a8
--- /dev/null
+++ b/1271/CH12/EX12.26/26.txt
@@ -0,0 +1 @@
+ Power output of reactor is 0.702446 GW. \ No newline at end of file
diff --git a/1271/CH12/EX12.26/example12_26.sce b/1271/CH12/EX12.26/example12_26.sce
new file mode 100755
index 000000000..98f4cfc75
--- /dev/null
+++ b/1271/CH12/EX12.26/example12_26.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+E = 200 // energy released per fission of U(235)in Mev
+m = 3.7 // mass of U(235) consumed in a day in kg
+e = 20 // percentage efficiency of reactor
+// Sample Problem 26 on page no. 12.41
+printf("\n # PROBLEM 26 # \n")
+printf("Standard formula used \n")
+printf(" E_total = E*N_0/n \n")
+E_ = E * 1.6e-13
+N = m * 6.023e26 / 235
+H = E_ * e / 100
+k = H * N / (24 * 3600)
+printf("\n Power output of reactor is %f GW.",k * 1e-9)
diff --git a/1271/CH12/EX12.27/27.txt b/1271/CH12/EX12.27/27.txt
new file mode 100755
index 000000000..7dfcb4fc0
--- /dev/null
+++ b/1271/CH12/EX12.27/27.txt
@@ -0,0 +1 @@
+ Energy produce by each reaction is 7.261800 MeV. \ No newline at end of file
diff --git a/1271/CH12/EX12.27/example12_27.sce b/1271/CH12/EX12.27/example12_27.sce
new file mode 100755
index 000000000..b609a447a
--- /dev/null
+++ b/1271/CH12/EX12.27/example12_27.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+m1 = 4.00260 // mass of He(4) in a.m.u.
+m2 = 0.00055 // mass of electron in a.m.u.
+m3 = 12 // mass of C(12) in a.m.u.
+// Sample Problem 27 on page no. 12.40
+printf("\n # PROBLEM 27 # \n")
+printf(" Standard formula used \n")
+printf(" del_E = del_m * c^2 \n")
+delta_m = 3 * m1 - m3
+E = delta_m * 931
+printf("\n Energy produce by each reaction is %f MeV.",E)
diff --git a/1271/CH12/EX12.28/28.txt b/1271/CH12/EX12.28/28.txt
new file mode 100755
index 000000000..d329018e4
--- /dev/null
+++ b/1271/CH12/EX12.28/28.txt
@@ -0,0 +1 @@
+ Mass of deuterium consumed per day is 0.022895 kg. \ No newline at end of file
diff --git a/1271/CH12/EX12.28/example12_28.sce b/1271/CH12/EX12.28/example12_28.sce
new file mode 100755
index 000000000..5a0be95c7
--- /dev/null
+++ b/1271/CH12/EX12.28/example12_28.sce
@@ -0,0 +1,17 @@
+clc
+// Given that
+P = 5e7 // power in watt
+e = 33 // percentage efficiency of nuclear reactor
+m1 = 2.01478 // mass of H(2) in a.m.u.
+m2 = 4.00388 // mass of He(4) in a.m.u.
+// Sample Problem 28 on page no. 12.42
+printf("\n # PROBLEM 28 # \n")
+printf(" Standard formula used \n")
+printf(" del_E = del_m * c^2 \n efficiency = output/input \n")
+m = (2 * m1) - m2
+E = m * 931 * 1.6e-13
+E_O = E * e /(2 * 100)
+N = P / E_O
+k = N * m1 / 6.023e26
+M = k * 24 * 3600
+printf("\n Mass of deuterium consumed per day is %f kg.",M)
diff --git a/1271/CH12/EX12.29/29.txt b/1271/CH12/EX12.29/29.txt
new file mode 100755
index 000000000..d1d43afd5
--- /dev/null
+++ b/1271/CH12/EX12.29/29.txt
@@ -0,0 +1,2 @@
+ Energy is 24.833533 MeV.
+ Number of revolution made by particle to obtain above energy is 3.049676e+06 per sec
diff --git a/1271/CH12/EX12.29/example12_29.sce b/1271/CH12/EX12.29/example12_29.sce
new file mode 100755
index 000000000..bf4183cd7
--- /dev/null
+++ b/1271/CH12/EX12.29/example12_29.sce
@@ -0,0 +1,15 @@
+clc
+// Given that
+d = 1.8 // diameter in meter
+B = 0.8 // magnetic field in tesla
+m = 6.68e-27 // mass of He(4) in kg
+e = 1.6e-19 // charge on an electron in Coulomb
+// Sample Problem 29on page no. 12.43
+printf("\n # PROBLEM 29 # \n")
+printf(" Standard formula used \n")
+printf(" E = B^2*q^2*r^2/(2*m) \n f = B*q/(2*pi*m) \n")
+r = d / 2
+E = (B^2 * (2 * e)^2 * r^2) / (2 * m * 1.6e-19 * 10^6)
+f = B * 2 * e / (2 * %pi * m)
+N = f / 2
+printf("\n Energy is %f MeV.\n Number of revolution made by particle to obtain above energy is %e per sec",E,N)
diff --git a/1271/CH12/EX12.3/3.txt b/1271/CH12/EX12.3/3.txt
new file mode 100755
index 000000000..15aae0bdc
--- /dev/null
+++ b/1271/CH12/EX12.3/3.txt
@@ -0,0 +1 @@
+Time taken for 93.75 per decay of sample is 60 hours. \ No newline at end of file
diff --git a/1271/CH12/EX12.3/example12_3.sce b/1271/CH12/EX12.3/example12_3.sce
new file mode 100755
index 000000000..5ba8f221f
--- /dev/null
+++ b/1271/CH12/EX12.3/example12_3.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+t = 15 // half-life for Na(23) in hours
+r = 93.75 // percentage fraction of sample which decayed
+// Sample Problem 3 on page no. 12.32
+printf("\n # PROBLEM 3 # \n")
+printf("Standard formula used \n")
+printf(" lambda = 0.693 / t_1/2 (Decay constant) \n N =N_0*e^(-lambda*t) \n")
+lambda = 0.693 / t
+T = (1 / lambda) * (log(100 / (100 - r)))
+printf("\n Time taken for 93.75 per decay of sample is %d hours.",T)
diff --git a/1271/CH12/EX12.30/30.txt b/1271/CH12/EX12.30/30.txt
new file mode 100755
index 000000000..c9accaca7
--- /dev/null
+++ b/1271/CH12/EX12.30/30.txt
@@ -0,0 +1 @@
+ Value of magnetic induction needed to accelerate deuteron in it is 1.573938 T. \ No newline at end of file
diff --git a/1271/CH12/EX12.30/example12_30.sce b/1271/CH12/EX12.30/example12_30.sce
new file mode 100755
index 000000000..43cc6470c
--- /dev/null
+++ b/1271/CH12/EX12.30/example12_30.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+f = 12e6 // oscillator frequency of cyclotron in Hz
+r = 0.53 // radius of dee in meter
+e = 1.6e-19 // charge on an electron in Coulomb
+// Sample Problem 30 on page no. 12.43
+printf("\n # PROBLEM 30 # \n")
+printf(" Standard formula used \n")
+printf(" f = B*q/(2*pi*m) \n")
+B = (2 * %pi * f * 2 * 1.67e-27) / e
+printf("\n Value of magnetic induction needed to accelerate deuteron in it is %f T.",B)
diff --git a/1271/CH12/EX12.31/31.txt b/1271/CH12/EX12.31/31.txt
new file mode 100755
index 000000000..33ba7db64
--- /dev/null
+++ b/1271/CH12/EX12.31/31.txt
@@ -0,0 +1,3 @@
+
+ Flux density of the magnetic field is 1.303761 T.
+ Velocity of the deuterons emerging out of the cyclotron is 2.010619e+07 m/sec.
diff --git a/1271/CH12/EX12.31/example12_31.sce b/1271/CH12/EX12.31/example12_31.sce
new file mode 100755
index 000000000..e34da103f
--- /dev/null
+++ b/1271/CH12/EX12.31/example12_31.sce
@@ -0,0 +1,13 @@
+clc
+// Given that
+f = 10e6 // frequency of applied Emf in Hz
+r = 0.32 // radius in meter
+m = 3.32e-27 // mass of deuteron in kg
+e = 1.6e-19 // charge on an electron in Coulomb
+// Sample Problem 31 on page no. 12.44
+printf("\n # PROBLEM 31 # \n")
+printf(" Standard formula used \n")
+printf(" q*v*B = m*v^2/r \n f = B*q/(2*pi*m) \n")
+B = (2 * %pi * f * m) / e
+v = (e * B * r) / m
+printf("\n Flux density of the magnetic field is %f T.\n Velocity of the deuterons emerging out of the cyclotron is %e m/sec. ",B, v)
diff --git a/1271/CH12/EX12.32/32.txt b/1271/CH12/EX12.32/32.txt
new file mode 100755
index 000000000..4b13bc060
--- /dev/null
+++ b/1271/CH12/EX12.32/32.txt
@@ -0,0 +1,3 @@
+
+ Energy gained per turn is 482.548632 eV.
+ Final energy is 120 MeV.
diff --git a/1271/CH12/EX12.32/example12_32.sce b/1271/CH12/EX12.32/example12_32.sce
new file mode 100755
index 000000000..5d439621b
--- /dev/null
+++ b/1271/CH12/EX12.32/example12_32.sce
@@ -0,0 +1,15 @@
+clc
+// Given that
+f = 60 // operating frequency in Hz
+d = 1.6 // diameter in meter
+B = 0.5 // magnetic field at the orbit in tesla
+e = 1.6e-19 // charge on an electron in Coulomb
+// Sample Problem 32 on page no. 12.44
+printf("\n # PROBLEM 32 # \n")
+printf(" Standard formula used \n")
+printf(" E_ = 3e8 * r * B / 1e6 \n")
+r = d / 2
+w = 2 * %pi * f
+E = 4 * e * w * r^2 * B
+E_ = 3e8 * r * B / 1e6
+printf("\n Energy gained per turn is %f eV.\n Final energy is %d MeV.",E / e,E_)
diff --git a/1271/CH12/EX12.33/33.txt b/1271/CH12/EX12.33/33.txt
new file mode 100755
index 000000000..c0a000c84
--- /dev/null
+++ b/1271/CH12/EX12.33/33.txt
@@ -0,0 +1 @@
+ Magnitude of magnetic field is 0.833333 T. \ No newline at end of file
diff --git a/1271/CH12/EX12.33/example12_33.sce b/1271/CH12/EX12.33/example12_33.sce
new file mode 100755
index 000000000..ad73c9477
--- /dev/null
+++ b/1271/CH12/EX12.33/example12_33.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+E = 70 // energy of betatron synchrotron in Mev
+r = 0.28 // radius in meter
+e = 1.6e-19 // charge on an electron in C
+// Sample Problem 33 on page no. 12.45
+printf("\n # PROBLEM 33 # \n")
+printf(" Standard formula used \n")
+printf(" E = c* e * r* B \n")
+E_ = E * 1.6e-13
+B = E_ / (3e8 * e * r)
+printf("\n Magnitude of magnetic field is %f T.",B)
diff --git a/1271/CH12/EX12.34/34.txt b/1271/CH12/EX12.34/34.txt
new file mode 100755
index 000000000..8ec65dca6
--- /dev/null
+++ b/1271/CH12/EX12.34/34.txt
@@ -0,0 +1 @@
+ The current produced = 2.006400e-13 Amp \ No newline at end of file
diff --git a/1271/CH12/EX12.34/example12_34.sce b/1271/CH12/EX12.34/example12_34.sce
new file mode 100755
index 000000000..69e85df4c
--- /dev/null
+++ b/1271/CH12/EX12.34/example12_34.sce
@@ -0,0 +1,13 @@
+clc
+// Given that
+E = 4.18 // energy of alpha particle in Mev
+n = 12 // no. of particle enter the chamber per sec
+E_ = 40 // required energy of an ion pair in ev
+e = 1.6e-19 // charge on an electron in C
+// Sample Problem 34 on page no. 12.45
+printf("\n # PROBLEM 34 # \n")
+R = n * E * 10^6 // in eV
+N = R / E_
+i = N * e
+printf("Standard formula used \n N = R / E_.\n")
+printf("\n The current produced = %e Amp",i)
diff --git a/1271/CH12/EX12.35/35.txt b/1271/CH12/EX12.35/35.txt
new file mode 100755
index 000000000..f0fd3cf40
--- /dev/null
+++ b/1271/CH12/EX12.35/35.txt
@@ -0,0 +1 @@
+ Average current in the circuit = 1.333333e-10 Amp \ No newline at end of file
diff --git a/1271/CH12/EX12.35/example12_35.sce b/1271/CH12/EX12.35/example12_35.sce
new file mode 100755
index 000000000..526ec73bf
--- /dev/null
+++ b/1271/CH12/EX12.35/example12_35.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+n = 10^8 // no. of electron per discharge counted by GM counter
+r = 500 // counting rate in counts per minutes
+e = 1.6e-19 // charge on an electron in C
+// Sample Problem 35 on page no. 12.46
+printf("\n # PROBLEM 35 # \n")
+N = r / 60
+i = N * n * e
+printf("Standard formula used \n i = N * n * e . \n")
+printf("\n Average current in the circuit = %e Amp",i)
diff --git a/1271/CH12/EX12.36/36.txt b/1271/CH12/EX12.36/36.txt
new file mode 100755
index 000000000..82771c162
--- /dev/null
+++ b/1271/CH12/EX12.36/36.txt
@@ -0,0 +1,2 @@
+ Frequency of cyclotron = 8.791209e+06 per sec,
+ Larmour radius = 6.745369 meter
diff --git a/1271/CH12/EX12.36/example12_36.sce b/1271/CH12/EX12.36/example12_36.sce
new file mode 100755
index 000000000..25346ce08
--- /dev/null
+++ b/1271/CH12/EX12.36/example12_36.sce
@@ -0,0 +1,13 @@
+clc
+// Given that
+E = 10 // energy of electron in kev
+B = 5e-5 // magnetic field of earth in tesla
+e = 1.6e-19 // charge on an electron in C
+// Sample Problem 36 on page no. 12.46
+printf("\n # PROBLEM 36 # \n")
+f = e * B / 9.1e-31
+E_ = E * 1.6e-16
+v = sqrt((2 * E_) / 9.1e-31)
+r = v / f
+printf("Standard formula used \n f = e * B / 9.1e-31 . \n")
+printf("\n Frequency of cyclotron = %e per sec,\n Larmour radius = %f meter",f,r)
diff --git a/1271/CH12/EX12.37/37.txt b/1271/CH12/EX12.37/37.txt
new file mode 100755
index 000000000..843f5751b
--- /dev/null
+++ b/1271/CH12/EX12.37/37.txt
@@ -0,0 +1 @@
+ Larmour radius is 6.262500e+05 meter. \ No newline at end of file
diff --git a/1271/CH12/EX12.37/example12_37.sce b/1271/CH12/EX12.37/example12_37.sce
new file mode 100755
index 000000000..c27ede948
--- /dev/null
+++ b/1271/CH12/EX12.37/example12_37.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+B = 5e-9 // magnetic field in tesla
+v = 3e5 // velocity of proton stream in m/sec
+e = 1.6e-19 // charge on an electron in C
+// Sample Problem 37 on page no. 12.46
+printf("\n # PROBLEM 37 # \n")
+printf(" Standard formula used \n")
+printf(" E = 1/2*m*v^2 \n")
+r = (1.67e-27 * v) / (e * B)
+printf("\n Larmour radius is %e meter.",r)
diff --git a/1271/CH12/EX12.38/38.txt b/1271/CH12/EX12.38/38.txt
new file mode 100755
index 000000000..9fbc739b2
--- /dev/null
+++ b/1271/CH12/EX12.38/38.txt
@@ -0,0 +1 @@
+ Magnetic field is 4.860550e-02 tesla. \ No newline at end of file
diff --git a/1271/CH12/EX12.38/example12_38.sce b/1271/CH12/EX12.38/example12_38.sce
new file mode 100755
index 000000000..64c4ffb2a
--- /dev/null
+++ b/1271/CH12/EX12.38/example12_38.sce
@@ -0,0 +1,13 @@
+clc
+// Given that
+E = 1 // energy of He+ in kev
+r = 0.188 // Larmour radius in meter
+e = 1.6e-19 // charge on an electron in C
+// Sample Problem 38 on page no. 12.46
+printf("\n # PROBLEM 38 # \n")
+printf(" Standard formula used \n")
+printf(" E = 1/2*m*v^2 \n E = q*B*v \n")
+E_ = E * 1.6e-16
+v = sqrt((2 * E_) / (4 * 1.67e-27))
+B = (4 * 1.67e-27 * v) / (e * r)
+printf("\n Magnetic field is %e tesla.",B)
diff --git a/1271/CH12/EX12.39/39.txt b/1271/CH12/EX12.39/39.txt
new file mode 100755
index 000000000..13ab80b60
--- /dev/null
+++ b/1271/CH12/EX12.39/39.txt
@@ -0,0 +1 @@
+ Larmour radius is 3.378759e-02 meter. \ No newline at end of file
diff --git a/1271/CH12/EX12.39/example12_39.sce b/1271/CH12/EX12.39/example12_39.sce
new file mode 100755
index 000000000..096b2296b
--- /dev/null
+++ b/1271/CH12/EX12.39/example12_39.sce
@@ -0,0 +1,13 @@
+clc
+// Given that
+E = 3.5 // energy of He++ ash particle in Mev
+B = 8 // magnetic field in tesla
+e = 1.6e-19 // charge on an electron in C
+// Sample Problem 39 on page no. 12.47
+printf("\n # PROBLEM 39 # \n")
+E_ = E * 1.6e-13
+v = sqrt(2 * E_ / (4 * 1.67e-27))
+printf(" Standard formula used \n")
+printf(" E = 1/2*m*v^2 \n E = q*B*v \n")
+r = (4 * 1.67e-27 * v) / (2 * e * B)
+printf("\n Larmour radius is %e meter.",r)
diff --git a/1271/CH12/EX12.4/4.txt b/1271/CH12/EX12.4/4.txt
new file mode 100755
index 000000000..cf709e87e
--- /dev/null
+++ b/1271/CH12/EX12.4/4.txt
@@ -0,0 +1 @@
+Time after which element present in specimen reduce to 1/64 of its original value is 24 years. \ No newline at end of file
diff --git a/1271/CH12/EX12.4/example12_4.sce b/1271/CH12/EX12.4/example12_4.sce
new file mode 100755
index 000000000..c61fbeda5
--- /dev/null
+++ b/1271/CH12/EX12.4/example12_4.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+t = 4 // half-life of radioactive element in years
+r = 1 / 64 // ratio of mass of element present in specimen to the initial mass of element
+// Sample Problem 4 on page no. 12.33
+printf("\n # PROBLEM 4 # \n")
+printf("Standard formula used \n")
+printf(" lambda = 0.693 / t_1/2 (Decay constant) \n N =N_0*e^(-lambda*t) \n")
+lambda = 0.693 / t
+T = (1 / lambda) * log(1 / r)
+printf("\n Time after which element present in specimen reduce to 1/64 of its original value is %d years.",T)
diff --git a/1271/CH12/EX12.40/40.txt b/1271/CH12/EX12.40/40.txt
new file mode 100755
index 000000000..515e413a1
--- /dev/null
+++ b/1271/CH12/EX12.40/40.txt
@@ -0,0 +1,2 @@
+ Debye length is 2.351861e-03 meter.
+ Plasma frequency is 8.973209 MHz.
diff --git a/1271/CH12/EX12.40/example12_40.sce b/1271/CH12/EX12.40/example12_40.sce
new file mode 100755
index 000000000..c14ace057
--- /dev/null
+++ b/1271/CH12/EX12.40/example12_40.sce
@@ -0,0 +1,13 @@
+clc
+// Given that
+d = 1e12 // electron density in number per m^3
+E = 0.1 // thermal energy in eV
+e = 1.6e-19 // charge on an electron in C
+// Sample Problem 40 on page no. 12.47
+printf("\n # PROBLEM 40 # \n")
+printf(" Standard formula used \n")
+printf(" l_debye = (epsilon_0*K*T/(n*e^2))^1/2 \n f = omega/(2*pi) \n")
+lambda = sqrt((8.85e-12 * E * e) / (d * e * e))
+omega = sqrt(d * e^2 / (9.1e-31 * 8.85e-12))
+f = omega / (2 * %pi)
+printf("\n Debye length is %e meter.\n Plasma frequency is %f MHz.",lambda,f / 1e6)
diff --git a/1271/CH12/EX12.41/41.txt b/1271/CH12/EX12.41/41.txt
new file mode 100755
index 000000000..d753e54bc
--- /dev/null
+++ b/1271/CH12/EX12.41/41.txt
@@ -0,0 +1,2 @@
+ Debye length is 1.051784e-04 meter.
+ Plasma frequency is 8.973209e+08 Hz.
diff --git a/1271/CH12/EX12.41/example12_41.sce b/1271/CH12/EX12.41/example12_41.sce
new file mode 100755
index 000000000..1d2509888
--- /dev/null
+++ b/1271/CH12/EX12.41/example12_41.sce
@@ -0,0 +1,13 @@
+clc
+// Given that
+d = 1e16 // density in per m^3
+E = 2 // thermal energy in eV
+e = 1.6e-19 // charge on an electron in C
+// Sample Problem 41 on page no. 12.48
+printf("\n # PROBLEM 41 # \n")
+lambda = sqrt((8.85e-12 * E * e) / (d * e * e))
+printf(" Standard formula used \n")
+printf(" l_debye = (epsilon_0*K*T/(n*e^2))^1/2 \n f = omega/(2*pi) \n")
+omega = sqrt(d * e^2 / (9.1e-31 * 8.85e-12))
+f = omega / (2 * %pi)
+printf("\n Debye length is %e meter.\n Plasma frequency is %e Hz.",lambda,f)
diff --git a/1271/CH12/EX12.5/5.txt b/1271/CH12/EX12.5/5.txt
new file mode 100755
index 000000000..cd7d2d3a1
--- /dev/null
+++ b/1271/CH12/EX12.5/5.txt
@@ -0,0 +1 @@
+ Period in which 2.5 percent of the initial quantity left over is 79.845876 years. \ No newline at end of file
diff --git a/1271/CH12/EX12.5/example12_5.sce b/1271/CH12/EX12.5/example12_5.sce
new file mode 100755
index 000000000..3fe7fb7a3
--- /dev/null
+++ b/1271/CH12/EX12.5/example12_5.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+t = 15 // half-life of radioactive element in years
+r = 0.025 // ratio of mass of element present in specimen to the intial mass of element
+// Sample Problem 5 on page no. 12.33
+printf("\n # PROBLEM 5 # \n")
+printf("Standard formula used \n")
+printf(" lambda = 0.693 / t_1/2 (Decay constant) \n N =N_0*e^(-lambda*t) \n")
+lambda = 0.693 / t
+T = (1 / lambda) * log(1 / r)
+printf("\n Period in which 2.5 percent of the initial quantity left over is %f years.",T)
diff --git a/1271/CH12/EX12.6/6.txt b/1271/CH12/EX12.6/6.txt
new file mode 100755
index 000000000..b81cc9fe4
--- /dev/null
+++ b/1271/CH12/EX12.6/6.txt
@@ -0,0 +1 @@
+ Time taken for 60 percent decay of sample is 5.024394 days. \ No newline at end of file
diff --git a/1271/CH12/EX12.6/example12_6.sce b/1271/CH12/EX12.6/example12_6.sce
new file mode 100755
index 000000000..7fb922034
--- /dev/null
+++ b/1271/CH12/EX12.6/example12_6.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+t = 3.8 // half-life for radon in days
+r = 60 // percentage fraction of sample which decayed
+// Sample Problem 6 on page no. 12.33
+printf("\n # PROBLEM 6 # \n")
+printf("Standard formula used \n")
+printf(" lambda = 0.693 / t_1/2 (Decay constant) \n N =N_0*e^(-lambda*t) \n")
+lambda = 0.693 / t
+T = (1 / lambda) * (log(100 / (100 - r)))
+printf("\n Time taken for 60 percent decay of sample is %f days.",T)
diff --git a/1271/CH12/EX12.7/7.txt b/1271/CH12/EX12.7/7.txt
new file mode 100755
index 000000000..0c20f698c
--- /dev/null
+++ b/1271/CH12/EX12.7/7.txt
@@ -0,0 +1,2 @@
+Half life time is 1619.158879 years.
+ Mean life time is 2336.448598 years.
diff --git a/1271/CH12/EX12.7/example12_7.sce b/1271/CH12/EX12.7/example12_7.sce
new file mode 100755
index 000000000..5b1c3a0f2
--- /dev/null
+++ b/1271/CH12/EX12.7/example12_7.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+lambda = 4.28e-4 // decay constant in per year
+// Sample Problem 7 on page no. 12.34
+printf("\n # PROBLEM 7 # \n")
+printf("Standard formula used \n")
+printf(" lambda = 0.693 / t_1/2 (Decay constant) \n tau = 1/lambda \n")
+T = 0.693 / lambda
+t = 1 / lambda
+printf("\n Half life time is %f years.\n Mean life time is %f years.",T,t)
diff --git a/1271/CH12/EX12.8/8.txt b/1271/CH12/EX12.8/8.txt
new file mode 100755
index 000000000..f593adfdd
--- /dev/null
+++ b/1271/CH12/EX12.8/8.txt
@@ -0,0 +1 @@
+ Half life of radioactive material is 5 years. \ No newline at end of file
diff --git a/1271/CH12/EX12.8/example12_8.sce b/1271/CH12/EX12.8/example12_8.sce
new file mode 100755
index 000000000..bedf0a5b2
--- /dev/null
+++ b/1271/CH12/EX12.8/example12_8.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+t = 30 // time in years
+r = 1 / 64 // ratio of final mass of element to the intial mass of element
+// Sample Problem 8 on page no. 12.34
+printf("\n # PROBLEM 8 # \n")
+printf("Standard formula used \n")
+printf(" lambda = 0.693 / t_1/2 (Decay constant) \n N =N_0*e^(-lambda*t) \n")
+lambda = log(1 / r) / t
+T = 0.693 / lambda
+printf("\n Half life of radioactive material is %d years.",ceil(T))
diff --git a/1271/CH12/EX12.9/9.txt b/1271/CH12/EX12.9/9.txt
new file mode 100755
index 000000000..27fed78da
--- /dev/null
+++ b/1271/CH12/EX12.9/9.txt
@@ -0,0 +1 @@
+ Decay constant is 0.330000 per minute. \ No newline at end of file
diff --git a/1271/CH12/EX12.9/example12_9.sce b/1271/CH12/EX12.9/example12_9.sce
new file mode 100755
index 000000000..6bb3053d9
--- /dev/null
+++ b/1271/CH12/EX12.9/example12_9.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+t = 2.1 // half life in minute
+r = 60 // percentage fraction of sample which decayed
+// Sample Problem 9 on page no. 12.34
+printf("\n # PROBLEM 9 # \n")
+printf("Standard formula used \n")
+printf(" lambda = 0.693 / t_1/2 (Decay constant) \n ")
+lambda = 0.693 / t
+printf("\n Decay constant is %f per minute.",lambda)
diff --git a/1271/CH13/EX13.1/1.txt b/1271/CH13/EX13.1/1.txt
new file mode 100755
index 000000000..477c0ee2d
--- /dev/null
+++ b/1271/CH13/EX13.1/1.txt
@@ -0,0 +1 @@
+Miller indices of the plane are (3 2 6) \ No newline at end of file
diff --git a/1271/CH13/EX13.1/example13_1.sce b/1271/CH13/EX13.1/example13_1.sce
new file mode 100755
index 000000000..d6f49d63b
--- /dev/null
+++ b/1271/CH13/EX13.1/example13_1.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+x = 2 // intercepts cut by the plane along vector a of crystallographic axes
+y = 3 // intercepts cut by the plane along vector b of crystallographic axes
+z = 1 // intercepts cut by the plane along vector c of crystallographic axes
+// Sample Problem 1 on page no. 13.24
+printf("\n # PROBLEM 1 # \n")
+printf("Standard formula used \n")
+printf(" x_ = a / x \n y_ = b / y \n z_ = c / z \n")
+x_ = 6 / x
+y_ = 6 / y
+z_ = 6 / z
+printf("\n Miller indices of the plane are (%d %d %d)",x_,y_,z_)
+
diff --git a/1271/CH13/EX13.10/10.txt b/1271/CH13/EX13.10/10.txt
new file mode 100755
index 000000000..0a6b2090e
--- /dev/null
+++ b/1271/CH13/EX13.10/10.txt
@@ -0,0 +1 @@
+ primitive translation vector is 2.517300 Angstrom. \ No newline at end of file
diff --git a/1271/CH13/EX13.10/example13_10.sce b/1271/CH13/EX13.10/example13_10.sce
new file mode 100755
index 000000000..e719f451d
--- /dev/null
+++ b/1271/CH13/EX13.10/example13_10.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+a = 3.56 // the length of cube edge in angstrom
+// Sample Problem 10 on page no. 13.28
+printf("\n # PROBLEM 10 # \n")
+printf("Standard formula used \n")
+printf(" d = a / sqrt(2) \n")
+d = a / sqrt(2)
+printf("\n Permitive translation vector is %f Angstrom.",d)
+
diff --git a/1271/CH13/EX13.11/11.txt b/1271/CH13/EX13.11/11.txt
new file mode 100755
index 000000000..6d0bb426b
--- /dev/null
+++ b/1271/CH13/EX13.11/11.txt
@@ -0,0 +1 @@
+ Number of atom per unit cell is 1. \ No newline at end of file
diff --git a/1271/CH13/EX13.11/example13_11.sce b/1271/CH13/EX13.11/example13_11.sce
new file mode 100755
index 000000000..40943817f
--- /dev/null
+++ b/1271/CH13/EX13.11/example13_11.sce
@@ -0,0 +1,13 @@
+clc
+// Given that
+w = 207.2 // atomic weight of Pb
+d = 11.36e3 // density of Pb in kg/m^3
+a = 3.2e-10 // length of cube edge in meter
+N = 6.023e26 // Avogadro's no. in per kg mole
+// Sample Problem 11 on page no. 13.28
+printf("\n # PROBLEM 11 # \n")
+printf("Standard formula used \n")
+printf(" n = (a^3 * d * N) / w \n")
+n = (a^3 * d * N) / w
+printf("\n Number of atom per unit cell is %d.",n)
+
diff --git a/1271/CH13/EX13.12/12.txt b/1271/CH13/EX13.12/12.txt
new file mode 100755
index 000000000..14da63d73
--- /dev/null
+++ b/1271/CH13/EX13.12/12.txt
@@ -0,0 +1 @@
+ Lattice constant is 3.999336 angstrom. \ No newline at end of file
diff --git a/1271/CH13/EX13.12/example13_12.sce b/1271/CH13/EX13.12/example13_12.sce
new file mode 100755
index 000000000..3a2a6e879
--- /dev/null
+++ b/1271/CH13/EX13.12/example13_12.sce
@@ -0,0 +1,13 @@
+clc
+// Given that
+w = 60.2 // molecular weight
+d = 6250 // density in kg/m^3
+N = 6.023e+26 // Avogadro's no. in per kg mole
+n = 4 // for fcc lattice
+// Sample Problem 12 on page no. 13.28
+printf("\n # PROBLEM 12 # \n")
+printf("Standard formula used \n")
+printf(" a = (((4 * w) / (N * d))^(1 / 3)) \n")
+a = (((4 * w) / (N * d))^(1 / 3)) * 1e10
+printf("\n Lattice constant is %f angstrom.",a)
+
diff --git a/1271/CH13/EX13.13/13.txt b/1271/CH13/EX13.13/13.txt
new file mode 100755
index 000000000..9e95919cb
--- /dev/null
+++ b/1271/CH13/EX13.13/13.txt
@@ -0,0 +1 @@
+ Wavelength of x-ray is 0.862840 angstrom. \ No newline at end of file
diff --git a/1271/CH13/EX13.13/example13_13.sce b/1271/CH13/EX13.13/example13_13.sce
new file mode 100755
index 000000000..28781f0a2
--- /dev/null
+++ b/1271/CH13/EX13.13/example13_13.sce
@@ -0,0 +1,15 @@
+clc
+// Given that
+x1 = 1 // coordinate on x axis of plane
+y1 = 0 // coordinate on y axis of plane
+z1 = 0 // coordinate on z axis of plane
+d = 2.82 // the space between successive plane in angstrom
+theta = 8.8 // glancing angle in degree
+// Sample Problem 13 on page no. 13.29
+printf("\n # PROBLEM 13 # \n")
+printf(" Standard formula used \n")
+printf(" n*lambda = 2 * d * sin(theta) \n")
+n = 1
+lambda = 2 * d * sind(theta) / n
+printf("\n Wavelength of x-ray is %f angstrom.",lambda)
+
diff --git a/1271/CH13/EX13.14/14.txt b/1271/CH13/EX13.14/14.txt
new file mode 100755
index 000000000..e1d0e71a7
--- /dev/null
+++ b/1271/CH13/EX13.14/14.txt
@@ -0,0 +1,2 @@
+ Wavelength of x-ray is 0.785301 angstrom.
+ Glancing angle for second order diffraction is 18.232211 degree.
diff --git a/1271/CH13/EX13.14/example13_14.sce b/1271/CH13/EX13.14/example13_14.sce
new file mode 100755
index 000000000..ef966441d
--- /dev/null
+++ b/1271/CH13/EX13.14/example13_14.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+d = 2.51 // the space between adjacent plane in angstrom
+theta = 9 // glancing angle in degree
+// Sample Problem 14 on page no. 13.29
+printf("\n # PROBLEM 14 # \n")
+printf(" Standard formula used \n")
+printf(" n*lambda = 2 * d * sin(theta) \n")
+n = 1 // for n=1
+lambda = 2 * d * sind(theta) / n
+n = 2 // for n=2
+theta = asind(lambda / d)
+printf("\n Wavelength of x-ray is %f angstrom.\n Glancing angle for second order diffraction is %f degree.",lambda,theta)
+
diff --git a/1271/CH13/EX13.15/15.txt b/1271/CH13/EX13.15/15.txt
new file mode 100755
index 000000000..ee9bb51ca
--- /dev/null
+++ b/1271/CH13/EX13.15/15.txt
@@ -0,0 +1 @@
+ Lattice constant of NaCl is 0.866025 angstrom. \ No newline at end of file
diff --git a/1271/CH13/EX13.15/example13_15.sce b/1271/CH13/EX13.15/example13_15.sce
new file mode 100755
index 000000000..881718535
--- /dev/null
+++ b/1271/CH13/EX13.15/example13_15.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+lambda = 1.5 // wavelength of x-ray in angstrom
+theta = 60 // glancing angle in degree
+// Sample Problem 15 on page no. 13.29
+printf("\n # PROBLEM 15 # \n")
+printf(" Standard formula used \n")
+printf(" n*lambda = 2 * d * sin(theta) \n")
+n = 1 // for first order
+d = ( n * lambda) / (2 * sind(theta))
+printf("\n Lattice constant of NaCl is %f angstrom.",d)
+
diff --git a/1271/CH13/EX13.16/16.txt b/1271/CH13/EX13.16/16.txt
new file mode 100755
index 000000000..a50f9a871
--- /dev/null
+++ b/1271/CH13/EX13.16/16.txt
@@ -0,0 +1 @@
+ Angle of incidence of x-ray on the plane is 14.033378 degree. \ No newline at end of file
diff --git a/1271/CH13/EX13.16/example13_16.sce b/1271/CH13/EX13.16/example13_16.sce
new file mode 100755
index 000000000..ed406a82a
--- /dev/null
+++ b/1271/CH13/EX13.16/example13_16.sce
@@ -0,0 +1,16 @@
+clc
+// Given that
+lambda = 1.4 // wavelength of x-ray in angstrom
+x1 = 1 // coordinate on x axis of plane
+y1 = 1 // coordinate on y axis of plane
+z1 = 1 // coordinate on z axis of plane
+a = 5 // lattice parameter of of crystal in angstrom
+// Sample Problem 16 on page no. 13.30
+printf("\n # PROBLEM 16 # \n")
+printf(" Standard formula used \n")
+printf(" d = a / (x1^2 + y1^2 + z1^2)^1/2 \n")
+n = 1 // for first order
+d = a / sqrt(x1^2 + y1^2 + z1^2)
+theta = asind((n * lambda) / (2 * d))
+printf("\n Angle of incidence of x-ray on the plane is %f degree.",theta)
+
diff --git a/1271/CH13/EX13.17/17.txt b/1271/CH13/EX13.17/17.txt
new file mode 100755
index 000000000..c0bdd8401
--- /dev/null
+++ b/1271/CH13/EX13.17/17.txt
@@ -0,0 +1,2 @@
+
+ Glancing angle is 14.614241 degree. \ No newline at end of file
diff --git a/1271/CH13/EX13.17/example13_17.sce b/1271/CH13/EX13.17/example13_17.sce
new file mode 100755
index 000000000..c325cfcc4
--- /dev/null
+++ b/1271/CH13/EX13.17/example13_17.sce
@@ -0,0 +1,17 @@
+
+clc
+// Given that
+lambda = 0.710 // wavelength of x-ray in angstrom
+x1 = 1 // coordinate on x axis of plane
+y1 = 0 // coordinate on y axis of plane
+z1 = 0 // coordinate on z axis of plane
+a = 2.814 // lattice parameter of of crystal in angstrom
+// Sample Problem 17 on page no. 13.30
+printf("\n # PROBLEM 17 # \n")
+printf(" Standard formula used \n")
+printf(" n*lambda = 2 * d * sin(theta)\n")
+n = 2 // for second order
+d = a / sqrt(x1^2 + y1^2 + z1^2)
+theta = asind((n * lambda) / (2 * d))
+printf("\n Glancing angle is %f degree.",theta)
+
diff --git a/1271/CH13/EX13.18/18.txt b/1271/CH13/EX13.18/18.txt
new file mode 100755
index 000000000..5f9acd708
--- /dev/null
+++ b/1271/CH13/EX13.18/18.txt
@@ -0,0 +1,3 @@
+
+ Wavelength of neutron beam is 3.840000 angstrom.
+ Speed of neutron beam is 1.032310e+03 meter/sec.
diff --git a/1271/CH13/EX13.18/example13_18.sce b/1271/CH13/EX13.18/example13_18.sce
new file mode 100755
index 000000000..2b0c4c302
--- /dev/null
+++ b/1271/CH13/EX13.18/example13_18.sce
@@ -0,0 +1,13 @@
+clc
+// Given that
+n = 1 // order of brag reflection
+d = 3.84e-10 // the space between successive plane in m
+theta = 30 // glancing angle in degree
+// Sample Problem 18 on page no. 13.30
+printf("\n # PROBLEM 18 # \n")
+printf(" Standard formula used \n")
+printf(" n*lambda = 2 * d * sin(theta) \n lambda = h/(m*v) \n")
+lambda = 2 * d * sind(theta) / n
+v = 6.62e-34 / (1.67e-27 * lambda)
+printf("\n Wavelength of neutron beam is %f angstrom.\n Speed of neutron beam is %e meter/sec.",lambda * 10^10,v)
+
diff --git a/1271/CH13/EX13.19/19.txt b/1271/CH13/EX13.19/19.txt
new file mode 100755
index 000000000..df1bee654
--- /dev/null
+++ b/1271/CH13/EX13.19/19.txt
@@ -0,0 +1,2 @@
+
+ Lattice parameter is 2.588969 angstrom.
diff --git a/1271/CH13/EX13.19/example13_19.sce b/1271/CH13/EX13.19/example13_19.sce
new file mode 100755
index 000000000..3f8ec575d
--- /dev/null
+++ b/1271/CH13/EX13.19/example13_19.sce
@@ -0,0 +1,17 @@
+clc
+// Given that
+v = 120 // voltage at which electron is accelerated in v
+n = 1 // order of Bragg reflection
+x1 = 1 // coordinate on x axis of plane
+y1 = 1 // coordinate on y axis of plane
+z1 = 1 // coordinate on z axis of plane
+theta = 22 // angle at which maximum reflection is obtain in degree
+n = 1 // order of reflection
+// Sample Problem 19 on page no. 13.31
+printf("\n # PROBLEM 19 # \n")
+printf(" Standard formula used \n")
+printf(" n*lambda = 2 * d * sin(theta) \n lambda = h/(2*m*e*V)^1/2 \n")
+lambda = 6.62e-34 / sqrt(2 * 9.1e-31 * 1.6e-19 * v)
+d = (n * lambda) / (2 * sind(theta))
+a = d * sqrt(3)
+printf("\n Lattice parameter is %f angstrom.",a * 10^10)
diff --git a/1271/CH13/EX13.2/2.txt b/1271/CH13/EX13.2/2.txt
new file mode 100755
index 000000000..0c22cc497
--- /dev/null
+++ b/1271/CH13/EX13.2/2.txt
@@ -0,0 +1 @@
+ Miller indices of the plane are (6 3 -4) \ No newline at end of file
diff --git a/1271/CH13/EX13.2/example13_2.sce b/1271/CH13/EX13.2/example13_2.sce
new file mode 100755
index 000000000..4143751e0
--- /dev/null
+++ b/1271/CH13/EX13.2/example13_2.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+x = 1 // intercepts cut by the plane along vector a of crystallographic axes
+y = 2 // intercepts cut by the plane along vector b of crystallographic axes
+z = -3 / 2 // intercepts cut by the plane along vector c of crystallographic axes
+// Sample Problem 2 on page no. 13.24
+printf("\n # PROBLEM 2 # \n")
+printf("Standard formula used \n")
+printf(" x_ = a / x \n y_ = b / y \n z_ = c / z \n")
+x_ = 6 / x
+y_ = 6 / y
+z_ = 6 / z
+printf("\n Miller indices of the plane are (%d %d %d)",x_,y_,z_)
+
diff --git a/1271/CH13/EX13.20/20.txt b/1271/CH13/EX13.20/20.txt
new file mode 100755
index 000000000..3971a9b5d
--- /dev/null
+++ b/1271/CH13/EX13.20/20.txt
@@ -0,0 +1,5 @@
+
+ Inter planner distances are -
+ (1) in first case 6.298630 A,
+ (2) in second case 4.453804 A ,
+ (3) in third case 3.636515 A \ No newline at end of file
diff --git a/1271/CH13/EX13.20/example13_20.sce b/1271/CH13/EX13.20/example13_20.sce
new file mode 100755
index 000000000..9990a439a
--- /dev/null
+++ b/1271/CH13/EX13.20/example13_20.sce
@@ -0,0 +1,23 @@
+clc
+// Given that
+lambda = 1.24e-10 // wavelength of X-ray in A
+x1 = 1 // coordinate on x axis of first plane
+y1 = 0 // coordinate on y axis of first plane
+z1 = 0 // coordinate on z axis of first plane
+x2 = 1 // coordinate on x axis of second plane
+y2 = 1 // coordinate on y axis of second plane
+z2 = 0 // coordinate on z axis of second plane
+x3 = 1 // coordinate on x axis of third plane
+y3 = 1 // coordinate on y axis of third plane
+z3 = 1 // coordinate on z axis of third plane
+M = 74.5 // molecular weight of KCl
+d = 1980 // density of KCl in kg/m^3
+N = 6.023e+26 // Avogadro's No per Kg mole
+// Sample Problem 20 on page no. 13.31
+printf("\n # PROBLEM 20 # \n")
+printf(" \n Standard formula used are D = 1/sqrt(x^2+y^2+z^2) and a^3 = n*M/(N*d)")
+a = (4*M / (N*d))^(1/3)
+D1 = a/sqrt(x1^2 + y1^2 + z1^2)
+D2 = a/sqrt(x2^2 + y2^2 + z2^2)
+D3 = a/sqrt(x3^2 + y3^2 + z3^2)
+printf("\n Inter planner distances are - \n (1) in first case %f A, \n (2) in second case %f A ,\n (3) in third case %f A",D1*10^10,D2*10^10,D3*10^10)
diff --git a/1271/CH13/EX13.21/21.txt b/1271/CH13/EX13.21/21.txt
new file mode 100755
index 000000000..a14edce77
--- /dev/null
+++ b/1271/CH13/EX13.21/21.txt
@@ -0,0 +1 @@
+ Potential energy of molecule is -9.591258 eV. \ No newline at end of file
diff --git a/1271/CH13/EX13.21/example13_21.sce b/1271/CH13/EX13.21/example13_21.sce
new file mode 100755
index 000000000..e0031ec54
--- /dev/null
+++ b/1271/CH13/EX13.21/example13_21.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+d = 0.15e-9 // distance between K(+) and Cl(-) in m
+// Sample Problem 21 on page no. 13.32
+printf("\n # PROBLEM 21 # \n")
+printf(" Standard formula used \n")
+printf(" v = -1.6e-19 / (4 * pi * 8.85e-12 * d) \n")
+v = -1.6e-19 / (4 * %pi * 8.85e-12 * d)
+printf("\n Potential energy of molecule is %f eV.",v)
+
diff --git a/1271/CH13/EX13.22/22.txt b/1271/CH13/EX13.22/22.txt
new file mode 100755
index 000000000..e0c24054e
--- /dev/null
+++ b/1271/CH13/EX13.22/22.txt
@@ -0,0 +1 @@
+ Cohesive energy of Nacl is -6.985633 eV. \ No newline at end of file
diff --git a/1271/CH13/EX13.22/example13_22.sce b/1271/CH13/EX13.22/example13_22.sce
new file mode 100755
index 000000000..9528d05fb
--- /dev/null
+++ b/1271/CH13/EX13.22/example13_22.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+d = 0.32e-9 // equilibrium separation in m
+alpha = 1.748
+n = 9
+e = 4 // ionization energy in eV
+a = -2.16 // electron affinity in eV
+// Sample Problem 22 on page no. 13.32
+printf("\n # PROBLEM 22 # \n")
+printf(" Standard formula used \n")
+printf(" E = -((alpha * 1.6e-19) / (4 * pi * 8.85e-12 * d)) * (1 - (1 / n)) \n")
+E = -((alpha * 1.6e-19) / (4 * %pi * 8.85e-12 * d)) * (1 - (1 / n))
+printf("\n Cohesive energy of Nacl is %f eV.",E)
+
diff --git a/1271/CH13/EX13.23/23.txt b/1271/CH13/EX13.23/23.txt
new file mode 100755
index 000000000..3a3873d6d
--- /dev/null
+++ b/1271/CH13/EX13.23/23.txt
@@ -0,0 +1,2 @@
+
+ Ratio of number of Schottky defects to total number of cation-anion pairs is 1.116423e-17 . \ No newline at end of file
diff --git a/1271/CH13/EX13.23/example13_23.sce b/1271/CH13/EX13.23/example13_23.sce
new file mode 100755
index 000000000..74811d06d
--- /dev/null
+++ b/1271/CH13/EX13.23/example13_23.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+E = 2.02 // average energy required to produce a Schottky defect at room temperature in eV
+k = 1.38e-23 // Boltzmann constant in J/k
+T = 300 // room temperature in K
+// Sample Problem 23 on page no. 13.33
+printf("\n # PROBLEM 23 # \n")
+printf(" Standard formula used \n")
+printf(" r = exp(-(E * 1.6e-19) / (2 * k * T))\n")
+r = exp(-(E * 1.6e-19) / (2 * k * T))
+printf("\n Ratio of number of Schottky defects to total number of cation-anion pairs is %e .",r)
+
diff --git a/1271/CH13/EX13.3/3.txt b/1271/CH13/EX13.3/3.txt
new file mode 100755
index 000000000..0e3930773
--- /dev/null
+++ b/1271/CH13/EX13.3/3.txt
@@ -0,0 +1 @@
+ Miller indices of the plane (i) In first case are (6 3 -4),(ii) In second case are (2 1 0),(iii)In the third case are (2 1 -1). \ No newline at end of file
diff --git a/1271/CH13/EX13.3/example13_3.sce b/1271/CH13/EX13.3/example13_3.sce
new file mode 100755
index 000000000..6425d01ce
--- /dev/null
+++ b/1271/CH13/EX13.3/example13_3.sce
@@ -0,0 +1,26 @@
+clc
+// Given that
+x1 = 3 // intercepts cut by the plane along vector a of crystallographic axes in first case
+y1 = 3 // intercepts cut by the plane along vector b of crystallographic axes in first case
+z1 = 2 // intercepts cut by the plane along vector c of crystallographic axes in first case
+x2 = 1 // intercepts cut by the plane along vector a of crystallographic axes in second case
+y2 = 2 // intercepts cut by the plane along vector b of crystallographic axes in second case
+k2 = 0 // raciprocal of intercepts cut by the plane along vector c of crystallographic axes in second case
+x3 = 1 // intercepts cut by the plane along vector a of crystallographic axes in third case
+y3 = 1/2 // intercepts cut by the plane along vector b of crystallographic axes in third case
+z3 = 1 // intercepts cut by the plane along vector c of crystallographic axes in third case
+// Sample Problem 3 on page no. 13.24
+printf("\n # PROBLEM 3 # \n")
+printf("Standard formula used \n")
+printf(" x_ = a / x \n y_ = b / y \n z_ = c / z \n")
+x_1 = 6 / x1
+y_1 = 6 / y1
+z_1 = 6 / z1
+x_2 = 2 / x2
+y_2 = 2 / y2
+z_2 = 2*k2
+x_3 = 1 / x3
+y_3 = 1 / y3
+z_3 = 1 / z3
+printf("\n Miller indices of the plane (i) In first case are (%d %d %d),(ii) In second case are (%d %d %d),(iii)In the third case are (%d %d %d).",x_1,y_1,z_1,x_2,y_2,z_2,x_3,y_3,z_3)
+
diff --git a/1271/CH13/EX13.4/4.txt b/1271/CH13/EX13.4/4.txt
new file mode 100755
index 000000000..2ad840dc3
--- /dev/null
+++ b/1271/CH13/EX13.4/4.txt
@@ -0,0 +1,2 @@
+ Spacing between the plane in first case is a / 1.
+ Spacing between the plane in second case is a / 0.577350 .
diff --git a/1271/CH13/EX13.4/example13_4.sce b/1271/CH13/EX13.4/example13_4.sce
new file mode 100755
index 000000000..bde3db690
--- /dev/null
+++ b/1271/CH13/EX13.4/example13_4.sce
@@ -0,0 +1,16 @@
+clc
+// Given that
+x1 = 1 // coordinate on x axis for first plane
+y1 = 0 // coordinate on y axis for first plane
+z1 = 0 // coordinate on z axis for first plane
+x2 = 1 // coordinate on x axis for second plane
+y2 = 1 // coordinate on y axis for second plane
+z2 = 1 // coordinate on z axis for second plane
+// Sample Problem 4 on page no. 13.25
+printf("\n # PROBLEM 4 # \n")
+printf("Standard formula used \n")
+printf(" d = 1 / (x1^2 + y1^2 + z1^2)^1/2 \n")
+d1 = 1 / sqrt(x1^2 + y1^2 + z1^2)
+d2 = 1 / sqrt(x2^2 + y2^2 + z2^2)
+printf("\n Spacing between the plane in first case is a / %d.\n Spacing between the plane in second case is a / %f .",d1,d2)
+
diff --git a/1271/CH13/EX13.5/5.txt b/1271/CH13/EX13.5/5.txt
new file mode 100755
index 000000000..0c562585e
--- /dev/null
+++ b/1271/CH13/EX13.5/5.txt
@@ -0,0 +1,3 @@
+
+ Miller indices of the plane are (2 1 0).
+ Inter planar distance is sqrt(5) angstrom.
diff --git a/1271/CH13/EX13.5/example13_5.sce b/1271/CH13/EX13.5/example13_5.sce
new file mode 100755
index 000000000..30c74806f
--- /dev/null
+++ b/1271/CH13/EX13.5/example13_5.sce
@@ -0,0 +1,20 @@
+
+clc
+// Given that
+x = 1 // intercepts cut by the plane along vector a of crystallographic axes
+y = 2 // intercepts cut by the plane along vector b of crystallographic axes
+k = 0 // raciprocal of intercepts cut by the plane along vector c of crystallographic axes
+a = 5 // length of vector a of crystallographic axes in angstrom
+b = 5 // length of vector b of crystallographic axes in angstrom
+c = 5 // length of vector c of crystallographic axes in angstrom
+// Sample Problem 5 on page no. 13.26
+printf("\n # PROBLEM 5 # \n")
+printf("Standard formula used \n")
+printf(" d = 1 / (x1^2 + y1^2 + z1^2)^1/2 \n")
+x_ = 2 / x
+y_ = 2 / y
+z_ = 2 * k
+d = a / sqrt(x_^2 + y_^2 + z_^2)
+D=d^2
+printf("\n Miller indices of the plane are (%d %d %d).\n Inter planar distance is sqrt(%d) angstrom.",x_,y_,z_,D)
+
diff --git a/1271/CH13/EX13.6/6.txt b/1271/CH13/EX13.6/6.txt
new file mode 100755
index 000000000..c19d21f34
--- /dev/null
+++ b/1271/CH13/EX13.6/6.txt
@@ -0,0 +1,8 @@
+
+ # PROBLEM 6 #
+Standard formula used
+ x_ = a / x
+ y_ = b / y
+ z_ = c / z
+
+ Miller indices of the plane are (1 3 0) \ No newline at end of file
diff --git a/1271/CH13/EX13.6/example13_6.sce b/1271/CH13/EX13.6/example13_6.sce
new file mode 100755
index 000000000..4772a687b
--- /dev/null
+++ b/1271/CH13/EX13.6/example13_6.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+x = 2 // intercepts cut by the plane along vector a of crystallographic axes
+y = 2 / 3 // intercepts cut by the plane along vector b of crystallographic axes
+k = 0 // raciprocal of intercepts cut by the plane along vector c of crystallographic axes
+// Sample Problem 6 on page no. 13.26
+printf("\n # PROBLEM 6 # \n")
+printf("Standard formula used \n")
+printf(" x_ = a / x \n y_ = b / y \n z_ = c / z \n")
+x_ = 2 / x
+y_ = 2 / y
+z_ = 2 * k
+printf("\n Miller indices of the plane are (%d %d %d)",x_,y_,z_)
+
diff --git a/1271/CH13/EX13.7/7.txt b/1271/CH13/EX13.7/7.txt
new file mode 100755
index 000000000..98769454c
--- /dev/null
+++ b/1271/CH13/EX13.7/7.txt
@@ -0,0 +1,2 @@
+
+ Inter planar spacing is 0.132288 nm.
diff --git a/1271/CH13/EX13.7/example13_7.sce b/1271/CH13/EX13.7/example13_7.sce
new file mode 100755
index 000000000..d06360a31
--- /dev/null
+++ b/1271/CH13/EX13.7/example13_7.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+x1 = 2 // coordinate on x axis
+y1 = 3 // coordinate on y axis
+z1 = 1 // coordinate on z axis
+r = 0.175 // atomic radius of fcc structure in nm
+// Sample Problem 7 on page no. 13.27
+printf("\n # PROBLEM 7 # \n")
+printf("Standard formula used \n")
+printf(" d = 1 / (x1^2 + y1^2 + z1^2)^1/2 \n")
+a = (4 * r) / sqrt(2)
+d = a / sqrt(x1^2 + y1^2 + z1^2)
+printf("\n Inter planar spacing is %f nm.",d)
+
diff --git a/1271/CH13/EX13.8/8.txt b/1271/CH13/EX13.8/8.txt
new file mode 100755
index 000000000..70c87273a
--- /dev/null
+++ b/1271/CH13/EX13.8/8.txt
@@ -0,0 +1,6 @@
+ # PROBLEM 8 #
+Standard formula used
+ d = 1 / (x1^2 + y1^2 + z1^2)^1/2
+
+ The ratio of intercepts of three axes by the point are 6 : 3 : 2.
+ The ratio of spacing between two planes is 1.224745. \ No newline at end of file
diff --git a/1271/CH13/EX13.8/example13_8.sce b/1271/CH13/EX13.8/example13_8.sce
new file mode 100755
index 000000000..a05545e0b
--- /dev/null
+++ b/1271/CH13/EX13.8/example13_8.sce
@@ -0,0 +1,25 @@
+clc
+// Given that
+x1 = 1 // coordinate on x axis in first case
+y1 = 2 // coordinate on y axis in first case
+z1 = 3 // coordinate on z axis in first case
+x2 = 1
+y2 = 1
+z2 = 0
+// coordinate of first plane in second case
+x3 = 1
+y3= 1
+z3 = 1
+// coordinate of second plane in second case
+// Sample Problem 8 on page no. 13.27
+printf("\n # PROBLEM 8 # \n")
+printf("Standard formula used \n")
+printf(" d = 1 / (x1^2 + y1^2 + z1^2)^1/2 \n")
+x_=6/x1
+y_=6/y1
+z_=6/z1
+d1 = 1 / sqrt(x2^2 + y2^2 + z2^2)
+d2= 1/ sqrt(x3^2 + y3^2 + z3^2)
+d = d1/d2
+printf("\n The ratio of intercepts of three axes by the point are %d : %d : %d. \n The ratio of spacing between two planes is %f.",x_,y_,z_,d)
+
diff --git a/1271/CH13/EX13.9/9.txt b/1271/CH13/EX13.9/9.txt
new file mode 100755
index 000000000..e6d86c12e
--- /dev/null
+++ b/1271/CH13/EX13.9/9.txt
@@ -0,0 +1 @@
+Distance between two atoms is 2.165064 Angstrom . \ No newline at end of file
diff --git a/1271/CH13/EX13.9/example13_9.sce b/1271/CH13/EX13.9/example13_9.sce
new file mode 100755
index 000000000..51f875c66
--- /dev/null
+++ b/1271/CH13/EX13.9/example13_9.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+a = 5 // the lattice constant of the structure in angstrom
+// Sample Problem 9 on page no. 13.28
+printf("\n # PROBLEM 9 # \n")
+printf("Standard formula used \n")
+printf(" d = a*sqrt(3) /4 \n")
+d = (sqrt(3) / 4) * a
+printf("\n Distance between two atoms is %f Angstrom. ",d)
+
diff --git a/1271/CH14/EX1.1/1.txt b/1271/CH14/EX1.1/1.txt
new file mode 100755
index 000000000..e72411578
--- /dev/null
+++ b/1271/CH14/EX1.1/1.txt
@@ -0,0 +1,6 @@
+ # PROBLEM 1 #
+Standard formula used
+ E = h*c/lambda
+
+ Frequency is 1.812689e+16 Hz.
+ Wavelength is 165.500000 Angstrom.
diff --git a/1271/CH14/EX1.1/example14_1.sce b/1271/CH14/EX1.1/example14_1.sce
new file mode 100755
index 000000000..747edaa0b
--- /dev/null
+++ b/1271/CH14/EX1.1/example14_1.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+E = 75 // energy of photon in eV
+h = 6.62e-34 // Planck constant in J-sec
+c = 3e8 // speed of light in m/sec
+e = 1.6e-19 // charge on an electron in J
+// Sample Problem 1 on page no. 14.20
+printf("\n # PROBLEM 1 # \n")
+printf("Standard formula used \n")
+printf(" E = h*c/lambda \n")
+f = E * e / h
+lambda = c / f
+printf("\n Frequency is %e Hz.\n Wavelength is %f Angstrom.",f,lambda * 10^10)
+
diff --git a/1271/CH14/EX14.10/10.txt b/1271/CH14/EX14.10/10.txt
new file mode 100755
index 000000000..465d7172b
--- /dev/null
+++ b/1271/CH14/EX14.10/10.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 10 #
+Standard formula used
+ 1/2 m*v^2 = h*(mu - mu_0)
+
+ Maximum energy of photoelectron is 0.413750 eV.
diff --git a/1271/CH14/EX14.10/example14_10.sce b/1271/CH14/EX14.10/example14_10.sce
new file mode 100755
index 000000000..860dd7c7c
--- /dev/null
+++ b/1271/CH14/EX14.10/example14_10.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+f = 1.2e15 // frequency of light in Hz
+f_ = 1.1e+15 // threshold frequency of photoelectron emission in copper in Hz
+h = 6.62e-34 // Planck constant in J-sec
+c = 3e8 // speed of light in m/sec
+e = 1.6e-19 // charge on an electron in C
+// Sample Problem 10 on page no. 14.23
+printf("\n # PROBLEM 10 # \n")
+printf("Standard formula used \n ")
+printf(" 1/2 m*v^2 = h*(mu - mu_0) \n")
+E = h * (f - f_) / e
+printf("\n Maximum energy of photoelectron is %f eV.",E)
+
diff --git a/1271/CH14/EX14.11/11.txt b/1271/CH14/EX14.11/11.txt
new file mode 100755
index 000000000..6b62fc089
--- /dev/null
+++ b/1271/CH14/EX14.11/11.txt
@@ -0,0 +1,6 @@
+ # PROBLEM 11 #
+Standard formula used
+ E = h*c/lambda
+
+ Work function for wavelength 6.200000e-07 angstrom is 2.002016 eV.
+ Work function for wavelength 5.000000e-07 angstrom is 2.482500 eV
diff --git a/1271/CH14/EX14.11/example14_11.sce b/1271/CH14/EX14.11/example14_11.sce
new file mode 100755
index 000000000..29c815c61
--- /dev/null
+++ b/1271/CH14/EX14.11/example14_11.sce
@@ -0,0 +1,15 @@
+clc
+// Given that
+lambda = 6.2e-7 // threshold wavelength of photoelectron in first case in meter
+lambda_ = 5e-7 // threshold wavelength of photoelectron in second case in meter
+h = 6.62e-34 // Planck constant in J-sec
+c = 3e8 // speed of light in m/sec
+e = 1.6e-19 // charge on an electron in C
+// Sample Problem 11 on page no. 14.23
+printf("\n # PROBLEM 11 # \n")
+printf("Standard formula used \n ")
+printf(" E = h*c/lambda \n")
+w = ((h * c) / lambda) * (1 / e)
+w_ = ((h * c) / lambda_) * (1 / e)
+printf("\n Work function for wavelength %e angstrom is %f eV.\n Work function for wavelength %e angstrom is %f eV",lambda,w,lambda_,w_)
+
diff --git a/1271/CH14/EX14.12/12.txt b/1271/CH14/EX14.12/12.txt
new file mode 100755
index 000000000..5a7cbfd6e
--- /dev/null
+++ b/1271/CH14/EX14.12/12.txt
@@ -0,0 +1,9 @@
+
+ # PROBLEM 12 #
+Standard formula used
+ 1/2 m*v^2 = h*(mu - mu_0)
+
+
+ Work function is 3.172996e-19 J.
+ Maximum energy is 3.168000e-19 J.
+ Threshold frequency is 4.793046e+14 Hz. \ No newline at end of file
diff --git a/1271/CH14/EX14.12/example14_12.sce b/1271/CH14/EX14.12/example14_12.sce
new file mode 100755
index 000000000..3dd28acb3
--- /dev/null
+++ b/1271/CH14/EX14.12/example14_12.sce
@@ -0,0 +1,18 @@
+
+clc
+// Given that
+lambda = 3.132e-7 // wavelength of light in meter
+V = 1.98 // stopping potential in V
+h = 6.62e-34 // Planck constant in J-sec
+c = 3e8 // speed of light in m/sec
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of an electron in kg
+// Sample Problem 12 on page no. 14.24
+printf("\n # PROBLEM 12 # \n")
+printf("Standard formula used \n ")
+printf(" 1/2 m*v^2 = h*(mu - mu_0) \n")
+E = e * V
+lambda_ = 1 / ((1 / lambda) - (E / (h * c)))
+f = c / lambda_
+w = ((h * c) / lambda_)
+printf("\n Work function is %e J.\n Maximum energy is %e J.\n Threshold frequency is %e Hz.",w,E,f)
diff --git a/1271/CH14/EX14.13/13.txt b/1271/CH14/EX14.13/13.txt
new file mode 100755
index 000000000..60ddc75a5
--- /dev/null
+++ b/1271/CH14/EX14.13/13.txt
@@ -0,0 +1,6 @@
+ # PROBLEM 13 #
+Standard formula used
+ E_k = h*c/lambda
+
+ From the above it is clear that the energy corresponding to wavelength 5000 A is i.e. 2.482500 found to be less than the work function i.e. 4.8 eV . So it will not be able to liberate an electron.
+ As the energy to wavelength 2000 A i.e. 6.206250 is greater than the work function. So it is sufficient to liberate electrons.
diff --git a/1271/CH14/EX14.13/example14_13.sce b/1271/CH14/EX14.13/example14_13.sce
new file mode 100755
index 000000000..a28d22b8c
--- /dev/null
+++ b/1271/CH14/EX14.13/example14_13.sce
@@ -0,0 +1,16 @@
+clc
+// Given that
+w = 4.8 // work function in eV
+lambda1 = 5e-7 // wavelength of incident radiation in first case in meter
+lambda2 = 2e-7 // wavelength of incident radiation in second case in meter
+h = 6.62e-34 // Planck constant in J-sec
+c = 3e8 // speed of light in m/sec
+e = 1.6e-19 // charge on an electron in C
+// Sample Problem 13 on page no. 14.24
+printf("\n # PROBLEM 13 # \n")
+printf("Standard formula used \n ")
+printf(" E_k = h*c/lambda \n")
+E_k1 = h*c/lambda1
+E_k2 = h*c / lambda2
+printf("\n From the above it is clear that the energy corresponding to wavelength 5000 A is i.e. %f found to be less than the work function i.e. 4.8 eV . So it will not be able to liberate an electron.\n As the energy to wavelength 2000 A i.e. %f is greater than the work function. So it is sufficient to liberate electrons. ",E_k1/e,E_k2/e)
+
diff --git a/1271/CH14/EX14.14/14.txt b/1271/CH14/EX14.14/14.txt
new file mode 100755
index 000000000..59bf2958b
--- /dev/null
+++ b/1271/CH14/EX14.14/14.txt
@@ -0,0 +1,7 @@
+ # PROBLEM 14 #
+Standard formula used
+ E_k = h*mu - phi
+
+ Maximum energy is 3.370100e-19 J.
+ Work function is 1.746313 eV.
+ Threshold frequency is 4.220695e+14 Hz.
diff --git a/1271/CH14/EX14.14/example14_14.sce b/1271/CH14/EX14.14/example14_14.sce
new file mode 100755
index 000000000..8f2215a1e
--- /dev/null
+++ b/1271/CH14/EX14.14/example14_14.sce
@@ -0,0 +1,17 @@
+clc
+// Given that
+lambda = 5.893e-7 // wavelength of light in meter
+V = 0.36 // stopping potential for emitted electron in eV
+h = 6.62e-34 // Planck constant in J-sec
+c = 3e8 // speed of light in m/sec
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of an electron in kg
+// Sample Problem 14 on page no. 14.25
+printf("\n # PROBLEM 14 # \n")
+printf("Standard formula used \n ")
+printf(" E_k = h*mu - phi \n")
+E = h * c / lambda
+w = ((h * c) / lambda) * (1 / e) - V
+f = w * e / h
+printf("\n Maximum energy is %f eV.\n Work function is %f eV.\n Threshold frequency is %e Hz. ",E/e,w,f)
+
diff --git a/1271/CH14/EX14.15/15.txt b/1271/CH14/EX14.15/15.txt
new file mode 100755
index 000000000..07bdd8b8f
--- /dev/null
+++ b/1271/CH14/EX14.15/15.txt
@@ -0,0 +1,6 @@
+ # PROBLEM 15 #
+Standard formula used
+ E = (h * c) * (1 / lambda1 - 1 / lambda2)
+
+ Stopping potential is 0.411689 V.
+ Maximum kinetic energy is 6.587019e-20 J.
diff --git a/1271/CH14/EX14.15/example14_15.sce b/1271/CH14/EX14.15/example14_15.sce
new file mode 100755
index 000000000..5739efc51
--- /dev/null
+++ b/1271/CH14/EX14.15/example14_15.sce
@@ -0,0 +1,16 @@
+clc
+// Given that
+lambda = 5.89e-7 // wavelength of light in meter
+lambda_ = 7.32e-7 // threshold wavelength of photoelectron in meter
+h = 6.62e-34 // Planck constant in J-sec
+c = 3e8 // speed of light in m/sec
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of an electron in kg
+// Sample Problem 15 on page no. 14.25
+printf("\n # PROBLEM 15 # \n")
+printf("Standard formula used \n ")
+printf(" E = (h * c) * (1 / lambda1 - 1 / lambda2) \n")
+E = (h * c) * (1 / lambda - 1 / lambda_)
+V = E / e
+printf("\n Stopping potential is %f V.\n Maximum kinetic energy is %e J.",V,E)
+
diff --git a/1271/CH14/EX14.16/16.txt b/1271/CH14/EX14.16/16.txt
new file mode 100755
index 000000000..9e19a46aa
--- /dev/null
+++ b/1271/CH14/EX14.16/16.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 16 #
+Standard formula used
+ E = (h * c) * (1 / lambda1 - 1 / lambda2)
+
+ Wavelength of light is 1799.763593 Angstrom.
diff --git a/1271/CH14/EX14.16/example14_16.sce b/1271/CH14/EX14.16/example14_16.sce
new file mode 100755
index 000000000..6386ef05c
--- /dev/null
+++ b/1271/CH14/EX14.16/example14_16.sce
@@ -0,0 +1,15 @@
+clc
+// Given that
+E = 1.5 // maximum energy in eV
+lambda_ = 2.3e-7 // threshold wavelength of photoelectron in meter
+h = 6.62e-34 // Planck constant in J-sec
+c = 3e8 // speed of light in m/sec
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of an electron in kg
+// Sample Problem 16 on page no. 14.26
+printf("\n # PROBLEM 16 # \n")
+printf("Standard formula used \n ")
+printf(" E = (h * c) * (1 / lambda1 - 1 / lambda2) \n")
+lambda = 1 / ((E * e / (h * c)) + (1 / lambda_))
+printf("\n Wavelength of light is %f Angstrom.",lambda * 1e10)
+
diff --git a/1271/CH14/EX14.17/17.txt b/1271/CH14/EX14.17/17.txt
new file mode 100755
index 000000000..d2153c903
--- /dev/null
+++ b/1271/CH14/EX14.17/17.txt
@@ -0,0 +1,7 @@
+ # PROBLEM 17 #
+ Standard formula used
+ E = (h * c)/lambda = 1/2*m*v^2
+
+ Energy of incident photon is 8.275000 eV,which is greater than the work function
+ So it causes photoelectric emission.
+ Kinetic energy of the emitted electron is 3.745000 eV.
diff --git a/1271/CH14/EX14.17/example14_17.sce b/1271/CH14/EX14.17/example14_17.sce
new file mode 100755
index 000000000..180de9367
--- /dev/null
+++ b/1271/CH14/EX14.17/example14_17.sce
@@ -0,0 +1,15 @@
+clc
+// Given that
+lambda = 1.5e-7 // wavelength of light in in meter
+w = 4.53 // work function of tungsten in eV
+h = 6.62e-34 // Planck constant in J-sec
+c = 3e8 // speed of light in m/sec
+e = 1.6e-19 // charge on an electron in C
+// Sample Problem 17 on page no. 14.26
+printf("\n # PROBLEM 17 # \n")
+printf(" Standard formula used \n ")
+printf(" E = (h * c)/lambda = 1/2*m*v^2 \n ")
+E = ((h * c) / lambda) * (1 / e)
+k = E - w
+printf("\n Energy of incident photon is %f eV,which is greater than the work function \n So it causes photoelectric emission.\n Kinetic energy of the emitted electron is %f eV.",E,k)
+
diff --git a/1271/CH14/EX14.18/18.txt b/1271/CH14/EX14.18/18.txt
new file mode 100755
index 000000000..fc88748c5
--- /dev/null
+++ b/1271/CH14/EX14.18/18.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 18 #
+Standard formula used
+ E = (h * c)/ lambda
+
+ Longest wavelength required for photoemission is 5396.739130 Angstrom
diff --git a/1271/CH14/EX14.18/example14_18.sce b/1271/CH14/EX14.18/example14_18.sce
new file mode 100755
index 000000000..bcb173948
--- /dev/null
+++ b/1271/CH14/EX14.18/example14_18.sce
@@ -0,0 +1,13 @@
+clc
+// Given that
+w = 2.3 // work function of sodium in eV
+h = 6.62e-34 // Planck constant in J-sec
+c = 3e8 // speed of light in m/sec
+e = 1.6e-19 // charge on an electron in C
+// Sample Problem 18 on page no. 14.26
+printf("\n # PROBLEM 18 # \n")
+printf("Standard formula used \n ")
+printf(" E = (h * c)/ lambda \n")
+lambda = ((h * c) / w) * (1 / e)
+printf("\n Longest wavelength required for photoemission is %f Angstrom",lambda * 1e10)
+
diff --git a/1271/CH14/EX14.19/19.txt b/1271/CH14/EX14.19/19.txt
new file mode 100755
index 000000000..e25cbf5db
--- /dev/null
+++ b/1271/CH14/EX14.19/19.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 19 #
+Standard formula used
+ E = (h * c)/ lambda
+
+ Threshold wavelength for photo emission is 6206 Angstrom.
diff --git a/1271/CH14/EX14.19/example14_19.sce b/1271/CH14/EX14.19/example14_19.sce
new file mode 100755
index 000000000..304d71a0d
--- /dev/null
+++ b/1271/CH14/EX14.19/example14_19.sce
@@ -0,0 +1,13 @@
+clc
+// Given that
+w = 2 // work function of sodium in eV
+h = 6.62e-34 // Planck constant in J-sec
+c = 3e8 // speed of light in m/sec
+e = 1.6e-19 // charge on an electron in C
+// Sample Problem 19 on page no. 14.27
+printf("\n # PROBLEM 19 # \n")
+printf("Standard formula used \n ")
+printf(" E = (h * c)/ lambda \n")
+lambda = ((h * c) / w) * (1 / e)
+printf("\n Threshold wavelength for photo emission is %d Angstrom.",lambda * 1e10)
+
diff --git a/1271/CH14/EX14.2/2.txt b/1271/CH14/EX14.2/2.txt
new file mode 100755
index 000000000..e1580161f
--- /dev/null
+++ b/1271/CH14/EX14.2/2.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 2 #
+Standard formula used
+ E = h*mu
+
+ Number of quanta emitted per sec is 3.082804e+30 .
diff --git a/1271/CH14/EX14.2/example14_2.sce b/1271/CH14/EX14.2/example14_2.sce
new file mode 100755
index 000000000..e75e7a464
--- /dev/null
+++ b/1271/CH14/EX14.2/example14_2.sce
@@ -0,0 +1,15 @@
+clc
+// Given that
+P = 2e5 // radiated power in W
+f = 98e6 // frequency in Hz
+h = 6.62e-34 // Planck constant in J-sec
+c = 3e8 // speed of light in m/sec
+e = 1.6e-19 // charge on an electron in C
+// Sample Problem 2 on page no. 14.20
+printf("\n # PROBLEM 2 # \n")
+printf("Standard formula used \n")
+printf(" E = h*mu \n")
+E = h * f
+n = P / E
+printf("\n Number of quanta emitted per sec is %e . ",n)
+
diff --git a/1271/CH14/EX14.20/20.txt b/1271/CH14/EX14.20/20.txt
new file mode 100755
index 000000000..c999f9b2e
--- /dev/null
+++ b/1271/CH14/EX14.20/20.txt
@@ -0,0 +1,7 @@
+ # PROBLEM 20 #
+Standard formula used
+ E = (h * c) * (1 / lambda1 - 1 / lambda2)
+ E = (h * c)/ lambda
+
+ Threshold wavelength is 5642 Angstrom.
+ Incident electromagnetic wavelength is 2002.016129 Angstrom
diff --git a/1271/CH14/EX14.20/example14_20.sce b/1271/CH14/EX14.20/example14_20.sce
new file mode 100755
index 000000000..040ad535e
--- /dev/null
+++ b/1271/CH14/EX14.20/example14_20.sce
@@ -0,0 +1,15 @@
+clc
+// Given that
+k = 4 // maximum kinetic energy of electron in eV
+w = 2.2 // work function of sodium in eV
+h = 6.62e-34 // Planck constant in J-sec
+c = 3e8 // speed of light in m/sec
+e = 1.6e-19 // charge on an electron in C
+// Sample Problem 20 on page no. 14.27
+printf("\n # PROBLEM 20 # \n")
+printf("Standard formula used \n ")
+printf(" E = (h * c) * (1 / lambda1 - 1 / lambda2) \n E = (h * c)/ lambda \n")
+lambda_ = ((h * c) / (w * e))
+lambda = (1 / ((((k * e) / (h * c))) + (1 / lambda_)))
+printf("\n Threshold wavelength is %d Angstrom.\n Incident electromagnetic wavelength is %f Angstrom",lambda_ * 1e10,lambda * 1e10)
+
diff --git a/1271/CH14/EX14.21/21.txt b/1271/CH14/EX14.21/21.txt
new file mode 100755
index 000000000..a4a6df271
--- /dev/null
+++ b/1271/CH14/EX14.21/21.txt
@@ -0,0 +1,6 @@
+ # PROBLEM 21 #
+Standard formula used
+ 1/2*m*v^2 = (h * c)/ lambda
+
+ Maximum kinetic energy is 2.314286e-19 J.
+ Number of electrons emitted per sec from 1cm^2 area is 2.160494e+12 .
diff --git a/1271/CH14/EX14.21/example14_21.sce b/1271/CH14/EX14.21/example14_21.sce
new file mode 100755
index 000000000..cd6f243a9
--- /dev/null
+++ b/1271/CH14/EX14.21/example14_21.sce
@@ -0,0 +1,20 @@
+clc
+// Given that
+lambda = 3.5e-7 // wavelength of light in meter
+i = 1 // intensity in W/m^2
+p = 0.5 // percent of incident photon produce electron
+a = 1 // surface area of potassium in cm^2
+w = 2.1 // work function of potassium in eV
+h = 6.62e-34 // Planck constant in J-sec
+c = 3e8 // speed of light in m/sec
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of an electron in kg
+// Sample Problem 21 on page no. 14.28
+printf("\n # PROBLEM 21 # \n")
+printf("Standard formula used \n ")
+printf(" 1/2*m*v^2 = (h * c)/ lambda\n")
+E = (((h * c) / lambda) * (1 / e) - w) * e
+E_ = (p * a * 1e-4) / 100 // in W/cm^2
+n = E_ / E
+printf("\n Maximum kinetic energy is %e J.\n Number of electrons emitted per sec from 1cm^2 area is %e .",E,n)
+
diff --git a/1271/CH14/EX14.22/22.txt b/1271/CH14/EX14.22/22.txt
new file mode 100755
index 000000000..7bf8b619d
--- /dev/null
+++ b/1271/CH14/EX14.22/22.txt
@@ -0,0 +1,5 @@
+# PROBLEM 22 #
+Standard formula used
+ E = (h * c) * (1 / lambda1 - 1 / lambda2)
+
+ Value of Planck constant is 6.037176e-34 J-sec.
diff --git a/1271/CH14/EX14.22/example14_22.sce b/1271/CH14/EX14.22/example14_22.sce
new file mode 100755
index 000000000..1ee5220af
--- /dev/null
+++ b/1271/CH14/EX14.22/example14_22.sce
@@ -0,0 +1,15 @@
+clc
+// Given that
+lambda = 5.896e-7 // wavelength of first light in meter
+lambda_ = 2.83e-7 // wavelength of second light in meter
+V1 = 0.12 // stopping potential for emitted electrons for first light in V
+V2 = 2.2 // stopping potential for emitted electrons for second light in V
+c = 3e8 // speed of light in m/sec
+e = 1.6e-19 // charge on an electron in C
+// Sample Problem 22 on page no. 14.28
+printf("\n # PROBLEM 22 # \n")
+printf("Standard formula used \n ")
+printf(" E = (h * c) * (1 / lambda1 - 1 / lambda2) \n")
+h = (e * (V2 - V1) / c) / (1 / lambda_ - 1 / lambda)
+printf("\n Value of Planck constant is %e J-sec.",h)
+
diff --git a/1271/CH14/EX14.23/23.txt b/1271/CH14/EX14.23/23.txt
new file mode 100755
index 000000000..89c0bd446
--- /dev/null
+++ b/1271/CH14/EX14.23/23.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 23 #
+Standard formula used
+ delta_lambda = (h / (m * c) * (1 - cos(theta)))
+
+ Compton shift is 0.024249 Angstrom
diff --git a/1271/CH14/EX14.23/example14_23.sce b/1271/CH14/EX14.23/example14_23.sce
new file mode 100755
index 000000000..aede68157
--- /dev/null
+++ b/1271/CH14/EX14.23/example14_23.sce
@@ -0,0 +1,15 @@
+clc
+// Given that
+lambda = 1e-10 // wavelength of light in meter
+theta = 90 // angle at which scattered radiation is viewed in degree
+h = 6.62e-34 // Planck constant in J-sec
+c = 3e8 // speed of light in m/sec
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of an electron in kg
+// Sample Problem 23 on page no. 14.29
+printf("\n # PROBLEM 23 # \n")
+printf("Standard formula used \n ")
+printf(" delta_lambda = (h / (m * c) * (1 - cos(theta))) \n")
+delta_lambda = (h * (1 - cosd(theta))) / (m * c)
+printf("\n Compton shift is %f Angstrom",delta_lambda * 1e10)
+
diff --git a/1271/CH14/EX14.24/24.txt b/1271/CH14/EX14.24/24.txt
new file mode 100755
index 000000000..faf3f8396
--- /dev/null
+++ b/1271/CH14/EX14.24/24.txt
@@ -0,0 +1,6 @@
+ # PROBLEM 24 #
+Standard formula used
+ delta_lambda = (h / (m * c) * (1 - cos(theta)))
+
+ Compton shift is 0.024249 Angstrom.
+ Energy of incident beam is 0.511875 MeV.
diff --git a/1271/CH14/EX14.24/example14_24.sce b/1271/CH14/EX14.24/example14_24.sce
new file mode 100755
index 000000000..8dc548f67
--- /dev/null
+++ b/1271/CH14/EX14.24/example14_24.sce
@@ -0,0 +1,16 @@
+clc
+// Given that
+lambda = 1e-10 // wavelength of light in meter
+theta = 90 // angle in degree
+h = 6.62e-34 // Planck constant in J-sec
+c = 3e8 // speed of light in m/sec
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of an electron in kg
+// Sample Problem 24 on page no. 14.29
+printf("\n # PROBLEM 24 # \n")
+printf("Standard formula used \n ")
+printf(" delta_lambda = (h / (m * c) * (1 - cos(theta))) \n")
+delta_lambda = (h * (1 - cosd(theta))) / (m * c)
+E = (h * c) / delta_lambda
+printf("\n Compton shift is %f Angstrom.\n Energy of incident beam is %f MeV.",delta_lambda * 1e10,E / 1.6e-13)
+
diff --git a/1271/CH14/EX14.25/25.txt b/1271/CH14/EX14.25/25.txt
new file mode 100755
index 000000000..1975f7c12
--- /dev/null
+++ b/1271/CH14/EX14.25/25.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 25 #
+Standard formula used
+ 1/2*m*v^2 = h*c*(1/lambda1 - 1/lambda2)
+
+ Wavelength of incident beam is 0.365115 Angstrom.
diff --git a/1271/CH14/EX14.25/example14_25.sce b/1271/CH14/EX14.25/example14_25.sce
new file mode 100755
index 000000000..b0d2bf3a2
--- /dev/null
+++ b/1271/CH14/EX14.25/example14_25.sce
@@ -0,0 +1,16 @@
+clc
+// Given that
+E = 4 // enrgy of recoil electron in KeV
+theta = 180 // scattered angle of photon in degree
+h = 6.62e-34 // Planck constant in J-sec
+c = 3e8 // speed of light in m/sec
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of an electron in kg
+// Sample Problem 25 on page no. 14.30
+printf("\n # PROBLEM 25 # \n")
+printf("Standard formula used \n ")
+printf(" 1/2*m*v^2 = h*c*(1/lambda1 - 1/lambda2)\n")
+p = sqrt(2 * E * 10^3 * e * m)
+lambda = (2 * h * c) / (p * c + E * 10^3 * e)
+printf("\n Wavelength of incident beam is %f Angstrom.",lambda * 1e10)
+
diff --git a/1271/CH14/EX14.26/26.txt b/1271/CH14/EX14.26/26.txt
new file mode 100755
index 000000000..72af96718
--- /dev/null
+++ b/1271/CH14/EX14.26/26.txt
@@ -0,0 +1,7 @@
+ # PROBLEM 26 #
+Standard formula used
+ delta_lambda = (h / (m * c) * (1 - cos(theta)))
+ E = h*c*(1/lambda1 - 1/lambda2)
+
+ Compton shift is 2.424908e-12 m.
+ Kinetic energy is 293.865782 eV.
diff --git a/1271/CH14/EX14.26/example14_26.sce b/1271/CH14/EX14.26/example14_26.sce
new file mode 100755
index 000000000..66ead9837
--- /dev/null
+++ b/1271/CH14/EX14.26/example14_26.sce
@@ -0,0 +1,16 @@
+clc
+// Given that
+lambda = 1e-10 // wavelength of light in meter
+theta = 90 // angle in degree
+h = 6.62e-34 // Planck constant in J-sec
+c = 3e8 // speed of light in m/sec
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of an electron in kg
+// Sample Problem 26 on page no. 14.31
+printf("\n # PROBLEM 26 # \n")
+printf("Standard formula used \n ")
+printf(" delta_lambda = (h / (m * c) * (1 - cos(theta))) \n E = h*c*(1/lambda1 - 1/lambda2)\n")
+delta_lambda = (h * (1 - cosd(theta))) / (m * c)
+E = (h * c) * ((1 / lambda) - (1 / (lambda + delta_lambda)))
+printf("\n Compton shift is %e m.\n Kinetic energy is %f eV.",delta_lambda,E / 1.6e-19)
+
diff --git a/1271/CH14/EX14.27/27.txt b/1271/CH14/EX14.27/27.txt
new file mode 100755
index 000000000..066b9f993
--- /dev/null
+++ b/1271/CH14/EX14.27/27.txt
@@ -0,0 +1,7 @@
+ # PROBLEM 27 #
+Standard formula used
+ delta_lambda = (h / (m * c) * (1 - cos(theta)))
+ E = h*c*(1/lambda1 - 1/lambda2)
+
+ Maximum Compton shift is 0.048498 A.
+ Kinetic energy is 21.716784 KeV.
diff --git a/1271/CH14/EX14.27/example14_27.sce b/1271/CH14/EX14.27/example14_27.sce
new file mode 100755
index 000000000..0407f62fb
--- /dev/null
+++ b/1271/CH14/EX14.27/example14_27.sce
@@ -0,0 +1,16 @@
+clc
+// Given that
+lambda = 0.144e-10 // wavelength of x-ray in meter
+h = 6.62e-34 // Planck constant in J-sec
+c = 3e8 // speed of light in m/sec
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of an electron in kg
+// Sample Problem 27 on page no. 14.31
+printf("\n # PROBLEM 27 # \n")
+printf("Standard formula used \n ")
+printf(" delta_lambda = (h / (m * c) * (1 - cos(theta))) \n E = h*c*(1/lambda1 - 1/lambda2)\n")
+theta = 180 // for maximum shift
+delta_lambda = (h * (1 - cosd(theta))) / (m * c)
+E = (h * c) * ((1 / lambda) - (1 / (lambda + delta_lambda)))
+printf("\n Maximum Compton shift is %f A.\n Kinetic energy is %f KeV.",delta_lambda * 1e10,E / 1.6e-16)
+
diff --git a/1271/CH14/EX14.28/28.txt b/1271/CH14/EX14.28/28.txt
new file mode 100755
index 000000000..635aecc6a
--- /dev/null
+++ b/1271/CH14/EX14.28/28.txt
@@ -0,0 +1,7 @@
+ # PROBLEM 28 #
+Standard formula used
+ delta_lambda = (h / (m * c) * (1 - cos(theta)))
+ E = h*c*(1/lambda1 - 1/lambda2)
+
+ Wavelength of x-ray is 0.248498 A.
+ Maximum kinetic energy 1.937989e-15 J.
diff --git a/1271/CH14/EX14.28/example14_28.sce b/1271/CH14/EX14.28/example14_28.sce
new file mode 100755
index 000000000..b7f7ac74d
--- /dev/null
+++ b/1271/CH14/EX14.28/example14_28.sce
@@ -0,0 +1,20 @@
+clc
+// Given that
+lambda = 0.2e-10 // wavelength of x-ray in meter
+theta = 45 // scattered angle in degree
+h = 6.62e-34 // Planck constant in J-sec
+c = 3e8 // speed of light in m/sec
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of an electron in kg
+// Sample Problem 28 on page no. 14.32
+printf("\n # PROBLEM 28 # \n")
+printf("Standard formula used \n ")
+printf(" delta_lambda = (h / (m * c) * (1 - cos(theta))) \n E = h*c*(1/lambda1 - 1/lambda2)\n")
+delta_lambda = (h * (1 - cosd(theta))) / (m * c)
+E = (h * c) * ((1 / lambda) - (1 / (lambda + delta_lambda)))
+theta_ = 180 // for maximum
+delta_lambda_ = (h * (1 - cosd(theta_))) / (m * c)
+lambda_ = lambda + delta_lambda_
+E_k = h*c*(1/lambda - 1/lambda_)
+printf("\n Wavelength of x-ray is %f A.\n Maximum kinetic energy %e J.",lambda_ * 1e10,E_k)
+
diff --git a/1271/CH14/EX14.29/29.txt b/1271/CH14/EX14.29/29.txt
new file mode 100755
index 000000000..d048c034e
--- /dev/null
+++ b/1271/CH14/EX14.29/29.txt
@@ -0,0 +1,5 @@
+# PROBLEM 29 #
+Standard formula used
+ lambda = h /(m*v)
+
+ de-Broglie wavelength is 1.241250e-38 m.
diff --git a/1271/CH14/EX14.29/example14_29.sce b/1271/CH14/EX14.29/example14_29.sce
new file mode 100755
index 000000000..30b75bf57
--- /dev/null
+++ b/1271/CH14/EX14.29/example14_29.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+h = 6.62e-34 // Planck constant in J-sec
+v = 96 // speed of automobile in km/hr
+e = 1.6e-19 // charge on an electron in C
+m = 2e3 // mass of automobile in kg
+// Sample Problem 29 on page no. 14.33
+printf("\n # PROBLEM 29 # \n")
+printf("Standard formula used \n ")
+printf(" lambda = h /(m*v)\n")
+v_ = v * (5 / 18)
+lambda = h / (m * v_)
+printf("\n de-Broglie wavelength is %e m.",lambda)
+
diff --git a/1271/CH14/EX14.3/3.txt b/1271/CH14/EX14.3/3.txt
new file mode 100755
index 000000000..a07b41969
--- /dev/null
+++ b/1271/CH14/EX14.3/3.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 3 #
+Standard formula used
+ E = h*c/lambda
+
+ Energy of photon is 4.965000e-19 J.
diff --git a/1271/CH14/EX14.3/example14_3.sce b/1271/CH14/EX14.3/example14_3.sce
new file mode 100755
index 000000000..e408f22e3
--- /dev/null
+++ b/1271/CH14/EX14.3/example14_3.sce
@@ -0,0 +1,13 @@
+clc
+// Given that
+lambda = 4e-7 // wavelength of spectral line in meter
+h = 6.62e-34 // Planck constant in J-sec
+c = 3e8 // speed of light in m/sec
+e = 1.6e-19 // charge on an electron in C
+// Sample Problem 3 on page no. 14.20
+printf("\n # PROBLEM 3 # \n")
+printf("Standard formula used \n")
+printf(" E = h*c/lambda \n")
+E = (h * c) / lambda
+printf("\n Energy of photon is %e J.",E)
+
diff --git a/1271/CH14/EX14.30/30.txt b/1271/CH14/EX14.30/30.txt
new file mode 100755
index 000000000..609c98d3f
--- /dev/null
+++ b/1271/CH14/EX14.30/30.txt
@@ -0,0 +1,6 @@
+# PROBLEM 30 #
+Standard formula used
+ lambda = h /(m*v)
+ 1/2*m*v^2 = eV
+
+ de-Broglie wavelength is 1.734911 Angstrom.
diff --git a/1271/CH14/EX14.30/example14_30.sce b/1271/CH14/EX14.30/example14_30.sce
new file mode 100755
index 000000000..3a9da74bf
--- /dev/null
+++ b/1271/CH14/EX14.30/example14_30.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+v = 50 // potential differece in volt
+h = 6.62e-34 // Planck constant in J-sec
+c = 3e8 // speed of light in m/sec
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of an electron in kg
+// Sample Problem 30 on page no. 14.33
+printf("\n # PROBLEM 30 # \n")
+printf("Standard formula used \n ")
+printf(" lambda = h /(m*v)\n 1/2*m*v^2 = eV \n")
+lambda = h / sqrt(2 * m * v * e)
+printf("\n de-Broglie wavelength is %f Angstrom.",lambda * 1e10)
+
diff --git a/1271/CH14/EX14.31/31.txt b/1271/CH14/EX14.31/31.txt
new file mode 100755
index 000000000..999075aab
--- /dev/null
+++ b/1271/CH14/EX14.31/31.txt
@@ -0,0 +1,6 @@
+# PROBLEM 31 #
+Standard formula used
+ lambda = h /(m*v)
+ 1/2*m*v^2 = 3/2*k*T
+
+ Wavelength of thermal neutron is 1.458875 Angstrom.
diff --git a/1271/CH14/EX14.31/example14_31.sce b/1271/CH14/EX14.31/example14_31.sce
new file mode 100755
index 000000000..8ee6d5c41
--- /dev/null
+++ b/1271/CH14/EX14.31/example14_31.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+t = 300 // temperature in K
+k = 1.37e-23 // Boltzmann's constant in J/K
+h = 6.62e-34 // Planck constant in J-sec
+e = 1.6e-19 // charge on an electron in C
+m = 1.67e-27 // mass of neutron in kg
+// Sample Problem 31 on page no. 14.33
+printf("\n # PROBLEM 31 # \n")
+printf("Standard formula used \n ")
+printf(" lambda = h /(m*v)\n 1/2*m*v^2 = 3/2*k*T \n")
+lambda = h / sqrt(3 * m * k * t)
+printf("\n Wavelength of thermal neutron is %f Angstrom.",lambda * 1e10)
+
diff --git a/1271/CH14/EX14.32/32.txt b/1271/CH14/EX14.32/32.txt
new file mode 100755
index 000000000..53ce7f211
--- /dev/null
+++ b/1271/CH14/EX14.32/32.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 32 #
+Standard formula used
+ lambda = h /(m*v)
+
+ Wavelength of matter wave associated with proton is 1.982036e-15 m
diff --git a/1271/CH14/EX14.32/example14_32.sce b/1271/CH14/EX14.32/example14_32.sce
new file mode 100755
index 000000000..28848bf41
--- /dev/null
+++ b/1271/CH14/EX14.32/example14_32.sce
@@ -0,0 +1,13 @@
+clc
+// Given that
+v = 2e8 // speed of proton in m/sec
+h = 6.62e-34 // Planck constant in J-sec
+e = 1.6e-19 // charge on an electron in C
+m = 1.67e-27 // mass of proton in kg
+// Sample Problem 32 on page no. 14.34
+printf("\n # PROBLEM 32 # \n")
+printf("Standard formula used \n ")
+printf(" lambda = h /(m*v) \n")
+lambda = h / (m * v)
+printf("\n Wavelength of matter wave associated with proton is %e m",lambda)
+
diff --git a/1271/CH14/EX14.33/33.txt b/1271/CH14/EX14.33/33.txt
new file mode 100755
index 000000000..4aaab3a7f
--- /dev/null
+++ b/1271/CH14/EX14.33/33.txt
@@ -0,0 +1,6 @@
+# PROBLEM 33 #
+Standard formula used
+ lambda = h /(m*v)
+ 1/2*m*v^2 = qV
+
+ Potential difference is 15.049588 KV.
diff --git a/1271/CH14/EX14.33/example14_33.sce b/1271/CH14/EX14.33/example14_33.sce
new file mode 100755
index 000000000..1d00b8add
--- /dev/null
+++ b/1271/CH14/EX14.33/example14_33.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+lambda = 0.1e-10 // DE Broglie wavelength associated with electron in M
+h = 6.62e-34 // Planck constant in J-sec
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of electron in kg
+// Sample Problem 33 on page no. 14.34
+printf("\n # PROBLEM 33 # \n")
+printf("Standard formula used \n ")
+printf(" lambda = h /(m*v)\n 1/2*m*v^2 = qV \n")
+V = h^2 / (2 * m* e * lambda^2)
+printf("\n Potential difference is %f KV.",V * 10^-3)
diff --git a/1271/CH14/EX14.34/34.txt b/1271/CH14/EX14.34/34.txt
new file mode 100755
index 000000000..e36d33dcc
--- /dev/null
+++ b/1271/CH14/EX14.34/34.txt
@@ -0,0 +1,6 @@
+# PROBLEM 34 #
+Standard formula used
+ lambda = h /(m*v)
+ 1/2*m*v^2 = qV
+
+ de-Broglie wavelength = 7.159205e-13 m.
diff --git a/1271/CH14/EX14.34/example14_34.sce b/1271/CH14/EX14.34/example14_34.sce
new file mode 100755
index 000000000..87e1275e7
--- /dev/null
+++ b/1271/CH14/EX14.34/example14_34.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+v = 200 // potential differece in volt
+h = 6.62e-34 // Planck constant in J-sec
+c = 3e8 // speed of light in m/sec
+q = 3.2e-19 // charge on an alpha particle in C
+m = 4 * 1.67e-27 // mass of alpha particle in kg
+// Sample Problem 34 on page no. 14.34
+printf("\n # PROBLEM 34 # \n")
+printf("Standerd formula used \n ")
+printf(" lambda = h /(m*v)\n 1/2*m*v^2 = qV \n")
+lambda = h / sqrt(2 * m * v * q)
+printf("\n de-Broglie wavelength = %e m.",lambda)
+
diff --git a/1271/CH14/EX14.35/35.txt b/1271/CH14/EX14.35/35.txt
new file mode 100755
index 000000000..b480ad20c
--- /dev/null
+++ b/1271/CH14/EX14.35/35.txt
@@ -0,0 +1,6 @@
+ # PROBLEM 35 #
+Standard formula used
+ lambda = h /(m*v)
+ 1/2*m*v^2 = 3/2*k*T
+
+ de-Broglie wavelength = 0.629419 Angstrom.
diff --git a/1271/CH14/EX14.35/example14_35.sce b/1271/CH14/EX14.35/example14_35.sce
new file mode 100755
index 000000000..bf64c4bc6
--- /dev/null
+++ b/1271/CH14/EX14.35/example14_35.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+t = 400 // temperature in K
+k = 1.38e-23 // Boltzmann's constant in J/K
+h = 6.62e-34 // Planck constant in J-sec
+e = 1.6e-19 // charge on an electron in C
+m = 4 * 1.67e-27 // mass of helium atom in kg
+// Sample Problem 35 on page no. 14.34
+printf("\n # PROBLEM 35 # \n")
+printf("Standard formula used \n ")
+printf(" lambda = h /(m*v)\n 1/2*m*v^2 = 3/2*k*T \n")
+lambda = h / sqrt(3 * m * k * t)
+printf("\n de-Broglie wavelength = %f Angstrom.",lambda * 1e10)
+
diff --git a/1271/CH14/EX14.36/36.txt b/1271/CH14/EX14.36/36.txt
new file mode 100755
index 000000000..9d55f481a
--- /dev/null
+++ b/1271/CH14/EX14.36/36.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 36 #
+Standard formula used
+ lambda = h /(m*v)
+
+ de-Broglie wavelength is 1.982036 Angstrom.
diff --git a/1271/CH14/EX14.36/example14_36.sce b/1271/CH14/EX14.36/example14_36.sce
new file mode 100755
index 000000000..ce8560f78
--- /dev/null
+++ b/1271/CH14/EX14.36/example14_36.sce
@@ -0,0 +1,13 @@
+clc
+// Given that
+v = 2000 // velocity of neutron in m/sec
+h = 6.62e-34 // Planck constant in J-sec
+e = 1.6e-19 // charge on an electron in C
+m = 1.67e-27 // mass of neutron in kg
+// Sample Problem 36 on page no. 14.35
+printf("\n # PROBLEM 36 # \n")
+printf("Standard formula used \n ")
+printf(" lambda = h /(m*v)\n")
+lambda = h / (m * v)
+printf("\n de-Broglie wavelength is %f Angstrom.",lambda * 1e10)
+
diff --git a/1271/CH14/EX14.37/37.txt b/1271/CH14/EX14.37/37.txt
new file mode 100755
index 000000000..b36049608
--- /dev/null
+++ b/1271/CH14/EX14.37/37.txt
@@ -0,0 +1,6 @@
+ # PROBLEM 37 #
+Standard formula used
+ lambda = h /(m*v)
+
+ Energy for electron is 150.495879 eV.
+ Energy for neutron is 0.082007 eV.
diff --git a/1271/CH14/EX14.37/example14_37.sce b/1271/CH14/EX14.37/example14_37.sce
new file mode 100755
index 000000000..d95d68885
--- /dev/null
+++ b/1271/CH14/EX14.37/example14_37.sce
@@ -0,0 +1,16 @@
+clc
+// Given that
+lambda = 1e-10 // wavelength in m
+h = 6.62e-34 // Planck constant in J-sec
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of electron in kg
+m_ = 1.67e-27 // mass of neutron in kg
+// Sample Problem 37 on page no. 14.35
+printf("\n # PROBLEM 37 # \n")
+printf("Standard formula used \n ")
+printf(" lambda = h /(m*v)\n")
+v = h / (m * lambda)
+E = h^2 / (2 * m * lambda^2)
+E_ = h^2 / (2 * m_ * lambda^2)
+printf("\n Energy for electron is %f eV.\n Energy for neutron is %f eV.",E / e,E_ / e)
+
diff --git a/1271/CH14/EX14.38/38.txt b/1271/CH14/EX14.38/38.txt
new file mode 100755
index 000000000..5792a41f4
--- /dev/null
+++ b/1271/CH14/EX14.38/38.txt
@@ -0,0 +1,7 @@
+ # PROBLEM 38 #
+Standard formula used
+ lambda = h/(2*m*E)^1/2.
+
+ de-Broglie wavelength of electron - (1) In first case is 0.548627 A.
+ (2) In second case is 1.734911 A.
+ (3) In third is 12.267676 A.
diff --git a/1271/CH14/EX14.38/example14_38.sce b/1271/CH14/EX14.38/example14_38.sce
new file mode 100755
index 000000000..9bae2e9f7
--- /dev/null
+++ b/1271/CH14/EX14.38/example14_38.sce
@@ -0,0 +1,17 @@
+clc
+// Given that
+E1 = 500 // kinetic energy of electron in first case in eV
+E2 = 50 // kinetic energy of electron in second case in eV
+E3 = 1 // kinetic energy of electron in third case in eV
+h = 6.62e-34 // Planck constant in J-sec
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of electron in kg
+// Sample Problem 38 on page no. 14.36
+printf("\n # PROBLEM 38 # \n")
+printf("Standard formula used \n ")
+printf(" lambda = h/(2*m*E)^1/2.\n")
+lambda1 = h / sqrt(2 * m * E1 * e)
+lambda2 = h / sqrt(2 * m * E2 * e)
+lambda3 = h / sqrt(2 * m * E3 * e)
+printf("\n de-Broglie wavelength of electron - (1) In first case is %f A. \n (2) In second case is %f A. \n (3) In third is %f A.",lambda1*1e10,lambda2*1e10,lambda3*1e10)
+
diff --git a/1271/CH14/EX14.39/39.txt b/1271/CH14/EX14.39/39.txt
new file mode 100755
index 000000000..7a72f057b
--- /dev/null
+++ b/1271/CH14/EX14.39/39.txt
@@ -0,0 +1,5 @@
+# PROBLEM 39 #
+Standard formula used
+ lambda = h/(2*m*E)^1/2
+
+ Ratio of de-Broglie wavelengths is 22.583180 .
diff --git a/1271/CH14/EX14.39/example14_39.sce b/1271/CH14/EX14.39/example14_39.sce
new file mode 100755
index 000000000..0c7e57dd5
--- /dev/null
+++ b/1271/CH14/EX14.39/example14_39.sce
@@ -0,0 +1,16 @@
+clc
+// Given that
+E1 = 1 // kinetic energy of neutron in first case in eV
+E2 = 510 // kinetic energy of neutron in second case in eV
+h = 6.62e-34 // Planck constant in J-sec
+e = 1.6e-19 // charge on an electron in C
+m = 1.67e-27 // mass of neutron in kg
+// Sample Problem 39 on page no. 14.36
+printf("\n # PROBLEM 39 # \n")
+printf("Standard formula used \n ")
+printf(" lambda = h/(2*m*E)^1/2\n")
+lambda1 = h / sqrt(2 * m * E1 * e)
+lambda2 = h / sqrt(2 * m * E2 * e)
+r = lambda1 / lambda2
+printf("\n Ratio of de-Broglie wavelengths is %f .",r)
+
diff --git a/1271/CH14/EX14.4/4.txt b/1271/CH14/EX14.4/4.txt
new file mode 100755
index 000000000..ef7b9fc38
--- /dev/null
+++ b/1271/CH14/EX14.4/4.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 4 #
+Standard formula used
+ E = h*c/lambda
+
+ Number of photons of green light emitted is 2.517623e+11 .
diff --git a/1271/CH14/EX14.4/example14_4.sce b/1271/CH14/EX14.4/example14_4.sce
new file mode 100755
index 000000000..fb804abd2
--- /dev/null
+++ b/1271/CH14/EX14.4/example14_4.sce
@@ -0,0 +1,15 @@
+clc
+// Given that
+lambda = 5e-7 // wavelength of green light in meter
+h = 6.62e-34 // Planck constant in J-sec
+c = 3e8 // speed of light in m/sec
+e = 1.6e-19 // charge on an electron in C
+P = 1 // energy in erg
+// Sample Problem 4 on page no. 14.21
+printf("\n # PROBLEM 4 # \n")
+printf("Standard formula used \n")
+printf(" E = h*c/lambda \n")
+E = ((h * c) / lambda) * (10^7)
+n = P / E
+printf("\n Number of photons of green light emitted is %e .",n)
+
diff --git a/1271/CH14/EX14.40/40.txt b/1271/CH14/EX14.40/40.txt
new file mode 100755
index 000000000..81fa7a62d
--- /dev/null
+++ b/1271/CH14/EX14.40/40.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 40 #
+Standard formula used
+ lambda = h/(2*m*E)^1/2
+
+ Ratio of de-Broglie wavelengths is 42.838824.
diff --git a/1271/CH14/EX14.40/example14_40.sce b/1271/CH14/EX14.40/example14_40.sce
new file mode 100755
index 000000000..e10b0faaf
--- /dev/null
+++ b/1271/CH14/EX14.40/example14_40.sce
@@ -0,0 +1,17 @@
+clc
+// Given that
+E = 20 // kinetic energy of proton in MeV
+E2 = 510 // kinetic energy of neutron in second case in eV
+h = 6.62e-34 // Planck constant in J-sec
+e = 1.6e-19 // charge on an electron in C
+m = 1.67e-27 // mass of proton in kg
+m_ = 9.1e-31 // mass of electron in kg
+// Sample Problem 40 on page no. 14.37
+printf("\n # PROBLEM 40 # \n")
+printf("Standard formula used \n ")
+printf(" lambda = h/(2*m*E)^1/2\n")
+lambda1 = h / sqrt(2 * m * 10^6 * E * e)
+lambda2 = h / sqrt(2 * m_ * E * 10^6 * e)
+r = lambda2 / lambda1
+printf("\n Ratio of de-Broglie wavelengths is %f.",r)
+
diff --git a/1271/CH14/EX14.41/41.txt b/1271/CH14/EX14.41/41.txt
new file mode 100755
index 000000000..9f88a2c61
--- /dev/null
+++ b/1271/CH14/EX14.41/41.txt
@@ -0,0 +1,6 @@
+ # PROBLEM 41 #
+Standard formula used
+ E = 1/2 * m*v^2
+
+ Velocity is 1.384257e+07 m/sec.
+ From the above result it is clear that the velocity of proton is nearly one twentieth of the velocity of light. So the relativistic calculation are not required.
diff --git a/1271/CH14/EX14.41/example14_41.sce b/1271/CH14/EX14.41/example14_41.sce
new file mode 100755
index 000000000..4b1542074
--- /dev/null
+++ b/1271/CH14/EX14.41/example14_41.sce
@@ -0,0 +1,13 @@
+clc
+// Given that
+E = 1 // kinetic energy of proton in MeV
+h = 6.62e-34 // Planck constant in J-sec
+e = 1.6e-19 // charge on an electron in C
+m = 1.67e-27 // mass of proton in kg
+// Sample Problem 41 on page no. 14.37
+printf("\n # PROBLEM 41 # \n")
+printf("Standard formula used \n ")
+printf(" E = 1/2 * m*v^2 \n")
+v = sqrt(2 * E * 1.6e-13 / m)
+printf("\n Velocity is %e m/sec.\n From the above result it is clear that the velocity of proton is nearly one twentieth of the velocity of light. So the relativistic calculation are not required.",v)
+
diff --git a/1271/CH14/EX14.42/42.txt b/1271/CH14/EX14.42/42.txt
new file mode 100755
index 000000000..fd71c9a4a
--- /dev/null
+++ b/1271/CH14/EX14.42/42.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 42 #
+Standard formula used
+ lambda = h/(m*v)
+
+ de-Broglie wavelength is 2.642715e-14 m.
diff --git a/1271/CH14/EX14.42/example14_42.sce b/1271/CH14/EX14.42/example14_42.sce
new file mode 100755
index 000000000..5a825e23d
--- /dev/null
+++ b/1271/CH14/EX14.42/example14_42.sce
@@ -0,0 +1,15 @@
+clc
+// Given that
+r = 1 / 20 // ratio of velocity of proton to the velocity of light
+c = 3e8 // velocity of light in m/sec
+h = 6.62e-34 // Planck constant in J-sec
+e = 1.6e-19 // charge on an electron in C
+m = 1.67e-27 // mass of proton in kg
+// Sample Problem 42 on page no. 14.38
+printf("\n # PROBLEM 42 # \n")
+printf("Standard formula used \n ")
+printf(" lambda = h/(m*v)\n")
+v = r * c
+lambda = h / (m * v)
+printf("\n de-Broglie wavelength is %e m.",lambda)
+
diff --git a/1271/CH14/EX14.43/43.txt b/1271/CH14/EX14.43/43.txt
new file mode 100755
index 000000000..ca738ad24
--- /dev/null
+++ b/1271/CH14/EX14.43/43.txt
@@ -0,0 +1,11 @@
+ # PROBLEM 43 #
+Standard formula used
+ lambda = h/(2*m*E)^1/2
+
+ kinetic energy of proton(in J) =
+
+ 5.248D-28
+
+ kinetic energy of electron(in J) =
+
+ 9.632D-25
diff --git a/1271/CH14/EX14.43/example14_43.sce b/1271/CH14/EX14.43/example14_43.sce
new file mode 100755
index 000000000..b5b353d21
--- /dev/null
+++ b/1271/CH14/EX14.43/example14_43.sce
@@ -0,0 +1,17 @@
+clc
+// Given that
+lambda = 5e-7 // wavelength in m
+c = 3e8 // velocity of light in m/sec
+h = 6.62e-34 // Planck constant in J-sec
+e = 1.6e-19 // charge on an electron in C
+m = 1.67e-27 // mass of proton in kg
+m_ = 9.1e-31 // mass of electron in kg
+// Sample Problem 43 on page no. 14.38
+printf("\n # PROBLEM 43 # \n")
+printf("Standard formula used \n ")
+printf(" lambda = h/(2*m*E)^1/2\n")
+E1 = h^2 / (2 * m * lambda^2)
+E2 = h^2 / (2 * m_ * lambda^2)
+disp(E1,'kinetic energy of proton(in J) =')
+disp(E2,'kinetic energy of electron(in J) =')
+
diff --git a/1271/CH14/EX14.44/44.txt b/1271/CH14/EX14.44/44.txt
new file mode 100755
index 000000000..3b8bc22a9
--- /dev/null
+++ b/1271/CH14/EX14.44/44.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 44 #
+Standard formula used
+ E = (13.6 / n^2)
+
+ de-Broglie wavelength is 3.326541 Angstrom.
diff --git a/1271/CH14/EX14.44/example14_44.sce b/1271/CH14/EX14.44/example14_44.sce
new file mode 100755
index 000000000..fdaf0572f
--- /dev/null
+++ b/1271/CH14/EX14.44/example14_44.sce
@@ -0,0 +1,15 @@
+clc
+// Given that
+n = 1 // no. of Bohr's orbit of hydrogen atom
+c = 3e8 // velocity of light in m/sec
+h = 6.62e-34 // Planck constant in J-sec
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of electron in kg
+// Sample Problem 44 on page no. 14.38
+printf("\n # PROBLEM 44 # \n")
+printf("Standard formula used \n ")
+printf(" E = (13.6 / n^2)\n")
+E = (13.6 / n^2) * e
+lambda = h / sqrt(2 * m * E)
+printf("\n de-Broglie wavelength is %f Angstrom.",lambda*1e10)
+
diff --git a/1271/CH14/EX14.45/45.txt b/1271/CH14/EX14.45/45.txt
new file mode 100755
index 000000000..bc26b7b90
--- /dev/null
+++ b/1271/CH14/EX14.45/45.txt
@@ -0,0 +1,5 @@
+ # # PROBLEM 45 #
+Standard formula used
+ lambda = h/(3*m*k*T)^1/2
+
+ Ratio of de-Broglie wavelengths is 2 .
diff --git a/1271/CH14/EX14.45/example14_45.sce b/1271/CH14/EX14.45/example14_45.sce
new file mode 100755
index 000000000..1bfa67fed
--- /dev/null
+++ b/1271/CH14/EX14.45/example14_45.sce
@@ -0,0 +1,18 @@
+clc
+// Given that
+t = 300 // temperature in K
+k = 1.376e-23 // Boltzmann's constant in J/K
+c = 3e8 // velocity of light in m/sec
+h = 6.62e-34 // Planck constant in J-sec
+e = 1.6e-19 // charge on an electron in C
+m_ = 4 * 1.67e-27 // mass of helium atom in kg
+m = 1.67e-27 // mass of hydrogen atom in kg
+// Sample Problem 45 on page no. 14.39
+printf("\n # PROBLEM 45 # \n")
+printf("Standard formula used \n ")
+printf(" lambda = h/(3*m*k*T)^1/2\n")
+lambda1 = h / sqrt(3 * m * k * t)
+lambda2 = h / sqrt(3 * m_ * k * t)
+r = lambda1 / lambda2
+printf("\n Ratio of de-Broglie wavelengths is %d .",r)
+
diff --git a/1271/CH14/EX14.47/47.txt b/1271/CH14/EX14.47/47.txt
new file mode 100755
index 000000000..3225dcbf6
--- /dev/null
+++ b/1271/CH14/EX14.47/47.txt
@@ -0,0 +1,6 @@
+ # PROBLEM 47 #
+Standard formula used
+ lambda = h/(m*v)
+
+ Group velocity is 6.062271e+06 m/sec.
+ Phase velocity is 3.031136e+06 m/sec.
diff --git a/1271/CH14/EX14.47/example14_47.sce b/1271/CH14/EX14.47/example14_47.sce
new file mode 100755
index 000000000..20a1ad50d
--- /dev/null
+++ b/1271/CH14/EX14.47/example14_47.sce
@@ -0,0 +1,15 @@
+clc
+// Given that
+lambda = 1.2e-10 // DE Broglie wavelength in m
+c = 3e8 // velocity of light in m/sec
+h = 6.62e-34 // Planck constant in J-sec
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of electron in kg
+// Sample Problem 47 on page no. 14.40
+printf("\n # PROBLEM 47 # \n")
+printf("Standard formula used \n ")
+printf(" lambda = h/(m*v)\n")
+v1 = h / (m * lambda)
+v2 = h / (2 * m * lambda)
+printf("\n Group velocity is %e m/sec.\n Phase velocity is %e m/sec.",v1,v2)
+
diff --git a/1271/CH14/EX14.5/5.txt b/1271/CH14/EX14.5/5.txt
new file mode 100755
index 000000000..a95487644
--- /dev/null
+++ b/1271/CH14/EX14.5/5.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 5 #
+Standard formula used
+ E = h*c/lambda
+
+ Wavelength is 3972.000000 Angstrom.
diff --git a/1271/CH14/EX14.5/example14_5.sce b/1271/CH14/EX14.5/example14_5.sce
new file mode 100755
index 000000000..bd40cb165
--- /dev/null
+++ b/1271/CH14/EX14.5/example14_5.sce
@@ -0,0 +1,13 @@
+clc
+// Given that
+E = 5e-19 // energy of photon in J
+h = 6.62e-34 // Planck constant in J-sec
+c = 3e8 // speed of light in m/sec
+e = 1.6e-19 // charge on an electron in C
+// Sample Problem 5 on page no. 14.21
+printf("\n # PROBLEM 5 # \n")
+printf("Standard formula used \n")
+printf(" E = h*c/lambda \n")
+lambda = c * h / E
+printf("\n Wavelength is %f Angstrom.",lambda * 10^10)
+
diff --git a/1271/CH14/EX14.6/6.txt b/1271/CH14/EX14.6/6.txt
new file mode 100755
index 000000000..0a9f24aff
--- /dev/null
+++ b/1271/CH14/EX14.6/6.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 6 #
+Standard formula used
+ E = h*c/lambda
+
+ Energy of an electron is 4.565517e-19 J.
diff --git a/1271/CH14/EX14.6/example14_6.sce b/1271/CH14/EX14.6/example14_6.sce
new file mode 100755
index 000000000..0c5ea32c4
--- /dev/null
+++ b/1271/CH14/EX14.6/example14_6.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+lambda = 4.35e-7 // wavelength of green light in meter
+h = 6.62e-34 // Planck constant in J-sec
+c = 3e8 // speed of light in m/sec
+e = 1.6e-19 // charge on an electron in C
+P = 1 // energy in erg
+// Sample Problem 6 on page no. 14.21
+printf("\n # PROBLEM 6 # \n")
+printf("Standard formula used \n")
+printf(" E = h*c/lambda \n")
+E = ((h * c) / lambda)
+printf("\n Energy of an electron is %e J.",E)
+
diff --git a/1271/CH14/EX14.7/7.txt b/1271/CH14/EX14.7/7.txt
new file mode 100755
index 000000000..a7d681f2c
--- /dev/null
+++ b/1271/CH14/EX14.7/7.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 7 #
+Standard formula used
+ E = h*c/lambda
+
+ Energy received by the eye per second is 4.255714e-17 W.
diff --git a/1271/CH14/EX14.7/example14_7.sce b/1271/CH14/EX14.7/example14_7.sce
new file mode 100755
index 000000000..ad0079f1f
--- /dev/null
+++ b/1271/CH14/EX14.7/example14_7.sce
@@ -0,0 +1,15 @@
+clc
+// Given that
+lambda = 5.6e-7 // wavelength of light in meter
+n = 120 // no. of photons per second
+h = 6.62e-34 // Planck constant in J-sec
+c = 3e8 // speed of light in m/sec
+e = 1.6e-19 // charge on an electron in C
+// Sample Problem 7 on page no. 14.22
+printf("\n # PROBLEM 7 # \n")
+printf("Standard formula used \n")
+printf(" E = h*c/lambda \n")
+E = ((h * c) / lambda)
+p = E * n
+printf("\n Energy received by the eye per second is %e W.",p)
+
diff --git a/1271/CH14/EX14.8/8.txt b/1271/CH14/EX14.8/8.txt
new file mode 100755
index 000000000..e74138c08
--- /dev/null
+++ b/1271/CH14/EX14.8/8.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 8 #
+Standard formula used
+ E = h*c/lambda
+
+ Number of photons of yellow light = 4.154079e+18 .
diff --git a/1271/CH14/EX14.8/example14_8.sce b/1271/CH14/EX14.8/example14_8.sce
new file mode 100755
index 000000000..f87ee52ec
--- /dev/null
+++ b/1271/CH14/EX14.8/example14_8.sce
@@ -0,0 +1,15 @@
+clc
+// Given that
+lambda = 5.5e-7 // wavelength of light in meter
+E = 1.5 // energy in J
+h = 6.62e-34 // Planck constant in J-sec
+c = 3e8 // speed of light in m/sec
+e = 1.6e-19 // charge on an electron in C
+// Sample Problem 8 on page no. 14.22
+printf("\n # PROBLEM 8 # \n")
+printf("Standard formula used \n")
+printf(" E = h*c/lambda \n")
+E_ = ((h * c) / lambda)
+n = E / E_
+printf("\n Number of photons of yellow light = %e .",n)
+
diff --git a/1271/CH14/EX14.9/9.txt b/1271/CH14/EX14.9/9.txt
new file mode 100755
index 000000000..caccdcaf2
--- /dev/null
+++ b/1271/CH14/EX14.9/9.txt
@@ -0,0 +1,8 @@
+ # PROBLEM 9 #
+Standard formula used
+ 1/2 m*v^2 = eV
+ E = h*c/lambda
+
+ Work function is 3.664207e-19 J.
+ Stopping potential is 0.563319 V.
+ Maximum velocity is 4.450733e+05 m/sec.
diff --git a/1271/CH14/EX14.9/example14_9.sce b/1271/CH14/EX14.9/example14_9.sce
new file mode 100755
index 000000000..0818aef3a
--- /dev/null
+++ b/1271/CH14/EX14.9/example14_9.sce
@@ -0,0 +1,17 @@
+clc
+// Given that
+lambda = 4.35e-7 // wavelength of light in meter
+lambda_ = 5.42e-7 // threshold wavelength of photoelectron in meter
+h = 6.62e-34 // Planck constant in J-sec
+c = 3e8 // speed of light in m/sec
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of an electron in kg
+// Sample Problem 9 on page no. 14.22
+printf("\n # PROBLEM 9 # \n")
+printf("Standard formula used \n ")
+printf(" 1/2 m*v^2 = eV \n E = h*c/lambda \n")
+w = ((h * c) / lambda_)
+v = sqrt(((2 * h * c) / m) * (1 / lambda - 1 / lambda_))
+V = m * v^2 / (2 * e)
+printf("\n Work function is %e J.\n Stopping potential is %f V.\n Maximum velocity is %e m/sec.",w,V,v)
+
diff --git a/1271/CH15/EX15.1/1.txt b/1271/CH15/EX15.1/1.txt
new file mode 100755
index 000000000..bdab25e42
--- /dev/null
+++ b/1271/CH15/EX15.1/1.txt
@@ -0,0 +1,5 @@
+# PROBLEM 1 #
+Standard formula used
+ p = (2 * m * E * e)^(1/2)
+
+ Percentage of uncertainty in momentum is 3.087112.
diff --git a/1271/CH15/EX15.1/example15_1.sce b/1271/CH15/EX15.1/example15_1.sce
new file mode 100755
index 000000000..d53f7a3a1
--- /dev/null
+++ b/1271/CH15/EX15.1/example15_1.sce
@@ -0,0 +1,15 @@
+clc
+// Given that
+E = 1000 // energy of electron in eV
+delta_x = 1e-10 // error in position in m
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of electron in kg
+h = 6.62e-34 // Planck constant in J-sec
+// Sample Problem 1 on page no. 15.24
+printf("\n # PROBLEM 1 # \n")
+printf("Standard formula used \n")
+printf(" p = (2 * m * E * e)^(1/2) \n")
+p = sqrt(2 * m * E * e)
+delta_p = h / (4 * %pi * delta_x)
+P = (delta_p / p) * 100
+printf("\n Percentage of uncertainty in momentum is %f.",P)
diff --git a/1271/CH15/EX15.10/10.txt b/1271/CH15/EX15.10/10.txt
new file mode 100755
index 000000000..7f5b4e146
--- /dev/null
+++ b/1271/CH15/EX15.10/10.txt
@@ -0,0 +1,6 @@
+ # PROBLEM 10 #
+Standard formula used
+ del_x*del_p = h/(4*pi)
+ m = m_0/(1-(v^2/c^2))^1/2
+
+ Uncertainty in determining the position is 1.920008e-12 m.
diff --git a/1271/CH15/EX15.10/example15_10.sce b/1271/CH15/EX15.10/example15_10.sce
new file mode 100755
index 000000000..64240c193
--- /dev/null
+++ b/1271/CH15/EX15.10/example15_10.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+v = 3e7 // speed of electron in m/sec
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of electron in kg
+h = 6.62e-34 // Planck constant in J-sec
+c = 3e8 // speed of light in m/sec
+// Sample Problem 10 on page no. 15.28
+printf("\n # PROBLEM 10 # \n")
+printf("Standard formula used \n")
+printf(" del_x*del_p = h/(4*pi) \n m = m_0/(1-(v^2/c^2))^1/2 \n")
+delta_p = m * v / sqrt(1 - (v/c)^2)
+delta_x = h / (4 * %pi * delta_p)
+printf("\n Uncertainty in determining the position is %e m.",delta_x)
diff --git a/1271/CH15/EX15.11/11.txt b/1271/CH15/EX15.11/11.txt
new file mode 100755
index 000000000..6f36301bc
--- /dev/null
+++ b/1271/CH15/EX15.11/11.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 11 #
+Standard formula used
+ del_E*del_t = h/(4*pi)
+
+ Minimum error in measurement of the energy is 2.107211e-21 J.
diff --git a/1271/CH15/EX15.11/example15_11.sce b/1271/CH15/EX15.11/example15_11.sce
new file mode 100755
index 000000000..21c86c689
--- /dev/null
+++ b/1271/CH15/EX15.11/example15_11.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+t = 2.5e-14 // life time of hydrogen atom in exited state in sec
+h = 6.62e-34 // Planck constant in J-sec
+// Sample Problem 11 on page no. 15.28
+printf("\n # PROBLEM 11 # \n")
+printf("Standard formula used \n")
+printf(" del_E*del_t = h/(4*pi) \n")
+delta_E = h / (4 * %pi * t)
+printf("\n Minimum error in measurement of the energy is %e J.",delta_E)
diff --git a/1271/CH15/EX15.12/12.txt b/1271/CH15/EX15.12/12.txt
new file mode 100755
index 000000000..dedd6f63a
--- /dev/null
+++ b/1271/CH15/EX15.12/12.txt
@@ -0,0 +1,5 @@
+# PROBLEM 12 #
+Standard formula used
+ del_E*del_t = h/(4*pi)
+
+ Minimum uncertainty in frequency is 7.957747e+06 Hz.
diff --git a/1271/CH15/EX15.12/example15_12.sce b/1271/CH15/EX15.12/example15_12.sce
new file mode 100755
index 000000000..783568c12
--- /dev/null
+++ b/1271/CH15/EX15.12/example15_12.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+t = 10^-8 // life time of atom in exited state in sec
+h = 6.62e-34 // Planck constant in J-sec
+// Sample Problem 12 on page no. 15.28
+printf("\n # PROBLEM 12 # \n")
+printf("Standard formula used \n")
+printf(" del_E*del_t = h/(4*pi) \n")
+delta_f = 1 / (4 * %pi * t)
+printf("\n Minimum uncertainty in frequency is %e Hz.",delta_f)
diff --git a/1271/CH15/EX15.13/13.txt b/1271/CH15/EX15.13/13.txt
new file mode 100755
index 000000000..621fa9bbf
--- /dev/null
+++ b/1271/CH15/EX15.13/13.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 13 #
+Standard formula used
+ del_x*del_p = h/(4*pi)
+
+ Ratio of uncertainty in velocity of a proton and an electron is 5.449102e-04.
diff --git a/1271/CH15/EX15.13/example15_13.sce b/1271/CH15/EX15.13/example15_13.sce
new file mode 100755
index 000000000..d143c250c
--- /dev/null
+++ b/1271/CH15/EX15.13/example15_13.sce
@@ -0,0 +1,16 @@
+clc
+// Given that
+delta_x = 20e-10 // uncertainty in position in m
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of electron in kg
+m_ = 1.67e-27 // mass of proton in kg
+c = 3e8 // speed of light in m/sec
+h = 6.62e-34 // Planck constant in J-sec
+// Sample Problem 13 on page no. 15.29
+printf("\n # PROBLEM 13 # \n")
+printf("Standard formula used \n")
+printf(" del_x*del_p = h/(4*pi) \n")
+delta_v1 = h / (4 * %pi * m * delta_x)
+delta_v2 = h / (4 * %pi * m_ * delta_x)
+r = delta_v2 / delta_v1
+printf("\n Ratio of uncertainty in velocity of a proton and an electron is %e. ",r)
diff --git a/1271/CH15/EX15.14/14.txt b/1271/CH15/EX15.14/14.txt
new file mode 100755
index 000000000..f9fb1f865
--- /dev/null
+++ b/1271/CH15/EX15.14/14.txt
@@ -0,0 +1,7 @@
+ # PROBLEM 14 #
+Standard formula used
+ E = (n^2 * h^2) / (8 * m * L^2))
+
+ Energy of electron -
+ For (n=1) energy is 6.019835e-18 J.
+ For (n=2) energy is 2.407934e-17 J.
diff --git a/1271/CH15/EX15.14/example15_14.sce b/1271/CH15/EX15.14/example15_14.sce
new file mode 100755
index 000000000..cb6232c50
--- /dev/null
+++ b/1271/CH15/EX15.14/example15_14.sce
@@ -0,0 +1,16 @@
+clc
+// Given that
+delta_x = 1e-10 // width of box in m
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of electron in kg
+c = 3e8 // speed of light in m/sec
+h = 6.62e-34 // Planck constant in J-sec
+// Sample Problem 14 on page no. 15.29
+printf("\n # PROBLEM 14 # \n")
+printf("Standard formula used \n")
+printf(" E = (n^2 * h^2) / (8 * m * L^2)) \n")
+n = 1 // for n=1
+E = (n^2 * h^2) / (8 * m * delta_x^2)
+n = 2 // for n=2
+E_ = (n^2 * h^2) / (8 * m * delta_x^2)
+printf("\n Energy of electron - \n For (n=1) energy is %e J.\n For (n=2) energy is %e J.",E,E_)
diff --git a/1271/CH15/EX15.15/15.txt b/1271/CH15/EX15.15/15.txt
new file mode 100755
index 000000000..bb880f3ef
--- /dev/null
+++ b/1271/CH15/EX15.15/15.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 15 #
+Standard formula used
+ E = (n^2 * h^2) / (8 * m * L^2))
+
+ Energy difference is 1.805951e-17 J.
diff --git a/1271/CH15/EX15.15/example15_15.sce b/1271/CH15/EX15.15/example15_15.sce
new file mode 100755
index 000000000..9746207c0
--- /dev/null
+++ b/1271/CH15/EX15.15/example15_15.sce
@@ -0,0 +1,17 @@
+clc
+// Given that
+l = 1e-10 // width of box in m
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of electron in kg
+c = 3e8 // speed of light in m/sec
+h = 6.62e-34 // Planck constant in J-sec
+// Sample Problem 15 on page no. 15.30
+printf("\n # PROBLEM 15 # \n")
+printf("Standard formula used \n")
+printf(" E = (n^2 * h^2) / (8 * m * L^2)) \n")
+n = 1 // for n=1
+E = (n^2 * h^2) / (8 * m * l^2)
+n = 2 // for n=2
+E_ = (n^2 * h^2) / (8 * m * l^2)
+d = E_ - E
+printf("\n Energy difference is %e J.",d)
diff --git a/1271/CH15/EX15.16/16.txt b/1271/CH15/EX15.16/16.txt
new file mode 100755
index 000000000..43d9f5576
--- /dev/null
+++ b/1271/CH15/EX15.16/16.txt
@@ -0,0 +1,8 @@
+ # PROBLEM 16 #
+Standard Formula used
+ E = (n^2 * h^2) / (8 * m * L^2))
+
+ Energy of electron -
+ For (n=1) is 6.688706e-19 J.
+ For (n=2) is 2.675482e-18 J.
+ For (n=3) is 6.019835e-18 J.
diff --git a/1271/CH15/EX15.16/example15_16.sce b/1271/CH15/EX15.16/example15_16.sce
new file mode 100755
index 000000000..f53857a6d
--- /dev/null
+++ b/1271/CH15/EX15.16/example15_16.sce
@@ -0,0 +1,18 @@
+clc
+// Given that
+l = 3e-10 // width of box in m
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of electron in kg
+c = 3e8 // speed of light in m/sec
+h = 6.62e-34 // Planck constant in J-sec
+// Sample Problem 16 on page no. 15.30
+printf("\n # PROBLEM 16 # \n")
+printf("Standard Formula used \n")
+printf(" E = (n^2 * h^2) / (8 * m * L^2)) \n")
+n = 1 // For n=1
+E = (n^2 * h^2) / (8 * m * l^2)
+n = 2 // For n=2
+E_ = (n^2 * h^2) / (8 * m * l^2)
+n = 3 // For n=3
+E__ = (n^2 * h^2) / (8 * m * l^2)
+printf("\n Energy of electron -\n For (n=1) is %e J.\n For (n=2) is %e J.\n For (n=3) is %e J.",E,E_,E__)
diff --git a/1271/CH15/EX15.17/17.txt b/1271/CH15/EX15.17/17.txt
new file mode 100755
index 000000000..5382703e1
--- /dev/null
+++ b/1271/CH15/EX15.17/17.txt
@@ -0,0 +1,7 @@
+ # PROBLEM 17 #
+Standard formula used
+ E = (n^2 * h^2) / (8 * m * L^2))
+
+ Energy of electron -
+ For (n=1) is 9.631736e-19 J.
+ For (n=2) is 3.852695e-18 J.
diff --git a/1271/CH15/EX15.17/example15_17.sce b/1271/CH15/EX15.17/example15_17.sce
new file mode 100755
index 000000000..d431d3aac
--- /dev/null
+++ b/1271/CH15/EX15.17/example15_17.sce
@@ -0,0 +1,16 @@
+clc
+// Given that
+l = 2.5e-10 // width of box in m
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of electron in kg
+c = 3e8 // speed of light in m/sec
+h = 6.62e-34 // Planck constant in J-sec
+// Sample Problem 17 on page no. 15.30
+printf("\n # PROBLEM 17 # \n")
+printf("Standard formula used \n")
+printf(" E = (n^2 * h^2) / (8 * m * L^2)) \n")
+n = 1 // for n=1
+E = (n^2 * h^2) / (8 * m * l^2)
+n = 2 // for n=2
+E_ = (n^2 * h^2) / (8 * m * l^2)
+printf("\n Energy of electron -\n For (n=1) is %e J.\n For (n=2) is %e J.",E,E_)
diff --git a/1271/CH15/EX15.18/18.txt b/1271/CH15/EX15.18/18.txt
new file mode 100755
index 000000000..20c190a97
--- /dev/null
+++ b/1271/CH15/EX15.18/18.txt
@@ -0,0 +1,5 @@
+# PROBLEM 18 #
+Standard formula used
+ E = (n^2 * h^2) / (8 * m * L^2))
+
+ Lowest energy of neutron confined in the nucleus is 3.280269e-13 J.
diff --git a/1271/CH15/EX15.18/example15_18.sce b/1271/CH15/EX15.18/example15_18.sce
new file mode 100755
index 000000000..2770faa06
--- /dev/null
+++ b/1271/CH15/EX15.18/example15_18.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+l = 1e-14 // width of box in m
+e = 1.6e-19 // charge on an electron in C
+m = 1.67e-27 // mass of neutron in kg
+c = 3e8 // speed of light in m/sec
+h = 6.62e-34 // Planck constant in J-sec
+// Sample Problem 18 on page no. 15.31
+printf("\n # PROBLEM 18 # \n")
+printf("Standard formula used \n")
+printf(" E = (n^2 * h^2) / (8 * m * L^2)) \n")
+n = 1 // for n=1
+E = (n^2 * h^2) / (8 * m * l^2)
+printf("\n Lowest energy of neutron confined in the nucleus is %e J.",E)
diff --git a/1271/CH15/EX15.19/19.txt b/1271/CH15/EX15.19/19.txt
new file mode 100755
index 000000000..642b1ea4a
--- /dev/null
+++ b/1271/CH15/EX15.19/19.txt
@@ -0,0 +1,11 @@
+ # PROBLEM 19 #
+Standard formula used
+ E = (n^2 * h^2) / (8 * m * L^2))
+ p_n = n*h/(2*pi)
+
+ Energy of electron -
+ For (n=1) is 6.019835e-18 J.
+ For (n=2) is 2.407934e-17 J.
+ Momentum of electron -
+ For (n=1) is 3.310000e-24 kg-m/sec.
+ For (n=2) is 6.620000e-24 kg-m/sec.
diff --git a/1271/CH15/EX15.19/example15_19.sce b/1271/CH15/EX15.19/example15_19.sce
new file mode 100755
index 000000000..afab4774e
--- /dev/null
+++ b/1271/CH15/EX15.19/example15_19.sce
@@ -0,0 +1,18 @@
+clc
+// Given that
+l = 1e-10 // width of box in m
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of electron in kg
+c = 3e8 // speed of light in m/sec
+h = 6.63e-34 // Planck constant in J-sec
+// Sample Problem 19 on page no. 15.31
+printf("\n # PROBLEM 19 # \n")
+printf("Standard formula used \n")
+printf(" E = (n^2 * h^2) / (8 * m * L^2)) \n p_n = n*h/(2*pi) \n")
+n = 1 // for n=1
+p1 = (n * h) / (2 * l)
+E = (n^2 * h^2) / (8 * m * l^2)
+n = 2 // for n=2
+p2 = (n * h) / (2 * l)
+E_ = (n^2 * h^2) / (8 * m * l^2)
+printf("\n Energy of electron -\n For (n=1) is %e J.\n For (n=2) is %e J.\n Momentum of electron -\n For (n=1) is %e kg-m/sec.\n For (n=2) is %e kg-m/sec.",E,E_,p1,p2)
diff --git a/1271/CH15/EX15.20/20.txt b/1271/CH15/EX15.20/20.txt
new file mode 100755
index 000000000..ac0a5174f
--- /dev/null
+++ b/1271/CH15/EX15.20/20.txt
@@ -0,0 +1,13 @@
+ # PROBLEM 20 #
+Standard formula used
+ E = (n^2 * h^2) / (8 * m * L^2))
+ p_n = n*h/(2*pi)
+
+ Energy Eigen value of electron -
+ For (n=1) is 6.019835e-18 J.
+ For (n=2) is 2.407934e-17 J.
+ For (n=3) is 5.417852e-17 J.
+de-Broglie wavelength of electron -
+ For (n=1) is 2.000000 A.
+ For (n=2) is 1.000000 A.
+ For (n=3) is 0.666667 A
diff --git a/1271/CH15/EX15.20/example15_20.sce b/1271/CH15/EX15.20/example15_20.sce
new file mode 100755
index 000000000..a0d7ff454
--- /dev/null
+++ b/1271/CH15/EX15.20/example15_20.sce
@@ -0,0 +1,20 @@
+clc
+// Given that
+l = 1e-10 // length of box in m
+m = 9.1e-31 // mass of electron in kg
+c = 3e8 // speed of light in m/sec
+h = 6.62e-34 // Planck constant in J-sec
+// Sample Problem 20 on page no. 15.32
+printf("\n # PROBLEM 20 # \n")
+printf("Standard formula used \n")
+printf(" E = (n^2 * h^2) / (8 * m * L^2)) \n p_n = n*h/(2*pi) \n")
+n = 1 // for n=1
+E1 = (n^2 * h^2) / (8 * m * l^2)
+lambda1 =2*l
+n = 2 // for n=2
+E2 = (n^2 * h^2) / (8 * m * l^2)
+lambda2 =2*l/2
+n = 3 // for n=3
+E3 = (n^2 * h^2) / (8 * m * l^2)
+lambda3 =2*l/3
+printf("\n Energy Eigen value of electron -\n For (n=1) is %e J.\n For (n=2) is %e J.\n For (n=3) is %e J. \nde-Broglie wavelength of electron -\n For (n=1) is %f A.\n For (n=2) is %f A. \n For (n=3) is %f A",E1,E2,E3,lambda1*1e10,lambda2*1e10,lambda3*1e10)
diff --git a/1271/CH15/EX15.21/21.txt b/1271/CH15/EX15.21/21.txt
new file mode 100755
index 000000000..0e700d524
--- /dev/null
+++ b/1271/CH15/EX15.21/21.txt
@@ -0,0 +1,8 @@
+ # PROBLEM 21 #
+Standard formula used
+ E = (n^2 * h^2) / (8 * m * L^2))
+
+ Energy Eigen values -
+ For (n=2) for 80.000000 eV.
+ For (n=3) is 180.000000 eV.
+ For (n=4) is 320.000000 eV.
diff --git a/1271/CH15/EX15.21/example15_21.sce b/1271/CH15/EX15.21/example15_21.sce
new file mode 100755
index 000000000..bcd2d5560
--- /dev/null
+++ b/1271/CH15/EX15.21/example15_21.sce
@@ -0,0 +1,19 @@
+clc
+// Given that
+E1 = 3.2e-18 // minimum energy possible for a particle entrapped in a one dimensional box in J
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of electron in kg
+c = 3e8 // speed of light in m/sec
+h = 6.62e-34 // Planck constant in J-sec
+// Sample Problem 21 on page no. 15.32
+printf("\n # PROBLEM 21 # \n")
+printf("Standard formula used \n")
+printf(" E = (n^2 * h^2) / (8 * m * L^2)) \n")
+E1 = E1 / e // in eV
+n = 2 // for n=2
+E2 = n^2 * E1
+n = 3 // for n=3
+E3 = n^2 * E1
+n = 4 // for n=4
+E4 = n^2 * E1
+printf("\n Energy Eigen values -\n For (n=2) for %f eV.\n For (n=3) is %f eV.\n For (n=4) is %f eV.",E2,E3,E4)
diff --git a/1271/CH15/EX15.22/22.txt b/1271/CH15/EX15.22/22.txt
new file mode 100755
index 000000000..2b3140247
--- /dev/null
+++ b/1271/CH15/EX15.22/22.txt
@@ -0,0 +1,8 @@
+
+# PROBLEM 22 #
+Standard formula used
+ E = (n^2 * h^2) / (8 * m * L^2))
+ p_n = n*h/(2*pi)
+
+ Order of exited state is 16.
+ Momentum of electron is 1.326216e-23 kg-m/sec. \ No newline at end of file
diff --git a/1271/CH15/EX15.22/example15_22.sce b/1271/CH15/EX15.22/example15_22.sce
new file mode 100755
index 000000000..ad7c5b3eb
--- /dev/null
+++ b/1271/CH15/EX15.22/example15_22.sce
@@ -0,0 +1,18 @@
+
+clc
+// Given that
+l = 4e-10 // width of box in m
+E = 9.664e-17 // energy of electron in J
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of electron in kg
+c = 3e8 // speed of light in m/sec
+h = 6.62e-34 // Planck constant in J-sec
+// Sample Problem 22 on page no. 15.33
+printf("\n # PROBLEM 22 # \n")
+printf("Standard formula used \n")
+printf(" E = (n^2 * h^2) / (8 * m * L^2)) \n p_n = n*h/(2*pi) \n")
+n = 1 // for n=1
+E1 = (n^2 * h^2) / (8 * m * l^2)
+N = sqrt(E / E1)
+p = ((N) * h) / (2 * l)
+printf("\n Order of exited state is %d.\n Momentum of electron is %e kg-m/sec.",N,p)
diff --git a/1271/CH15/EX15.23/23.txt b/1271/CH15/EX15.23/23.txt
new file mode 100755
index 000000000..3f2251d7d
--- /dev/null
+++ b/1271/CH15/EX15.23/23.txt
@@ -0,0 +1,14 @@
+ # PROBLEM 23 #
+Standard formula used
+ E = (n^2 * h^2) / (8 * m * L^2))
+ p_n = n*h/(2*pi)
+
+ Energy levels of electron
+ For (n=1) is 6.019835e-20 J.
+ For (n=2) is 2.407934e-19 J.
+ For (n=3) is 5.417852e-19 J.
+ Energy levels of marble
+ For (n=1) is 1.369512e-63 J.
+ For (n=2) is 5.478050e-63 J.
+ For (n=3) is 1.232561e-62 J.
+ It is clear that the levels in case of marble are very small and are nearly zero. So it is not possible to measure them experimentally.
diff --git a/1271/CH15/EX15.23/example15_23.sce b/1271/CH15/EX15.23/example15_23.sce
new file mode 100755
index 000000000..81e5fcd9d
--- /dev/null
+++ b/1271/CH15/EX15.23/example15_23.sce
@@ -0,0 +1,25 @@
+clc
+// Given that
+l = 10e-10 // width of box containing electron in m
+E = 9.664e-17 // energy of electron in J
+M = 0.001 // mass of glass marble in kg
+l_ = 0.2 // width of box containing marble in m
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of electron in kg
+c = 3e8 // speed of light in m/sec
+h = 6.62e-34 // Planck constant in J-sec
+// Sample Problem 23 on page no. 15.33
+printf("\n # PROBLEM 23 # \n")
+printf("Standard formula used \n")
+printf(" E = (n^2 * h^2) / (8 * m * L^2)) \n p_n = n*h/(2*pi) \n")
+// For electron
+n = 1 // for n=1
+E1 = (n^2 * h^2) / (8 * m * l^2)
+E2 = 2^2* E1
+E3 = 3^2 * E1
+// For glass marble
+E1_ = h^2/(8*M*l_^2)
+E2_ = 2^2 * E1_
+E3_ = 3^2 *E1_
+printf("\n Energy levels of electron \n For (n=1) is %e J.\n For (n=2) is %e J.\n For (n=3) is %e J.\n Energy levels of marble \n For (n=1) is %e J.\n For (n=2) is %e J.\n For (n=3) is %e J.",E1,E2,E3,E1_,E2_,E3_)
+printf("\n It is clear that the levels in case of marble are very small and are nearly zero. So it is not possible to measure them experimentally.")
diff --git a/1271/CH15/EX15.3/3.txt b/1271/CH15/EX15.3/3.txt
new file mode 100755
index 000000000..3d9ee8aea
--- /dev/null
+++ b/1271/CH15/EX15.3/3.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 3 #
+Standard formula used
+ p = (2 * m * E * e)^(1/2)
+
+ Percentage of uncertainty in momentum is 2.182918.
diff --git a/1271/CH15/EX15.3/example15_3.sce b/1271/CH15/EX15.3/example15_3.sce
new file mode 100755
index 000000000..92dab807c
--- /dev/null
+++ b/1271/CH15/EX15.3/example15_3.sce
@@ -0,0 +1,15 @@
+clc
+// Given that
+E = 500 // energy of electron in eV
+delta_x = 2e-10 // error in position in m
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of electron in kg
+h = 6.62e-34 // Planck constant in J-sec
+// Sample Problem 3 on page no. 15.25
+printf("\n # PROBLEM 3 # \n")
+printf("Standard formula used \n")
+printf(" p = (2 * m * E * e)^(1/2) \n")
+p = sqrt(2 * m * E * e)
+delta_p = h / (4 * %pi * delta_x)
+P = (delta_p / p) * 100
+printf("\n Percentage of uncertainty in momentum is %f.",P)
diff --git a/1271/CH15/EX15.4/4.txt b/1271/CH15/EX15.4/4.txt
new file mode 100755
index 000000000..ab82b0f62
--- /dev/null
+++ b/1271/CH15/EX15.4/4.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 4 #
+Standard formula used
+ del_x*del_p = h/(4*pi)
+
+ Uncertainty in position is 7.957747 micrometre.
diff --git a/1271/CH15/EX15.4/example15_4.sce b/1271/CH15/EX15.4/example15_4.sce
new file mode 100755
index 000000000..b0ab42559
--- /dev/null
+++ b/1271/CH15/EX15.4/example15_4.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+delta_lambda = 1e-6 // accuracy in wavelength of its one part
+lambda = 1e-10 // wavelength of x-ray in m
+h = 6.62e-34 // Planck constant in J-sec
+// Sample Problem 4 on page no. 15.25
+printf("\n # PROBLEM 4 # \n")
+printf("Standard formula used \n")
+printf(" del_x*del_p = h/(4*pi) \n")
+delta_x = lambda / (4 * %pi * delta_lambda)
+printf("\n Uncertainty in position is %f micrometer.",delta_x*10^6)
diff --git a/1271/CH15/EX15.5/5.txt b/1271/CH15/EX15.5/5.txt
new file mode 100755
index 000000000..445fef638
--- /dev/null
+++ b/1271/CH15/EX15.5/5.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 5 #
+Standard formula used
+ del_x*del_p = h/(4*pi)
+
+ Uncertainty in momentum is 5.268029e-25 kgm/sec.
diff --git a/1271/CH15/EX15.5/example15_5.sce b/1271/CH15/EX15.5/example15_5.sce
new file mode 100755
index 000000000..134e1e527
--- /dev/null
+++ b/1271/CH15/EX15.5/example15_5.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+delta_x = 1e-10 // error in position in m
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of electron in kg
+h = 6.62e-34 // Planck constant in J-sec
+// Sample Problem 5 on page no. 15.26
+printf("\n # PROBLEM 5 # \n")
+printf("Standard formula used \n")
+printf(" del_x*del_p = h/(4*pi) \n")
+delta_p = h / (4 * %pi * delta_x)
+printf("\n Uncertainty in momentum is %e kg m/sec.",delta_p)
diff --git a/1271/CH15/EX15.6/6.txt b/1271/CH15/EX15.6/6.txt
new file mode 100755
index 000000000..7eff582a9
--- /dev/null
+++ b/1271/CH15/EX15.6/6.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 6 #
+Standard formula used
+ del_x*del_p = h/(4*pi)
+
+ Uncertainty in position is 1.951122 micrometre.
diff --git a/1271/CH15/EX15.6/example15_6.sce b/1271/CH15/EX15.6/example15_6.sce
new file mode 100755
index 000000000..a4b285edf
--- /dev/null
+++ b/1271/CH15/EX15.6/example15_6.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+M = 5.4e-26 // momentum of electron in kg-m/sec
+p = 0.05 // percentage accuracy in momentum
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of electron in kg
+h = 6.62e-34 // Planck constant in J-sec
+// Sample Problem 6 on page no. 15.26
+printf("\n # PROBLEM 6 # \n")
+printf("Standard formula used \n")
+printf(" del_x*del_p = h/(4*pi) \n")
+delta_m = p * M / 100
+delta_x = h / (4 * %pi * delta_m)
+printf("\n Uncertainty in position is %f micrometre.",delta_x * 10^6)
diff --git a/1271/CH15/EX15.7/7.txt b/1271/CH15/EX15.7/7.txt
new file mode 100755
index 000000000..f358e6371
--- /dev/null
+++ b/1271/CH15/EX15.7/7.txt
@@ -0,0 +1,6 @@
+ # PROBLEM 7 #
+Standard formula used
+ del_x*del_p = h/(4*pi)
+ p = (2 * m * E * e)^(1/2)
+
+ Minimum energy of electron is 5.428416e-19 J.
diff --git a/1271/CH15/EX15.7/example15_7.sce b/1271/CH15/EX15.7/example15_7.sce
new file mode 100755
index 000000000..d4499a9d6
--- /dev/null
+++ b/1271/CH15/EX15.7/example15_7.sce
@@ -0,0 +1,13 @@
+clc
+// Given that
+r = 0.53e-10 // radius of hydrogen atom in m
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of electron in kg
+h = 6.62e-34 // Planck constant in J-sec
+// Sample Problem 7 on page no. 15.27
+printf("\n # PROBLEM 7 # \n")
+printf("Standard formula used \n")
+printf(" del_x*del_p = h/(4*pi) \n p = (2 * m * E * e)^(1/2) \n")
+delta_M = h / (4 * %pi * r)
+delta_k = delta_M^2 / (2 * m)
+printf("\n Minimum energy of electron is %e J.",delta_k)
diff --git a/1271/CH15/EX15.8/8.txt b/1271/CH15/EX15.8/8.txt
new file mode 100755
index 000000000..e6d469803
--- /dev/null
+++ b/1271/CH15/EX15.8/8.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 8 #
+Standard formula used
+ del_x*del_p = h/(4*pi)
+
+ Uncertainty in determining the position of electron is 3.859362e-04 m.
diff --git a/1271/CH15/EX15.8/example15_8.sce b/1271/CH15/EX15.8/example15_8.sce
new file mode 100755
index 000000000..79950f1af
--- /dev/null
+++ b/1271/CH15/EX15.8/example15_8.sce
@@ -0,0 +1,15 @@
+clc
+// Given that
+v = 5e3 // speed of electron in m/sec
+a = 0.003 // percentage accuracy in measurement of speed
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of electron in kg
+h = 6.62e-34 // Planck constant in J-sec
+// Sample Problem 8 on page no. 15.27
+printf("\n # PROBLEM 8 # \n")
+printf("Standard formula used \n")
+printf(" del_x*del_p = h/(4*pi) \n")
+delta_v = v * a / 100
+delta_p = m * delta_v
+delta_x = h / (4 * %pi * delta_p)
+printf("\n Uncertainty in determining the position of electron is %e m.",delta_x)
diff --git a/1271/CH15/EX15.9/9.txt b/1271/CH15/EX15.9/9.txt
new file mode 100755
index 000000000..b37055ddf
--- /dev/null
+++ b/1271/CH15/EX15.9/9.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 9 #
+Standard formula used
+ del_x*del_p = h/(4*pi)
+
+ Uncertainty in determining the position is 8.771276e-06 m.
diff --git a/1271/CH15/EX15.9/example15_9.sce b/1271/CH15/EX15.9/example15_9.sce
new file mode 100755
index 000000000..19e6d93bc
--- /dev/null
+++ b/1271/CH15/EX15.9/example15_9.sce
@@ -0,0 +1,15 @@
+clc
+// Given that
+v = 6.6e4 // speed of electron in m/sec
+a = 0.01 // percentage accuracy in measurement of speed
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of electron in kg
+h = 6.6e-34 // Planck constant in J-sec
+// Sample Problem 9 on page no. 15.27
+printf("\n # PROBLEM 9 # \n")
+printf("Standard formula used \n")
+printf(" del_x*del_p = h/(4*pi) \n")
+delta_v = v * a / 100
+delta_p = m * delta_v
+delta_x = h / (4 * %pi * delta_p)
+printf("\n Uncertainty in determining the position is %e m.",delta_x)
diff --git a/1271/CH16/EX16.1/1.txt b/1271/CH16/EX16.1/1.txt
new file mode 100755
index 000000000..7618fe222
--- /dev/null
+++ b/1271/CH16/EX16.1/1.txt
@@ -0,0 +1,6 @@
+ # PROBLEM 1 #
+Standard formula used
+1/2 * m*v^2 = E_0
+
+ Average energy of electron is 6.000000 eV.
+ Speed of electron is 1.452546e+06 m/sec.
diff --git a/1271/CH16/EX16.1/example16_1.sce b/1271/CH16/EX16.1/example16_1.sce
new file mode 100755
index 000000000..609287325
--- /dev/null
+++ b/1271/CH16/EX16.1/example16_1.sce
@@ -0,0 +1,13 @@
+clc
+// Given that
+t = 0 // temperature in K
+E = 10 // Fermi energy of electron in eV
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of electron in kg
+// Sample Problem 1 on page no. 16.14
+printf("\n # PROBLEM 1 # \n")
+printf("Standard formula used \n")
+printf("1/2 * m*v^2 = E_0 \n")
+E_ = E * 3 / 5
+v = sqrt(2 * E_ * e / m)
+printf("\n Average energy of electron is %f eV.\n Speed of electron is %e m/sec.",E_,v)
diff --git a/1271/CH16/EX16.10/10.txt b/1271/CH16/EX16.10/10.txt
new file mode 100755
index 000000000..f3130b75b
--- /dev/null
+++ b/1271/CH16/EX16.10/10.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 10 #
+Standard formula used
+E = (n^2 * h^2) / (8 * m * l^2)
+
+ Energy difference is 112.871909 eV.
diff --git a/1271/CH16/EX16.10/example16_10.sce b/1271/CH16/EX16.10/example16_10.sce
new file mode 100755
index 000000000..3713dacca
--- /dev/null
+++ b/1271/CH16/EX16.10/example16_10.sce
@@ -0,0 +1,16 @@
+clc
+// Given that
+l = 1e-10 //length of box in m
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of electron in kg
+h = 6.62e-34 // Planck constant in J-sec
+// Sample Problem 10 on page no. 16.18
+printf("\n # PROBLEM 10 # \n")
+printf("Standard formula used \n")
+printf("E = (n^2 * h^2) / (8 * m * l^2) \n")
+n = 1 // for n=1
+E = (n^2 * h^2) / (8 * m * l^2)
+n = 2 // for n=2
+E_ = (n^2 * h^2) / (8 * m * l^2)
+d = (E_ - E) * (1 / e)
+printf("\n Energy difference is %f eV.",d)
diff --git a/1271/CH16/EX16.2/2.txt b/1271/CH16/EX16.2/2.txt
new file mode 100755
index 000000000..ad02b4ddb
--- /dev/null
+++ b/1271/CH16/EX16.2/2.txt
@@ -0,0 +1,6 @@
+ # PROBLEM 2 #
+Standard formula used
+1/2 * m*v^2 = E_0
+
+ Average energy of electron is 4.740000 eV.
+ Speed of electron is 1.291051e+06 m/sec.
diff --git a/1271/CH16/EX16.2/example16_2.sce b/1271/CH16/EX16.2/example16_2.sce
new file mode 100755
index 000000000..0ef28e0e1
--- /dev/null
+++ b/1271/CH16/EX16.2/example16_2.sce
@@ -0,0 +1,13 @@
+clc
+// Given that
+t = 0 // temperature in K
+E = 7.9 // Fermi energy in eV
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of electron in kg
+// Sample Problem 2 on page no. 16.14
+printf("\n # PROBLEM 2 # \n")
+printf("Standard formula used \n")
+printf("1/2 * m*v^2 = E_0 \n")
+E_ = E * 3 / 5
+v = sqrt(2 * E_ * e / m)
+printf("\n Average energy of electron is %f eV.\n Speed of electron is %e m/sec.",E_,v)
diff --git a/1271/CH16/EX16.3/3.txt b/1271/CH16/EX16.3/3.txt
new file mode 100755
index 000000000..8bfe95dd9
--- /dev/null
+++ b/1271/CH16/EX16.3/3.txt
@@ -0,0 +1,7 @@
+ # PROBLEM 3 #
+Standard formula used
+1/2 * m*v^2 = E_0
+ E_0 = (h^2 /(8 * pi^2 * m))*(3 * pi^2 * n)^(2/3) * (1 / e)
+
+ Fermi energy is 3.119408 eV.
+ Speed of electron is 1.047347e+06 m/sec.
diff --git a/1271/CH16/EX16.3/example16_3.sce b/1271/CH16/EX16.3/example16_3.sce
new file mode 100755
index 000000000..96ea969bc
--- /dev/null
+++ b/1271/CH16/EX16.3/example16_3.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+n = 2.5e28 // no. of free electron in per meter cube
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of electron in kg
+h = 6.62e-34 // Planck constant in J-sec
+// Sample Problem 3 on page no. 16.15
+printf("\n # PROBLEM 3 # \n")
+printf("Standard formula used \n")
+printf("1/2 * m*v^2 = E_0 \n ")
+printf("E_0 = (h^2 /(8 * pi^2 * m))*(3 * pi^2 * n)^(2/3) * (1 / e)\n")
+E = (h^2 / (8 * %pi^2 * m)) * (3 * %pi^2 * n)^(2/3) * (1 / e)
+v = (h / (2 * %pi * m)) * (3 * %pi^2 * n)^(1/3)
+printf("\n Fermi energy is %f eV.\n Speed of electron is %e m/sec.",E,v)
diff --git a/1271/CH16/EX16.4/4.txt b/1271/CH16/EX16.4/4.txt
new file mode 100755
index 000000000..83f7a027b
--- /dev/null
+++ b/1271/CH16/EX16.4/4.txt
@@ -0,0 +1,7 @@
+ # PROBLEM 4 #
+Standard formula used
+1/2 * m*v^2 = E_0
+ E = (h^2 / (8 * pi^2 * m)) * (3 * pi^2 * N/V)^(2/3)
+
+ Fermi energy is 7.035979 eV.
+ Average energy is 4.221587 eV. \ No newline at end of file
diff --git a/1271/CH16/EX16.4/example16_4.sce b/1271/CH16/EX16.4/example16_4.sce
new file mode 100755
index 000000000..293f4f106
--- /dev/null
+++ b/1271/CH16/EX16.4/example16_4.sce
@@ -0,0 +1,19 @@
+clc
+// Given that
+d = 8940 // density of copper in kg/m^3
+w = 63.55 // atomic weight of copper
+t = 0 // temperature in K
+N = 6.02e26 // Avogadro no. in per kg
+m = 9.1e-31 // mass of electron in kg
+h = 6.62e-34 // Planck constant in J-sec
+e = 1.6e-19 // charge on an electron in C
+// Sample Problem 4 on page no. 16.15
+printf("\n # PROBLEM 4 # \n")
+printf("Standard formula used \n")
+printf("1/2 * m*v^2 = E_0 \n ")
+printf("E = (h^2 / (8 * pi^2 * m)) * (3 * pi^2 * N/V)^(2/3) \n")
+V = w / d
+n = N / V
+E = (h^2 / (8 * %pi^2 * m)) * (3 * %pi^2 * n)^(2/3) * (1 / e)
+E_ = 3 * E / 5
+printf("\n Fermi energy is %f eV.\n Average energy is %f eV.",E,E_)
diff --git a/1271/CH16/EX16.5/5.txt b/1271/CH16/EX16.5/5.txt
new file mode 100755
index 000000000..0bde20dd2
--- /dev/null
+++ b/1271/CH16/EX16.5/5.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 5 #
+Standard formula used
+E = (h^2 / (8 * pi^2 * m)) * (3 * pi^2 * N/V)^(2/3)
+
+ Fermi energy is 5.499884 eV. \ No newline at end of file
diff --git a/1271/CH16/EX16.5/example16_5.sce b/1271/CH16/EX16.5/example16_5.sce
new file mode 100755
index 000000000..062a01762
--- /dev/null
+++ b/1271/CH16/EX16.5/example16_5.sce
@@ -0,0 +1,17 @@
+clc
+// Given that
+d = 10.5e6 // density of silver in g/m^3
+w = 108 // atomic weight of silver
+t = 0 // temperature in K
+N = 6.02e23 // Avogadro no. in per kg
+m = 9.1e-31 // mass of electron in kg
+h = 6.62e-34 // Planck constant in J-sec
+e = 1.6e-19 // charge on an electron in C
+// Sample Problem 5 on page no. 16.16
+printf("\n # PROBLEM 5 # \n")
+printf("Standard formula used \n")
+printf("E = (h^2 / (8 * pi^2 * m)) * (3 * pi^2 * N/V)^(2/3) \n")
+V = w / d
+n = N / V
+E = (h^2 / (8 * %pi^2 * m)) * (3 * %pi^2 * n)^(2/3) * (1 / e)
+printf("\n Fermi energy is %f eV.",E)
diff --git a/1271/CH16/EX16.6/6.txt b/1271/CH16/EX16.6/6.txt
new file mode 100755
index 000000000..7016f2274
--- /dev/null
+++ b/1271/CH16/EX16.6/6.txt
@@ -0,0 +1,8 @@
+
+ # PROBLEM 6 #
+Standard formula used
+E = (h^2 / (8 * pi^2 * m)) * (3 * pi^2 * N/V)^(2/3)
+
+ Fermi energy is 5.745999 eV.
+ Fermi vector is 1.227723e+10 per m.
+ Total kinetic energy is 2.154750e+29 eV. \ No newline at end of file
diff --git a/1271/CH16/EX16.6/example16_6.sce b/1271/CH16/EX16.6/example16_6.sce
new file mode 100755
index 000000000..b8eef17bf
--- /dev/null
+++ b/1271/CH16/EX16.6/example16_6.sce
@@ -0,0 +1,18 @@
+clc
+// Given that
+a = 4e-10 // lattice constant in mr
+t = 0 // temperature in K
+N = 6.02e23 // Avogadro no. in per kg
+m = 9.1e-31 // mass of electron in kg
+h = 6.62e-34 // Planck constant in J-sec
+e = 1.6e-19 // charge on an electron in C
+// Sample Problem 6 on page no. 16.16
+printf("\n # PROBLEM 6 # \n")
+printf("Standard formula used \n")
+printf("E = (h^2 / (8 * pi^2 * m)) * (3 * pi^2 * N/V)^(2/3) \n")
+V = a^3
+n = 4 / V
+E = (h^2 / (8 * %pi^2 * m)) * (3 * %pi^2 * n)^(2/3) * (1 / e)
+k = (3 * %pi^2 *n)^(1/3)
+KE = (3 * E / 5) * (n)
+printf("\n Fermi energy is %f eV.\n Fermi vector is %e per m.\n Total kinetic energy is %e eV.",E,k,KE)
diff --git a/1271/CH16/EX16.7/7.txt b/1271/CH16/EX16.7/7.txt
new file mode 100755
index 000000000..570a39dd6
--- /dev/null
+++ b/1271/CH16/EX16.7/7.txt
@@ -0,0 +1,6 @@
+ # PROBLEM 7 #
+Standard formula used
+J = I*A
+ v_d = J/ne
+
+ Drift velocity of electron is 1.309917e-03 m/sec.
diff --git a/1271/CH16/EX16.7/example16_7.sce b/1271/CH16/EX16.7/example16_7.sce
new file mode 100755
index 000000000..0eb96b263
--- /dev/null
+++ b/1271/CH16/EX16.7/example16_7.sce
@@ -0,0 +1,13 @@
+clc
+// Given that
+d = 0.9e-3 // diameter of aluminium in m
+i = 6 // current in amp
+n = 4.5e28 // no. of electron available for conduction per meter^3
+e = 1.6e-19 // charge on an electron in C
+// Sample Problem 7 on page no. 16.17
+printf("\n # PROBLEM 7 # \n")
+printf("Standard formula used \n")
+printf("J = I*A \n v_d = J/ne \n")
+J = i * 4 / (%pi * (d)^2)
+v = J / (n * e)
+printf("\n Drift velocity of electron is %e m/sec.",v)
diff --git a/1271/CH16/EX16.8/8.txt b/1271/CH16/EX16.8/8.txt
new file mode 100755
index 000000000..72fab1294
--- /dev/null
+++ b/1271/CH16/EX16.8/8.txt
@@ -0,0 +1,7 @@
+ # PROBLEM 8 #
+Standard formula used
+ J = I*A
+ v_d = J/ne
+
+ Current density = 3.248060e+06 amp/m^2.
+ Drift velocity is 2.400581e-06 m/sec.
diff --git a/1271/CH16/EX16.8/example16_8.sce b/1271/CH16/EX16.8/example16_8.sce
new file mode 100755
index 000000000..1f99a5c3c
--- /dev/null
+++ b/1271/CH16/EX16.8/example16_8.sce
@@ -0,0 +1,17 @@
+clc
+// Given that
+d = 8.92e3 // density of copper in kg/m^3
+i = 5 // current in amp
+w = 63.5 // atomic weight of copper
+r = 0.7e-3 // radius in meter
+N = 6.02e28 // Avogadro no.
+e = 1.6e-19 // charge on an electron in C
+// Sample Problem 8 on page no. 16.17
+printf("\n # PROBLEM 8 # \n")
+printf("Standard formula used \n")
+printf(" J = I*A \n v_d = J/ne \n")
+V = (w / d)
+n = N / V
+J = i / (%pi * r^2)
+v = J / (n * e)
+printf("\n Current density = %e amp/m^2.\n Drift velocity is %e m/sec.",J,v)
diff --git a/1271/CH16/EX16.9/9.txt b/1271/CH16/EX16.9/9.txt
new file mode 100755
index 000000000..c9c728a73
--- /dev/null
+++ b/1271/CH16/EX16.9/9.txt
@@ -0,0 +1,8 @@
+# PROBLEM 9 #
+Standard formula used
+E = h^2 / (8 * m * pi^2) * (3*pi^2*N/V)^2/3
+
+ Fermi Energy
+ For Li is 4.707789 eV.
+ For Na is 3.155787 eV.
+ For K is 2.039143 eV
diff --git a/1271/CH16/EX16.9/example16_9.sce b/1271/CH16/EX16.9/example16_9.sce
new file mode 100755
index 000000000..62042abc8
--- /dev/null
+++ b/1271/CH16/EX16.9/example16_9.sce
@@ -0,0 +1,27 @@
+clc
+// Given that
+d1= 0.534*10^3 // densiy of Li in kg/m^3
+d2= 0.971*10^3 // densiy of Na in kg/m^3
+d3= 0.86*10^3 // densiy of K in kg/m^3
+w1 = 6.939 // atomic weight of Li
+w2 = 22.99 // atomic weight of Na
+w3 = 39.202 // atomic weight of K
+h = 6.62e-34 // Planck constant in J sec
+m = 9.1e-31 // mass of an electron in kg
+NA = 6.023e26 // Avogadro no.
+e = 1.6e-19 // charge on an electron in C
+// Sample Problem 9 on page no. 16.17
+printf("\n # PROBLEM 9 # \n")
+printf("Standard formula used \n")
+printf("E = h^2 / (8 * m * pi^2) * (3*pi^2*N/V)^2/3 \n")
+// For Li
+n1 = NA * d1/w1
+E1 = h^2/(8*%pi^2*m)*(3*%pi^2*n1)^(2/3)
+// For Na
+n2 = NA * d2/w2
+E2 = h^2/(8*%pi^2*m)*(3*%pi^2*n2)^(2/3)
+// For K
+n3 = NA * d3/w3
+E3 = h^2/(8*%pi^2*m)*(3*%pi^2*n3)^(2/3)
+printf("\n Fermi Energy \n For Li is %f eV.\n For Na is %f eV. \n For K is %f eV",E1/e,E2/e,E3/e)
+
diff --git a/1271/CH17/EX17.1/1.txt b/1271/CH17/EX17.1/1.txt
new file mode 100755
index 000000000..9c1f99d7a
--- /dev/null
+++ b/1271/CH17/EX17.1/1.txt
@@ -0,0 +1,8 @@
+
+ # PROBLEM 1 #
+Standard formula used
+ E = P^2 / (2*m)
+ P = h_cut*k
+
+ Electron momentum value at the sides of first Brillion zone is 1.103333e-24 kg-m/sec.
+ Enrgy of free electron is 4.180441 eV.
diff --git a/1271/CH17/EX17.1/example17_1.sce b/1271/CH17/EX17.1/example17_1.sce
new file mode 100755
index 000000000..38a5d6454
--- /dev/null
+++ b/1271/CH17/EX17.1/example17_1.sce
@@ -0,0 +1,13 @@
+clc
+// Given that
+a = 3e-10 // side of square lattice in m
+h = 6.62e-34 // Planck constant in J sec
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of electron in kg
+// Sample Problem 1 on page no. 17.18
+printf("\n # PROBLEM 1 # \n")
+printf("Standard formula used \n ")
+printf("E = P^2 / (2*m) \n P = h_cut*k \n")
+p = (h / (2 * a))
+E = (p^2 / (2 * m)) * (1 / e)
+printf("\n Electron momentum value at the sides of first Brilloin zone is %e kg-m/sec.\n Enrgy of free electron is %f eV.",p,E)
diff --git a/1271/CH17/EX17.2/2.txt b/1271/CH17/EX17.2/2.txt
new file mode 100755
index 000000000..f14b0bafb
--- /dev/null
+++ b/1271/CH17/EX17.2/2.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 2 #
+Standard formula used
+n_c = 2*(2*pi*m*k*T/h^2)^(3/2) * e^(E_f-E_c)/kT
+
+ Position of fermi level is 0.159467 eV.
diff --git a/1271/CH17/EX17.2/example17_2.sce b/1271/CH17/EX17.2/example17_2.sce
new file mode 100755
index 000000000..781bc6ff2
--- /dev/null
+++ b/1271/CH17/EX17.2/example17_2.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+n = 5e22 // no. of atoms per m^3
+t = 300 // room temperature in K
+k = 1.37e-23 // Boltzmann's constant in J/K
+h = 6.62e-34 // Planck constant in J sec
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of electron in kg
+// Sample Problem 2 on page no. 17.19
+printf("\n # PROBLEM 2 # \n")
+printf("Standard formula used \n")
+printf("n_c = 2*(2*pi*m*k*T/h^2)^(3/2) * e^(E_f-E_c)/kT \n")
+d = (k * t) * log(n * h^3 / (2 * (2 * %pi * m * k * t)^(3/2)))
+printf("\n Position of fermi level is %f eV.",-d/e)
diff --git a/1271/CH17/EX17.3/3.txt b/1271/CH17/EX17.3/3.txt
new file mode 100755
index 000000000..dd9fc38cb
--- /dev/null
+++ b/1271/CH17/EX17.3/3.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 3 #
+Standard formula used
+n_c = n_d * e^(E_f-E_c)/kT
+
+ New position of fermi level is 0.330000 eV.
diff --git a/1271/CH17/EX17.3/example17_3.sce b/1271/CH17/EX17.3/example17_3.sce
new file mode 100755
index 000000000..704490698
--- /dev/null
+++ b/1271/CH17/EX17.3/example17_3.sce
@@ -0,0 +1,15 @@
+clc
+// Given that
+E = 0.3 // Fermi energy in eV
+T = 330 // temperature in K
+t = 300 // room temperature in K
+k = 1.37e-23 // Boltzmann's constant in J/K
+h = 6.62e-34 // Planck constant in J sec
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of electron in kg
+// Sample Problem 3 on page no. 17.19
+printf("\n # PROBLEM 3 # \n")
+printf("Standard formula used \n")
+printf("n_c = n_d * e^(E_f-E_c)/kT \n")
+d = (T / t) * (E)
+printf("\n New position of fermi level is %f eV.",d)
diff --git a/1271/CH17/EX17.4/4.txt b/1271/CH17/EX17.4/4.txt
new file mode 100755
index 000000000..026cd4e38
--- /dev/null
+++ b/1271/CH17/EX17.4/4.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 4 #
+Standard formula used
+n_c = 2*(2*pi*m*k*T/h^2)^(3/2) * e^(E_f-E_c)/kT
+
+ Density of holes and electron is 3.003698e+19 per m^3.
diff --git a/1271/CH17/EX17.4/example17_4.sce b/1271/CH17/EX17.4/example17_4.sce
new file mode 100755
index 000000000..4bfd41373
--- /dev/null
+++ b/1271/CH17/EX17.4/example17_4.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+E = 0.7 // band gap for semiconductor in eV
+t = 300 // room temperature in K
+k = 1.38e-23 // Boltzmann's constant in J/K
+h = 6.62e-34 // Planck constant in J sec
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of electron in kg
+// Sample Problem 4 on page no. 17.20
+printf("\n # PROBLEM 4 # \n")
+printf("Standard formula used \n")
+printf("n_c = 2*(2*pi*m*k*T/h^2)^(3/2) * e^(E_f-E_c)/kT \n")
+n = 2 * ((2 * %pi * k * t * m) / h^2)^(3/2) * exp(-(E * e / (2 * k * t)))
+printf("\n Density of holes and electron is %e per m^3.",n)
diff --git a/1271/CH17/EX17.5/5.txt b/1271/CH17/EX17.5/5.txt
new file mode 100755
index 000000000..543fe7f37
--- /dev/null
+++ b/1271/CH17/EX17.5/5.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 5 #
+Standard formula used
+R_h = 1/(n*e)
+
+ Hall coefficient is -1.250000e-10 m^3/C.
diff --git a/1271/CH17/EX17.5/example17_5.sce b/1271/CH17/EX17.5/example17_5.sce
new file mode 100755
index 000000000..b7528c3dd
--- /dev/null
+++ b/1271/CH17/EX17.5/example17_5.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+n = 5e28 // no. of atoms in per m^3
+e = 1.6e-19 // charge on an electron in C
+// Sample Problem 5 on page no. 17.20
+printf("\n # PROBLEM 5 # \n")
+printf("Standard formula used \n")
+printf("R_h = 1/(n*e) \n")
+R = -(1 / (n * e))
+printf("\n Hall coefficient is %e m^3/C.",R)
diff --git a/1271/CH17/EX17.6/6.txt b/1271/CH17/EX17.6/6.txt
new file mode 100755
index 000000000..d96b27f10
--- /dev/null
+++ b/1271/CH17/EX17.6/6.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 6 #
+Standard formula used
+R_h = 1/(n*e)
+
+ Hall coefficient is -2.450086e-10 m^3/C.
diff --git a/1271/CH17/EX17.6/example17_6.sce b/1271/CH17/EX17.6/example17_6.sce
new file mode 100755
index 000000000..de93a891f
--- /dev/null
+++ b/1271/CH17/EX17.6/example17_6.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+a = 4.28e-10 // cell side of Na in m
+e = 1.6e-19 // charge on an electron in C
+// Sample Problem 6 on page no. 17.20
+printf("\n # PROBLEM 6 # \n")
+printf("Standard formula used \n")
+printf("R_h = 1/(n*e) \n")
+n = (2 / a^3)
+R = -(1 / (n * e))
+printf("\n Hall coefficient is %e m^3/C.",R)
diff --git a/1271/CH18/EX18.1/1.txt b/1271/CH18/EX18.1/1.txt
new file mode 100755
index 000000000..3b3e7c66a
--- /dev/null
+++ b/1271/CH18/EX18.1/1.txt
@@ -0,0 +1,6 @@
+# PROBLEM 1 #
+Standard formula used
+ M = I*a
+
+ Magnetic moment is 9.318919e-24 Am^2.
+ Bohr magneton is 9.262468e-24 J/T.
diff --git a/1271/CH18/EX18.1/example18_1.sce b/1271/CH18/EX18.1/example18_1.sce
new file mode 100755
index 000000000..1e8feecb7
--- /dev/null
+++ b/1271/CH18/EX18.1/example18_1.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+r = 0.53e-10 // radius of orbit in m
+f = 6.6e15 // frequency of revolution in Hz
+h = 6.6e-34 // Planck constant in J sec
+e = 1.6e-19 // charge on an electron in C
+m = 9.1e-31 // mass of electron in kg
+// Sample Problem 1 on page no. 18.21
+printf("\n # PROBLEM 1 # \n")
+printf("Standard formula used \n ")
+printf(" M = I*a \n")
+M = e * f * %pi * r^2
+mu = (e * h) / (4 * %pi * m)
+printf("\n Magnetic moment is %e Am^2.\n Bohr magneton is %e J/T.",M,mu)
diff --git a/1271/CH18/EX18.10/10.txt b/1271/CH18/EX18.10/10.txt
new file mode 100755
index 000000000..c61dac6d3
--- /dev/null
+++ b/1271/CH18/EX18.10/10.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 10 #
+Standard formula used
+ B = mu*N*I
+
+ Number of ampere turns is 200 A/m.
diff --git a/1271/CH18/EX18.10/example18_10.sce b/1271/CH18/EX18.10/example18_10.sce
new file mode 100755
index 000000000..a1a7ba2f2
--- /dev/null
+++ b/1271/CH18/EX18.10/example18_10.sce
@@ -0,0 +1,13 @@
+clc
+// Given that
+l = 1 // length of iron rod in m
+a = 4e-4 // area in m^2
+mu = 50e-4 // permeability of iron in H/m
+Phi = 4e-4 // magnetic flux in Weber
+// Sample Problem 10 on page no. 18.24
+printf("\n # PROBLEM 10 # \n")
+printf("Standard formula used \n ")
+printf("B = mu*N*I \n")
+B = Phi / a
+NI = B / mu
+printf("\n Number of ampere turns is %d A/m. ",NI)
diff --git a/1271/CH18/EX18.11/11.txt b/1271/CH18/EX18.11/11.txt
new file mode 100755
index 000000000..c446d86f2
--- /dev/null
+++ b/1271/CH18/EX18.11/11.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 11 #
+Standard formula used
+ B = mu*N*I
+
+ Current through the winding is 3.846154 A.
diff --git a/1271/CH18/EX18.11/example18_11.sce b/1271/CH18/EX18.11/example18_11.sce
new file mode 100755
index 000000000..c11af0162
--- /dev/null
+++ b/1271/CH18/EX18.11/example18_11.sce
@@ -0,0 +1,16 @@
+clc
+// Given that
+n = 200 // no. of turns
+l = 0.5 // the mean length of iron wire in m
+phi = 4e-4 // magnetic flux in Weber
+a = 4e-4 // area of cross section in m^2
+mu = 6.5e-4 // permeability of iron in wb/Am
+mu_ = 4 * %pi * 1e-7 // magnetic permeability of space
+// Sample Problem 11 on page no. 18.25
+printf("\n # PROBLEM 11 # \n")
+printf("Standard formula used \n ")
+printf("B = mu*N*I \n")
+B = phi / a
+N = n / l
+I = B / (mu * N)
+printf("\n Current through the winding is %f A. ",I)
diff --git a/1271/CH18/EX18.12/12.txt b/1271/CH18/EX18.12/12.txt
new file mode 100755
index 000000000..5f6c06976
--- /dev/null
+++ b/1271/CH18/EX18.12/12.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 12 #
+Standard formula used
+ Chi = mu_0*Z*e^2 *N*R^2 /(6*m)
+
+ Radius of atom is 0.887689 A.
diff --git a/1271/CH18/EX18.12/example18_12.sce b/1271/CH18/EX18.12/example18_12.sce
new file mode 100755
index 000000000..4af8139b3
--- /dev/null
+++ b/1271/CH18/EX18.12/example18_12.sce
@@ -0,0 +1,16 @@
+clc
+// Given that
+X = -5.6e-6 // magnetic susceptibility of material
+a = 2.55e-10 // lattice constant in m
+H = 1e4 // magnetic field in A/m
+mu_ = 4 * %pi * 1e-7 // magnetic permittivity of space
+m = 9.1e-31 // mass of electron in kg
+e = 1.6e-19 // charge in an electron in C
+// Sample Problem 12 on page no. 18.25
+printf("\n # PROBLEM 12 # \n")
+printf("Standard formula used \n ")
+printf(" Chi = mu_0*Z*e^2 *N*R^2 /(6*m) \n")
+N = 2 / a^3
+z = 1
+R = ((-X * 6 * m) / (mu_ * z * e^2 * N))^(1/2)
+printf("\n Radius of atom is %f A.",R * 1e10)
diff --git a/1271/CH18/EX18.13/13.txt b/1271/CH18/EX18.13/13.txt
new file mode 100755
index 000000000..e4757a78d
--- /dev/null
+++ b/1271/CH18/EX18.13/13.txt
@@ -0,0 +1,5 @@
+# PROBLEM 13 #
+Standard formula used
+ Chi = mu_0*N*M^2 /(3*k*t)
+
+ Susceptibility is 5.642285e-07
diff --git a/1271/CH18/EX18.13/example18_13.sce b/1271/CH18/EX18.13/example18_13.sce
new file mode 100755
index 000000000..eb8a2cabf
--- /dev/null
+++ b/1271/CH18/EX18.13/example18_13.sce
@@ -0,0 +1,16 @@
+clc
+// Given that
+N = 6.5e25 // no. of atom per m^3
+T = 300 // room temperature in K
+mu_ = 4 * %pi * 1e-7 // magnetic permittivity of space
+k = 1.38e-23 // Boltzmann's constant in J/K
+m = 9.1e-31 // mass of electron in kg
+e = 1.6e-19 // charge in an electron in C
+h = 6.62e-34 // Planck constant in J sec
+// Sample Problem 13 on page no. 18.25
+printf("\n # PROBLEM 13 # \n")
+printf("Standard formula used \n ")
+printf(" Chi = mu_0*N*M^2 /(3*k*t) \n")
+M = (e * h) / (4 * %pi * m)
+X = (mu_ * N * M^2) / (3 * k * T)
+printf("\n Susceptibility is %e",X)
diff --git a/1271/CH18/EX18.14/14.txt b/1271/CH18/EX18.14/14.txt
new file mode 100755
index 000000000..c5c870453
--- /dev/null
+++ b/1271/CH18/EX18.14/14.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 14 #
+Standard formula used
+ Chi = mu_0*N*M^2 /(3*k*t)
+
+ Magnetisation is 107.894727 A/m
diff --git a/1271/CH18/EX18.14/example18_14.sce b/1271/CH18/EX18.14/example18_14.sce
new file mode 100755
index 000000000..069460d0b
--- /dev/null
+++ b/1271/CH18/EX18.14/example18_14.sce
@@ -0,0 +1,18 @@
+clc
+// Given that
+w = 168.5 // molecular weight
+d = 4370 // density of material in kg/m^3
+H = 2e5 // magnetic field in A/m
+T = 300 // room temperature in K
+mu_ = 4 * %pi * 1e-7 // magnetic permittivity of space]
+NA = 6.02e26 // Avogadro no. in per kg
+mu_b = 9.24e-24 // Bohr magnetons in Am^2
+k = 1.38e-23 // Boltzmann's constant in J/K
+// Sample Problem 14 on page no. 18.26
+printf("\n # PROBLEM 14 # \n")
+printf("Standard formula used \n ")
+printf(" Chi = mu_0*N*M^2 /(3*k*t) \n")
+N = d * NA / w
+X = (mu_ * N * (2 * mu_b)^2) / (3 * k * T)
+I = X * H
+printf("\n Magnetisation is %f A/m",I)
diff --git a/1271/CH18/EX18.15/15.txt b/1271/CH18/EX18.15/15.txt
new file mode 100755
index 000000000..6c4026622
--- /dev/null
+++ b/1271/CH18/EX18.15/15.txt
@@ -0,0 +1,5 @@
+# PROBLEM 15 #
+Standard formula used
+ M = V*d
+
+ Total loss of energy per hour is 6.000000e+11 ergs.
diff --git a/1271/CH18/EX18.15/example18_15.sce b/1271/CH18/EX18.15/example18_15.sce
new file mode 100755
index 000000000..8cf07e0ca
--- /dev/null
+++ b/1271/CH18/EX18.15/example18_15.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+A = 2500 // area of hysteresis loop
+m = 10000 // weight in kg
+d = 7.5 // density of material in g/cm^3
+f = 50 // frequency in Hz
+// Sample Problem 15 on page no. 18.26
+printf("\n # PROBLEM 15 # \n")
+printf("Standard formula used \n ")
+printf(" M = V*d \n")
+E = f * A * 3600
+V = m / d
+L = E * V
+printf("\n Total loss of energy per hour is %e ergs.",L)
diff --git a/1271/CH18/EX18.16/16.txt b/1271/CH18/EX18.16/16.txt
new file mode 100755
index 000000000..377e68aeb
--- /dev/null
+++ b/1271/CH18/EX18.16/16.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 16 #
+Standard formula used
+ H=N*i
+
+ Current in solenoid should be 10 A.
diff --git a/1271/CH18/EX18.16/example18_16.sce b/1271/CH18/EX18.16/example18_16.sce
new file mode 100755
index 000000000..cb246d9ab
--- /dev/null
+++ b/1271/CH18/EX18.16/example18_16.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+H = 5e3 // coercivity in A/m
+l = 0.10 // length of solenoid in m
+n = 50 // no. of turns
+// Sample Problem 16 on page no. 18.27
+printf("\n # PROBLEM 16 # \n")
+printf("Standard formula used \n ")
+printf(" H=N*i \n")
+N = n / l
+i = H / N
+printf("\n Current in solenoid should be %d A.",i)
diff --git a/1271/CH18/EX18.17/17.txt b/1271/CH18/EX18.17/17.txt
new file mode 100755
index 000000000..50d63e2c5
--- /dev/null
+++ b/1271/CH18/EX18.17/17.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 17 #
+Standard formula used
+ N =H*l
+
+ Number of turns are 7.692308
diff --git a/1271/CH18/EX18.17/example18_17.sce b/1271/CH18/EX18.17/example18_17.sce
new file mode 100755
index 000000000..1aacdf8d8
--- /dev/null
+++ b/1271/CH18/EX18.17/example18_17.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+l = 0.50 // length of iron rod in m
+a = 4e-4 // area of cross section of rod in m^2
+mu = 65e-4 // permeability of iron in H/m
+fi = 4e-5 // flux in weber
+// Sample Problem 17 on page no. 18.27
+printf("\n # PROBLEM 17 # \n")
+printf("Standard formula used \n ")
+printf(" N =H*l \n")
+B = fi / a
+H = B / mu
+N = H * l
+printf("\n Number of turns are %f",N)
diff --git a/1271/CH18/EX18.18/18.txt b/1271/CH18/EX18.18/18.txt
new file mode 100755
index 000000000..e24948eaf
--- /dev/null
+++ b/1271/CH18/EX18.18/18.txt
@@ -0,0 +1,6 @@
+ # PROBLEM 18 #
+Standard formula used
+ mu_r = 1 + Chi
+
+ Permeability is 0.002000 N/A^2.
+ Susceptibility is 1590.
diff --git a/1271/CH18/EX18.18/example18_18.sce b/1271/CH18/EX18.18/example18_18.sce
new file mode 100755
index 000000000..c049b1bcc
--- /dev/null
+++ b/1271/CH18/EX18.18/example18_18.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+H = 600 // magnetic flux in A/m
+a = 0.2e-4 // area of cross section of rod in m^2
+phi = 2.4e-5 // flux in weber
+mu_ = 4*%pi * 1e-7 // permeability of space in N/A^2
+// Sample Problem 18 on page no. 18.27
+printf("\n # PROBLEM 18 # \n")
+printf("Standard formula used \n ")
+printf(" mu_r = 1 + Chi \n")
+B = phi / a
+mu = B / H
+X = mu / mu_ - 1
+printf("\n Permeability is %f N/A^2.\n Susceptibility is %f.",mu,X)
diff --git a/1271/CH18/EX18.19/19.txt b/1271/CH18/EX18.19/19.txt
new file mode 100755
index 000000000..98c7ac60b
--- /dev/null
+++ b/1271/CH18/EX18.19/19.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 19 #
+Standard formula used
+ mu_r = 1 + Chi
+
+ Relative permeability is 1 + 9.500000e-09
diff --git a/1271/CH18/EX18.19/example18_19.sce b/1271/CH18/EX18.19/example18_19.sce
new file mode 100755
index 000000000..e86aa5fe3
--- /dev/null
+++ b/1271/CH18/EX18.19/example18_19.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+X = 9.5e-9 // susceptibility of medium
+mu_ = 4*%pi * 1e-7 // permeability of space in N/A^2
+// Sample Problem 19 on page no. 18.28
+printf("\n # PROBLEM 19 # \n")
+printf("Standard formula used \n ")
+printf(" mu_r = 1 + Chi \n")
+mu = mu_ * (1 + X)
+mu_r = mu / mu_
+printf("\n Relative permeability is 1 + %e",mu_r -1)
diff --git a/1271/CH18/EX18.2/2.txt b/1271/CH18/EX18.2/2.txt
new file mode 100755
index 000000000..377049fc8
--- /dev/null
+++ b/1271/CH18/EX18.2/2.txt
@@ -0,0 +1,7 @@
+ # PROBLEM 2 #
+Standard formula used
+ I = cai*H
+
+ Magnetisation is -0.499800 A/m.
+ Flux density is 0.149539 T.
+ Relative permeability is 0.999996 .
diff --git a/1271/CH18/EX18.2/example18_2.sce b/1271/CH18/EX18.2/example18_2.sce
new file mode 100755
index 000000000..d5042b2f3
--- /dev/null
+++ b/1271/CH18/EX18.2/example18_2.sce
@@ -0,0 +1,13 @@
+clc
+// Given that
+X = -4.2e-6 // magnetic susceptibility
+H = 1.19e5 // magnetic field in A/m
+mu_ = 4 * %pi * 1e-7 // magnetic permeability of space
+// Sample Problem 2 on page no. 18.21
+printf("\n # PROBLEM 2 # \n")
+printf("Standard formula used \n ")
+printf(" I = cai*H \n")
+I = X * H
+B = mu_ * (H + I)
+mur = (1 + I/H)
+printf("\n Magnetisation is %f A/m.\n Flux density is %f T.\n Relative permeability is %f .",I,B,mur)
diff --git a/1271/CH18/EX18.20/20.txt b/1271/CH18/EX18.20/20.txt
new file mode 100755
index 000000000..50d2f411c
--- /dev/null
+++ b/1271/CH18/EX18.20/20.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 20 #
+Standard formula used
+ M = V*d
+
+ Energy loss per hour is 6.000000e+05 J.
diff --git a/1271/CH18/EX18.20/example18_20.sce b/1271/CH18/EX18.20/example18_20.sce
new file mode 100755
index 000000000..1949b9739
--- /dev/null
+++ b/1271/CH18/EX18.20/example18_20.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+a = 250 // area of the B-H loop in J/m^3
+f = 50 // frequency in Hz
+d = 7.5e3 // density of iron in kg/m^3
+m = 100 // mass of core in kg
+// Sample Problem 20 on page no. 18.28
+printf("\n # PROBLEM 20 # \n")
+printf("Standard formula used \n ")
+printf(" M = V*d \n")
+V = m / d
+n = 3600 * f
+A = a * V * n
+printf("\n Energy loss per hour is %e J.",A)
diff --git a/1271/CH18/EX18.21/21.txt b/1271/CH18/EX18.21/21.txt
new file mode 100755
index 000000000..bc8bced73
--- /dev/null
+++ b/1271/CH18/EX18.21/21.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 21 #
+Standard formula used
+ K = a * k * k_.
+
+ Hysteresis loss per sec is 25.650000 W
diff --git a/1271/CH18/EX18.21/example18_21.sce b/1271/CH18/EX18.21/example18_21.sce
new file mode 100755
index 000000000..c2e9a42e2
--- /dev/null
+++ b/1271/CH18/EX18.21/example18_21.sce
@@ -0,0 +1,15 @@
+clc
+// Given that
+B_max = 1.375 // maximum value of B in Wb/m^2
+a = 0.513 // area of the loop in cm^2
+k = 1000 // value of 1 cm on x axis in A/m
+k_ = 1 // value of 1 cm on y axis in Wb/m^2
+B = 1.375 // alternating magnetic flux density in Wb/m^2
+v = 1e-3 // volume of specimen in m^3
+f = 50 // frequency in Hz
+// Sample Problem 21 on page no. 18.28
+printf("\n # PROBLEM 21 # \n")
+printf("Standard formula used \n K = a * k * k_.\n")
+K = a * k * k_
+L = K * v * f
+printf("\n Hysteresis loss per sec is %f W",L)
diff --git a/1271/CH18/EX18.3/3.txt b/1271/CH18/EX18.3/3.txt
new file mode 100755
index 000000000..b04f60881
--- /dev/null
+++ b/1271/CH18/EX18.3/3.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 3 #
+Standard formula used
+ B = mu_0*H
+
+ Percentage increase in magnetic induction is 0.001200 percent.
diff --git a/1271/CH18/EX18.3/example18_3.sce b/1271/CH18/EX18.3/example18_3.sce
new file mode 100755
index 000000000..504b30070
--- /dev/null
+++ b/1271/CH18/EX18.3/example18_3.sce
@@ -0,0 +1,9 @@
+clc
+// Given that
+X = 1.2e-5 // magnetic susceptibility of magnesium
+// Sample Problem 3 on page no. 18.22
+printf("\n # PROBLEM 3 # \n")
+printf("Standard formula used \n ")
+printf(" B = mu_0*H \n")
+p = 100 * X
+printf("\n Percentage increase in magnetic induction is %f percent.",p)
diff --git a/1271/CH18/EX18.4/4.txt b/1271/CH18/EX18.4/4.txt
new file mode 100755
index 000000000..e48fa07ad
--- /dev/null
+++ b/1271/CH18/EX18.4/4.txt
@@ -0,0 +1,6 @@
+ # PROBLEM 4 #
+Standard formula used
+ I = Chi *H
+
+ Magnetisation is -0.040000 A/m.
+ Magnetic flux density is 0.012566 T.
diff --git a/1271/CH18/EX18.4/example18_4.sce b/1271/CH18/EX18.4/example18_4.sce
new file mode 100755
index 000000000..7a5e8ecb7
--- /dev/null
+++ b/1271/CH18/EX18.4/example18_4.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+X = -0.4e-5 // magnetic susceptibility of material
+H = 1e4 // magnetic field in A/m
+mu_ = 4 * %pi * 1e-7 // magnetic permittivity of space
+// Sample Problem 4 on page no. 18.22
+printf("\n # PROBLEM 4 # \n")
+printf("Standard formula used \n ")
+printf(" I = Chi *H \n")
+I = X * H
+B = mu_ * (H + I)
+printf("\n Magnetisation is %f A/m.\n Magnetic flux density is %f T.",I,B)
diff --git a/1271/CH18/EX18.5/5.txt b/1271/CH18/EX18.5/5.txt
new file mode 100755
index 000000000..fa4eb87fe
--- /dev/null
+++ b/1271/CH18/EX18.5/5.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 5 #
+Standard formula used
+ mu_r = 1 + Chi
+
+ Permeability of aluminium is 1.256666e-06 N/A^2.
diff --git a/1271/CH18/EX18.5/example18_5.sce b/1271/CH18/EX18.5/example18_5.sce
new file mode 100755
index 000000000..cf11d0fa0
--- /dev/null
+++ b/1271/CH18/EX18.5/example18_5.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+X = 2.3e-5 // magnetic susceptibility of aluminium
+mu_ = 4 * %pi * 1e-7 // magnetic permeability of space
+// Sample Problem 5 on page no. 18.23
+printf("\n # PROBLEM 5 # \n")
+printf("Standard formula used \n ")
+printf(" mu_r = 1 + Chi \n")
+mur = 1 + X
+mu = mu_ * mur
+printf("\n Permeability of aluminium is %e N/A^2.",mu)
diff --git a/1271/CH18/EX18.6/6.txt b/1271/CH18/EX18.6/6.txt
new file mode 100755
index 000000000..f58eba87c
--- /dev/null
+++ b/1271/CH18/EX18.6/6.txt
@@ -0,0 +1,6 @@
+ # PROBLEM 6 #
+Standard formula used
+ mu_r = 1 + Chi
+
+ Absolute permeability is 1.268449e-06 N/A^2.
+ Relative permeability is 1.009400.
diff --git a/1271/CH18/EX18.6/example18_6.sce b/1271/CH18/EX18.6/example18_6.sce
new file mode 100755
index 000000000..01f940a71
--- /dev/null
+++ b/1271/CH18/EX18.6/example18_6.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+X = 9.4e-2 // magnetic susceptibility
+mu_ = 4 * %pi * 1e-7 // magnetic permeability of space
+// Sample Problem 6 on page no. 18.23
+printf("\n # PROBLEM 6 # \n")
+printf("Standard formula used \n ")
+printf(" mu_r = 1 + Chi \n")
+mu_r = 1 + X
+mu = mu_ * mu_r
+printf("\n Absolute permeability is %e N/A^2.\n Relative permeability is %f.",mu,mu_r)
diff --git a/1271/CH18/EX18.7/7.txt b/1271/CH18/EX18.7/7.txt
new file mode 100755
index 000000000..cd1945db6
--- /dev/null
+++ b/1271/CH18/EX18.7/7.txt
@@ -0,0 +1,6 @@
+ # PROBLEM 7 #
+Standard formula used
+ mu_r = 1 + Chi
+
+ Magnetic susceptibility is 100266.614148 .
+ Relative permeability is 1.002676e+05
diff --git a/1271/CH18/EX18.7/example18_7.sce b/1271/CH18/EX18.7/example18_7.sce
new file mode 100755
index 000000000..d62574daa
--- /dev/null
+++ b/1271/CH18/EX18.7/example18_7.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+mu = 0.126 // maximum value of the permeability in N/A^2
+mu_ = 4 * %pi * 1e-7 // magnetic permeability of space
+// Sample Problem 7 on page no. 18.23
+printf("\n # PROBLEM 7 # \n")
+printf("Standard formula used \n ")
+printf(" mu_r = 1 + Chi \n")
+mu_r = mu / mu_
+X = mu_r - 1
+printf("\n Magnetic susceptibility is %f .\n Relative permeability is %e",X,mu_r)
diff --git a/1271/CH18/EX18.8/8.txt b/1271/CH18/EX18.8/8.txt
new file mode 100755
index 000000000..4066c5368
--- /dev/null
+++ b/1271/CH18/EX18.8/8.txt
@@ -0,0 +1,6 @@
+
+ # PROBLEM 8 #
+Standard formula used
+ Chi = mu_0*Z*e^2 *N*R^2 /(6*m)
+
+ Diamagnetic susceptibility is -1.187812e-07 . \ No newline at end of file
diff --git a/1271/CH18/EX18.8/example18_8.sce b/1271/CH18/EX18.8/example18_8.sce
new file mode 100755
index 000000000..3eb1ba3dc
--- /dev/null
+++ b/1271/CH18/EX18.8/example18_8.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+r = 0.6e-10 // radius of the atom
+N = 28e26 // no. of electron in per m^3
+mu_ = 4 * %pi * 1e-7 // magnetic permeability of space
+Z = 2 // atomic no. of helium
+m = 9.1e-31 // mass of an electron in kg
+e = 1.6e-19 // charge on an electron in C
+// Sample Problem 8 on page no. 18.24
+printf("\n # PROBLEM 8 # \n")
+printf("Standard formula used \n ")
+printf(" Chi = mu_0*Z*e^2 *N*R^2 /(6*m) \n")
+Chi = -(mu_ * Z * N * r^2 * e^2) / (6 * m)
+printf("\n Diamagnetic susceptibility is %e .",Chi)
diff --git a/1271/CH18/EX18.9/9.txt b/1271/CH18/EX18.9/9.txt
new file mode 100755
index 000000000..3942b4f52
--- /dev/null
+++ b/1271/CH18/EX18.9/9.txt
@@ -0,0 +1,6 @@
+ # PROBLEM 9 #
+Standard formula used
+ mu_r = 1 + Chi
+
+ Permeability is 1.000000e-03 N/A^2.
+ Susceptibility is 794.774715 .
diff --git a/1271/CH18/EX18.9/example18_9.sce b/1271/CH18/EX18.9/example18_9.sce
new file mode 100755
index 000000000..49b818231
--- /dev/null
+++ b/1271/CH18/EX18.9/example18_9.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+H = 1e3 // magnetisation field in A/m
+phi = 2e-5 // magnetic flux in Weber
+a = 0.2e-4 // area of cross section in m^2
+mu_ = 4 * %pi * 1e-7 // magnetic permeability of space
+// Sample Problem 9 on page no. 18.24
+printf("\n # PROBLEM 9 # \n")
+printf("Standard formula used \n ")
+printf(" mu_r = 1 + Chi \n")
+B = phi / a
+mu = B / H
+X = mu / mu_ - 1
+printf("\n Permeability is %e N/A^2.\n Susceptibility is %f .",mu,X)
diff --git a/1271/CH19/EX19.1/1.txt b/1271/CH19/EX19.1/1.txt
new file mode 100755
index 000000000..c61e7446b
--- /dev/null
+++ b/1271/CH19/EX19.1/1.txt
@@ -0,0 +1,5 @@
+# PROBLEM 1 #
+Standard formula used
+ lambda = lambda_0 * (1 - (T / T_c)^4)^(-1/2)
+
+ Penetration depth is 439.295827 Angstrom.
diff --git a/1271/CH19/EX19.1/example19_1.sce b/1271/CH19/EX19.1/example19_1.sce
new file mode 100755
index 000000000..53753256b
--- /dev/null
+++ b/1271/CH19/EX19.1/example19_1.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+T_c = 7.2 // critical temperature in K
+T = 5.1 // temperature in K
+lambda_ = 380 // penetration depth at 0 K in A
+// Sample Problem 1 on page no. 19.13
+printf("\n # PROBLEM 1 # \n")
+printf("Standard formula used \n ")
+printf(" lambda = lambda_0 * (1 - (T / T_c)^4)^(-1/2) \n")
+lambda = lambda_ * (1 - (T / T_c)^4)^(-1/2)
+printf("\n Penetration depth is %f Angstrom.",lambda)
diff --git a/1271/CH19/EX19.2/2.txt b/1271/CH19/EX19.2/2.txt
new file mode 100755
index 000000000..ca3480792
--- /dev/null
+++ b/1271/CH19/EX19.2/2.txt
@@ -0,0 +1,6 @@
+ # PROBLEM 2 #
+Standard formula used
+ H = H_0 * (1 - (T / T_c)^2)
+
+ Transition temperature is 14.682619 K.
+ Critical field at temperate at 4.2 k is 1.692793e+06 A/m.
diff --git a/1271/CH19/EX19.2/example19_2.sce b/1271/CH19/EX19.2/example19_2.sce
new file mode 100755
index 000000000..32150baec
--- /dev/null
+++ b/1271/CH19/EX19.2/example19_2.sce
@@ -0,0 +1,16 @@
+clc
+// Given that
+Hc1 = 1.41e5 // first critical field at 14.1K
+Hc2 = 4.205e5 // second critical field at 12.9K
+T1 = 14.11 // temperature in K
+T2 = 12.9 // temperature in K
+T = 4.2 // temperature in K
+lambda_ = 380 // penetration depth at 0 K in A
+// Sample Problem 2 on page no. 19.13
+printf("\n # PROBLEM 2 # \n")
+printf("Standard formula used \n ")
+printf(" H = H_0 * (1 - (T / T_c)^2) \n")
+Tc = sqrt((Hc2*T1^2 - Hc1*T2^2) / (Hc2 - Hc1))
+H_ = Hc1 / (1 - (T1 / Tc)^2)
+Hc = H_ * (1 - (T/Tc)^2)
+printf("\n Transition temperature is %f K.\n Critical field at temperate at 4.2 k is %e A/m.",Tc,Hc)
diff --git a/1271/CH19/EX19.3/3.txt b/1271/CH19/EX19.3/3.txt
new file mode 100755
index 000000000..baa993603
--- /dev/null
+++ b/1271/CH19/EX19.3/3.txt
@@ -0,0 +1,6 @@
+ # PROBLEM 3 #
+Standard formula used
+ H = H_0 * (1 - (T / T_c)^2)
+ I = 2*pi*r*H
+
+ Critical current density is 1.712973e+08 A/m^2
diff --git a/1271/CH19/EX19.3/example19_3.sce b/1271/CH19/EX19.3/example19_3.sce
new file mode 100755
index 000000000..b658498d7
--- /dev/null
+++ b/1271/CH19/EX19.3/example19_3.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+d = 1e-3 // diameter of wire in m
+T1 = 4.2 // temperature in K
+T2 = 7.18 // temperature in K
+H_ = 6.51e4 // critical magnetic field at 0 K
+// Sample Problem 3 on page no. 19.14
+printf("\n # PROBLEM 3 # \n")
+printf("Standard formula used \n ")
+printf(" H = H_0 * (1 - (T / T_c)^2) \n I = 2*pi*r*H \n")
+r = d / 2
+Hc = H_ * (1 - (T1 / T2)^2)
+Jc = (2 * %pi * r * Hc) / (%pi * r^2)
+printf("\n Critical current density is %e A/m^2",Jc)
diff --git a/1271/CH19/EX19.4/4.txt b/1271/CH19/EX19.4/4.txt
new file mode 100755
index 000000000..91b54dc43
--- /dev/null
+++ b/1271/CH19/EX19.4/4.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 4 #
+Standard formula used
+ T_c*M^(1/2) = constant
+
+ Critical temperature is 4.145674 K.
diff --git a/1271/CH19/EX19.4/example19_4.sce b/1271/CH19/EX19.4/example19_4.sce
new file mode 100755
index 000000000..07594cb78
--- /dev/null
+++ b/1271/CH19/EX19.4/example19_4.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+w = 199.5 // isotopic mass of Hg
+Tc = 4.186 // critical temperature in K
+w_ = 203.4 // increased isotope mass of Hg
+// Sample Problem 4 on page no. 19.15
+printf("\n # PROBLEM 4 # \n")
+printf("Standard formula used \n ")
+printf(" T_c*M^(1/2) = constant \n")
+Tc_ = Tc * (w / w_)^(1/2)
+printf("\n Critical temperature is %f K.",Tc_)
diff --git a/1271/CH19/EX19.5/5.txt b/1271/CH19/EX19.5/5.txt
new file mode 100755
index 000000000..3d49ce995
--- /dev/null
+++ b/1271/CH19/EX19.5/5.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 5 #
+Standard formula used
+ lambda_0 = lambda * (1 - (T / T_c)^4)^(1/2)
+
+ Penetration depth at 0 K is 50.104991 nm.
diff --git a/1271/CH19/EX19.5/example19_5.sce b/1271/CH19/EX19.5/example19_5.sce
new file mode 100755
index 000000000..c6a26a6a6
--- /dev/null
+++ b/1271/CH19/EX19.5/example19_5.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+T_c = 4.2 // critical temperature in K
+T = 2.9 // temperature in K
+lambda = 57 // penetration depth at 2.9 K in nm
+// Sample Problem 5 on page no. 19.15
+printf("\n # PROBLEM 5 # \n")
+printf("Standard formula used \n ")
+printf(" lambda_0 = lambda * (1 - (T / T_c)^4)^(1/2) \n")
+lambda_ = lambda * (1 - (T / T_c)^4)^(1/2)
+printf("\n Penetration depth at 0 K is %f nm.",lambda_)
diff --git a/1271/CH19/EX19.6/6.txt b/1271/CH19/EX19.6/6.txt
new file mode 100755
index 000000000..b46ca193d
--- /dev/null
+++ b/1271/CH19/EX19.6/6.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 6 #
+Standard formula used
+ lambda = lambda_0 * (1 - (T / T_c)^4)^(-1/2)
+
+ Critical temperature is 8.156950 K.
diff --git a/1271/CH19/EX19.6/example19_6.sce b/1271/CH19/EX19.6/example19_6.sce
new file mode 100755
index 000000000..151553988
--- /dev/null
+++ b/1271/CH19/EX19.6/example19_6.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+T1 = 2.18 // temperature in first case in K
+lambda1 = 16 // penetration depth at 2.18 K in nm
+T2 = 8.1 // temperature in second case in K
+lambda2 = 96 // penetration depth at 8.1 K in nm
+// Sample Problem 6 on page no. 19.15
+printf("\n # PROBLEM 6 # \n")
+printf("Standard formula used \n ")
+printf(" lambda = lambda_0 * (1 - (T / T_c)^4)^(-1/2) \n")
+Tc = (((lambda2^2 * T2^4) - (T1^4 * lambda1^2)) / (lambda2^2 - lambda1^2))^(1/4)
+printf("\n Critical temperature is %f K.",Tc)
diff --git a/1271/CH19/EX19.7/7.txt b/1271/CH19/EX19.7/7.txt
new file mode 100755
index 000000000..6c4c9c27e
--- /dev/null
+++ b/1271/CH19/EX19.7/7.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 7 #
+Standard formula used
+ T_c*M^(1/2) = constant
+
+ Critical temperature is 1.089052 K.
diff --git a/1271/CH19/EX19.7/example19_7.sce b/1271/CH19/EX19.7/example19_7.sce
new file mode 100755
index 000000000..30e2e7830
--- /dev/null
+++ b/1271/CH19/EX19.7/example19_7.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+w = 26.91 // isotopic mass of superconducting sample
+Tc = 1.19 // first critical temperature in K
+w_ = 32.13 // increased isotope mass of superconducting sample
+// Sample Problem 7 on page no. 19.16
+printf("\n # PROBLEM 7 # \n")
+printf("Standard formula used \n ")
+printf(" T_c*M^(1/2) = constant \n")
+Tc_ = Tc * (w / w_)^(1/2)
+printf("\n Critical temperature is %f K.",Tc_)
diff --git a/1271/CH19/EX19.8/8.txt b/1271/CH19/EX19.8/8.txt
new file mode 100755
index 000000000..acce5fb2f
--- /dev/null
+++ b/1271/CH19/EX19.8/8.txt
@@ -0,0 +1,7 @@
+ # PROBLEM 8 #
+Standard formula used
+ E = 3 * k * Tc
+
+ Energy gap is 1.086750e-03 eV.
+ Wavelength of photon is 1.142167e-03 m.
+ From the value of above lambda it is clear that these photons are in the very short wavelength part of the microwave region.
diff --git a/1271/CH19/EX19.8/example19_8.sce b/1271/CH19/EX19.8/example19_8.sce
new file mode 100755
index 000000000..6e8b5811a
--- /dev/null
+++ b/1271/CH19/EX19.8/example19_8.sce
@@ -0,0 +1,13 @@
+clc
+// Given that
+k = 1.38e-23 // Boltzmann's constant in J/K
+h = 6.62e-34 // Planck constant in J sec
+Tc = 4.2 // critical temperature of Hg in K
+c = 3e8 // speed of light in m/sec
+// Sample Problem 8 on page no. 19.16
+printf("\n # PROBLEM 8 # \n")
+printf("Standard formula used \n ")
+printf(" E = 3 * k * Tc \n")
+E = 3 * k * Tc
+lambda = h * c / E
+printf("\n Energy gap is %e eV.\n Wavelength of photon is %e m.\n From the value of above lambda it is clear that these photons are in the very short wavelength part of the microwave region.",E/1.6e-19,lambda)
diff --git a/1271/CH2/EX2.1/1.txt b/1271/CH2/EX2.1/1.txt
new file mode 100755
index 000000000..8b1842cf1
--- /dev/null
+++ b/1271/CH2/EX2.1/1.txt
@@ -0,0 +1,2 @@
+ Radius of 80th half period zone = 6.324555e-03 meter.
+ Area of half period zone = 1.570796e-06 square meter.
diff --git a/1271/CH2/EX2.1/example2_1.sce b/1271/CH2/EX2.1/example2_1.sce
new file mode 100755
index 000000000..0e49f9ae9
--- /dev/null
+++ b/1271/CH2/EX2.1/example2_1.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+lambda = 5e-7 // wavelength of light in meter
+d = 1 // distance of wavefront received on the screen from the opening in meter
+n = 80 // no. of half period zone
+// Sample Problem 1 on page no. 2.38
+printf("\n # PROBLEM 1 # \n")
+Rn = sqrt(n * lambda * d)// calculation for radius of nth half period zone
+A = %pi * d * lambda// calculation for area of half period zone
+printf("Standard formula used\n Rn = sqrt(n*d*lambda).\n A = pi*d*lambda.\n")
+printf("\n Radius of 80th half period zone = %f cm. \n Area of half period zone = %f square cm.",Rn*100,A*10000)
diff --git a/1271/CH2/EX2.10/10.txt b/1271/CH2/EX2.10/10.txt
new file mode 100755
index 000000000..43f1e0a97
--- /dev/null
+++ b/1271/CH2/EX2.10/10.txt
@@ -0,0 +1 @@
+ No. of zone of Fresnel = 2500.000000 \ No newline at end of file
diff --git a/1271/CH2/EX2.10/example2_10.sce b/1271/CH2/EX2.10/example2_10.sce
new file mode 100755
index 000000000..14d73440f
--- /dev/null
+++ b/1271/CH2/EX2.10/example2_10.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+lambda = 4e-7 // wavelength of light in meter
+u = 0.2 // distance of object from zone plate in meter
+v = 0.2 // distance of brightest image from from zone plate in meter
+r = 0.01 // radius in meter
+// Sample Problem 10 on page no. 2.41
+printf("\n # PROBLEM 10 # \n")
+f = (u * v) / (u + v) // calculation for focal length
+n = (r^2) / (f * lambda) // calculation for no. of zone of Fresnel
+printf("\n Standard formula used \n f = (u * v) / (u + v). \n n = (r^2) / (f * lambda).\n ")
+printf("\n No. of zone of Fresnel = %f",n)
diff --git a/1271/CH2/EX2.11/11.txt b/1271/CH2/EX2.11/11.txt
new file mode 100755
index 000000000..b72a69590
--- /dev/null
+++ b/1271/CH2/EX2.11/11.txt
@@ -0,0 +1,2 @@
+
+ Distance of first image from zone plate = 3.585144 meter
diff --git a/1271/CH2/EX2.11/example2_11.sce b/1271/CH2/EX2.11/example2_11.sce
new file mode 100755
index 000000000..de4fa4334
--- /dev/null
+++ b/1271/CH2/EX2.11/example2_11.sce
@@ -0,0 +1,13 @@
+clc
+// Given that
+lambda = 5.893e-7 // wavelength of light in meter
+d = 2.3e-3 // diameter of the central zone of zone plate in meter
+u = 6 // distance between point source from zone plate in meter
+// Sample Problem 11 on page no. 2.42
+printf("\n # PROBLEM 11 # \n")
+n = 1 // for central zone
+f = (d^2) / (4 * lambda * n) // calculation for focal length
+disp(f)
+v = (f * u) / (u - f) // calculation for distance of first image from zone plate
+printf("\n Standard formula used \n f = (d^2) / (4 * lambda * n). \n v = (f * u) / (u - f). \n ")
+printf("\n Distance of first image from zone plate = %f meter ",v)
diff --git a/1271/CH2/EX2.12/12.txt b/1271/CH2/EX2.12/12.txt
new file mode 100755
index 000000000..776963297
--- /dev/null
+++ b/1271/CH2/EX2.12/12.txt
@@ -0,0 +1,2 @@
+
+ Principal focal length of zone plate = 2.000000 meter
diff --git a/1271/CH2/EX2.12/example2_12.sce b/1271/CH2/EX2.12/example2_12.sce
new file mode 100755
index 000000000..338a2b1a0
--- /dev/null
+++ b/1271/CH2/EX2.12/example2_12.sce
@@ -0,0 +1,8 @@
+clc
+// Given that
+R = 2 // radius of curvature in meter
+// Sample Problem 12 on page no. 2.42
+printf("\n # PROBLEM 12 # \n")
+f = R // calculation for principal focal length of zone plate
+printf("\n Standard formula used \n f = r^2 / lambda. \n r = sqrt(lambda*R). \n ")
+printf("\n Principal focal length of zone plate = %f meter ",f)
diff --git a/1271/CH2/EX2.13/13.txt b/1271/CH2/EX2.13/13.txt
new file mode 100755
index 000000000..ee8768ec2
--- /dev/null
+++ b/1271/CH2/EX2.13/13.txt
@@ -0,0 +1 @@
+ Angular spread of the central maxima = 0.067494 degree \ No newline at end of file
diff --git a/1271/CH2/EX2.13/example2_13.sce b/1271/CH2/EX2.13/example2_13.sce
new file mode 100755
index 000000000..16a6493bd
--- /dev/null
+++ b/1271/CH2/EX2.13/example2_13.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+lambda = 5.89e-7 // wavelength of light in meter
+b = 1e-3 // slit-width in meter
+// Sample Problem 13 on page no. 2.42
+printf("\n # PROBLEM 13 # \n")
+m = 1 // for first minima
+theta = asin((m * lambda) / b) // calculation for angular spread of the central maxima in radian
+theta_ = theta * (180 / %pi) // calculation for angular spread of the central maxima in degree
+printf("\n Standard formula used \n theta = asin((m * lambda) / b).\n")
+printf("\n Angular spread of the central maxima = %f degree ",2 * theta_)
diff --git a/1271/CH2/EX2.14/14.txt b/1271/CH2/EX2.14/14.txt
new file mode 100755
index 000000000..7f8792ef1
--- /dev/null
+++ b/1271/CH2/EX2.14/14.txt
@@ -0,0 +1 @@
+ Wavelength of light = 6.166667e-07 meter. \ No newline at end of file
diff --git a/1271/CH2/EX2.14/example2_14.sce b/1271/CH2/EX2.14/example2_14.sce
new file mode 100755
index 000000000..540897172
--- /dev/null
+++ b/1271/CH2/EX2.14/example2_14.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+d = 1.2 // distance of screen from slit in meter
+x = 3.7e-3 // distance between first maxima to central maxima in meter
+b = 2e-4 // slit-width in meter
+// Sample Problem 14 on page no. 2.43
+printf("\n # PROBLEM 14 # \n")
+lambda = (x * b) / d // calculation for wavelength of light
+printf("\n Standard formula used \n lambda = (x * b) / d.\n")
+printf("\n Wavelength of light = %e meter. ",lambda)
diff --git a/1271/CH2/EX2.15/15.txt b/1271/CH2/EX2.15/15.txt
new file mode 100755
index 000000000..6d8681a44
--- /dev/null
+++ b/1271/CH2/EX2.15/15.txt
@@ -0,0 +1 @@
+Angular position of second and third minima = 30.000000 , 48.590378 degree respectively \ No newline at end of file
diff --git a/1271/CH2/EX2.15/example2_15.sce b/1271/CH2/EX2.15/example2_15.sce
new file mode 100755
index 000000000..fabda7663
--- /dev/null
+++ b/1271/CH2/EX2.15/example2_15.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+lambda = 5.5e-7 // wavelength of light in meter
+b = 2.2e-6 // slit-width in meter
+// Sample Problem 15 on page no. 2.43
+printf("\n # PROBLEM 15 # \n")
+m2 = 2 // for second minima
+theta2 = asin((m2 * lambda) / b) * (180 / %pi) // calculation for angular position of second minima
+m3 = 3 // for third minima
+theta3 = asin((m3 * lambda) / b) * (180 / %pi) // calculation for angular position of third minima
+printf("\n Standard formula used \n theta = asin((m * lambda) / b) * (180 / pi). \n")
+printf("\n Angular position of second and third minima = %f , %f degree respectively ",theta2 ,theta3)
diff --git a/1271/CH2/EX2.16/16.txt b/1271/CH2/EX2.16/16.txt
new file mode 100755
index 000000000..31cec771a
--- /dev/null
+++ b/1271/CH2/EX2.16/16.txt
@@ -0,0 +1 @@
+ Half angular width of the central bright maxima = 29.395369 degree \ No newline at end of file
diff --git a/1271/CH2/EX2.16/example2_16.sce b/1271/CH2/EX2.16/example2_16.sce
new file mode 100755
index 000000000..f4e4db321
--- /dev/null
+++ b/1271/CH2/EX2.16/example2_16.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+lambda = 5.89e-7 // wavelength of light in meter
+b = 1.2e-6 // slit-width in meter
+// Sample Problem 16 on page no. 2.44
+printf("\n # PROBLEM 16 # \n")
+m = 1 // for first minima
+theta = asin((m * lambda) / b) // calculation for half angular width of the central bright maxima in radian
+theta_ = theta * (180 / %pi) // calculation for half angular width of the central bright maxima in degree
+printf("\n Standard formula used \n theta = asin((m * lambda) / b).\n")
+printf("\n Half angular width of the central bright maxima = %f degree ",theta_)
diff --git a/1271/CH2/EX2.17/17.txt b/1271/CH2/EX2.17/17.txt
new file mode 100755
index 000000000..38700d4a9
--- /dev/null
+++ b/1271/CH2/EX2.17/17.txt
@@ -0,0 +1,2 @@
+ Slit width in first case = 1.000000e-06 meter.
+ Slit width in second case = 5.000000e-07 meter
diff --git a/1271/CH2/EX2.17/example2_17.sce b/1271/CH2/EX2.17/example2_17.sce
new file mode 100755
index 000000000..d132632e5
--- /dev/null
+++ b/1271/CH2/EX2.17/example2_17.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+lambda = 5e-7 // wavelength of light in meter
+theta = %pi / 6 // half angular width of central maximum in first case in radian
+theta_ = %pi / 2 // half angular width of central maximum in second case in radian
+// Sample Problem 17 on page no. 2.44
+printf("\n # PROBLEM 17 # \n")
+m = 1 // for first minima
+b1 = (lambda * m) / sin(theta) // calculation for slit width in first case
+b2 = (lambda * m) / sin(theta_) // calculation for slit width in second case
+printf("\n Standard formula used \n b = (lambda * m) / sin(theta). \n")
+printf("\n Slit width in first case = %e meter. \n Slit width in second case = %e meter",b1,b2)
diff --git a/1271/CH2/EX2.18/18.txt b/1271/CH2/EX2.18/18.txt
new file mode 100755
index 000000000..f561ac65d
--- /dev/null
+++ b/1271/CH2/EX2.18/18.txt
@@ -0,0 +1 @@
+Angular spread = 0.337474 degree \ No newline at end of file
diff --git a/1271/CH2/EX2.18/example2_18.sce b/1271/CH2/EX2.18/example2_18.sce
new file mode 100755
index 000000000..5f6edc480
--- /dev/null
+++ b/1271/CH2/EX2.18/example2_18.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+lambda = 5.89e-7 // wavelength of light in meter
+d = 1 // distance of screen from slit in meter
+b = 1e-4 // slit-width in meter
+// Sample Problem 18 on page no. 2.44
+printf("\n # PROBLEM 18 # \n")
+theta = (asin(lambda / b)) * (180 / %pi) // calculation for angular spread
+x = (2 * d * lambda) / b// calculation for linear width
+printf("\n Standard formula used \n theta = (asin(lambda / b)) * (180 / pi). \n x = (2 * d * lambda) / b. \n")
+printf("\n Angular spread = %f degree\n Linear width = %e meter ",theta,x)
diff --git a/1271/CH2/EX2.2/2.txt b/1271/CH2/EX2.2/2.txt
new file mode 100755
index 000000000..c44ea7636
--- /dev/null
+++ b/1271/CH2/EX2.2/2.txt
@@ -0,0 +1 @@
+ Radius of half period zone = 6.000000e-04 meter \ No newline at end of file
diff --git a/1271/CH2/EX2.2/example2_2.sce b/1271/CH2/EX2.2/example2_2.sce
new file mode 100755
index 000000000..a5f99e744
--- /dev/null
+++ b/1271/CH2/EX2.2/example2_2.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+lambda = 6e-7 // wavelength of light in meter
+f = 0.6 // focal length of convex lens in meter
+n = 1 // no. of half period zone
+// Sample Problem 2 on page no. 2.38
+printf("\n # PROBLEM 2 # \n")
+Rn = sqrt(n * lambda * f)// calculation for radius of half period zone
+printf("Standard formula used \n f = Rn^2/(n*lambda)\n")
+printf("\n Radius of half period zone = %f mm ",Rn*1000)
diff --git a/1271/CH2/EX2.20/20.txt b/1271/CH2/EX2.20/20.txt
new file mode 100755
index 000000000..2d169d964
--- /dev/null
+++ b/1271/CH2/EX2.20/20.txt
@@ -0,0 +1 @@
+ Angular width of the central maxima = 60.000000 degree \ No newline at end of file
diff --git a/1271/CH2/EX2.20/example2_20.sce b/1271/CH2/EX2.20/example2_20.sce
new file mode 100755
index 000000000..1dc43215d
--- /dev/null
+++ b/1271/CH2/EX2.20/example2_20.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+lambda = 6e-7 // wavelength of light in meter
+b = 1.2e-6 // slit-width in meter
+// Sample Problem 20 on page no. 2.46
+printf("\n # PROBLEM 20 # \n")
+m = 1 // for first minima
+theta = asin((m * lambda) / b) // calculation for angular width of the central maxima in radian
+theta_ = theta * (180 / %pi) // calculation for angular width of the central maxima in degree
+printf("\n Standard formula used \n theta = asin((m * lambda) / b). \n")
+printf("\n Angular width of the central maxima = %f degree ",2 * theta_)
diff --git a/1271/CH2/EX2.21/21.txt b/1271/CH2/EX2.21/21.txt
new file mode 100755
index 000000000..07d0bf9b0
--- /dev/null
+++ b/1271/CH2/EX2.21/21.txt
@@ -0,0 +1 @@
+Separation of dark band = 1.956000e-05 meter. \ No newline at end of file
diff --git a/1271/CH2/EX2.21/example2_21.sce b/1271/CH2/EX2.21/example2_21.sce
new file mode 100755
index 000000000..46fa88d5f
--- /dev/null
+++ b/1271/CH2/EX2.21/example2_21.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+lambda = 4.890e-7 // wavelength of light in meter
+b = 5e-3 // slit-width in meter
+f = 0.4 // focal-length of convex lens in meter
+// Sample Problem 21 on page no. 2.46
+printf("\n # PROBLEM 21 # \n")
+m = 1 // for first dark fringe
+x = (f * m * lambda) / b
+n = 1 // for first secondary maxima
+x_ = ((2 * n + 1) * lambda * f) / (2 * b)
+delta_x = x_ - x // calculation for separation of dark band
+printf("\n Standard formula used \n x = (f * m * lambda) / b . \n delta_x = x_ - x. \n")
+printf("\n Separation of dark band = %e meter.",delta_x)
diff --git a/1271/CH2/EX2.22/22.txt b/1271/CH2/EX2.22/22.txt
new file mode 100755
index 000000000..2ef95074e
--- /dev/null
+++ b/1271/CH2/EX2.22/22.txt
@@ -0,0 +1 @@
+Separation of dark band on either side of the central maximum = 2.357200e-03 meter \ No newline at end of file
diff --git a/1271/CH2/EX2.22/example2_22.sce b/1271/CH2/EX2.22/example2_22.sce
new file mode 100755
index 000000000..d90ebcb7f
--- /dev/null
+++ b/1271/CH2/EX2.22/example2_22.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+lambda = 5.893e-7 // wavelength of light in meter
+b = 5e-4 // slit-width in meter
+f = 1 // focal length of convex lens in meter
+// Sample Problem 22 on page no. 2.47
+printf("\n # PROBLEM 22 # \n")
+x = (2 * lambda * f) / b // calculation for Separation of dark band on either side of the cenral maximum
+printf("Standard formula used \n. \n")
+printf("\n Separation of dark band on either side of the central maximum = %e meter",x)
diff --git a/1271/CH2/EX2.23/23.txt b/1271/CH2/EX2.23/23.txt
new file mode 100755
index 000000000..ddca7d17f
--- /dev/null
+++ b/1271/CH2/EX2.23/23.txt
@@ -0,0 +1 @@
+ Missing orders = 6,12,18,...... \ No newline at end of file
diff --git a/1271/CH2/EX2.23/example2_23.sce b/1271/CH2/EX2.23/example2_23.sce
new file mode 100755
index 000000000..9236a9545
--- /dev/null
+++ b/1271/CH2/EX2.23/example2_23.sce
@@ -0,0 +1,15 @@
+clc
+// Given that
+d = 4e-4 // separation between slits in meter
+b = 8e-5 // slit-width in meter
+// Sample Problem 23 on page no. 2.47
+printf("\n # PROBLEM 23 # \n")
+r = (b + d) / b // calculation for ratio of n with m
+m1 = 1
+n1 = r * m1 // calculation for Missing orders
+m2 = 2
+n2 = r * m2 // calculation for Missing orders
+m3 = 3
+n3 = r * m3 // calculation for Missing orders
+printf("\n Standard formula used \n r = (b + d) / b. \n n = r * m. \n")
+printf("\n Missing orders = %d,%d,%d,......",n1,n2,n3)
diff --git a/1271/CH2/EX2.24/24.txt b/1271/CH2/EX2.24/24.txt
new file mode 100755
index 000000000..631879e48
--- /dev/null
+++ b/1271/CH2/EX2.24/24.txt
@@ -0,0 +1,2 @@
+ Wavelength of light = 6.250000e-07
+ Missing order = 3,6,9....
diff --git a/1271/CH2/EX2.24/example2_24.sce b/1271/CH2/EX2.24/example2_24.sce
new file mode 100755
index 000000000..2ba42b6f8
--- /dev/null
+++ b/1271/CH2/EX2.24/example2_24.sce
@@ -0,0 +1,18 @@
+clc
+// Given that
+d = 4e-4 // separation between slits in meter
+b = 2e-4 // slit-width in meter
+fringe_width = 2.5e-3 // fringe width in meter
+D = 1.6 // distance between screen and slits
+// Sample Problem 24 on page no. 2.47
+printf("\n # PROBLEM 24 # \n")
+lambda = (fringe_width * d) / D // calculation for wavelength of light
+r = (b + d) / b // calculation for ratio of n with m
+m1 = 1
+n1 = r * m1 // calculation for missing order
+m2 = 2
+n2 = r * m2 // calculation for missing order
+m3 = 3
+n3 = r * m3 // calculation for missing order
+printf("\n Standard formula used \n lambda = (fringe_width * d) / D. \n r = (b + d) / b. \n n = r * m. \n")
+printf("\n Wavelength of light = %e meter. \n Missing order = %d,%d,%d....",lambda,n1,n2,n3)
diff --git a/1271/CH2/EX2.25/25.txt b/1271/CH2/EX2.25/25.txt
new file mode 100755
index 000000000..d1454b5b5
--- /dev/null
+++ b/1271/CH2/EX2.25/25.txt
@@ -0,0 +1 @@
+ Wavelength of light = 5.882353e-07 meter. \ No newline at end of file
diff --git a/1271/CH2/EX2.25/example2_25.sce b/1271/CH2/EX2.25/example2_25.sce
new file mode 100755
index 000000000..20a4d836b
--- /dev/null
+++ b/1271/CH2/EX2.25/example2_25.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+N = 425000 // no. of lines in plane transmission grating per meter
+theta = %pi / 6 // angle at which second order spectral line is observed in radian
+n = 2 // order of spectral line
+// Sample Problem 25 on page no. 2.48
+printf("\n # PROBLEM 25 # \n")
+lambda = sin(theta) / (2 * N) // calculation for wavelength of light
+printf("\n Standard formula used \n lambda = sin(theta) / (2 * N). \n")
+printf("\n Wavelength of light = %e meter. ",lambda)
diff --git a/1271/CH2/EX2.26/26.txt b/1271/CH2/EX2.26/26.txt
new file mode 100755
index 000000000..4152e9fbe
--- /dev/null
+++ b/1271/CH2/EX2.26/26.txt
@@ -0,0 +1 @@
+wavelength of light = 5.000000e-07 meter. \ No newline at end of file
diff --git a/1271/CH2/EX2.26/example2_26.sce b/1271/CH2/EX2.26/example2_26.sce
new file mode 100755
index 000000000..99445c266
--- /dev/null
+++ b/1271/CH2/EX2.26/example2_26.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+N = 500000 // no. of lines in plane transmission grating per meter
+theta = %pi / 6 // angle at which second order spectral line is observed in radian
+n = 2 // order of spectral line
+// Sample Problem 26 on page no. 2.48
+printf("\n # PROBLEM 26 # \n")
+lambda = sin(theta) / (2 * N) // calculation for wavelength of light
+printf("\n Standard formula used \n lambda = sin(theta) / (2 * N). \n ")
+printf("\n wavelength of light = %e meter. ",lambda)
diff --git a/1271/CH2/EX2.27/27.txt b/1271/CH2/EX2.27/27.txt
new file mode 100755
index 000000000..761d1f89e
--- /dev/null
+++ b/1271/CH2/EX2.27/27.txt
@@ -0,0 +1,3 @@
+
+
+ Wavelength of light in first case = 4096 A \ No newline at end of file
diff --git a/1271/CH2/EX2.27/example2_27.sce b/1271/CH2/EX2.27/example2_27.sce
new file mode 100755
index 000000000..18b36ba6c
--- /dev/null
+++ b/1271/CH2/EX2.27/example2_27.sce
@@ -0,0 +1,11 @@
+
+clc
+// Given that
+lambda2 = 5.461e-7 // wavelength of light in second case in meter
+n1 = 4 // no. of order in first case
+n2 = 3 // no. of order in second case
+// Sample Problem 27 on page no. 2.48
+printf("\n # PROBLEM 27 # \n")
+lambda1 = (n2 * lambda2) / n1 // calculation for Wavelength of light in first case
+printf("Standard formula used \n lambda1 = (n2 * lambda2) / n1. \n")
+printf("\n Wavelength of light in first case = %d A",ceil(lambda1*1e10))
diff --git a/1271/CH2/EX2.28/28.txt b/1271/CH2/EX2.28/28.txt
new file mode 100755
index 000000000..ba45cdaa6
--- /dev/null
+++ b/1271/CH2/EX2.28/28.txt
@@ -0,0 +1 @@
+ No. of lines in per cm = 5000.000000 \ No newline at end of file
diff --git a/1271/CH2/EX2.28/example2_28.sce b/1271/CH2/EX2.28/example2_28.sce
new file mode 100755
index 000000000..dd8157337
--- /dev/null
+++ b/1271/CH2/EX2.28/example2_28.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+lambda = 5e-7 // wavelength of light in meter
+theta = %pi / 6 // angle at which second order spectral line is observed in radian
+n = 2 // order of spectral line
+// Sample Problem 28 on page no. 2.49
+printf("\n # PROBLEM 28 # \n")
+k = (n * lambda) / sin(theta) // calculation for (b+d)
+N = 1 / k // calculation for no. of lines in per cm
+printf("\n Standard formula used \n b+d = (n * lambda) / sin(theta). \n N = 1 / k. \n ")
+printf("\n No. of lines per cm = %f ",N / 100)
diff --git a/1271/CH2/EX2.29/29.txt b/1271/CH2/EX2.29/29.txt
new file mode 100755
index 000000000..0f5044287
--- /dev/null
+++ b/1271/CH2/EX2.29/29.txt
@@ -0,0 +1 @@
+ Angle of separation = 0.269269 degree \ No newline at end of file
diff --git a/1271/CH2/EX2.29/example2_29.sce b/1271/CH2/EX2.29/example2_29.sce
new file mode 100755
index 000000000..bbdcd7435
--- /dev/null
+++ b/1271/CH2/EX2.29/example2_29.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+lambda1 = 5.048e-7 // wavelength of light in first case in meter
+lambda2 = 5.016e-7 // wavelength of light in second case in meter
+n = 2 // no. of order in first case
+N = 15000 // no. of lines in grating per inch
+// Sample Problem 29 on page no. 2.49
+printf("\n # PROBLEM 29 # \n")
+k = 2.54 / 1500000 // in meter
+theta1 = asin(n * lambda1 / k) * (180 / %pi) // calculation for angle in first case
+theta2 = asin(n * lambda2 / k) * (180 / %pi) // calculation for angle in second case
+delta_theta = theta1 - theta2 // calculation for angle of separation
+printf("\n Standard formula used \n theta = asin(n * lambda / k) * (180 / pi). \n")
+printf("\n Angle of separation = %f degree",delta_theta)
diff --git a/1271/CH2/EX2.3/3.txt b/1271/CH2/EX2.3/3.txt
new file mode 100755
index 000000000..9242d998f
--- /dev/null
+++ b/1271/CH2/EX2.3/3.txt
@@ -0,0 +1,2 @@
+
+ Radius of 80th half period zone = 3.872983e-04 meter \ No newline at end of file
diff --git a/1271/CH2/EX2.3/example2_3.sce b/1271/CH2/EX2.3/example2_3.sce
new file mode 100755
index 000000000..2588c02ba
--- /dev/null
+++ b/1271/CH2/EX2.3/example2_3.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+lambda = 5e-7 // wavelength of light in meter
+d = 0.3 // distance of wavefront received on screen from the opening in meter
+// Sample Problem 3 on page no. 2.38
+printf("\n # PROBLEM 3 # \n")
+n = 1 // no. of half period zone
+Rn = sqrt(n * lambda * d) // because at maxima intensity is four time the individual intensity of light
+printf("Standard formula used \n r = sqrt(d*lambda)\n")
+printf("\n Radius of 80th half period zone = %f mm. ",Rn*1000)
diff --git a/1271/CH2/EX2.30/30.txt b/1271/CH2/EX2.30/30.txt
new file mode 100755
index 000000000..a37f88f31
--- /dev/null
+++ b/1271/CH2/EX2.30/30.txt
@@ -0,0 +1 @@
+ Angle of separation = 0.058345 degree \ No newline at end of file
diff --git a/1271/CH2/EX2.30/example2_30.sce b/1271/CH2/EX2.30/example2_30.sce
new file mode 100755
index 000000000..109f57d16
--- /dev/null
+++ b/1271/CH2/EX2.30/example2_30.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+lambda1 = 5.89e-7 // wavelength of light in first case in meter
+lambda2 = 5.896e-7 // wavelength of light in second case in meter
+n = 2 // no. of order in first case
+N = 600000 // no. of lines in grating per meter
+// Sample Problem 30 on page no. 2.50
+printf("\n # PROBLEM 30 # \n")
+k = 1 / N // in meter
+theta1 = asin(n * lambda1 / k) * (180 / %pi) // calculation for angle in first case
+theta2 = asin(n * lambda2 / k) * (180 / %pi) // calculation for angle in second case
+delta_theta = theta2 - theta1 // calculation for angle of separation
+printf("\n Standard formula used \n theta1 = asin(n * lambda1 / k) * (180 / pi). \n ")
+printf("\n Angle of separation = %f degree",delta_theta)
diff --git a/1271/CH2/EX2.31/31.txt b/1271/CH2/EX2.31/31.txt
new file mode 100755
index 000000000..3e4f221f5
--- /dev/null
+++ b/1271/CH2/EX2.31/31.txt
@@ -0,0 +1 @@
+ No. of lines per cm = 3086 \ No newline at end of file
diff --git a/1271/CH2/EX2.31/example2_31.sce b/1271/CH2/EX2.31/example2_31.sce
new file mode 100755
index 000000000..2ba8da3db
--- /dev/null
+++ b/1271/CH2/EX2.31/example2_31.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+lambda1 = 5.4e-7 // wavelength of light for nth order in meter
+lambda2 = 4.05e-7 // wavelength of light for (n+1)th order in meter
+theta = %pi / 6 // angle of diffraction in radian
+// Sample Problem 31 on page no. 2.50
+printf("\n # PROBLEM 31 # \n")
+k = (lambda1 * lambda2) / ((lambda1 - lambda2) * sin(theta)) // calculation for b+d
+N = (1 / k) * (0.01) // calculation for no. of lines per cm
+printf("\n Standard formula used \n b+d = (lambda1 * lambda2) / ((lambda1 - lambda2) * sin(theta)). \n N = (1 / k) * (0.01). \n")
+printf("\n No. of lines per cm = %d ",N)
diff --git a/1271/CH2/EX2.32/32.txt b/1271/CH2/EX2.32/32.txt
new file mode 100755
index 000000000..312b2c93f
--- /dev/null
+++ b/1271/CH2/EX2.32/32.txt
@@ -0,0 +1 @@
+ Difference in two wavelength = 8.660254e-09 meter \ No newline at end of file
diff --git a/1271/CH2/EX2.32/example2_32.sce b/1271/CH2/EX2.32/example2_32.sce
new file mode 100755
index 000000000..1a0d3125c
--- /dev/null
+++ b/1271/CH2/EX2.32/example2_32.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+d_theta = 0.01 // angular separation between two wavelengths in radian
+theta = %pi / 6 // angle of diffraction in radian
+lambda = 5e-7 // wavelength of light in meter
+// Sample Problem 32 on page no. 2.51
+printf("\n # PROBLEM 32 # \n")
+d_lambda = (lambda * cos(theta) * d_theta) / sin(theta) // calculation for difference in two waveligth
+printf("Standard formula used \n d_lambda = (lambda * cos(theta) * d_theta) / sin(theta). \n\n")
+printf("\n Difference in two wavelength = %e meter ",d_lambda)
diff --git a/1271/CH2/EX2.33/33.txt b/1271/CH2/EX2.33/33.txt
new file mode 100755
index 000000000..f91f96d69
--- /dev/null
+++ b/1271/CH2/EX2.33/33.txt
@@ -0,0 +1 @@
+ Order of spectrum = 19 \ No newline at end of file
diff --git a/1271/CH2/EX2.33/example2_33.sce b/1271/CH2/EX2.33/example2_33.sce
new file mode 100755
index 000000000..aba41f019
--- /dev/null
+++ b/1271/CH2/EX2.33/example2_33.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+N = 2620 // no. of lines in plane transmission grating per inch
+lambda = 5e-7 // wavelength of incident radiation in meter
+// Sample Problem 33 on page no. 2.51
+printf("\n # PROBLEM 33 # \n")
+k = 2.54 / N * 1 / 100 // calculation for b+d in meter
+n = k / lambda // calculation for order of spectrum
+printf("\n Standard formula used \n n = k / lambda ")
+printf("\n Order of spectrum = %d",n)
diff --git a/1271/CH2/EX2.34/34.txt b/1271/CH2/EX2.34/34.txt
new file mode 100755
index 000000000..a57e43560
--- /dev/null
+++ b/1271/CH2/EX2.34/34.txt
@@ -0,0 +1 @@
+ Order of spectrum = 4 \ No newline at end of file
diff --git a/1271/CH2/EX2.34/example2_34.sce b/1271/CH2/EX2.34/example2_34.sce
new file mode 100755
index 000000000..036fe2859
--- /dev/null
+++ b/1271/CH2/EX2.34/example2_34.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+N = 500000 // no. of lines in plane transmission grating per meter
+lambda = 5e-7 // wavelength of incident radiation in meter
+// Sample Problem 34 on page no. 2.51
+printf("\n # PROBLEM 34 # \n")
+k = 1 / N // calculation for b+d in meter
+n = k / lambda // calculation for order of spectrum
+printf("\n Standard formula used \n k = 1 / N. \n n = k / lambda. \n")
+printf("\n Order of spectrum = %d",n)
diff --git a/1271/CH2/EX2.35/35.txt b/1271/CH2/EX2.35/35.txt
new file mode 100755
index 000000000..970d0441e
--- /dev/null
+++ b/1271/CH2/EX2.35/35.txt
@@ -0,0 +1 @@
+Observed order = 6,3 \ No newline at end of file
diff --git a/1271/CH2/EX2.35/example2_35.sce b/1271/CH2/EX2.35/example2_35.sce
new file mode 100755
index 000000000..202cced25
--- /dev/null
+++ b/1271/CH2/EX2.35/example2_35.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+N = 400000 // no. of lines in plane transmission grating per meter
+lambda1 = 4e-7 // wavelength of light in first case in meter
+lambda2 = 7e-7 // wavelength of light in second case in meter
+// Sample Problem 35 on page no. 2.52
+printf("\n # PROBLEM 35 # \n")
+n1 = 1 / (N * lambda1) // calculation for Observed order in first case
+n2 = 1 / (N * lambda2) // calculation for Observed order in second case
+printf("Standard formula used \n n = 1 / (N * lambda). \n")
+printf("\n Observed order = %d,%d",n1,n2)
diff --git a/1271/CH2/EX2.36/36.txt b/1271/CH2/EX2.36/36.txt
new file mode 100755
index 000000000..0176f4eac
--- /dev/null
+++ b/1271/CH2/EX2.36/36.txt
@@ -0,0 +1 @@
+ Dispersive power = 1.897367e+06 rad/m \ No newline at end of file
diff --git a/1271/CH2/EX2.36/example2_36.sce b/1271/CH2/EX2.36/example2_36.sce
new file mode 100755
index 000000000..7c102fb46
--- /dev/null
+++ b/1271/CH2/EX2.36/example2_36.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+N = 400000 // no. of lines in grating per meter
+lambda = 5e-7 // wavelength of incident radiation in meter
+n = 3 // no. of order
+// Sample Problem 36 on page no. 2.52
+printf("\n # PROBLEM 36 # \n")
+p = (n * N) / (sqrt(1 - (N * n * lambda)))// dispersive power (p) = d(theta)/d(lambda)
+printf("\n Standard formula used \n p = (n * N) / (sqrt(1 - (N * n * lambda))). \n")
+printf("\n Dispersive power = %e rad/m",p)
diff --git a/1271/CH2/EX2.37/37.txt b/1271/CH2/EX2.37/37.txt
new file mode 100755
index 000000000..a16f7723a
--- /dev/null
+++ b/1271/CH2/EX2.37/37.txt
@@ -0,0 +1 @@
+ Minimum no. of lines in grating = 490.833333 \ No newline at end of file
diff --git a/1271/CH2/EX2.37/example2_37.sce b/1271/CH2/EX2.37/example2_37.sce
new file mode 100755
index 000000000..43f6a8f58
--- /dev/null
+++ b/1271/CH2/EX2.37/example2_37.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+n = 2 // no. of order
+lambda1 = 5.89e-7 // wavelength of light in first case in meter
+lambda2 = 5.896e-7 // wavelength of light in second case in meter
+// Sample Problem 37 on page no. 2.52
+printf("\n # PROBLEM 37 # \n")
+N = lambda1 / (n * (lambda2 - lambda1)) // calculation for minimum no. of lines in grating
+printf("\n Standard formula used \n N = lambda1 / (n * (lambda2 - lambda1)). \n")
+printf("\n Minimum no. of lines in grating = %f,",N)
diff --git a/1271/CH2/EX2.38/38.txt b/1271/CH2/EX2.38/38.txt
new file mode 100755
index 000000000..8dbc92116
--- /dev/null
+++ b/1271/CH2/EX2.38/38.txt
@@ -0,0 +1 @@
+Minimum no. of lines in grating = 981.666667, \ No newline at end of file
diff --git a/1271/CH2/EX2.38/example2_38.sce b/1271/CH2/EX2.38/example2_38.sce
new file mode 100755
index 000000000..aa310aa0d
--- /dev/null
+++ b/1271/CH2/EX2.38/example2_38.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+n = 1 // no. of order
+lambda1 = 5.89e-7 // wavelength of light in first case in meter
+lambda2 = 5.896e-7 // wavelength of light in second case in meter
+// Sample Problem 38 on page no. 2.53
+printf("\n # PROBLEM 38 # \n")
+N = lambda1 / (n * (lambda2 - lambda1)) // calculation for minimum no. of lines in grating
+printf("Standard formula used \n lambda/d(lambda)=n*N. \n")
+printf("\n Minimum no. of lines in grating = %f,",N)
diff --git a/1271/CH2/EX2.39/39.txt b/1271/CH2/EX2.39/39.txt
new file mode 100755
index 000000000..88e5b152d
--- /dev/null
+++ b/1271/CH2/EX2.39/39.txt
@@ -0,0 +1,2 @@
+ Grating space = 3.535800e-06 meter.
+ Total width of ruled surface = 1.156992e-03 meter.
diff --git a/1271/CH2/EX2.39/example2_39.sce b/1271/CH2/EX2.39/example2_39.sce
new file mode 100755
index 000000000..b12fe647b
--- /dev/null
+++ b/1271/CH2/EX2.39/example2_39.sce
@@ -0,0 +1,13 @@
+clc
+// Given that
+n = 3 // no. of order
+theta = %pi / 6 // view angle of third order in radian
+lambda1 = 5.89e-7 // min. wavelength of light in meter
+lambda2 = 5.896e-7 // max.wavelength of light in meter
+// Sample Problem 39 on page no. 2.53
+printf("\n # PROBLEM 39 # \n")
+mean_lambda = (lambda1 + lambda2) / 2 // calculation for mean wavelength
+s = (n * mean_lambda) / sin(theta) // calculation for grating space b+d
+N = lambda1 / (n * (lambda2 - lambda1)) // calculation for minimum no. of lines in grating
+printf("\n Standard formula used \n mean_lambda = (lambda1 + lambda2) / 2. \n s = (n * mean_lambda) / sin(theta). \n N = lambda1 / (n * (lambda2 - lambda1)). \n")
+printf("\n Grating space = %e meter. \n Total width of ruled surface = %e meter. ",s,s * N)
diff --git a/1271/CH2/EX2.4/4.txt b/1271/CH2/EX2.4/4.txt
new file mode 100755
index 000000000..b527c2ffb
--- /dev/null
+++ b/1271/CH2/EX2.4/4.txt
@@ -0,0 +1,2 @@
+ No. of half period zone in first case = 13
+ no. of half period zone in second case = 1333
diff --git a/1271/CH2/EX2.4/example2_4.sce b/1271/CH2/EX2.4/example2_4.sce
new file mode 100755
index 000000000..176d40951
--- /dev/null
+++ b/1271/CH2/EX2.4/example2_4.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+lambda = 6e-7 // wavelength of light in meter
+d = 0.5 // distance of observation point from circular opening in meter
+r1 = 2e-3 // radius of circular opening in first case in meter
+r2 = 2e-2 // radius of circular opening in second case in meter
+// Sample Problem 4 on page no. 2.39
+printf("\n # PROBLEM 4 # \n")
+n1 = (r1^2) / (d * lambda) // calculation for no. of half period zone in first case
+n2 = (r2^2) / (d * lambda) // calculation for no. of half period zone in second case
+printf("\n Standard formula used \n n = (r^2) / (d * lambda) \n")
+printf("\n No. of half period zone in first case = %d \n no. of half period zone in second case = %d ",n1,n2)
diff --git a/1271/CH2/EX2.40/40.txt b/1271/CH2/EX2.40/40.txt
new file mode 100755
index 000000000..9bd004606
--- /dev/null
+++ b/1271/CH2/EX2.40/40.txt
@@ -0,0 +1 @@
+ The separation of two points on moon = 50.996000 meter \ No newline at end of file
diff --git a/1271/CH2/EX2.40/example2_40.sce b/1271/CH2/EX2.40/example2_40.sce
new file mode 100755
index 000000000..e31f566e8
--- /dev/null
+++ b/1271/CH2/EX2.40/example2_40.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+lambda = 5.5e-7 // wavelength of light in meter
+a = 5 // diameter of objective lens of telescope in meter
+R = 3.8e8 // distance of moon in meter
+// Sample Problem 40 on page no. 2.53
+printf("\n # PROBLEM 40 # \n")
+theta = (1.22 * lambda) / a // calculation for angle
+x = (R * theta) // calculation for the separation of two points on moon
+printf("\n Standard formula used \n theta = (1.22 * lambda) / a. \n x = (R * theta). \n")
+printf("\n The separation of two points on moon = %f meter",x)
diff --git a/1271/CH2/EX2.41/41.txt b/1271/CH2/EX2.41/41.txt
new file mode 100755
index 000000000..2278f2531
--- /dev/null
+++ b/1271/CH2/EX2.41/41.txt
@@ -0,0 +1 @@
+ Diameter of telescope objective = 0.034950 meter \ No newline at end of file
diff --git a/1271/CH2/EX2.41/example2_41.sce b/1271/CH2/EX2.41/example2_41.sce
new file mode 100755
index 000000000..a23923406
--- /dev/null
+++ b/1271/CH2/EX2.41/example2_41.sce
@@ -0,0 +1,9 @@
+clc
+// Given that
+lambda = 5e-7 // wavelength of light in meter
+theta = (1e-3) * (%pi / 180) // separation angle of stars in radian
+// Sample Problem 41 on page no. 2.54
+printf("\n # PROBLEM 41 # \n")
+a = (1.22 * lambda) / theta // calculation for diameter of telescope objective
+printf("\n Standard formula used \n a = (1.22 * lambda) / theta. \n")
+printf("\n Diameter of telescope objective = %f meter",a)
diff --git a/1271/CH2/EX2.42/42.txt b/1271/CH2/EX2.42/42.txt
new file mode 100755
index 000000000..215c1d1dc
--- /dev/null
+++ b/1271/CH2/EX2.42/42.txt
@@ -0,0 +1 @@
+ Diameter of telescope objective = 0.300000 meter \ No newline at end of file
diff --git a/1271/CH2/EX2.42/example2_42.sce b/1271/CH2/EX2.42/example2_42.sce
new file mode 100755
index 000000000..437bb3e15
--- /dev/null
+++ b/1271/CH2/EX2.42/example2_42.sce
@@ -0,0 +1,9 @@
+clc
+// Given that
+lambda = 6e-7 // wavelength of light in meter
+theta = 2.44e-6 // separation angle of stars in radian
+// Sample Problem 42 on page no. 2.54
+printf("\n # PROBLEM 42 # \n")
+a = (1.22 * lambda) / theta // calculation for diameter of telescope objective
+printf("\n Standard formula used \n a = (1.22 * lambda) / theta. \n")
+printf("\n Diameter of telescope objective = %f meter",a)
diff --git a/1271/CH2/EX2.43/43.txt b/1271/CH2/EX2.43/43.txt
new file mode 100755
index 000000000..b1289cd2b
--- /dev/null
+++ b/1271/CH2/EX2.43/43.txt
@@ -0,0 +1 @@
+ Max. distance of pin holes from microscope = 8.941878 meter \ No newline at end of file
diff --git a/1271/CH2/EX2.43/example2_43.sce b/1271/CH2/EX2.43/example2_43.sce
new file mode 100755
index 000000000..c01fe14fe
--- /dev/null
+++ b/1271/CH2/EX2.43/example2_43.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+lambda = 5.5e-7 // wavelength of light in meter
+a = 0.004 // diameter of objective lens of telescope in meter
+x = 1.5e-3 // distance between two pin holes in meter
+// Sample Problem 43 on page no. 2.54
+printf("\n # PROBLEM 43 # \n")
+theta = (1.22 * lambda) / a // calculation for angle
+R = x / theta // calculation for max. distance of pin holes from microscope
+printf("\n Standard formula used \n theta = (1.22 * lambda) / a. \n R = x / theta. \n ")
+printf("\n Max. distance of pin holes from microscope = %f meter",R)
diff --git a/1271/CH2/EX2.44/44.txt b/1271/CH2/EX2.44/44.txt
new file mode 100755
index 000000000..3b2074903
--- /dev/null
+++ b/1271/CH2/EX2.44/44.txt
@@ -0,0 +1 @@
+ The resolving limit of microscope = 6.710000e-07 meter \ No newline at end of file
diff --git a/1271/CH2/EX2.44/example2_44.sce b/1271/CH2/EX2.44/example2_44.sce
new file mode 100755
index 000000000..af7da1e7e
--- /dev/null
+++ b/1271/CH2/EX2.44/example2_44.sce
@@ -0,0 +1,9 @@
+clc
+// Given that
+lambda = 5.5e-7 // wavelength of light in meter
+theta = %pi / 6 // semi-angle of cone in radian
+// Sample Problem 44 on page no. 2.55
+printf("\n # PROBLEM 44 # \n")
+d = (1.22 * lambda) / (2 * sin(theta)) // calculation for the resolving limit of microscope
+printf("Standard formula used \n d*sin(theta)= 1.22*lamda. \n")
+printf("\n The resolving limit of microscope = %e meter",d)
diff --git a/1271/CH2/EX2.45/45.txt b/1271/CH2/EX2.45/45.txt
new file mode 100755
index 000000000..2ee509548
--- /dev/null
+++ b/1271/CH2/EX2.45/45.txt
@@ -0,0 +1 @@
+ Numerical aperture of objective = 0.832803 \ No newline at end of file
diff --git a/1271/CH2/EX2.45/example2_45.sce b/1271/CH2/EX2.45/example2_45.sce
new file mode 100755
index 000000000..c27fb684b
--- /dev/null
+++ b/1271/CH2/EX2.45/example2_45.sce
@@ -0,0 +1,9 @@
+clc
+// Given that
+lambda = 5.461e-7 // wavelength of light in meter
+d = 4e-7 // separation between objects in meter
+// Sample Problem 45 on page no. 2.55
+printf("\n # PROBLEM 45 # \n")
+NA = (1.22 * lambda) / (2 * d) // calculation for numerical aperture of objective
+printf("\n Standard formula used \n NA = (1.22 * lambda) / (2 * d). \n")
+printf("\n Numerical aperture of objective = %f",NA)
diff --git a/1271/CH2/EX2.5/5.txt b/1271/CH2/EX2.5/5.txt
new file mode 100755
index 000000000..129c64a7a
--- /dev/null
+++ b/1271/CH2/EX2.5/5.txt
@@ -0,0 +1 @@
+Distance of screen from opening = 0.500000 meter \ No newline at end of file
diff --git a/1271/CH2/EX2.5/example2_5.sce b/1271/CH2/EX2.5/example2_5.sce
new file mode 100755
index 000000000..40b432468
--- /dev/null
+++ b/1271/CH2/EX2.5/example2_5.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+lambda = 5e-7 // wavelength of light in meter
+d = 1e-3 // diameter of the first ring of zone plate in meter
+// Sample Problem 5 on page no. 2.39
+printf("\n # PROBLEM 5 # \n")
+n = 1 // no. of half period zone
+D = (d^2) / (4 * lambda * n) // calculation for distance of screen from opening
+printf("\n Standard formula used \n D = (d^2) / (4 * lambda * n). \n")
+printf("\n Distance of screen from opening = %f meter ",D)
diff --git a/1271/CH2/EX2.6/6.txt b/1271/CH2/EX2.6/6.txt
new file mode 100755
index 000000000..e6b57b9db
--- /dev/null
+++ b/1271/CH2/EX2.6/6.txt
@@ -0,0 +1,2 @@
+
+ Radius of first ,second and third half period zone = 7.676588e-04,1.329624e-03 and 1.716537e-03 meter.
diff --git a/1271/CH2/EX2.6/example2_6.sce b/1271/CH2/EX2.6/example2_6.sce
new file mode 100755
index 000000000..c3e34df74
--- /dev/null
+++ b/1271/CH2/EX2.6/example2_6.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+lambda = 5.893e-7 // wavelength of light in meter
+f = 1 // focal-length of convex lens in meter
+n1 = 1 // no. of first half period zone
+n2 = 3 // no. of second half period zone
+n3 = 5 // no. of third half period zone
+// Sample Problem 6 on page no. 2.40
+printf("\n # PROBLEM 6 # \n")
+R1 = sqrt(n1 * lambda * f) // calculation for Radius of first half period zone
+R2 = sqrt(n2 * lambda * f) // calculation for Radius of second half period zone
+R3 = sqrt(n3 * lambda * f) // calculation for Radius of third half period zone
+printf("Standard formula used \n R = sqrt(f*n*lambda)\n")
+printf("\n Radius of first ,second and third half period zone = %e,%e and %e meter. ",R1,R2,R3)
diff --git a/1271/CH2/EX2.7/7.txt b/1271/CH2/EX2.7/7.txt
new file mode 100755
index 000000000..1781a25c6
--- /dev/null
+++ b/1271/CH2/EX2.7/7.txt
@@ -0,0 +1,2 @@
+
+ Radius of 10th half period zone = 0.001000 meter.
diff --git a/1271/CH2/EX2.7/example2_7.sce b/1271/CH2/EX2.7/example2_7.sce
new file mode 100755
index 000000000..698a85d50
--- /dev/null
+++ b/1271/CH2/EX2.7/example2_7.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+lambda = 5e-7 // wavelength of light in meter
+f = 0.2 // focal length of convex lens in meter
+n = 10 // no. of half period zone
+// Sample Problem 7 on page no. 2.40
+printf("\n # PROBLEM 7 # \n")
+Rn = sqrt(n * lambda * f) // calculation for radius of 10th half period zone
+printf("\n Standard formula used \n Rn = sqrt(n * lambda * f).\n")
+printf("\n Radius of 10th half period zone = %f mm. ",Rn*1000)
diff --git a/1271/CH2/EX2.8/8.txt b/1271/CH2/EX2.8/8.txt
new file mode 100755
index 000000000..809151209
--- /dev/null
+++ b/1271/CH2/EX2.8/8.txt
@@ -0,0 +1,3 @@
+ Focal length = 6.666667e-01 meter.
+ Power = 1.500000 D.
+ Diameter of first zone = 1.253262e-03 meter.
diff --git a/1271/CH2/EX2.8/example2_8.sce b/1271/CH2/EX2.8/example2_8.sce
new file mode 100755
index 000000000..9af0ace91
--- /dev/null
+++ b/1271/CH2/EX2.8/example2_8.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+lambda = 5.89e-7 // wavelength of light in meter
+d1 = 1 // distance of wavefront recieved on the screen from the opening in first side in meter
+d2 = 2 // distance of wavefront recieved on the screen from the opening in other side in meter
+// Sample Problem 8 on page no. 2.40
+printf("\n # PROBLEM 8 # \n")
+f = (d1 * d2) / (d1 + d2)
+p = 1 / f // beacause zone plate act as a convex lens
+n = 1 // for first zone
+Rn = sqrt(n * lambda * f) // calculation for radius of first zone
+Dn = 2 * Rn // calculation for diameter of first zone
+printf("\n Standard formula used \n ")
+printf("\n Focal length = %f meter. \n Power = %f D. \n Diameter of first zone = %f mm. ",f,p,Dn*1000)
diff --git a/1271/CH2/EX2.9/9.txt b/1271/CH2/EX2.9/9.txt
new file mode 100755
index 000000000..6f6e233d5
--- /dev/null
+++ b/1271/CH2/EX2.9/9.txt
@@ -0,0 +1 @@
+ Focal length in second case = 1.200000 meter \ No newline at end of file
diff --git a/1271/CH2/EX2.9/example2_9.sce b/1271/CH2/EX2.9/example2_9.sce
new file mode 100755
index 000000000..a7d137967
--- /dev/null
+++ b/1271/CH2/EX2.9/example2_9.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+lambda1 = 6e-7 // wavelength of first light in meter
+lambda2 = 5e-7 // wavelength of second light in meter
+f1 = 1 // focal length in first case in meter
+// Sample Problem 9 on page no. 2.41
+printf("\n # PROBLEM 9 # \n")
+f2 = (lambda1 * f1) / lambda2 // calculation for focal length in second case
+printf("\n Standard formula used \n f2 = (lambda1 * f1) / lambda2")
+printf("\n Focal length in second case = %f meter",f2)
diff --git a/1271/CH20/EX20.1/1.txt b/1271/CH20/EX20.1/1.txt
new file mode 100755
index 000000000..76869635a
--- /dev/null
+++ b/1271/CH20/EX20.1/1.txt
@@ -0,0 +1,10 @@
+ # PROBLEM 1 #
+Standard formula used
+ 1/2*m*v^2 = eV
+
+ Max. speed of electrons at 40000 Volts is 1.186000e+08 m/sec.
+ Max. speed of electrons at 20000 Volts is 8.386286e+07 m/sec./sec.
+ Max. speed of electrons at 100000 Volts is 1.875231e+08 m/sec.
+ Shortest wavelength of x-ray = 0.310000 Angstrom.
+ Shortest wavelength of x-ray = 0.620000 Angstrom.
+ Shortest wavelength of x-ray = 0.124000 Angstrom.
diff --git a/1271/CH20/EX20.1/example20_1.sce b/1271/CH20/EX20.1/example20_1.sce
new file mode 100755
index 000000000..b79d6e422
--- /dev/null
+++ b/1271/CH20/EX20.1/example20_1.sce
@@ -0,0 +1,16 @@
+clc
+// Given that
+V1 = 40e3 // voltage in first case in V
+V2 = 20e3 // voltage in second case in V
+V3 = 100e3 // voltage in second in V
+// Sample Problem 1 on page no. 20.7
+printf("\n # PROBLEM 1 # \n")
+printf("Standard formula used \n ")
+printf("1/2*m*v^2 = eV \n")
+v1 = 0.593e6 * sqrt(V1)
+lambda1 = 12400 / V1
+v2 = 0.593e6 * sqrt(V2)
+lambda2 = 12400 / V2
+v3 = 0.593e6 * sqrt(V3)
+lambda3 = 12400 / V3
+printf("\n Max. speed of electrons at %d Volts is %e m/sec.\n Max. speed of electrons at %d Volts is %e m/sec./sec.\n Max. speed of electrons at %d Volts is %e m/sec. \n Shortest wavelength of x-ray = %f Angstrom.\n Shortest wavelength of x-ray = %f Angstrom.\n Shortest wavelength of x-ray = %f Angstrom.",V1,v1,V2,v2,V3,v3,lambda1,lambda2,lambda3)
diff --git a/1271/CH20/EX20.10/10.txt b/1271/CH20/EX20.10/10.txt
new file mode 100755
index 000000000..1b540443e
--- /dev/null
+++ b/1271/CH20/EX20.10/10.txt
@@ -0,0 +1,6 @@
+ # PROBLEM 10 #
+Standard formula used
+ lambda_min = 12400/V
+
+ Applied voltage to get wavelength of 4.000000e-11 meter is 31.000000 KV.
+ Applied voltage to get wavelength of 1.000000e-10 meter is 12.400000 KV.
diff --git a/1271/CH20/EX20.10/example20_10.sce b/1271/CH20/EX20.10/example20_10.sce
new file mode 100755
index 000000000..4558e5c46
--- /dev/null
+++ b/1271/CH20/EX20.10/example20_10.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+lambda1 = 40e-12 // minimum wavelength in first case in m
+lambda2 = 1e-10 // minimum wavelength in second case in m
+// Sample Problem 10 on page no. 20.10
+printf("\n # PROBLEM 10 # \n")
+printf("Standard formula used \n ")
+printf("lambda_min = 12400/V \n")
+V1 = 12400e-10 / lambda1
+V2 = 12400e-10 / lambda2
+printf("\n Applied voltage to get wavelength of %e meter is %f KV. \n Applied voltage to get wavelength of %e meter is %f KV.",lambda1,V1/10^3,lambda2,V2/10^3)
diff --git a/1271/CH20/EX20.11/11.txt b/1271/CH20/EX20.11/11.txt
new file mode 100755
index 000000000..0da5dd51d
--- /dev/null
+++ b/1271/CH20/EX20.11/11.txt
@@ -0,0 +1,6 @@
+ # PROBLEM 11 #
+Standard formula used
+ h*c/Lambda = eV
+
+ Planck constant is 6.664533e-34 J sec if shortest wavelength is 2.840000e-11 m .
+ Planck constant is 6.613333e-34 Jsec if shortest wavelength is 2.480000e-11 m.
diff --git a/1271/CH20/EX20.11/example20_11.sce b/1271/CH20/EX20.11/example20_11.sce
new file mode 100755
index 000000000..a7aa242a8
--- /dev/null
+++ b/1271/CH20/EX20.11/example20_11.sce
@@ -0,0 +1,15 @@
+clc
+// Given that
+V1 = 44e3 // voltage in first case in V
+V2 = 50e3 // voltage in second case in V
+lambda1 = 0.284e-10 // shortest wavelength in first case in m
+lambda2 = 0.248e-10 // shortest wavelength in second case in m
+e = 1.6e-19 // charge on an electron in C
+c = 3e8 // speed of light in m/sec
+// Sample Problem 11 on page no. 20.10
+printf("\n # PROBLEM 11 # \n")
+printf("Standard formula used \n ")
+printf(" h*c/Lambda = eV \n")
+h1 = e * V1 * lambda1 / c
+h2 = e * V2 * lambda2 / c
+printf("\n Planck constant is %e J sec if shortest wavelength is %e m .\n Planck constant is %e Jsec if shortest wavelength is %e m. ",h1,lambda1,h2,lambda2)
diff --git a/1271/CH20/EX20.12/12.txt b/1271/CH20/EX20.12/12.txt
new file mode 100755
index 000000000..9c4c4d73e
--- /dev/null
+++ b/1271/CH20/EX20.12/12.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 12 #
+Standard formula used
+ lambda_min = 12400/V
+
+ Excitation potential is 124 kV.
diff --git a/1271/CH20/EX20.12/example20_12.sce b/1271/CH20/EX20.12/example20_12.sce
new file mode 100755
index 000000000..2f444d21a
--- /dev/null
+++ b/1271/CH20/EX20.12/example20_12.sce
@@ -0,0 +1,9 @@
+clc
+// Given that
+lambda = 1e-11 // K-absorption limit for uranium in m
+// Sample Problem 12 on page no. 20.10
+printf("\n # PROBLEM 12 # \n")
+printf("Standard formula used \n ")
+printf("lambda_min = 12400/V \n")
+V = 12400e-10 / lambda
+printf("\n Excitation potential is %d kV.",V/10^3)
diff --git a/1271/CH20/EX20.13/13.txt b/1271/CH20/EX20.13/13.txt
new file mode 100755
index 000000000..ae4204e7b
--- /dev/null
+++ b/1271/CH20/EX20.13/13.txt
@@ -0,0 +1,3 @@
+ # PROBLEM 13 #
+
+ the value of the ratio of h/e = 4.134667e-15 Jsec/C \ No newline at end of file
diff --git a/1271/CH20/EX20.13/example20_13.sce b/1271/CH20/EX20.13/example20_13.sce
new file mode 100755
index 000000000..beb75fe72
--- /dev/null
+++ b/1271/CH20/EX20.13/example20_13.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+lambda = 1.4e-11 // K-absorption edge for lead in m
+V = 88.6e3 // minimum voltage required for producing k-lines in V
+c = 3e8 // speed of light in m/sec
+// Sample Problem 13 on page no. 20.11
+printf("\n # PROBLEM 13 # \n")
+printf("Standard formula used \n ")
+printf(" h*c/Lambda = eV \n")
+r = V * lambda / c
+printf("\n The value of the ratio of h/e = %e Jsec/C.",r)
diff --git a/1271/CH20/EX20.14/14.txt b/1271/CH20/EX20.14/14.txt
new file mode 100755
index 000000000..0d283a8b7
--- /dev/null
+++ b/1271/CH20/EX20.14/14.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 14 #
+Standard formula used
+ Moseley Law
+
+ Wavelength of K line = 0.146374 A
diff --git a/1271/CH20/EX20.14/example20_14.sce b/1271/CH20/EX20.14/example20_14.sce
new file mode 100755
index 000000000..d58396ebe
--- /dev/null
+++ b/1271/CH20/EX20.14/example20_14.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+Z = 92 // atomic no. of atom
+Rh = 1.1e5 // Rydberg constant in cm^-1
+c = 3e8 // speed of light in m/sec
+// Sample Problem 14 on page no. 20.11
+printf("\n # PROBLEM 14 # \n")
+printf("Standard formula used \n ")
+printf(" Moseley Law \n ")
+lambda = 1 / (Rh *(Z-1)^2 * (1 - (1 / 2^2)))
+printf("\n Wavelength of K line = %f A",lambda*1e8)
diff --git a/1271/CH20/EX20.15/15.txt b/1271/CH20/EX20.15/15.txt
new file mode 100755
index 000000000..f2f264c87
--- /dev/null
+++ b/1271/CH20/EX20.15/15.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 15 #
+Standard formula used
+ nu = a*(Z-b)^2 ........Moseley law
+
+ Wavelength of the corresponding radiation of Cu is 1.522334 Angstrom.
diff --git a/1271/CH20/EX20.15/example20_15.sce b/1271/CH20/EX20.15/example20_15.sce
new file mode 100755
index 000000000..eaa3cd491
--- /dev/null
+++ b/1271/CH20/EX20.15/example20_15.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+Z = 42 // atomic no. of Mo
+lambda = 0.71e-10 // wavelength in m
+Z_ = 29 // atomic no. of Cu
+// Sample Problem 15 on page no. 20.11
+printf("\n # PROBLEM 15 # \n")
+printf("Standard formula used \n ")
+printf(" nu = a*(Z-b)^2 ........Moseley law \n")
+lambda_ = (Z-1)^2 * lambda / (Z_-1)^2
+printf("\n Wavelength of the corresponding radiation of Cu is %f Angstrom.",lambda_*1e10)
diff --git a/1271/CH20/EX20.16/16.txt b/1271/CH20/EX20.16/16.txt
new file mode 100755
index 000000000..1f7710431
--- /dev/null
+++ b/1271/CH20/EX20.16/16.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 16 #
+Standard formula used
+ nu = a*(Z-b)^2 ........Moseley law
+
+ Wavelength of x-ray is 0.199796 Angstrom.
diff --git a/1271/CH20/EX20.16/example20_16.sce b/1271/CH20/EX20.16/example20_16.sce
new file mode 100755
index 000000000..9fb1875f4
--- /dev/null
+++ b/1271/CH20/EX20.16/example20_16.sce
@@ -0,0 +1,13 @@
+clc
+// Given that
+Z = 79 // atomic no. of element
+b = 1 // a constant
+a = 2.468e15 // a constant in per sec
+c = 3e8 // speed of light in m/sec
+// Sample Problem 16 on page no. 20.12
+printf("\n # PROBLEM 16 # \n")
+printf("Standard formula used \n ")
+printf(" nu = a*(Z-b)^2 ........Moseley law \n")
+f = a * (Z - b)^2
+lambda = c / f
+printf("\n Wavelength of x-ray is %f Angstrom.",lambda*1e10)
diff --git a/1271/CH20/EX20.17/17.txt b/1271/CH20/EX20.17/17.txt
new file mode 100755
index 000000000..783fbbbe5
--- /dev/null
+++ b/1271/CH20/EX20.17/17.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 17 #
+Standard formula used
+ nu = a*(Z-b)^2 ........Moseley law
+
+ Ionization potential of K-shell electron of Cu is 8.937509 keV.
diff --git a/1271/CH20/EX20.17/example20_17.sce b/1271/CH20/EX20.17/example20_17.sce
new file mode 100755
index 000000000..167a07d38
--- /dev/null
+++ b/1271/CH20/EX20.17/example20_17.sce
@@ -0,0 +1,15 @@
+clc
+// Given that
+Z = 29 // atomic no. of Cu
+R = 1.097e7 // Rydberg constant in m^-1
+c = 3e8 // speed of light in m/sec
+h = 6.62e-34 // Planck constant in J sec
+// Sample Problem 17 on page no. 20.12
+printf("\n # PROBLEM 17 # \n")
+printf("Standard formula used \n ")
+printf(" nu = a*(Z-b)^2 ........Moseley law \n")
+f = 3/4 * (R * c) * (Z-1)^2
+E = h * f / 1.6e-16
+E_L = 0.931 // let E_L = 0.931 KeV
+E_ = E + E_L
+printf("\n Ionization potential of K-shell electron of Cu is %f keV.",E_)
diff --git a/1271/CH20/EX20.18/18.txt b/1271/CH20/EX20.18/18.txt
new file mode 100755
index 000000000..ea8a9f1a1
--- /dev/null
+++ b/1271/CH20/EX20.18/18.txt
@@ -0,0 +1,5 @@
+# PROBLEM 18 #
+Standard formula used
+ nu = a*(Z-b)^2 ........Moseley law
+
+ Frequency of k line is 1.501683e+19 Hz.
diff --git a/1271/CH20/EX20.18/example20_18.sce b/1271/CH20/EX20.18/example20_18.sce
new file mode 100755
index 000000000..ff70654ee
--- /dev/null
+++ b/1271/CH20/EX20.18/example20_18.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+Z = 79 // atomic no. of anticathode
+R = 1.097e7 // Rydberg constant in m^-1
+c = 3e8 // speed of light in m/sec
+// Sample Problem 18 on page no. 20.13
+printf("\n # PROBLEM 18 # \n")
+printf("Standard formula used \n ")
+printf(" nu = a*(Z-b)^2 ........Moseley law \n")
+f = 3/4 * (R * c) * (Z-1)^2
+printf("\n Frequency of k line is %e Hz.",f)
diff --git a/1271/CH20/EX20.19/19.txt b/1271/CH20/EX20.19/19.txt
new file mode 100755
index 000000000..e58c9e6d0
--- /dev/null
+++ b/1271/CH20/EX20.19/19.txt
@@ -0,0 +1,6 @@
+ # PROBLEM 19 #
+Standard formula used
+ nu = a*(Z-b)^2 ........Moseley law
+
+ Energy is 6.903572 keV.
+ Wavelength of x-ray is 1.797982 Angstrom.
diff --git a/1271/CH20/EX20.19/example20_19.sce b/1271/CH20/EX20.19/example20_19.sce
new file mode 100755
index 000000000..06cebb5cc
--- /dev/null
+++ b/1271/CH20/EX20.19/example20_19.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+Z = 27 // atomic no. of Co
+R = 1.097e7 // Rydberg constant in m^-1
+c = 3e8 // speed of light in m/sec
+h = 6.62e-34 // Planck constant in J sec
+// Sample Problem 19 on page no. 20.13
+printf("\n # PROBLEM 19 # \n")
+printf("Standard formula used \n")
+printf(" nu = a*(Z-b)^2 ........Moseley law \n")
+f = 3/4 * (R * c) * (Z-1)^2
+E = h * f
+lambda = c / f
+printf("\n Energy is %f keV.\n Wavelength of x-ray is %f Angstrom.",E / 1.6e-16,lambda*1e10)
diff --git a/1271/CH20/EX20.2/2.txt b/1271/CH20/EX20.2/2.txt
new file mode 100755
index 000000000..c52241b21
--- /dev/null
+++ b/1271/CH20/EX20.2/2.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 2 #
+Standard formula used
+ h*c/lambda = eV
+
+ Planck constant is 6.624000e-34 J sec.
diff --git a/1271/CH20/EX20.2/example20_2.sce b/1271/CH20/EX20.2/example20_2.sce
new file mode 100755
index 000000000..61adf06b8
--- /dev/null
+++ b/1271/CH20/EX20.2/example20_2.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+V = 30e3 // voltage in V
+lambda_min = 0.414e-10 // shortest wavelength in m
+e = 1.6e-19 // charge on an electron in C
+c = 3e8 // speed of light in m/sec
+// Sample Problem 2 on page no. 20.7
+printf("\n # PROBLEM 2 # \n")
+printf("Standard formula used \n ")
+printf("h*c/lambda = eV \n")
+h = (e * V * lambda_min) / c
+printf("\n Planck constant is %e J sec.",h)
diff --git a/1271/CH20/EX20.3/3.txt b/1271/CH20/EX20.3/3.txt
new file mode 100755
index 000000000..da376a485
--- /dev/null
+++ b/1271/CH20/EX20.3/3.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 3 #
+Standard formula used
+ Lambda_min = 12400/V
+
+ Minimum wavelength of x-ray is 0.496000 Angstrom.
diff --git a/1271/CH20/EX20.3/example20_3.sce b/1271/CH20/EX20.3/example20_3.sce
new file mode 100755
index 000000000..ff5795827
--- /dev/null
+++ b/1271/CH20/EX20.3/example20_3.sce
@@ -0,0 +1,9 @@
+clc
+// Given that
+V = 25e3 // voltage in V
+// Sample Problem 3 on page no. 20.8
+printf("\n # PROBLEM 3 # \n")
+printf("Standard formula used \n ")
+printf("Lambda_min = 12400/V \n")
+lambda_min = 12400 / V
+printf("\n Minimum wavelength of x-ray is %f Angstrom.",lambda_min)
diff --git a/1271/CH20/EX20.4/4.txt b/1271/CH20/EX20.4/4.txt
new file mode 100755
index 000000000..f4d4bb891
--- /dev/null
+++ b/1271/CH20/EX20.4/4.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 4 #
+Standard formula used
+ 1/2*m*v^2 = eV
+
+ Maximum speed of electron is 6.915509e+07 m/sec.
diff --git a/1271/CH20/EX20.4/example20_4.sce b/1271/CH20/EX20.4/example20_4.sce
new file mode 100755
index 000000000..a6924f4ee
--- /dev/null
+++ b/1271/CH20/EX20.4/example20_4.sce
@@ -0,0 +1,9 @@
+clc
+// Given that
+V = 13.6e3 // voltage in V
+// Sample Problem 4 on page no. 20.8
+printf("\n # PROBLEM 4 # \n")
+printf("Standard formula used \n ")
+printf("1/2*m*v^2 = eV \n")
+v = 0.593e6*sqrt(V)
+printf("\n Maximum speed of electron is %e m/sec.",v)
diff --git a/1271/CH20/EX20.5/5.txt b/1271/CH20/EX20.5/5.txt
new file mode 100755
index 000000000..64bc68f4d
--- /dev/null
+++ b/1271/CH20/EX20.5/5.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 5 #
+Standard formula used
+ 1/2*m*v^2 = eV
+
+ Velocity of electron is 5.930000e+07 m/sec.
diff --git a/1271/CH20/EX20.5/example20_5.sce b/1271/CH20/EX20.5/example20_5.sce
new file mode 100755
index 000000000..99e94589e
--- /dev/null
+++ b/1271/CH20/EX20.5/example20_5.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+V = 10e3 // voltage in V
+i = 2e-3 // current in amp
+// Sample Problem 5 on page no. 20.8
+printf("\n # PROBLEM 5 # \n")
+printf("Standard formula used \n ")
+printf("1/2*m*v^2 = eV \n")
+v = 0.593e6*sqrt(V)
+printf("\n Velocity of electron is %e m/sec.",v)
diff --git a/1271/CH20/EX20.6/6.txt b/1271/CH20/EX20.6/6.txt
new file mode 100755
index 000000000..3c458faf7
--- /dev/null
+++ b/1271/CH20/EX20.6/6.txt
@@ -0,0 +1,6 @@
+ # PROBLEM 6 #
+Standard formula used
+ h*c/lambda = eV
+
+ Highest frequency is 2.370968e+08 Hz.
+ Minimum wavelength is 1.265306 Angstrom.
diff --git a/1271/CH20/EX20.6/example20_6.sce b/1271/CH20/EX20.6/example20_6.sce
new file mode 100755
index 000000000..707361d81
--- /dev/null
+++ b/1271/CH20/EX20.6/example20_6.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+V = 9.8e3 // voltage in V
+i = 2e-3 // current in amp
+c = 3e8 // speed of light in m/sec
+// Sample Problem 6 on page no. 20.8
+printf("\n # PROBLEM 6 # \n")
+printf("Standard formula used \n ")
+printf("h*c/lambda = eV \n")
+lambda = 12400 / V
+f = c / lambda
+printf("\n Highest frequency is %e Hz.\n Minimum wavelength is %f Angstrom.",f,lambda)
diff --git a/1271/CH20/EX20.7/7.txt b/1271/CH20/EX20.7/7.txt
new file mode 100755
index 000000000..ac9472c1d
--- /dev/null
+++ b/1271/CH20/EX20.7/7.txt
@@ -0,0 +1,7 @@
+ # PROBLEM 7 #
+Standard formula used
+ I = ne
+ 1/2*m*v^2 = eV
+
+ Number of electrons striking the target per sec is 1.250000e+16.
+ Speed of electrons is 6.603369e+07 m/sec.
diff --git a/1271/CH20/EX20.7/example20_7.sce b/1271/CH20/EX20.7/example20_7.sce
new file mode 100755
index 000000000..ceec6b5cc
--- /dev/null
+++ b/1271/CH20/EX20.7/example20_7.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+V = 12.4e3 // voltage in V
+i = 2e-3 // current in amp
+e = 1.6e-19 // charge on an electron in C
+// Sample Problem 7 on page no. 20.9
+printf("\n # PROBLEM 7 # \n")
+printf("Standard formula used \n ")
+printf("I = ne \n 1/2*m*v^2 = eV \n")
+n = i / e
+v = 0.593e6*sqrt(V)
+printf("\n Number of electrons striking the target per sec is %e.\n Speed of electrons is %e m/sec.",n,v)
diff --git a/1271/CH20/EX20.8/8.txt b/1271/CH20/EX20.8/8.txt
new file mode 100755
index 000000000..5a7403664
--- /dev/null
+++ b/1271/CH20/EX20.8/8.txt
@@ -0,0 +1,7 @@
+ # PROBLEM 8 #
+Standard formula used
+ I = ne
+ 1/2*m*v^2 = eV
+
+ Number of electrons striking the anode per sec is 9.375000e+16.
+ Minimum wavelength produced is 1.240000 Angstrom.
diff --git a/1271/CH20/EX20.8/example20_8.sce b/1271/CH20/EX20.8/example20_8.sce
new file mode 100755
index 000000000..c3a188edf
--- /dev/null
+++ b/1271/CH20/EX20.8/example20_8.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+V = 10e3 // voltage in V
+i = 15e-3 // current in amp
+e = 1.6e-19 // charge on an electron in C
+// Sample Problem 8 on page no. 20.9
+printf("\n # PROBLEM 8 # \n")
+printf("Standard formula used \n ")
+printf("I = ne \n 1/2*m*v^2 = eV \n")
+n = i / e
+lambda = 12400 / V
+printf("\n Number of electrons striking the anode per sec is %e.\n Minimum wavelength produced is %f Angstrom.",n,lambda)
diff --git a/1271/CH20/EX20.9/9.txt b/1271/CH20/EX20.9/9.txt
new file mode 100755
index 000000000..5a9e25170
--- /dev/null
+++ b/1271/CH20/EX20.9/9.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 9 #
+Standard formula used
+ I = ne
+
+ Number of electrons striking the anode per sec is 6.250000e+15.
diff --git a/1271/CH20/EX20.9/example20_9.sce b/1271/CH20/EX20.9/example20_9.sce
new file mode 100755
index 000000000..d1c57b88e
--- /dev/null
+++ b/1271/CH20/EX20.9/example20_9.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+V = 50e3 // voltage in V
+i = 1e-3 // current in amp
+e = 1.6e-19 // charge on an electron in C
+// Sample Problem 9 on page no. 20.9
+printf("\n # PROBLEM 9 # \n")
+printf("Standard formula used \n ")
+printf("I = ne \n")
+n = i / e
+printf("\n Number of electrons striking the anode per sec is %e.",n)
diff --git a/1271/CH22/EX22.1/1.txt b/1271/CH22/EX22.1/1.txt
new file mode 100755
index 000000000..465977302
--- /dev/null
+++ b/1271/CH22/EX22.1/1.txt
@@ -0,0 +1,3 @@
+# PROBLEM 1 #
+
+ The ratio of the value of Nb/Ns of spherical particle and nanoparticle = 7.500000e-03 .
diff --git a/1271/CH22/EX22.1/example22_1.sce b/1271/CH22/EX22.1/example22_1.sce
new file mode 100755
index 000000000..309428687
--- /dev/null
+++ b/1271/CH22/EX22.1/example22_1.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+d = 12e-6 // diameter in m
+d_ = 90e-9 // diameter of nanoparticle in m
+// Sample Problem 1 on page no. 22.13
+printf("\n # PROBLEM 1 # \n")
+r = d / 2
+r_ = d_ / 2
+k = r / 3
+k_ = r_ / 3
+R = k_ / k
+printf("\n The ratio of the value of Nb/Ns of spherical particle and nanoparticle = %e .",R)
diff --git a/1271/CH3/EX3.1/1.txt b/1271/CH3/EX3.1/1.txt
new file mode 100755
index 000000000..a9379c86f
--- /dev/null
+++ b/1271/CH3/EX3.1/1.txt
@@ -0,0 +1,2 @@
+ Brewster angle = 56.309932 degree
+ Angle of refraction = 33.690068 degree
diff --git a/1271/CH3/EX3.1/example3_1.sce b/1271/CH3/EX3.1/example3_1.sce
new file mode 100755
index 000000000..970f92b03
--- /dev/null
+++ b/1271/CH3/EX3.1/example3_1.sce
@@ -0,0 +1,9 @@
+clc
+// Given that
+mu = 1.5 // refractive index of glass
+// Sample Problem 1 on page no. 3.23
+printf("\n # PROBLEM 1 # \n")
+Ip = atan(mu) * (180 / %pi) // by brewster's law
+r = 90 - Ip // calculation for angle of refraction
+printf("Standard formula used \n mu=tan(Ip)\n")
+printf("\n Brewster angle = %f degree\n Angle of refraction = %f degree",Ip,r)
diff --git a/1271/CH3/EX3.10/10.txt b/1271/CH3/EX3.10/10.txt
new file mode 100755
index 000000000..1ed585710
--- /dev/null
+++ b/1271/CH3/EX3.10/10.txt
@@ -0,0 +1,5 @@
+ Percentage reduction in intensity of ligth-
+(i)25.000000 per
+(ii)50.000000 per
+(iii)75.000000 per
+(iv)100.000000 per
diff --git a/1271/CH3/EX3.10/example3_10.sce b/1271/CH3/EX3.10/example3_10.sce
new file mode 100755
index 000000000..511534ac9
--- /dev/null
+++ b/1271/CH3/EX3.10/example3_10.sce
@@ -0,0 +1,15 @@
+clc
+// Given that
+theta1 = %pi / 6 // angle between Nicole prisms in first case in radian
+theta2 = %pi / 4 // angle between Nicole prisms in second case in radian
+theta3 = %pi / 3 // angle between Nicole prisms in third case in radian
+theta4 = %pi / 2 // angle between Nicole prisms in fourth case in radian
+// Sample Problem 10 on page no. 3.26
+printf("\n # PROBLEM 10 # \n")
+I1 = (1 - (cos(theta1))^2) * 100
+I2 = (1 - (cos(theta2))^2) * 100
+I3 = (1 - (cos(theta3))^2) * 100
+I4 = (1 - (cos(theta4))^2) * 100
+ // calculation for percentage reduction in intensity of ligth
+ printf("\n Standard formula used \n I = (1 - (cos(theta))^2) * 100. \n")
+printf("\n Percentage reduction in intensity of ligth-\n(i)%f per\n(ii)%f per\n(iii)%f per\n(iv)%f per",I1,I2,I3,I4)
diff --git a/1271/CH3/EX3.11/11.txt b/1271/CH3/EX3.11/11.txt
new file mode 100755
index 000000000..292cbc4b8
--- /dev/null
+++ b/1271/CH3/EX3.11/11.txt
@@ -0,0 +1,2 @@
+ Angle between the Nicols in first case = 45.000000 degree
+ And in second case = 60.000000 degree
diff --git a/1271/CH3/EX3.11/example3_11.sce b/1271/CH3/EX3.11/example3_11.sce
new file mode 100755
index 000000000..d4d06857e
--- /dev/null
+++ b/1271/CH3/EX3.11/example3_11.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+i1 = 1 / 2 // reduced intensity ratio in first case
+i2 = 1 / 4 // reduced intensity ratio in second case
+// Sample Problem 11 on page no. 3.27
+printf("\n # PROBLEM 11 # \n")
+theta1 = acos(sqrt(i1)) * (180 / %pi)// calculation for angle between nicols in first case
+theta2 = acos(sqrt(i2)) * (180 / %pi)// calculation for angle between nicols in second case
+printf("Standard formula used \n I=I_cos(theta)^2\n")
+printf("\n Angle between the Nicols in first case = %f degree\n And in second case = %f degree",theta1,theta2)
diff --git a/1271/CH3/EX3.12/12.txt b/1271/CH3/EX3.12/12.txt
new file mode 100755
index 000000000..4feddbb01
--- /dev/null
+++ b/1271/CH3/EX3.12/12.txt
@@ -0,0 +1 @@
+ Thickness of half-wave plate of quartz = 2.777778e-05 meter \ No newline at end of file
diff --git a/1271/CH3/EX3.12/example3_12.sce b/1271/CH3/EX3.12/example3_12.sce
new file mode 100755
index 000000000..b416e2c9a
--- /dev/null
+++ b/1271/CH3/EX3.12/example3_12.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+lambda = 5e-7 // wavelength of light in meter
+mu_e = 1.553 // refractive index for extraordinary light
+mu_o = 1.544 // refractive index for ordinary light
+// Sample Problem 12 on page no. 3.27
+printf("\n # PROBLEM 12 # \n")
+t = lambda / (2 * (mu_e - mu_o)) // calculation for thickness of half-wave plate of quartz
+printf("\n Standard formula used \n t = lambda / (2 * (mu_e - mu_o)). \n")
+printf("\n Thickness of half-wave plate of quartz = %e meter",t)
diff --git a/1271/CH3/EX3.13/13.txt b/1271/CH3/EX3.13/13.txt
new file mode 100755
index 000000000..5cfeb7566
--- /dev/null
+++ b/1271/CH3/EX3.13/13.txt
@@ -0,0 +1 @@
+ Thickness of quartz plate = 7.015476e-06 meter \ No newline at end of file
diff --git a/1271/CH3/EX3.13/example3_13.sce b/1271/CH3/EX3.13/example3_13.sce
new file mode 100755
index 000000000..28e33baa7
--- /dev/null
+++ b/1271/CH3/EX3.13/example3_13.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+lambda = 5.893e-7 // wavelength of light in meter
+mu_e = 1.533 // refractive index for extraordinary light
+mu_o = 1.554 // refractive index for ordinary light
+// Sample Problem 13 on page no. 3.27
+printf("\n # PROBLEM 13 # \n")
+t = lambda / (4 * (mu_o - mu_e)) // calculation for thickness of quartz plate
+printf("\n Standard formula used \n t = lambda / (4 * (mu_o - mu_e)). \n ")
+printf("\n Thickness of quartz plate = %e meter",t)
diff --git a/1271/CH3/EX3.14/14.txt b/1271/CH3/EX3.14/14.txt
new file mode 100755
index 000000000..ec7e4f51c
--- /dev/null
+++ b/1271/CH3/EX3.14/14.txt
@@ -0,0 +1,2 @@
+ Thickness of plate of quartz in first case = 2.945000e-06 meter,
+ And thickness of plate of quartz in second case = 7.362500e-06 meter
diff --git a/1271/CH3/EX3.14/example3_14.sce b/1271/CH3/EX3.14/example3_14.sce
new file mode 100755
index 000000000..13870de77
--- /dev/null
+++ b/1271/CH3/EX3.14/example3_14.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+lambda = 5.89e-7 // wavelength of light in meter
+mu_e1 = 1.5 // refractive index for extraordinary light in first case
+mu_o1 = 1.55 // refractive index for ordinary light in first case
+mu_e2 = 1.57 // refractive index for extraordinary light in second case
+mu_o2 = 1.55 // refractive index for ordinary light in second case
+// Sample Problem 14 on page no. 3.28
+printf("\n # PROBLEM 14 # \n")
+t1 = lambda / (4 * (mu_o1 - mu_e1))
+t2 = lambda / (4 * (mu_e2 - mu_o2))
+ // calculation for thickness of plate of quartz
+ printf("\n Standard formula used \n t = lambda / (4 * (mu_o - mu_e)) ")
+printf("\n Thickness of plate of quartz in first case = %e meter,\n And thickness of plate of quartz in second case = %e meter",t1,t2)
diff --git a/1271/CH3/EX3.15/15.txt b/1271/CH3/EX3.15/15.txt
new file mode 100755
index 000000000..f88756512
--- /dev/null
+++ b/1271/CH3/EX3.15/15.txt
@@ -0,0 +1,2 @@
+
+ Thickness of calcite plate = 8.561047e-07 meter
diff --git a/1271/CH3/EX3.15/example3_15.sce b/1271/CH3/EX3.15/example3_15.sce
new file mode 100755
index 000000000..1643e2566
--- /dev/null
+++ b/1271/CH3/EX3.15/example3_15.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+lambda = 5.89e-7 // wavelength of light in meter
+mu_e = 1.486 // refractive index for extraordinary light
+mu_o = 1.658 // refractive index for ordinary light
+// Sample Problem 15 on page no. 3.28
+printf("\n # PROBLEM 15 # \n")
+t = lambda / (4 * (mu_o - mu_e)) // calculation for thickness of calcite plate
+printf("\n Standard formula used \n t = lambda / (4 * (mu_o - mu_e)). \n")
+printf("\n Thickness of calcite plate = %e meter",t)
diff --git a/1271/CH3/EX3.16/16.txt b/1271/CH3/EX3.16/16.txt
new file mode 100755
index 000000000..6820183dc
--- /dev/null
+++ b/1271/CH3/EX3.16/16.txt
@@ -0,0 +1,2 @@
+
+ Thickness of quartz plate = 1.373626e-05 meter
diff --git a/1271/CH3/EX3.16/example3_16.sce b/1271/CH3/EX3.16/example3_16.sce
new file mode 100755
index 000000000..d4b2a91fb
--- /dev/null
+++ b/1271/CH3/EX3.16/example3_16.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+lambda = 5e-7 // wavelength of light in meter
+mu_e = 1.5533 // refractive index for extraordinary light
+mu_o = 1.5442 // refractive index for ordinary light
+// Sample Problem 16 on page no. 3.28
+printf("\n # PROBLEM 16 # \n")
+t = lambda / (4 * (mu_e - mu_o)) // calculation for thickness of quartz plate
+printf("\n Standard formula used \n t = lambda / (4 * (mu_e - mu_o)). \n")
+printf("\n Thickness of quartz plate = %e meter",t)
diff --git a/1271/CH3/EX3.17/17.txt b/1271/CH3/EX3.17/17.txt
new file mode 100755
index 000000000..903d86099
--- /dev/null
+++ b/1271/CH3/EX3.17/17.txt
@@ -0,0 +1 @@
+ Thickness of quartz plate = 1.472500e-05 meter \ No newline at end of file
diff --git a/1271/CH3/EX3.17/example3_17.sce b/1271/CH3/EX3.17/example3_17.sce
new file mode 100755
index 000000000..bc43ba046
--- /dev/null
+++ b/1271/CH3/EX3.17/example3_17.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+lambda = 5.89e-7 // wavelength of light in meter
+mu_e = 1.54 // refractive index for extraordinary light
+mu_o = 1.55 // refractive index for ordinary light
+// Sample Problem 17 on page no. 3.28
+printf("\n # PROBLEM 17 # \n")
+t = lambda / (4 * (mu_o - mu_e)) // calculation for thickness of quartz plate
+printf("\n Standard formula used \n t = lambda / (4 * (mu_o - mu_e))")
+printf("\n Thickness of quartz plate = %e meter",t)
diff --git a/1271/CH3/EX3.18/18.txt b/1271/CH3/EX3.18/18.txt
new file mode 100755
index 000000000..ffa76cdec
--- /dev/null
+++ b/1271/CH3/EX3.18/18.txt
@@ -0,0 +1 @@
+ Thickness of quartz plate = 1.636111e-05 meter \ No newline at end of file
diff --git a/1271/CH3/EX3.18/example3_18.sce b/1271/CH3/EX3.18/example3_18.sce
new file mode 100755
index 000000000..b6a973b59
--- /dev/null
+++ b/1271/CH3/EX3.18/example3_18.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+lambda = 5.89e-7 // wavelength of light in meter
+mu_e = 1.553 // refractive index for extraordinary light
+mu_o = 1.544 // refractive index for ordinary light
+// Sample Problem 18 on page no. 3.28
+printf("\n # PROBLEM 18 # \n")
+t = lambda / (4 * (mu_e - mu_o)) // calculation for thickness of quartz plate
+printf("\n Standard formula used \n t = lambda / (4 * (mu_e - mu_o)).\n")
+printf("\n Thickness of quartz plate = %e meter",t)
diff --git a/1271/CH3/EX3.19/19.txt b/1271/CH3/EX3.19/19.txt
new file mode 100755
index 000000000..18a9b6be3
--- /dev/null
+++ b/1271/CH3/EX3.19/19.txt
@@ -0,0 +1 @@
+ Thickness of quartz plate = 2.747253e-05 meter \ No newline at end of file
diff --git a/1271/CH3/EX3.19/example3_19.sce b/1271/CH3/EX3.19/example3_19.sce
new file mode 100755
index 000000000..d6f39f4cb
--- /dev/null
+++ b/1271/CH3/EX3.19/example3_19.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+mu_e = 1.5442 // refractive index for extraordinary light
+mu_o = 1.5533 // refractive index for ordinary light
+lambda = 5e-7 // wavelength of plane polarized light in meter
+// Sample Problem 19 on page no. 3.29
+printf("\n # PROBLEM 19 # \n")
+t = lambda / (2 * (mu_o - mu_e))// calculation for thickness of quartz plate
+printf("Standard formula used \n t=lambda/4(mu_o-mu_e)\n")
+printf("\n Thickness of quartz plate = %e meter",t)
diff --git a/1271/CH3/EX3.2/2.txt b/1271/CH3/EX3.2/2.txt
new file mode 100755
index 000000000..cbe9ace1a
--- /dev/null
+++ b/1271/CH3/EX3.2/2.txt
@@ -0,0 +1 @@
+ Angle of Brewster = 53.061237 degree \ No newline at end of file
diff --git a/1271/CH3/EX3.2/example3_2.sce b/1271/CH3/EX3.2/example3_2.sce
new file mode 100755
index 000000000..c33f967a1
--- /dev/null
+++ b/1271/CH3/EX3.2/example3_2.sce
@@ -0,0 +1,8 @@
+clc
+// Given that
+mu = 1.33 // refractive index of glass
+// Sample Problem 2 on page no. 3.24
+printf("\n # PROBLEM 2 # \n")
+Ip = atan(mu) * (180 / %pi) // by Brewster's law
+printf("Standard formula used \n mu=tan(Ip)\n")
+printf("\n Angle of brewster = %f degree",Ip)
diff --git a/1271/CH3/EX3.20/20.txt b/1271/CH3/EX3.20/20.txt
new file mode 100755
index 000000000..69c0f2fee
--- /dev/null
+++ b/1271/CH3/EX3.20/20.txt
@@ -0,0 +1 @@
+Concentration of sugar solution = 0.066667 gm/cc \ No newline at end of file
diff --git a/1271/CH3/EX3.20/example3_20.sce b/1271/CH3/EX3.20/example3_20.sce
new file mode 100755
index 000000000..16fc7af61
--- /dev/null
+++ b/1271/CH3/EX3.20/example3_20.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+theta = 10 // rotation of plane of polarization in degree
+s = 60 // specific rotation of sugar solution in degree per decimeter per unit concentration
+l = 2.5 // length of Polari meter in decimeter
+// Sample Problem 20 on page no. 3.29
+printf("\n # PROBLEM 20 # \n")
+c = theta / (s * l) // calculation for concentration of sugar solution
+printf("\n Standard formula used \n c = theta / (s * l). \n")
+printf("\n Concentration of sugar solution = %f gm/cc",c)
diff --git a/1271/CH3/EX3.21/21.txt b/1271/CH3/EX3.21/21.txt
new file mode 100755
index 000000000..a9bf443d1
--- /dev/null
+++ b/1271/CH3/EX3.21/21.txt
@@ -0,0 +1 @@
+Specific rotation of sugar solution = 66.000000 degree/(dm-cc) \ No newline at end of file
diff --git a/1271/CH3/EX3.21/example3_21.sce b/1271/CH3/EX3.21/example3_21.sce
new file mode 100755
index 000000000..7395d7f88
--- /dev/null
+++ b/1271/CH3/EX3.21/example3_21.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+theta = 26.4 // rotation of plane of polarization in degree
+c = 0.2 // concentration of sugar solution in gm/cc
+l = 2 // length of polarizing tube in decimeter
+// Sample Problem 21 on page no. 3.29
+printf("\n # PROBLEM 21 # \n")
+s = theta / (l * c)// calculation for specific rotation of sugar solution
+printf("Standard formula used \n s = (10*theta)/(l*c)\n")
+printf("\n Specific rotation of sugar solution = %f degree/(dm-cc)",s)
diff --git a/1271/CH3/EX3.22/22.txt b/1271/CH3/EX3.22/22.txt
new file mode 100755
index 000000000..f14eab60b
--- /dev/null
+++ b/1271/CH3/EX3.22/22.txt
@@ -0,0 +1 @@
+ Specific rotation of sugar solution = 65.000000 degree/(dm-cc) \ No newline at end of file
diff --git a/1271/CH3/EX3.22/example3_22.sce b/1271/CH3/EX3.22/example3_22.sce
new file mode 100755
index 000000000..9c41d48d3
--- /dev/null
+++ b/1271/CH3/EX3.22/example3_22.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+theta = 6.5 // rotation of plane of polarization in degree
+c = 0.05 // concentration of sugar solution in gm/cc
+l = 2 // length of polarizing tube in decimeter
+// Sample Problem 22 on page no. 3.29
+printf("\n # PROBLEM 22 # \n")
+s = theta / (l * c) // calculation for specific rotation of sugar solution
+printf("\n Standard formula used \n s = theta / (l * c). \n ")
+printf("\n Specific rotation of sugar solution = %f degree/(dm-cc)",s)
diff --git a/1271/CH3/EX3.23/23.txt b/1271/CH3/EX3.23/23.txt
new file mode 100755
index 000000000..8d6b95eb8
--- /dev/null
+++ b/1271/CH3/EX3.23/23.txt
@@ -0,0 +1 @@
+Concentration of sugar solution = 93.750000 percent \ No newline at end of file
diff --git a/1271/CH3/EX3.23/example3_23.sce b/1271/CH3/EX3.23/example3_23.sce
new file mode 100755
index 000000000..869f9ca5d
--- /dev/null
+++ b/1271/CH3/EX3.23/example3_23.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+w = 80 // weight of impure sugar in gm
+theta = 9.9 // rotation of plane of polarization in degree
+s = 66 // specific rotation of sugar solution in degree per decimeter per unit concentration
+l = 2 // length of Polari meter in decimeter
+// Sample Problem 23 on page no. 3.30
+printf("\n # PROBLEM 23 # \n")
+c = theta / (s * l) * (1000) // in gm/l
+per_c = (c * 100) / w // calculation for concentration of sugar solution
+printf("\n Standard formula used \n c = theta / (s * l) * (1000). \n per_c = (c * 100) / w. \n")
+printf("\n Concentration of sugar solution = %f percent",per_c)
diff --git a/1271/CH3/EX3.24/24.txt b/1271/CH3/EX3.24/24.txt
new file mode 100755
index 000000000..aa251793b
--- /dev/null
+++ b/1271/CH3/EX3.24/24.txt
@@ -0,0 +1 @@
+ Concentration of sugar solution = 0.083333 gm/cc \ No newline at end of file
diff --git a/1271/CH3/EX3.24/example3_24.sce b/1271/CH3/EX3.24/example3_24.sce
new file mode 100755
index 000000000..321f325e3
--- /dev/null
+++ b/1271/CH3/EX3.24/example3_24.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+theta = 11 // rotation of plane of polarization in degree
+s = 66 // specific rotation of sugar solution in degree per decimeter per unit concentration
+l = 2 // length of Polari meter in decimeter
+// Sample Problem 24 on page no. 3.29
+printf("\n # PROBLEM 24 # \n")
+c = theta / (s * l) // calculation for concentration of sugar solution
+printf("\n Standard formula used \n c = theta / (s * l). \n ")
+printf("\n Concentration of sugar solution = %f gm/cc",c)
diff --git a/1271/CH3/EX3.25/25.txt b/1271/CH3/EX3.25/25.txt
new file mode 100755
index 000000000..edd5cd7ce
--- /dev/null
+++ b/1271/CH3/EX3.25/25.txt
@@ -0,0 +1 @@
+ Specific rotation of sugar solution = 66.000000 degree/(dm-cc) \ No newline at end of file
diff --git a/1271/CH3/EX3.25/example3_25.sce b/1271/CH3/EX3.25/example3_25.sce
new file mode 100755
index 000000000..3219dc8fd
--- /dev/null
+++ b/1271/CH3/EX3.25/example3_25.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+theta = 26.4 // rotation of plane of polarization in degree
+c = 0.2 // concentration of sugar solution in gm/cc
+l = 2 // length of polarizing tube in decimeter
+// Sample Problem 25 on page no. 3.30
+printf("\n # PROBLEM 25 # \n")
+s = theta / (l * c) // calculation for specific rotation of sugar solution
+printf("\n Standard formula used \n s = theta / (l * c). \n")
+printf("\n Specific rotation of sugar solution = %f degree/(dm-cc)",s)
diff --git a/1271/CH3/EX3.26/26.txt b/1271/CH3/EX3.26/26.txt
new file mode 100755
index 000000000..180c938ea
--- /dev/null
+++ b/1271/CH3/EX3.26/26.txt
@@ -0,0 +1 @@
+Optical rotation of diluted solution = 6.500000 degree \ No newline at end of file
diff --git a/1271/CH3/EX3.26/example3_26.sce b/1271/CH3/EX3.26/example3_26.sce
new file mode 100755
index 000000000..b57227284
--- /dev/null
+++ b/1271/CH3/EX3.26/example3_26.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+theta = 13 // rotation of plane of polarization in degree
+r = (1 / 3) // ratio of the final concentration to the initial solution
+l = 2 // length of Polari meter in decimeter
+l_ = 3 // length of second polarizing tube in decimeter
+// Sample Problem 26 on page no. 3.30
+printf("\n # PROBLEM 26 # \n")
+theta_ = (l_ * r * theta) / l// calculation for optical rotation of diluted solution
+printf("Standard formula used \n s=theta/(l*c)\n")
+printf("\nOptical rotation of diluted solution = %f degree",theta_)
diff --git a/1271/CH3/EX3.3/3.txt b/1271/CH3/EX3.3/3.txt
new file mode 100755
index 000000000..eb728415b
--- /dev/null
+++ b/1271/CH3/EX3.3/3.txt
@@ -0,0 +1,3 @@
+ Polarising angle for water to glass = 49.184916 degree,
+ Polarising angle for glass to water = 40.815084 degree
+ So polarising angle is greater for a beam incident from water to glass
diff --git a/1271/CH3/EX3.3/example3_3.sce b/1271/CH3/EX3.3/example3_3.sce
new file mode 100755
index 000000000..fbacdb983
--- /dev/null
+++ b/1271/CH3/EX3.3/example3_3.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+mu_w = 1.33 // refractive index of water
+mu_g = 1.54 // refractive index of glass
+// Sample Problem 3 on page no. 3.24
+printf("\n # PROBLEM 3 # \n")
+Ip_1 = atan(mu_g / mu_w) * (180 / %pi)//calculation for polarizing angle for water
+Ip_2 = atan(mu_w / mu_g) * (180 / %pi) // calculation for polarizing angle for glass
+printf("Standard formula used \n mu=tan(Ip)\n")
+printf("\n Polarizing angle for water to glass = %f degree,\n Polarizing angle for glass to water = %f degree",Ip_1,Ip_2)
+printf("\n So polarizing angle is greater for a beam incident from water to glass")
diff --git a/1271/CH3/EX3.4/4.txt b/1271/CH3/EX3.4/4.txt
new file mode 100755
index 000000000..1ee8d542a
--- /dev/null
+++ b/1271/CH3/EX3.4/4.txt
@@ -0,0 +1 @@
+ Angle of minimum deviation = 60.000000 degree \ No newline at end of file
diff --git a/1271/CH3/EX3.4/example3_4.sce b/1271/CH3/EX3.4/example3_4.sce
new file mode 100755
index 000000000..a12540212
--- /dev/null
+++ b/1271/CH3/EX3.4/example3_4.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+Ip = %pi / 3 // polarizing angle of piece of glass for green light in radian
+a = %pi / 3 // angle of prism in radian
+// Sample Problem 4 on page no. 3.24
+printf("\n # PROBLEM 4 # \n")
+mu = tan(Ip) // calculation for refractive index
+delta_m = 2 * (asin(mu * sin(a / 2)) - (a / 2)) * (180 / %pi) // calculation for angle of minimum deviation
+printf("\n Standard formula used \n mu = tan(Ip). \n delta_m = 2 * (asin(mu * sin(a / 2)) - (a / 2)) * (180 / pi). \n")
+printf("\n Angle of minimum deviation = %f degree",delta_m)
diff --git a/1271/CH3/EX3.5/5.txt b/1271/CH3/EX3.5/5.txt
new file mode 100755
index 000000000..3e97aa3cd
--- /dev/null
+++ b/1271/CH3/EX3.5/5.txt
@@ -0,0 +1 @@
+ Brewster angle = 48.437665 degree \ No newline at end of file
diff --git a/1271/CH3/EX3.5/example3_5.sce b/1271/CH3/EX3.5/example3_5.sce
new file mode 100755
index 000000000..0a615e557
--- /dev/null
+++ b/1271/CH3/EX3.5/example3_5.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+mu_w = 1.33 // refractive index of water
+mu_g = 1.5 // refractive index of glass
+// Sample Problem 5 on page no. 3.25
+printf("\n # PROBLEM 5 # \n")
+Ip = atan(mu_g / mu_w) * (180 / %pi) // calculation for Brewster angle
+printf("\n Standard formula used \n Ip = atan(mu_g / mu_w) * (180 / pi). \n")
+printf("\n Brewster angle = %f degree",Ip)
+
diff --git a/1271/CH3/EX3.6/6.txt b/1271/CH3/EX3.6/6.txt
new file mode 100755
index 000000000..a8a74c30a
--- /dev/null
+++ b/1271/CH3/EX3.6/6.txt
@@ -0,0 +1,2 @@
+ Angle of incidence = 59.999272 degree
+ Angle of refraction = 30.000728 degree
diff --git a/1271/CH3/EX3.6/example3_6.sce b/1271/CH3/EX3.6/example3_6.sce
new file mode 100755
index 000000000..337c39d9f
--- /dev/null
+++ b/1271/CH3/EX3.6/example3_6.sce
@@ -0,0 +1,9 @@
+clc
+// Given that
+mu = 1.732 // refractive index of glass
+// Sample Problem 6 on page no. 3.25
+printf("\n # PROBLEM 6 # \n")
+Ip = atan(mu) * (180 / %pi) // by Brewster's law
+r = 90 - Ip// calculation for angle of refraction
+printf("Standard formula used \n mu=tan(Ip)\n")
+printf("\n Angle of incidence = %f degree\n Angle of refraction = %f degree",Ip,r)
diff --git a/1271/CH3/EX3.7/7.txt b/1271/CH3/EX3.7/7.txt
new file mode 100755
index 000000000..1d8d7525b
--- /dev/null
+++ b/1271/CH3/EX3.7/7.txt
@@ -0,0 +1 @@
+ Ratio between transmitted intensity to incident intensity = 0.250000 \ No newline at end of file
diff --git a/1271/CH3/EX3.7/example3_7.sce b/1271/CH3/EX3.7/example3_7.sce
new file mode 100755
index 000000000..064340408
--- /dev/null
+++ b/1271/CH3/EX3.7/example3_7.sce
@@ -0,0 +1,8 @@
+clc
+// Given that
+alpha = %pi / 3 // angle between polarizer and analyzer
+// Sample Problem 7 on page no. 3.25
+printf("\n # PROBLEM 7 # \n")
+r = (cos(alpha))^2 // where r = transmitted intensity / incident intensity
+printf("\n Standard formula used \n r = (cos(alpha))^2. \n")
+printf("\n Ratio between transmitted intensity to incident intensity = %f ",r)
diff --git a/1271/CH3/EX3.8/8.txt b/1271/CH3/EX3.8/8.txt
new file mode 100755
index 000000000..5df23bc37
--- /dev/null
+++ b/1271/CH3/EX3.8/8.txt
@@ -0,0 +1,2 @@
+ The angle between characteristics directions of the sheet in first case = 54.735610 degree.
+ the angle between characteristics directions of the sheet in second case = 35.264390 degree.
diff --git a/1271/CH3/EX3.8/example3_8.sce b/1271/CH3/EX3.8/example3_8.sce
new file mode 100755
index 000000000..e4f59ddc5
--- /dev/null
+++ b/1271/CH3/EX3.8/example3_8.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+r1 = 1/3 // ratio of intensity of transmitted light to the intensity of transmitted beam in first case
+r2 = 1/3 // ratio of intensity of transmitted light to the intensity of incident beam in second case
+p = 50 // percentage reduction in intensity of unpolarized light by the sheet
+// Sample Problem 8 on page no. 3.25
+printf("\n # PROBLEM 8 # \n")
+theta1 = acosd(sqrt(r1)) // calculation for the angle between characteristics directions of the sheet in first case
+theta2 = acosd(sqrt(2*r2)) // calculation for the angle between characteristics directions of the sheet in second case
+printf("\n Standard formula used \n theta = acosd(sqrt(r)). \n")
+printf("\n The angle between characteristics directions of the sheet in first case = %f degree. \n the angle between characteristics directions of the sheet in second case = %f degree.",theta1,theta2)
diff --git a/1271/CH3/EX3.9/9.txt b/1271/CH3/EX3.9/9.txt
new file mode 100755
index 000000000..21acd8da5
--- /dev/null
+++ b/1271/CH3/EX3.9/9.txt
@@ -0,0 +1 @@
+ Angle between the nicol prisms = 30.000000 degree \ No newline at end of file
diff --git a/1271/CH3/EX3.9/example3_9.sce b/1271/CH3/EX3.9/example3_9.sce
new file mode 100755
index 000000000..386fa8edb
--- /dev/null
+++ b/1271/CH3/EX3.9/example3_9.sce
@@ -0,0 +1,8 @@
+clc
+// Given that
+r = 3 / 4 // ratio of intensity of transmitted light to the intensity of incident light
+// Sample Problem 9 on page no. 3.26
+printf("\n # PROBLEM 9 # \n")
+theta = acos(sqrt(r)) * (180 / %pi) // calculation for angle between the nicol prisms
+printf("\n Standard formula used \n theta = acos(sqrt(r)) * (180 / pi). \n")
+printf("\n Angle between the nicol prisms = %f degree",theta)
diff --git a/1271/CH4/EX4.1/1.txt b/1271/CH4/EX4.1/1.txt
new file mode 100755
index 000000000..577570737
--- /dev/null
+++ b/1271/CH4/EX4.1/1.txt
@@ -0,0 +1,2 @@
+ Ratio of population of upper level to the lower energy level = 1.100524e-38.
+ Temperature for the second condition = 37836.557031 K.
diff --git a/1271/CH4/EX4.1/example4_1.sce b/1271/CH4/EX4.1/example4_1.sce
new file mode 100755
index 000000000..3a93d11ab
--- /dev/null
+++ b/1271/CH4/EX4.1/example4_1.sce
@@ -0,0 +1,18 @@
+
+clc
+// Given that
+lambda = 5.5e-7 // wavelength of light in meter
+c = 3e+8 // speed of light in m/sec
+h = 6.63e-34 // Planck constant in j/sec
+e = 1.6e-19 // charge on electron in coulomb
+k = 8.62e-5 // Boltzmann constant in eV/K
+T = 300 // temperature in kelvin
+// Sample Problem 1 on page no. 4.24
+printf("\n # PROBLEM 1 # \n")
+delta_E = (h * c) / (lambda * e) // calculation for energy difference
+r = exp(-delta_E / (k * T)) // calculation for ratio of population of upper level to the lower energy level
+T_ = (delta_E / (k * 0.693)) // calculation for temperature for the second condition
+printf("\n Standard formula used \n delta_E = (h * c) / (lambda * e). \n r = exp(-delta_E / (k * T)). \n T_ = (delta_E / (k * 0.693)). \n")
+printf("\n Ratio of population of upper level to the lower energy level = %e. \n Temperature for the second condition = %f K. ",r,T_)
+//Answer in the book: 1.3 X 10^-38 and 37800 K
+//Answer in the program:1.100524 X 10^-38 and 37836.557301 K"
diff --git a/1271/CH4/EX4.2/2.txt b/1271/CH4/EX4.2/2.txt
new file mode 100755
index 000000000..7d42ab81d
--- /dev/null
+++ b/1271/CH4/EX4.2/2.txt
@@ -0,0 +1,2 @@
+ Beam divergence angle in first case = 8.757674e-04 radian.
+ Beam divergence angle in second case = 2.652582e-05 radian.
diff --git a/1271/CH4/EX4.2/example4_2.sce b/1271/CH4/EX4.2/example4_2.sce
new file mode 100755
index 000000000..14a923f6b
--- /dev/null
+++ b/1271/CH4/EX4.2/example4_2.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+lambda1 = 6.328e-7 // wavelength of light in first case in meter
+lambda2 =2e-7 // wavelength of light in second case in meter
+r1 = 2.3e-4 // the radius of internal beam of laser in first case in meter
+r2 = 2.4e-3 // the radius of internal beam of laser in second case in meter
+// Sample Problem 2 on page no. 4.24
+printf("\n # PROBLEM 2 # \n")
+theta1 = lambda1 / (%pi * r1) // calculation for beam divergence angle in first case
+theta2 = lambda2 / (%pi * r2) // calculation for beam divergence angle in second case
+printf("\n Standard formula used \n theta = lambda / (pi * r). \n")
+printf("\n Beam divergence angle in first case = %e radian. \n Beam divergence angle in second case = %e radian. ",theta1,theta2)
diff --git a/1271/CH4/EX4.3/3.txt b/1271/CH4/EX4.3/3.txt
new file mode 100755
index 000000000..9824c0fdb
--- /dev/null
+++ b/1271/CH4/EX4.3/3.txt
@@ -0,0 +1 @@
+Total energy = 17.000000 J \ No newline at end of file
diff --git a/1271/CH4/EX4.3/example4_3.sce b/1271/CH4/EX4.3/example4_3.sce
new file mode 100755
index 000000000..127147781
--- /dev/null
+++ b/1271/CH4/EX4.3/example4_3.sce
@@ -0,0 +1,19 @@
+clc
+// Given that
+l = 6e-2 // length of laser in meter
+D = 1e-2 // diameter of laser in meter
+lambda = 6.944e-7 // wavelength of light in meter
+d = 3700 // density of aluminium oxide in kg/meter cube
+Na = 6e+23 // Avogadro number
+M = 0.102 // molar mass of aluminium oxide in kg/meter cube
+h = 4.1e-15 // Planck constant in eV-sec
+c = 3e+8 // speed of light in meter/sec
+// Sample Problem 3 on page no. 4.25
+printf("\n # PROBLEM 3 # \n")
+v = (%pi * (D^2) * l) / 4 // calculation for volume
+N = (2 * Na * d * v) / M // calculation for no. of aluminium ions
+N_ = N / 3500 // calculation for the no. of chromium ions
+E = (h * c) / lambda // calculation for the energy of stimulated emission photon
+Et = N_ * E * (1.6e-19) // calculation for total energy
+printf("\n Standard formula used \n v = (pi * (D^2) * l) / 4. \n N = (2 * Na * d * v) / M. \n N_ = N / 3500. \n E = (h * c) / lambda. \n Et = N_ * E * (1.6e-19). \n")
+printf("\n Total energy = %f J",ceil(Et))
diff --git a/1271/CH4/EX4.4/4.txt b/1271/CH4/EX4.4/4.txt
new file mode 100755
index 000000000..198bae809
--- /dev/null
+++ b/1271/CH4/EX4.4/4.txt
@@ -0,0 +1 @@
+Power per unit area delivered by the laser = 5.658842e+15 watt/square meter \ No newline at end of file
diff --git a/1271/CH4/EX4.4/example4_4.sce b/1271/CH4/EX4.4/example4_4.sce
new file mode 100755
index 000000000..8778ac2d5
--- /dev/null
+++ b/1271/CH4/EX4.4/example4_4.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+p = 4e-3 // energy of laser pulse in meter
+r = 1.5e-5 // radius of spot in meter
+t = 1e-9 // pulse length in time in sec
+// Sample Problem 4 on page no. 4.26
+printf("\n # PROBLEM 4 # \n")
+p_ = p / t// calculation for power in watt
+I = p_ / (%pi * r^2)// calculation for power per unit area delivered by the laser
+printf("Standard formula used \n I=P/a\n")
+printf("\nPower per unit area delivered by the laser = %e watt/square meter",I)
diff --git a/1271/CH4/EX4.5/5.txt b/1271/CH4/EX4.5/5.txt
new file mode 100755
index 000000000..fa759e36c
--- /dev/null
+++ b/1271/CH4/EX4.5/5.txt
@@ -0,0 +1,2 @@
+Angular spread = 1.834560e-04 radian ,
+ Areal spread = 5.384977e+09 square meter
diff --git a/1271/CH4/EX4.5/example4_5.sce b/1271/CH4/EX4.5/example4_5.sce
new file mode 100755
index 000000000..991bab0bc
--- /dev/null
+++ b/1271/CH4/EX4.5/example4_5.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+D = 5e-3 // diameter of laser in meter
+lambda = 7.2e-7 // wavelength of light in meter
+d = 4e8 // distance at moon from earth in meter
+// Sample Problem 5 on page no. 4.26
+printf("\n # PROBLEM 5 # \n")
+r = (D / 2) // calculation for radius
+theta = (0.637 * lambda) / r // calculation for angular spread
+areal_spread = (d * theta)^2 // calculation for areal spread
+printf("\n Standard formula used \n theta = (0.637 * lambda) / r. \n areal_spread = (d * theta)^2. \n ")
+printf("\n Angular spread = %e radian ,\n Areal spread = %e square meter",theta,areal_spread)
diff --git a/1271/CH4/EX4.6/6.txt b/1271/CH4/EX4.6/6.txt
new file mode 100755
index 000000000..559de82c1
--- /dev/null
+++ b/1271/CH4/EX4.6/6.txt
@@ -0,0 +1,2 @@
+ Areal spread = 3.129631e-10 square meter,
+ Intensity = 3.195265e+08 watt/square meter
diff --git a/1271/CH4/EX4.6/example4_6.sce b/1271/CH4/EX4.6/example4_6.sce
new file mode 100755
index 000000000..e3f088732
--- /dev/null
+++ b/1271/CH4/EX4.6/example4_6.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+D = 5e-3 // diameter of laser in meter
+lambda = 6.943e-7 // wavelength of light in meter
+f =0.1 // focal length in meter
+P = 0.1 // power of laser in watt
+// Sample Problem 6 on page no. 4.27
+printf("\n # PROBLEM 6 # \n")
+r = (D / 2)// calculation for
+theta = (0.637 * lambda) / r// calculation for angular spread
+areal_spread = (f * theta)^2// calculation for areal spread
+I = P / areal_spread// calculation for intensity
+printf("Standard formula used \n theta=0.637*lambda/r,\n areal spread = (theta*D)^2,\n I=P/A\n")
+printf("\n Areal spread = %e square meter,\n Intensity = %e watt/square meter",areal_spread,I)
diff --git a/1271/CH4/EX4.7/7.txt b/1271/CH4/EX4.7/7.txt
new file mode 100755
index 000000000..b91ce98a4
--- /dev/null
+++ b/1271/CH4/EX4.7/7.txt
@@ -0,0 +1 @@
+ Degree of non-monochromaticity = 1.800000e-05 \ No newline at end of file
diff --git a/1271/CH4/EX4.7/example4_7.sce b/1271/CH4/EX4.7/example4_7.sce
new file mode 100755
index 000000000..fb0725079
--- /dev/null
+++ b/1271/CH4/EX4.7/example4_7.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+tou = 1e-10 // coherence time in sec
+lambda = 5.4e-7 // wavelength of light in meter
+// Sample Problem 7 on page no. 4.28
+printf("\n # PROBLEM 7 # \n")
+delta_v = 1 / tou
+v_ = (3e+8) / lambda // calculation for frequency
+d = delta_v / v_ // calculation for degree of non-monochromaticity
+printf("\n Standard formula used \n delta_v = 1 / tou. \n v_ = (3e+8) / lambda. \n d = delta_v / v_. \n ")
+printf("\n Degree of non-monochromaticity = %f ",d)
diff --git a/1271/CH5/EX5.1/1.txt b/1271/CH5/EX5.1/1.txt
new file mode 100755
index 000000000..d762266be
--- /dev/null
+++ b/1271/CH5/EX5.1/1.txt
@@ -0,0 +1,3 @@
+ Critical angle = 68.068581 degree,
+ Numerical aperture = 0.567715.
+ Maximum incidence angle = 34.591019 degree.
diff --git a/1271/CH5/EX5.1/example5_1.sce b/1271/CH5/EX5.1/example5_1.sce
new file mode 100755
index 000000000..41458e675
--- /dev/null
+++ b/1271/CH5/EX5.1/example5_1.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+mu1 = 1.52 // refractive index for core
+mu2 = 1.41 // refractive index for cladding
+// Sample Problem 1 on page no. 5.15
+printf("\n # PROBLEM 1 # \n")
+theta_c = asin(mu2 / mu1) * (180 / %pi)
+NA = sqrt(mu1^2 - mu2^2)
+theta_0 = asin(NA) * (180 / %pi)
+printf("\n Standard formula used \n theta_c = asin(mu2 / mu1) * (180 / pi). \n NA = sqrt(mu1^2 - mu2^2). \n theta_0 = asin(NA) * (180 / pi). \n")
+printf("\n Critical angle = %f degree. \n Numerical aperture = %f,\n Maximum incidence angle = %f degree.",theta_c,NA,theta_0)
diff --git a/1271/CH5/EX5.10/10.txt b/1271/CH5/EX5.10/10.txt
new file mode 100755
index 000000000..fe03bfa14
--- /dev/null
+++ b/1271/CH5/EX5.10/10.txt
@@ -0,0 +1,2 @@
+Number of modes in first case = 44.104795.
+ Number of modes in second case = 4410.479467.
diff --git a/1271/CH5/EX5.10/example5_10.sce b/1271/CH5/EX5.10/example5_10.sce
new file mode 100755
index 000000000..03558e9a9
--- /dev/null
+++ b/1271/CH5/EX5.10/example5_10.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+mu1 = 3.6 // refractive index for core
+mu2 = 3.55 // refractive index for cladding
+// Sample Problem 10 on page no. 5.19
+printf("\n # PROBLEM 10 # \n")
+NA = sqrt(mu1^2 - mu2^2)//calculation for numerical aperture
+Mm1 = 0.5 * (%pi * 5 * NA)^2//calculation for no. of modes in first case
+Mm2 = 0.5 * (%pi * 50 * NA)^2//calculation for no. of modes in second case
+printf("\n Standard formula used \n Mm=1/2(pi*d*NA/lambda)^2. NA=sqrt(mu1^2-mu2^2). \n")
+printf("\n Number of modes in first case = %d. \n Number of modes in second case = %d.",Mm1,Mm2)
diff --git a/1271/CH5/EX5.11/11.txt b/1271/CH5/EX5.11/11.txt
new file mode 100755
index 000000000..7aa82f219
--- /dev/null
+++ b/1271/CH5/EX5.11/11.txt
@@ -0,0 +1 @@
+Maximum diameter of core = 1.020804e-05 meter \ No newline at end of file
diff --git a/1271/CH5/EX5.11/example5_11.sce b/1271/CH5/EX5.11/example5_11.sce
new file mode 100755
index 000000000..a3168cd32
--- /dev/null
+++ b/1271/CH5/EX5.11/example5_11.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+lambda = 1.25e-6 //wavelength of light in meter
+mu1 = 1.46 // refractive index for core
+mu2 = 1.457 // refractive index for cladding
+// Sample Problem 11 on page no. 5.20
+printf("\n # PROBLEM 11 # \n")
+NA = sqrt(mu1^2 - mu2^2)//calculation for numerical aperture
+k = (2.4 * lambda) / ( %pi * NA)
+printf("\n Standard formula used \n d<8*lambda/(pi*NA)\n")
+printf("\n Maximum diameter of core = %f micro meter",k*1e6)
diff --git a/1271/CH5/EX5.12/12.txt b/1271/CH5/EX5.12/12.txt
new file mode 100755
index 000000000..8ef3405bf
--- /dev/null
+++ b/1271/CH5/EX5.12/12.txt
@@ -0,0 +1 @@
+ Absorption coefficient = 69.897000 dB/km. \ No newline at end of file
diff --git a/1271/CH5/EX5.12/example5_12.sce b/1271/CH5/EX5.12/example5_12.sce
new file mode 100755
index 000000000..c2e476418
--- /dev/null
+++ b/1271/CH5/EX5.12/example5_12.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+L = 0.1 // length of fiber in km
+p = 5e-6 // power of signal in watt
+p_ = 1e-6 // power of signal inside the fiber in watt
+// Sample Problem 12 on page no. 5.20
+printf("\n # PROBLEM 12 # \n")
+alpha = (10 * log10(p / p_)) / L//calculation for absorption coefficient
+printf("\n Standard formula used \n alpha=10/L*log(Pi/Po).\n")
+printf("\n Absorption coefficient = %f dB/km. ",alpha)
diff --git a/1271/CH5/EX5.13/13.txt b/1271/CH5/EX5.13/13.txt
new file mode 100755
index 000000000..8ac45fa54
--- /dev/null
+++ b/1271/CH5/EX5.13/13.txt
@@ -0,0 +1 @@
+ Output power = 7.918550e-05 watt. \ No newline at end of file
diff --git a/1271/CH5/EX5.13/example5_13.sce b/1271/CH5/EX5.13/example5_13.sce
new file mode 100755
index 000000000..d058d9137
--- /dev/null
+++ b/1271/CH5/EX5.13/example5_13.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+L = 3 // length of optical fiber in km
+l = 6 // losses in dB
+p = 5e-3 // input power in watt
+// Sample Problem 13 on page no. 5.20
+printf("\n # PROBLEM 13 # \n")
+alpha = (l * 3) / L
+p_ = p / (exp((2.303 * alpha * L) / 10))
+printf("\n Standard formula used \n alpha = (l * 3) / L. \n p_ = p / (exp((2.303 * alpha * L) / 10)). \n")
+printf("\n Output power = %f mW. ",p_*1e3)
diff --git a/1271/CH5/EX5.2/2.txt b/1271/CH5/EX5.2/2.txt
new file mode 100755
index 000000000..1f62a21d2
--- /dev/null
+++ b/1271/CH5/EX5.2/2.txt
@@ -0,0 +1,2 @@
+Numerical aperture = 0.556776.
+ Maximum incidence angle = 33.833159 degree.
diff --git a/1271/CH5/EX5.2/example5_2.sce b/1271/CH5/EX5.2/example5_2.sce
new file mode 100755
index 000000000..c3eb8e9c8
--- /dev/null
+++ b/1271/CH5/EX5.2/example5_2.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+mu1 = 1.6 // refractive index for core
+mu2 = 1.5 // refractive index for cladding
+// Sample Problem 2 on page no. 5.16
+printf("\n # PROBLEM 2 # \n")
+NA = sqrt(mu1^2 - mu2^2)//calculation for numerical aperture
+theta_0 = asin(NA) * (180 / %pi)//calculation for maximum incidence angle
+printf("Standard formula used \n NA=aqrt(mu1^2-mu2^2),\n sin(theta_)=NA. \n")
+printf("\n Numerical aperture = %f.\n Maximum incidence angle = %f degree.",NA,theta_0)
diff --git a/1271/CH5/EX5.3/3.txt b/1271/CH5/EX5.3/3.txt
new file mode 100755
index 000000000..cab1a7785
--- /dev/null
+++ b/1271/CH5/EX5.3/3.txt
@@ -0,0 +1,4 @@
+ Critical angle = 80.633211 degree.
+ Numerical aperture = 0.244131.
+ Acceptance angle = 14.130491 degree.
+ Fractional refractive index = 0.013333.
diff --git a/1271/CH5/EX5.3/example5_3.sce b/1271/CH5/EX5.3/example5_3.sce
new file mode 100755
index 000000000..dfebde6bf
--- /dev/null
+++ b/1271/CH5/EX5.3/example5_3.sce
@@ -0,0 +1,13 @@
+clc
+// Given that
+mu_0 = 1 // refractive index of air
+mu1 = 1.5 // refractive index for core
+mu2 = 1.48 // refractive index for cladding
+// Sample Problem 3 on page no. 5.16
+printf("\n # PROBLEM 3 # \n")
+theta_c = asin(mu2 / mu1) * (180 / %pi)
+delta_mu = (mu1 - mu2) / mu1
+NA = sqrt(mu1^2 - mu2^2)
+theta_0 = asin(NA) * (180 / %pi)
+printf("\n Standard formula used \n theta_c = asin(mu2 / mu1) * (180 / pi). \n delta_mu = (mu1 - mu2) / mu1. \n NA = sqrt(mu1^2 - mu2^2). \n theta_0 = asin(NA) * (180 / pi). \n ")
+printf("\n Critical angle = %f degree. \n Numerical aperture = %f. \n Acceptance angle = %f degree.\n Fractional refractive index = %f.",theta_c,NA,theta_0,delta_mu)
diff --git a/1271/CH5/EX5.4/4.txt b/1271/CH5/EX5.4/4.txt
new file mode 100755
index 000000000..7d7ecd6ed
--- /dev/null
+++ b/1271/CH5/EX5.4/4.txt
@@ -0,0 +1,2 @@
+ Numerical aperture = 0.560357.
+ Maximum incidence angle = 34.080492 degree.
diff --git a/1271/CH5/EX5.4/example5_4.sce b/1271/CH5/EX5.4/example5_4.sce
new file mode 100755
index 000000000..017688d16
--- /dev/null
+++ b/1271/CH5/EX5.4/example5_4.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+mu1 = 1.62 // refractive index for core
+mu2 = 1.52 // refractive index for cladding
+// Sample Problem 4 on page no. 5.17
+printf("\n # PROBLEM 4 # \n")
+NA = sqrt(mu1^2 - mu2^2)
+theta_0 = asin(NA) * (180 / %pi)
+printf("\n Standard formula used \n NA = sqrt(mu1^2 - mu2^2). \n theta_0 = asin(NA) * (180 / pi). \n")
+printf("\n Numerical aperture = %f. \n Maximum incidence angle = %f degree.",NA,theta_0)
diff --git a/1271/CH5/EX5.5/5.txt b/1271/CH5/EX5.5/5.txt
new file mode 100755
index 000000000..3a690be31
--- /dev/null
+++ b/1271/CH5/EX5.5/5.txt
@@ -0,0 +1,2 @@
+ Refractive index for core = 1.424373.
+ Refractive index for cladding = 1.407281.
diff --git a/1271/CH5/EX5.5/example5_5.sce b/1271/CH5/EX5.5/example5_5.sce
new file mode 100755
index 000000000..b49aaa36b
--- /dev/null
+++ b/1271/CH5/EX5.5/example5_5.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+NA = 0.22 // numerical aperture
+delta_mu = 0.012 // fractional refractive index
+// Sample Problem 5 on page no. 5.17
+printf("\n # PROBLEM 5 # \n")
+mu1 = sqrt(NA^2 / (1 - (1 - delta_mu)^2))
+mu2 = (1 - delta_mu) * mu1
+printf("\n Standard formula used \n mu1 = sqrt(NA^2 / (1 - (1 - delta_mu)^2)). \n mu2 = (1 - delta_mu) * mu1. \n")
+printf("\n Refractive index for core = %f.\n Refractive index for cladding = %f.",mu1,mu2)
diff --git a/1271/CH5/EX5.6/6.txt b/1271/CH5/EX5.6/6.txt
new file mode 100755
index 000000000..ba1897e93
--- /dev/null
+++ b/1271/CH5/EX5.6/6.txt
@@ -0,0 +1,4 @@
+ Numerical aperture = 0.639375.
+ Acceptance angle = 39.745208 degree.
+ Number of reflections at maximum incidence = 6468.493987.
+ Number of reflections in second case = 3204.446178.
diff --git a/1271/CH5/EX5.6/example5_6.sce b/1271/CH5/EX5.6/example5_6.sce
new file mode 100755
index 000000000..8fdf61106
--- /dev/null
+++ b/1271/CH5/EX5.6/example5_6.sce
@@ -0,0 +1,15 @@
+clc
+// Given that
+d = 0.0064 // diameter of fiber in cm
+mu1 = 1.53 // refractive index for core
+mu2 = 1.39 // refractive index for clad
+L = 90 // length of fiber in cm
+mu_0 = 1 // refractive index of air
+// Sample Problem 6 on page no. 5.17
+printf("\n # PROBLEM 6 # \n")
+NA = sqrt(mu1^2 - mu2^2)
+theta_0 = asin(NA) * (180 / %pi)
+N1 = L / (d * sqrt((mu1 / (mu_0 * sin(theta_0 * (%pi / 180))))^2 - 1))
+N2 = L / (d * sqrt((mu1 / (mu_0 * sin(theta_0 * (%pi / 360))))^2 - 1))
+printf("\n Standard formula used \n NA = sqrt(mu1^2 - mu2^2). \n theta_0 = asin(NA) * (180 / pi). \n N = L / (d * sqrt((mu / (mu_0 * sin(theta_0 * (pi / 180))))^2 - 1)). \n ")
+printf("\n Numerical aperture = %f.\n Acceptance angle = %f degree. \n Number of reflections at maximum incidence = %f. \n Number of reflections in second case = %f. ",NA,theta_0,N1,N2)
diff --git a/1271/CH5/EX5.7/7.txt b/1271/CH5/EX5.7/7.txt
new file mode 100755
index 000000000..f855992b0
--- /dev/null
+++ b/1271/CH5/EX5.7/7.txt
@@ -0,0 +1,2 @@
+ The normalised frequency = 40.655905,
+ number of guided in the core = 826.451303
diff --git a/1271/CH5/EX5.7/example5_7.sce b/1271/CH5/EX5.7/example5_7.sce
new file mode 100755
index 000000000..697820c95
--- /dev/null
+++ b/1271/CH5/EX5.7/example5_7.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+d = 0.05 // diameter of fiber in mm
+NA = 0.22 // numerical aperture
+lambda = 8.5e-4 // wavelength of light in mm
+// Sample Problem 7 on page no. 5.18
+printf("\n # PROBLEM 7 # \n")
+Vn = (%pi * d * NA) / lambda
+Mm = 0.5 * (Vn)^2
+printf("\n Standard formula used \n Vn = (pi * d * NA) / lambda. \n Mm = 0.5 * (Vn)^2. \n")
+printf("\n The normalized frequency = %f,\n number of guided in the core = %f",Vn,Mm)
diff --git a/1271/CH5/EX5.8/8.txt b/1271/CH5/EX5.8/8.txt
new file mode 100755
index 000000000..824f34c04
--- /dev/null
+++ b/1271/CH5/EX5.8/8.txt
@@ -0,0 +1,2 @@
+ Diameter of core < 7.896296e-06 meter,
+ number of modes = 115
diff --git a/1271/CH5/EX5.8/example5_8.sce b/1271/CH5/EX5.8/example5_8.sce
new file mode 100755
index 000000000..c551388b3
--- /dev/null
+++ b/1271/CH5/EX5.8/example5_8.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+lambda = 1.25e-6 //wavelength of light in meter
+mu1 = 1.465 // refractive index for core
+mu2 = 1.460 // refractive index for cladding
+// Sample Problem 8 on page no. 5.18
+printf("\n # PROBLEM 8 # \n")
+NA = sqrt(mu1^2 - mu2^2)
+k = (2.4 * lambda) / ( %pi * NA)
+Mm = 0.5 * ((%pi * 50e-6 * NA) / lambda)^2
+printf("\n Standard formula used \n NA = sqrt(mu1^2 - mu2^2). \n k = (2.4 * lambda) / ( pi * NA). \n Mm = 0.5 * ((pi * 50e-6 * NA) / lambda)^2. \n ")
+printf("\n Diameter of core < %e meter,\n number of modes = %d",k,Mm)
diff --git a/1271/CH5/EX5.9/9.txt b/1271/CH5/EX5.9/9.txt
new file mode 100755
index 000000000..a7431e6cb
--- /dev/null
+++ b/1271/CH5/EX5.9/9.txt
@@ -0,0 +1,2 @@
+ Numerical aperture = 0.120768.
+ Number of modes = 159.
diff --git a/1271/CH5/EX5.9/example5_9.sce b/1271/CH5/EX5.9/example5_9.sce
new file mode 100755
index 000000000..2bddb57ff
--- /dev/null
+++ b/1271/CH5/EX5.9/example5_9.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+lambda = 0.85e-6 //wavelength of light in meter
+mu1 = 1.461 // refractive index for core
+mu2 = 1.456 // refractive index for clad
+d = 4e-5 // diameter of core in meter
+// Sample Problem 9 on page no. 5.19
+printf("\n # PROBLEM 9 # \n")
+NA = sqrt(mu1^2 - mu2^2)
+Mm = 0.5 * ((%pi * d * NA) / lambda)^2
+printf("\n Standard formula used \n NA = sqrt(mu1^2 - mu2^2). \n Mm = 0.5 * ((pi * d * NA) / lambda)^2. \n ")
+printf("\n Numerical aperture = %f.\n Number of modes = %d. ",NA,Mm)
diff --git a/1271/CH6/EX6.1/1.txt b/1271/CH6/EX6.1/1.txt
new file mode 100755
index 000000000..033438c23
--- /dev/null
+++ b/1271/CH6/EX6.1/1.txt
@@ -0,0 +1,3 @@
+ Energy gained by electron = 8.000000e-17 J,
+ Speed of electron = 1.333333e+07 meter/sec,
+ Momentum of electron = 1.200000e-23 kg-meter/sec
diff --git a/1271/CH6/EX6.1/example6_1.sce b/1271/CH6/EX6.1/example6_1.sce
new file mode 100755
index 000000000..ca62c8ccd
--- /dev/null
+++ b/1271/CH6/EX6.1/example6_1.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+V = 500 // voltage across the electrode in eV
+m = 9e-31 // mass of electron in kg
+e = 1.6e-19 // charge on an electron in coulomb
+// Sample Problem 1 on page no. 6.20
+printf("\n # PROBLEM 1 # \n")
+E = e * V
+v = sqrt((2 * e * V) / m)
+p = m * v
+printf("\n Standard formula used \n E = e * V. \n v = sqrt((2 * e * V) / m). \n p = m * v. \n ")
+printf("\n Energy gained by electron = %e J,\n Speed of electron = %e meter/sec,\n Momentum of electron = %e kg-meter/sec",E,v,p)
diff --git a/1271/CH6/EX6.10/10.txt b/1271/CH6/EX6.10/10.txt
new file mode 100755
index 000000000..a276d6c0a
--- /dev/null
+++ b/1271/CH6/EX6.10/10.txt
@@ -0,0 +1 @@
+ Internal electric field = 1.000000e+06 V/m \ No newline at end of file
diff --git a/1271/CH6/EX6.10/example6_10.sce b/1271/CH6/EX6.10/example6_10.sce
new file mode 100755
index 000000000..b9ebe71c8
--- /dev/null
+++ b/1271/CH6/EX6.10/example6_10.sce
@@ -0,0 +1,9 @@
+clc
+// Given that
+v = 1e6 // velocity of ion beam in m/sec
+B = 1 // magnetic field in tesla
+// Sample Problem 10 on page no. 6.24
+printf("\n # PROBLEM 10 # \n")
+E = B * v
+printf("\n Standard formula used \n E = B * v. \n")
+printf("\n Internal electric field = %e V/m",E)
diff --git a/1271/CH6/EX6.12/12.txt b/1271/CH6/EX6.12/12.txt
new file mode 100755
index 000000000..085f14b4c
--- /dev/null
+++ b/1271/CH6/EX6.12/12.txt
@@ -0,0 +1 @@
+ Ratio of the new focus length to the initial focus length = 0.826446 \ No newline at end of file
diff --git a/1271/CH6/EX6.12/example6_12.sce b/1271/CH6/EX6.12/example6_12.sce
new file mode 100755
index 000000000..32cfe10c0
--- /dev/null
+++ b/1271/CH6/EX6.12/example6_12.sce
@@ -0,0 +1,8 @@
+clc
+// Given that
+r = 1.1 // ratio of new number of turns to the initial number of turns
+// Sample Problem 12 on page no. 6.24
+printf("\n # PROBLEM 12 # \n")
+r_ = (1 / r)^2
+printf("\n Standard formula used \n r_ = (1 / r)^2. \n")
+printf("\n Ratio of the new focus length to the initial focus length = %f ",r_)
diff --git a/1271/CH6/EX6.2/2.txt b/1271/CH6/EX6.2/2.txt
new file mode 100755
index 000000000..df7742528
--- /dev/null
+++ b/1271/CH6/EX6.2/2.txt
@@ -0,0 +1 @@
+ Momentum of acceleration = 8.800000e+13 meter/sec^2. \ No newline at end of file
diff --git a/1271/CH6/EX6.2/example6_2.sce b/1271/CH6/EX6.2/example6_2.sce
new file mode 100755
index 000000000..b04afe1d6
--- /dev/null
+++ b/1271/CH6/EX6.2/example6_2.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+v = 2.5e6 // speed of electron in meter/sec
+B = 2e-4 // magnetic field in tesla
+r = 1.76e11 // ratio of charge on electron to the mass of electron in C/kg
+// Sample Problem 2 on page no. 6.20
+printf("\n # PROBLEM 2 # \n")
+a = (B * r * v)
+printf("\n Standard formula used \n a = (B * r * v). \n ")
+printf("\n Momentum of acceleration = %e meter/square sec.",a)
diff --git a/1271/CH6/EX6.4/4.txt b/1271/CH6/EX6.4/4.txt
new file mode 100755
index 000000000..6c874a8f0
--- /dev/null
+++ b/1271/CH6/EX6.4/4.txt
@@ -0,0 +1,3 @@
+Radius of circle traced by the beam = 2.272727e-01 meter,
+ Speed of beam in second case = 2.651974e+09 meter/sec,
+ Speed of beam in second case is greater than speed of light so we cannot use above formula
diff --git a/1271/CH6/EX6.4/example6_4.sce b/1271/CH6/EX6.4/example6_4.sce
new file mode 100755
index 000000000..7fcb9dbbf
--- /dev/null
+++ b/1271/CH6/EX6.4/example6_4.sce
@@ -0,0 +1,13 @@
+clc
+// Given that
+v = 5.2e6 // speed of electron in meter/sec
+B = 1.3e-4 // magnetic field in tesla
+r = 1.76e11 // ratio of charge on electron to the mass of electron in C/kg
+E = 3.2e-12 // energy of the electron beam in J
+M = 9e-31 // mass of an electron in kg
+// Sample Problem 4 on page no. 6.22
+printf("\n # PROBLEM 4 # \n")
+R = v / (r * B)
+v_ = sqrt((2 * E) / M )
+printf("\n Standard formula used \n R = v / (r * B). \n v_ = sqrt((2 * E) / M ). \n")
+printf("\n Radius of circle traced by the beam = %f cm. \n Speed of beam in second case = %e meter/sec.\n Speed of beam in second case is greater than speed of light so we cannot use above formula.",R*100,v_)
diff --git a/1271/CH6/EX6.5/5.txt b/1271/CH6/EX6.5/5.txt
new file mode 100755
index 000000000..4cd8b42f2
--- /dev/null
+++ b/1271/CH6/EX6.5/5.txt
@@ -0,0 +1 @@
+ Ratio of the charge on an electron to the mass of an electron = 2.000000e+06 C/kg. \ No newline at end of file
diff --git a/1271/CH6/EX6.5/example6_5.sce b/1271/CH6/EX6.5/example6_5.sce
new file mode 100755
index 000000000..3b9d6bad0
--- /dev/null
+++ b/1271/CH6/EX6.5/example6_5.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+V = 2.500e3 // voltage across the electrode in V
+E = 3.6e4 // strength of electric field in V/m
+B = 1.2e-3 // magnetic field in tesla
+// Sample Problem 5 on page no. 6.22
+printf("\n # PROBLEM 5 # \n")
+r = (E / B)^2 / (2 * V)//calculation for ratio of the charge on an electron to the mass of an electron
+printf("\n Standard formula used \n e/m=(E/B)^2 / (2V). \n")
+printf("\n Ratio of the charge on an electron to the mass of an electron = %e C/kg.",r)
diff --git a/1271/CH6/EX6.6/6.txt b/1271/CH6/EX6.6/6.txt
new file mode 100755
index 000000000..c5ac940e0
--- /dev/null
+++ b/1271/CH6/EX6.6/6.txt
@@ -0,0 +1 @@
+Lamoure radius = 6.745369 meter \ No newline at end of file
diff --git a/1271/CH6/EX6.6/example6_6.sce b/1271/CH6/EX6.6/example6_6.sce
new file mode 100755
index 000000000..b5f5af65c
--- /dev/null
+++ b/1271/CH6/EX6.6/example6_6.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+M = 9.1e-31 // mass of electron in kg
+E = 1.6e-15 // energy of electron in J
+B = 5e-5 // magnetic field in tesla
+e = 1.6e-19 // charge on an electron in coulomb
+// Sample Problem 6 on page no. 6.23
+printf("\n # PROBLEM 6 # \n")
+v = sqrt((2 * E) / M)
+r = (M * v) / (e * B)
+printf("\n Standard formula used \n v = sqrt((2 * E) / M). \n r = (M * v) / (e * B). \n")
+printf("\n Larmoure radius = %f meter",r)
diff --git a/1271/CH6/EX6.7/7.txt b/1271/CH6/EX6.7/7.txt
new file mode 100755
index 000000000..5a567d4a7
--- /dev/null
+++ b/1271/CH6/EX6.7/7.txt
@@ -0,0 +1 @@
+ Larmour radius = 6.262500e+05 meter \ No newline at end of file
diff --git a/1271/CH6/EX6.7/example6_7.sce b/1271/CH6/EX6.7/example6_7.sce
new file mode 100755
index 000000000..5a341eec9
--- /dev/null
+++ b/1271/CH6/EX6.7/example6_7.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+Mp = 1.67e-27 // mass of proton in kg
+v = 3e5 // speed of proton in meter/sec
+B = 5e-9 // magnetic field in tesla
+e = 1.6e-19 // charge on a proton in coulomb
+// Sample Problem 7 on page no. 6.23
+printf("\n # PROBLEM 7 # \n")
+r = (Mp * v) / (e * B)//calculation for Larmour radius
+printf("\n Standard formula used \n r=m*v/(e*B). \n")
+printf("\n Larmour radius = %e meter",r)
diff --git a/1271/CH6/EX6.8/8.txt b/1271/CH6/EX6.8/8.txt
new file mode 100755
index 000000000..3765cd3f0
--- /dev/null
+++ b/1271/CH6/EX6.8/8.txt
@@ -0,0 +1 @@
+ Area traced by the trajectory of helium ion = 0.104929 square meter \ No newline at end of file
diff --git a/1271/CH6/EX6.8/example6_8.sce b/1271/CH6/EX6.8/example6_8.sce
new file mode 100755
index 000000000..a30682580
--- /dev/null
+++ b/1271/CH6/EX6.8/example6_8.sce
@@ -0,0 +1,13 @@
+clc
+// Given that
+M = 6.68e-27 // mass of helium ion in kg
+E = 1.6e-16 // energy of helium ion in J
+B = 5e-2 // magnetic field in tesla
+e = 1.6e-19 // charge on helium ion in coulomb
+// Sample Problem 8 on page no. 6.23
+printf("\n # PROBLEM 8 # \n")
+v = sqrt((2 * E) / M)//calculation for velocity
+r = (M * v) / (e * B)//calculation for Larmour radius
+A = %pi * r^2//calculation for area traced by the trajectory of helium ion
+printf("Standard formula used \n E=1/2*m*v^2,\n Rl=m*v/(e*B),\n A=pi*r^2\n")
+printf("\n Area traced by the trajectory of helium ion = %f square meter",A)
diff --git a/1271/CH6/EX6.9/9.txt b/1271/CH6/EX6.9/9.txt
new file mode 100755
index 000000000..63bf3d4a9
--- /dev/null
+++ b/1271/CH6/EX6.9/9.txt
@@ -0,0 +1 @@
+ The drift of the guiding centre = 1.000000e+05 m/sec \ No newline at end of file
diff --git a/1271/CH6/EX6.9/example6_9.sce b/1271/CH6/EX6.9/example6_9.sce
new file mode 100755
index 000000000..6f9929966
--- /dev/null
+++ b/1271/CH6/EX6.9/example6_9.sce
@@ -0,0 +1,9 @@
+clc
+// Given that
+E = 100 // strength of electric field in V/m
+B = 1e-3 // magnetic field in tesla
+// Sample Problem 9 on page no. 6.24
+printf("\n # PROBLEM 9 # \n")
+v = E / B
+printf("\n Standard formula used \n v = E / B. ")
+printf("\n The drift of the guiding center = %e m/sec",v)
diff --git a/1271/CH7/EX7.1/1.txt b/1271/CH7/EX7.1/1.txt
new file mode 100755
index 000000000..067ebe026
--- /dev/null
+++ b/1271/CH7/EX7.1/1.txt
@@ -0,0 +1,2 @@
+ Amplitude = 0.160000 meter,
+ Mass of particle = 0.080000 kg
diff --git a/1271/CH7/EX7.1/example7_1.sce b/1271/CH7/EX7.1/example7_1.sce
new file mode 100755
index 000000000..a47449935
--- /dev/null
+++ b/1271/CH7/EX7.1/example7_1.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+E = 1.024e-3 // total energy of particle in J
+T = 2 * %pi // time period of S.H.M. in sec
+x = 0.08 * sqrt(2) // distance of partile in meter
+t = %pi / 4 // time in second
+// Sample Problem 1 on page no. 7.22
+printf("\n # PROBLEM 1 # \n")
+A = x / sin((2 * %pi * t) / T)
+M = (E * T^2) / (2 * %pi^2 * A^2)
+printf("\n Standard formula used \n A = x / sin((2 * pi * t) / T). \n M = (E * T^2) / (2 * pi^2 * A^2). \n")
+printf("\n Amplitude = %f meter,\n Mass of particle = %f g",A,M/1e-3)
diff --git a/1271/CH7/EX7.10/10.txt b/1271/CH7/EX7.10/10.txt
new file mode 100755
index 000000000..746f83b52
--- /dev/null
+++ b/1271/CH7/EX7.10/10.txt
@@ -0,0 +1,2 @@
+
+ Time period of pendulum = 1.756204 sec.
diff --git a/1271/CH7/EX7.10/example7_10.sce b/1271/CH7/EX7.10/example7_10.sce
new file mode 100755
index 000000000..cd4757fa7
--- /dev/null
+++ b/1271/CH7/EX7.10/example7_10.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+f = 3 // acceleration of pendulum in m/sec^2
+l = 1 // length of pendulum in meter
+g = 9.8 // acceleration due to gravity in m/sec^2
+// Sample Problem 10 on page no. 7.25
+printf("\n # PROBLEM 10 # \n")
+T = 2 * %pi * sqrt(l / (g + f))
+printf("\n Standard formula used \n T = 2 * pi * sqrt(l / (g + f)). \n ")
+printf("\n Time period of pendulum = %f sec.",T)
diff --git a/1271/CH7/EX7.11/11.txt b/1271/CH7/EX7.11/11.txt
new file mode 100755
index 000000000..af04f52b8
--- /dev/null
+++ b/1271/CH7/EX7.11/11.txt
@@ -0,0 +1,7 @@
+ # PROBLEM 11 #
+
+ Standard formula used
+ k = (m1 * g) / x.
+ T = (2 * pi) * sqrt(m2 / k).
+
+ Time period of motion = 0.448799 sec. \ No newline at end of file
diff --git a/1271/CH7/EX7.11/example7_11.sce b/1271/CH7/EX7.11/example7_11.sce
new file mode 100755
index 000000000..a6f70a59f
--- /dev/null
+++ b/1271/CH7/EX7.11/example7_11.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+x = 0.3 // stretch in spring in meter
+m1 = 6 // mass of first body in kg
+m2 = 1 // mass of second body in kg
+g = 9.8 // gravitational acceleration of earth in m/sec^2
+// Sample Problem 11 on page no. 7.26
+printf("\n # PROBLEM 11 # \n")
+k = (m1 * g) / x
+T = (2 * %pi) * sqrt(m2 / k)
+printf("\n Standard formula used \n k = (m1 * g) / x. \n T = (2 * pi) * sqrt(m2 / k).\n")
+printf("\n Time period of motion = %f sec. ",T)
+
+
diff --git a/1271/CH7/EX7.12/12.txt b/1271/CH7/EX7.12/12.txt
new file mode 100755
index 000000000..4f98b08fa
--- /dev/null
+++ b/1271/CH7/EX7.12/12.txt
@@ -0,0 +1,3 @@
+
+ Time period of motion = 1.256637 sec.
+ Compression of the spring due to the weight of the body = 0.392000 m.
diff --git a/1271/CH7/EX7.12/example7_12.sce b/1271/CH7/EX7.12/example7_12.sce
new file mode 100755
index 000000000..c03c7b240
--- /dev/null
+++ b/1271/CH7/EX7.12/example7_12.sce
@@ -0,0 +1,16 @@
+clc
+// Given that
+x = 0.1 // compression in spring in m
+F = 10 // restoring force in N
+m = 4 // mass of body in kg
+g = 9.8 // acceleration due to gravity in m/sec^2
+// Sample Problem 12 on page no. 7.26
+printf("\n # PROBLEM 12 # \n")
+k = F / x
+F_ = m * g
+x_ = F_ / k
+T = (2 * %pi) * sqrt(m / k)
+printf("\n Standard formula used \n k = F / x. \n F_ = m * g. \n x_ = F_ / k. \n T = (2 * pi) * sqrt(m / k). \n ")
+printf("\n Time period of motion = %f sec. \n Compression of the spring due to the weight of the body = %f m. ",T,x_)
+
+
diff --git a/1271/CH7/EX7.13/13.txt b/1271/CH7/EX7.13/13.txt
new file mode 100755
index 000000000..8af01d46d
--- /dev/null
+++ b/1271/CH7/EX7.13/13.txt
@@ -0,0 +1 @@
+Time = 100.000000 sec \ No newline at end of file
diff --git a/1271/CH7/EX7.13/example7_13.sce b/1271/CH7/EX7.13/example7_13.sce
new file mode 100755
index 000000000..5759496db
--- /dev/null
+++ b/1271/CH7/EX7.13/example7_13.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+t = 50 // relaxation time in sec
+r = 1 / exp(1) // falls in amplitude and energy
+// Sample Problem 13 on page no. 7.26
+printf("\n # PROBLEM 13 # \n")
+s = 1 / (2 * t)
+T = 1 / s // by using formula A=A_exp(-st) and using r=A/A_
+printf("\n Standard formula used \n s = 1 / (2 * t). \n T = 1 / s . \n ")
+printf("\n Time = %f sec",T)
+
+
diff --git a/1271/CH7/EX7.14/14.txt b/1271/CH7/EX7.14/14.txt
new file mode 100755
index 000000000..28ead2229
--- /dev/null
+++ b/1271/CH7/EX7.14/14.txt
@@ -0,0 +1,2 @@
+
+ Time = 2.448538 sec.
diff --git a/1271/CH7/EX7.14/example7_14.sce b/1271/CH7/EX7.14/example7_14.sce
new file mode 100755
index 000000000..c63494081
--- /dev/null
+++ b/1271/CH7/EX7.14/example7_14.sce
@@ -0,0 +1,13 @@
+clc
+// Given that
+n = 260 // frequency in Hz
+Q = 2000 // quality factor
+r = 1 / (exp(1)^2) // decrease in amplitude
+// Sample Problem 14 on page no. 7.27
+printf("\n # PROBLEM 14 # \n")
+tou = Q / (2 * %pi * n)
+t = 2 * tou // by using formula A=A_exp(-st) and using r=A/A_
+printf("\n Standard formula used \n tou = Q / (2 * pi * n). \n t = 2 * tou. \n")
+printf("\n Time = %f sec.",t)
+
+
diff --git a/1271/CH7/EX7.2/2.txt b/1271/CH7/EX7.2/2.txt
new file mode 100755
index 000000000..8bb18f767
--- /dev/null
+++ b/1271/CH7/EX7.2/2.txt
@@ -0,0 +1 @@
+ Maximum amplitude of velocity = 0.031416 meter/sec \ No newline at end of file
diff --git a/1271/CH7/EX7.2/example7_2.sce b/1271/CH7/EX7.2/example7_2.sce
new file mode 100755
index 000000000..78cf49f53
--- /dev/null
+++ b/1271/CH7/EX7.2/example7_2.sce
@@ -0,0 +1,9 @@
+clc
+// Given that
+A = 0.05 // amplitude in meter
+T = 10 // time period of S.H.M. in sec
+// Sample Problem 2 on page no. 7.22
+printf("\n # PROBLEM 2 # \n")
+v = (A * 2 * %pi) / T
+printf("\n Standard formula used \n v = (A * 2 * pi) / T")
+printf("\n Maximum amplitude of velocity = %f meter/sec",v)
diff --git a/1271/CH7/EX7.3/3.txt b/1271/CH7/EX7.3/3.txt
new file mode 100755
index 000000000..5f18a1163
--- /dev/null
+++ b/1271/CH7/EX7.3/3.txt
@@ -0,0 +1,2 @@
+ Force constant = 8.000000 J/m,
+ Time period = 3.141593 sec
diff --git a/1271/CH7/EX7.3/example7_3.sce b/1271/CH7/EX7.3/example7_3.sce
new file mode 100755
index 000000000..7927eeeeb
--- /dev/null
+++ b/1271/CH7/EX7.3/example7_3.sce
@@ -0,0 +1,13 @@
+clc
+// Given that
+E = 9 // total energy of particle in J
+U = 5 // potential energy in J
+A = 1 // amplitude in meter
+m = 2 // mass of harmonic oscillator in kg
+// Sample Problem 3 on page no. 7.23
+printf("\n # PROBLEM 3 # \n")
+kE = E - U// calculation for kinetic energy
+k = (2 * kE) / A^2// calculation for force constant
+T = (2 * %pi) * sqrt(m / k)// calculation for time period
+printf("Standard formula used \n k.E.=1/2*k*A^2,\n T=2*pi*sqrt(m/k)\n")
+printf("\n Force constant = %f J/m,\n Time period = %f sec",k,T)
diff --git a/1271/CH7/EX7.4/4.txt b/1271/CH7/EX7.4/4.txt
new file mode 100755
index 000000000..78665b9f4
--- /dev/null
+++ b/1271/CH7/EX7.4/4.txt
@@ -0,0 +1 @@
+ Time taken by the particle = 1.000000 sec \ No newline at end of file
diff --git a/1271/CH7/EX7.4/example7_4.sce b/1271/CH7/EX7.4/example7_4.sce
new file mode 100755
index 000000000..b05ca5e24
--- /dev/null
+++ b/1271/CH7/EX7.4/example7_4.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+A = 0.06 // amplitude in meter
+T = 6 // time period of S.H.M. in sec
+x = 0.03 // position of particle in meter
+// Sample Problem 4 on page no. 7.23
+printf("\n # PROBLEM 4 # \n")
+delta = asin(1) // by the formula x=Asin(wt+delta) and (at t = 0,x=A)
+t = x / (A * sin(((2 * %pi) / T) + delta))
+printf("\n Standard formula used \n x=Asin(wt+delta). \n ")
+printf("\n Time taken by the particle = %f sec",t)
diff --git a/1271/CH7/EX7.5/5.txt b/1271/CH7/EX7.5/5.txt
new file mode 100755
index 000000000..08a1ca69c
--- /dev/null
+++ b/1271/CH7/EX7.5/5.txt
@@ -0,0 +1,2 @@
+ Maximum velocity = 0.010000 meter/sec,
+ acceleration = 0.002000 m/sec^2
diff --git a/1271/CH7/EX7.5/example7_5.sce b/1271/CH7/EX7.5/example7_5.sce
new file mode 100755
index 000000000..d55d17ef3
--- /dev/null
+++ b/1271/CH7/EX7.5/example7_5.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+A = 0.05// amplitude in meter
+T = 10 * %pi // time period of s.h.m. in sec
+// Sample Problem 5 on page no. 7.24
+printf("\n # PROBLEM 5 # \n")
+v = A * (2 * %pi / T)
+a = A * (2 * %pi / T)^2
+printf("\n Standard formula used \n v = A * (2 * pi / T). \n a = A * (2 * pi / T)^2. \n ")
+printf("\n Maximum velocity = %e meter/sec,\n acceleration = %e m/sec^2",v,a)
diff --git a/1271/CH7/EX7.6/6.txt b/1271/CH7/EX7.6/6.txt
new file mode 100755
index 000000000..cf6608a37
--- /dev/null
+++ b/1271/CH7/EX7.6/6.txt
@@ -0,0 +1 @@
+ Maximum velocity = 0.012000 meter/sec \ No newline at end of file
diff --git a/1271/CH7/EX7.6/example7_6.sce b/1271/CH7/EX7.6/example7_6.sce
new file mode 100755
index 000000000..c6ceefa50
--- /dev/null
+++ b/1271/CH7/EX7.6/example7_6.sce
@@ -0,0 +1,9 @@
+clc
+// Given that
+A = 0.06// amplitude in meter
+T = 10 * %pi // time period of s.h.m. in sec
+// Sample Problem 6 on page no. 7.24
+printf("\n # PROBLEM 6 # \n")
+v = A * (2 * %pi / T)
+printf("\n Standard formula used \n v = A * (2 * pi / T)")
+printf("\n Maximum velocity = %e meter/sec",v)
diff --git a/1271/CH7/EX7.7/7.txt b/1271/CH7/EX7.7/7.txt
new file mode 100755
index 000000000..1ebae5f65
--- /dev/null
+++ b/1271/CH7/EX7.7/7.txt
@@ -0,0 +1,2 @@
+
+ natural frequency = 0.636620 Hz.
diff --git a/1271/CH7/EX7.7/example7_7.sce b/1271/CH7/EX7.7/example7_7.sce
new file mode 100755
index 000000000..853629f68
--- /dev/null
+++ b/1271/CH7/EX7.7/example7_7.sce
@@ -0,0 +1,9 @@
+clc
+// Given that
+k = 16 // stiffness constant of spring n/m
+m = 1 // mass of particle in kg
+// Sample Problem 7 on page no. 7.24
+printf("\n # PROBLEM 7 # \n")
+n = sqrt(k / m) / (2 * %pi)
+printf("\n Standard formula used \n n = sqrt(k / m) / (2 * pi).\n")
+printf("\n natural frequency = %f Hz.",n)
diff --git a/1271/CH7/EX7.8/8.txt b/1271/CH7/EX7.8/8.txt
new file mode 100755
index 000000000..6313e2a8c
--- /dev/null
+++ b/1271/CH7/EX7.8/8.txt
@@ -0,0 +1 @@
+ The time period of pendulum = 2.007090 sec. \ No newline at end of file
diff --git a/1271/CH7/EX7.8/example7_8.sce b/1271/CH7/EX7.8/example7_8.sce
new file mode 100755
index 000000000..94902e402
--- /dev/null
+++ b/1271/CH7/EX7.8/example7_8.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+l = 1 // length of pendulum in meter
+m = 2 // mass of particle in kg
+g = 9.8 // acceleration due to gravity in m/sec^2
+// Sample Problem 8 on page no. 7.25
+printf("\n # PROBLEM 8 # \n")
+T = 2 * %pi * sqrt(l / g)
+printf("\n Standard formula used \n T = 2 * pi * sqrt(l / g). \n")
+printf("\n The time period of pendulum = %f sec.",T)
diff --git a/1271/CH7/EX7.9/9.txt b/1271/CH7/EX7.9/9.txt
new file mode 100755
index 000000000..cf87614ef
--- /dev/null
+++ b/1271/CH7/EX7.9/9.txt
@@ -0,0 +1 @@
+ Frequency = 0.050329 Hz. \ No newline at end of file
diff --git a/1271/CH7/EX7.9/example7_9.sce b/1271/CH7/EX7.9/example7_9.sce
new file mode 100755
index 000000000..876e060dd
--- /dev/null
+++ b/1271/CH7/EX7.9/example7_9.sce
@@ -0,0 +1,8 @@
+clc
+// Given that
+m = 100 // mass of particle in gm
+// Sample Problem 9 on page no. 7.25
+printf("\n # PROBLEM 9 # \n")
+n = (1 / (2 * %pi)) * sqrt(10 / m) // by using given formula
+printf("\n Standard formula used \n n = (1 / (2 * pi)) * sqrt(10 / m). \n")
+printf("\n Frequency = %f Hz.",n)
diff --git a/1271/CH8/EX8.1/1.txt b/1271/CH8/EX8.1/1.txt
new file mode 100755
index 000000000..09111cc75
--- /dev/null
+++ b/1271/CH8/EX8.1/1.txt
@@ -0,0 +1 @@
+Wavelength range of the sound wave is 1.725000 cm to 1725.000000 cm. \ No newline at end of file
diff --git a/1271/CH8/EX8.1/example8_1.sce b/1271/CH8/EX8.1/example8_1.sce
new file mode 100755
index 000000000..f530dc27a
--- /dev/null
+++ b/1271/CH8/EX8.1/example8_1.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+v = 34500 // speed of sound in cm/sec
+f = 20 // lower limit of frequency for human hearing ear in Hz
+f_ = 20000 // upper limit of frequency for human hearing ear in Hz
+// Sample Problem 1 on page no. 8.17
+printf("\n # PROBLEM 1 # \n")
+printf(" Standard formula used \n")
+printf(" V = f*lambda \n \n" )
+lambda = v / f
+lambda_ = v / f_
+printf("\n Wavelength range of the sound wave is %f cm to %f cm.",lambda_,lambda)
diff --git a/1271/CH8/EX8.2/2.txt b/1271/CH8/EX8.2/2.txt
new file mode 100755
index 000000000..b53ff15d8
--- /dev/null
+++ b/1271/CH8/EX8.2/2.txt
@@ -0,0 +1 @@
+ Velocity of sound in the air in 38839.119986 cm/sec. \ No newline at end of file
diff --git a/1271/CH8/EX8.2/example8_2.sce b/1271/CH8/EX8.2/example8_2.sce
new file mode 100755
index 000000000..3c91cb151
--- /dev/null
+++ b/1271/CH8/EX8.2/example8_2.sce
@@ -0,0 +1,17 @@
+clc
+// Given that
+T = 373 // temperature in kelvin
+d = 1.293e-3 // density of air at S.T.P. in gm/cm^3
+d_ = 13.6 // density of mercury in gm/cm^3
+s = 0.2417 // specific heat of air at constant pressure
+s_ = 0.1715 // specific heat of air at constant volume
+g = 980 // gravitational constant i dynes/cm^3
+// Sample Problem 2 on page no. 8.18
+printf("\n # PROBLEM 2 # \n")
+printf(" Standard formula used \n")
+printf(" nu = (gamma*p/rho)^1/2 \n gamma = C_p/C_v \n p =rho*g*h \n" )
+p = 76 * d_ * g
+gama = s / s_
+v = sqrt(gama * (p / d))
+v_ = v * sqrt(T / 273)
+printf("\n Velocity of sound in the air in %f cm/sec.",v_)
diff --git a/1271/CH8/EX8.3/3.txt b/1271/CH8/EX8.3/3.txt
new file mode 100755
index 000000000..0524a9501
--- /dev/null
+++ b/1271/CH8/EX8.3/3.txt
@@ -0,0 +1 @@
+Ratio of two principal specific heats of air is 1.393054 \ No newline at end of file
diff --git a/1271/CH8/EX8.3/example8_3.sce b/1271/CH8/EX8.3/example8_3.sce
new file mode 100755
index 000000000..8c4c5da02
--- /dev/null
+++ b/1271/CH8/EX8.3/example8_3.sce
@@ -0,0 +1,18 @@
+clc
+// Given that
+n = 512 // frequency of tuning fork in Hz
+T = 290 // temperature in kelvin
+lambda = 66.5 // wavelength of the gas emitted by tuning fork in cm
+d = 1.293e-3 // density of air at S.T.P. in gm/cm^3
+d_ = 13.6 // density of mercury in gm/cm^3
+g = 980 // gravitational constant i dynes/cm^3
+// Sample Problem 3 on page no. 8.18
+printf("\n # PROBLEM 3 # \n")
+printf(" Standard formula used \n")
+printf(" nu = (gamma*p/rho)^1/2 \n p =rho*g*h \n\n" )
+p = 76 * d_ * g// calculation for pressure
+v_ = n * lambda// calculation for velocity of sound in air at temperature 17 c
+v = v_ * sqrt(273 / T)// calculation for velocity of sound in air at temp 0 c
+gama = v^2 * (d / p)// calculation for ratio of two specific heat
+
+printf("\n Ratio of two principal specific heats of air is %f",gama)
diff --git a/1271/CH8/EX8.4/4.txt b/1271/CH8/EX8.4/4.txt
new file mode 100755
index 000000000..f1f83a978
--- /dev/null
+++ b/1271/CH8/EX8.4/4.txt
@@ -0,0 +1,2 @@
+Coefficient of absorption to be provided by the walls, floor and ceiling when the hall is fully occupied is 99.632353 SI unit.
+ Reverberation time if only half upholstered seats are occupied is 2.025324 sec.
diff --git a/1271/CH8/EX8.4/example8_4.sce b/1271/CH8/EX8.4/example8_4.sce
new file mode 100755
index 000000000..df64bb21f
--- /dev/null
+++ b/1271/CH8/EX8.4/example8_4.sce
@@ -0,0 +1,17 @@
+clc
+// Given that
+A = 15 * 30 // area of the floor in square meter
+h = 6 // height of hall in meter
+N = 500 // no. of people
+t = 1.36 // optimum time for orchestral music in sec
+k = 0.44 // absorption coefficient per person
+// Sample Problem 4 on page no. 8.19
+printf("\n # PROBLEM 4 # \n")
+printf(" Standard formula used \n")
+printf(" T = 0.161 V/a*S \n" )
+aS = 0.161 * ((A * h) / t)
+a = N * k
+a_ = aS - a
+w = a_ + (N / 2) * k + (N / 2) * 0.02
+t = (0.161 * (A * h)) / w
+printf("\n Coefficient of absorption to be provided by the walls, floor and ceiling when the hall is fully occupied is %f SI unit.\n Reverberation time if only half upholstered seats are occupied is %f sec.",a_,t)
diff --git a/1271/CH8/EX8.5/5.txt b/1271/CH8/EX8.5/5.txt
new file mode 100755
index 000000000..ccd2490f9
--- /dev/null
+++ b/1271/CH8/EX8.5/5.txt
@@ -0,0 +1 @@
+ The total absorption constant = 715.555556 O.W.U. \ No newline at end of file
diff --git a/1271/CH8/EX8.5/example8_5.sce b/1271/CH8/EX8.5/example8_5.sce
new file mode 100755
index 000000000..b25687d59
--- /dev/null
+++ b/1271/CH8/EX8.5/example8_5.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+V = 8000 // volume of hall in meter^3
+t = 1.8 // reverberation time in sec
+// Sample Problem 5 on page no. 8.19
+printf("\n # PROBLEM 5 # \n")
+printf(" Standard formula used \n")
+printf(" T = 0.161 V/a*S \n" )
+aS = (0.161 * V) / t// calculation for the total absorption constant
+printf("\n The total absorption constant = %f O.W.U.",aS)
diff --git a/1271/CH8/EX8.6/6.txt b/1271/CH8/EX8.6/6.txt
new file mode 100755
index 000000000..45e742733
--- /dev/null
+++ b/1271/CH8/EX8.6/6.txt
@@ -0,0 +1 @@
+ Reverberation time is 2.804303 sec. \ No newline at end of file
diff --git a/1271/CH8/EX8.6/example8_6.sce b/1271/CH8/EX8.6/example8_6.sce
new file mode 100755
index 000000000..b6f9201c8
--- /dev/null
+++ b/1271/CH8/EX8.6/example8_6.sce
@@ -0,0 +1,25 @@
+clc
+// Given that
+V = 1700 // volume in meter^3
+a1 = 98 // area of plastered wall in m^2
+a2 = 144 // area of plastered ceiling in m^2
+a3 = 15 // area of wooden door in m^2
+a4 = 88 // area of cushioned chairs in m^2
+a5 = 150 // area of audience (each person) in m^2
+k1 = 0.03 // coefficient of absorption for plastered wall in O.W.U.
+k2 = 0.04 // coefficient of absorption for plastered ceiling in O.W.U.
+k3 = 0.06 // coefficient of absorption for wooden door in O.W.U.
+k4 = 1 // coefficient of absorption for cushioned chair in O.W.U.
+k5 = 4.7 // coefficient of absorption for audience (each person) in O.W.U.
+// Sample Problem 6 on page no. 8.20
+printf("\n # PROBLEM 6 # \n")
+printf(" Standard formula used \n")
+printf(" T = 0.161 V/a*S \n" )
+A1 = a1 * k1// calculation for the absorption by the plaster wall
+A2 = a2 * k2// calculation for the absorption by the plastered ceiling
+A3 = a3 * k3// calculation for wooden door
+A4 = a4 * k4// calculation for cushioned chairs
+A = A1 + A2 + A3 + A4// calculation for total absorption
+T = 0.161 * (V / A)// calculation for reverberation time
+
+printf("\n Reverberation time is %f sec.",T)
diff --git a/1271/CH8/EX8.7/7.txt b/1271/CH8/EX8.7/7.txt
new file mode 100755
index 000000000..8da583ddf
--- /dev/null
+++ b/1271/CH8/EX8.7/7.txt
@@ -0,0 +1 @@
+ Reverberation time is 0.366743 sec. \ No newline at end of file
diff --git a/1271/CH8/EX8.7/example8_7.sce b/1271/CH8/EX8.7/example8_7.sce
new file mode 100755
index 000000000..cacafb0b1
--- /dev/null
+++ b/1271/CH8/EX8.7/example8_7.sce
@@ -0,0 +1,26 @@
+clc
+// Given that
+V = 1400 // volume of hall in meter^3
+C = 110 // seating capacity of hall
+a1 = 98 // area of plastered wall in m^2
+a2 = 144 // area of plastered ceiling in m^2
+a3 = 15 // area of wooden door in m^2
+a4 = 88 // area of cushioned chairs in m^2
+a5 = 150 // area of audience (each person) in m^2
+k1 = 0.03 // coefficient of absorption for plastered wall in O.W.U.
+k2 = 0.04 // coefficient of absorption for plastered ceiling in O.W.U.
+k3 = 0.06 // coefficient of absorption for wooden door in O.W.U.
+k4 = 1 // coefficient of absorption for cushioned chair in O.W.U.
+k5 = 4.7 // coefficient of absorption for audience (each person) in O.W.U.
+// Sample Problem 7 on page no. 8.20
+printf("\n # PROBLEM 7 # \n")
+printf(" Standard formula used \n")
+printf(" T = 0.161 V/a*S \n" )
+A1 = a1 * k1// calculation for the absorption by the plaster wall
+A2 = a2 * k2// calculation for the absorption by the plastered ceiling
+A3 = a3 * k3// calculation for wooden door
+A4 = a4 * k4// calculation for cushioned chairs
+A5 = C*k5 // the absorption due to persons
+A = A1 + A2 + A3 + A4 + A5 // calculation for total absorption
+T = (0.161 * V) / A// calculation for the reverberation time
+printf("\n Reverberation time is %f sec.",T)
diff --git a/1271/CH8/EX8.8/8.txt b/1271/CH8/EX8.8/8.txt
new file mode 100755
index 000000000..a35faa06b
--- /dev/null
+++ b/1271/CH8/EX8.8/8.txt
@@ -0,0 +1 @@
+ Reverberation time = 1.836787 sec \ No newline at end of file
diff --git a/1271/CH8/EX8.8/example8_8.sce b/1271/CH8/EX8.8/example8_8.sce
new file mode 100755
index 000000000..90f404cc4
--- /dev/null
+++ b/1271/CH8/EX8.8/example8_8.sce
@@ -0,0 +1,19 @@
+clc
+// Given that
+V = 980 // volume in meter^3
+a1 = 150 // area of wall in m^2
+a2 = 95 // area of ceiling in m^2
+a3 = 90 // area of floor in m^2
+k1 = 0.03 // coefficient of absorption for wall in O.W.U.
+k2 = 0.80 // coefficient of absorption for ceiling in O.W.U.
+k3 = 0.06 // coefficient of absorption for floor in O.W.U.
+// Sample Problem 8 on page no. 8.21
+printf("\n # PROBLEM 8 # \n")
+printf(" Standard formula used \n")
+printf(" T = 0.161 V/a*S \n" )
+A1 = a1 * k1
+A2 = a2 * k2
+A3 = a3 * k3
+A = A1 + A2 + A3
+T = 0.161 * (V / A)
+printf("\n Reverberation time = %f sec",T)
diff --git a/1271/CH8/EX8.9/9.txt b/1271/CH8/EX8.9/9.txt
new file mode 100755
index 000000000..7a7e8300e
--- /dev/null
+++ b/1271/CH8/EX8.9/9.txt
@@ -0,0 +1 @@
+ Acoustic power = 1.580000e-06 watt. \ No newline at end of file
diff --git a/1271/CH8/EX8.9/example8_9.sce b/1271/CH8/EX8.9/example8_9.sce
new file mode 100755
index 000000000..822211fe8
--- /dev/null
+++ b/1271/CH8/EX8.9/example8_9.sce
@@ -0,0 +1,12 @@
+clc
+// Given that
+V = 980 // volume in meter^3
+a = 1.58 // area of window in m^2
+I_ = 1e-12 // standard intensity level of sound wave in W/m^2
+l = 60 // intensity level in dB
+// Sample Problem 9 on page no. 8.21
+printf("\n # PROBLEM 9 # \n")
+I = I_ * 10^(l / 10)// calculation for intensity
+AP = I * a// calculation for acoustic power
+printf("Standard formula used \n Intensity level=10log(I/I_),\nAP=I*A\n")
+printf("\n Acoustic power = %e watt.",AP)
diff --git a/1271/CH9/EX9.1/1.txt b/1271/CH9/EX9.1/1.txt
new file mode 100755
index 000000000..48f803e13
--- /dev/null
+++ b/1271/CH9/EX9.1/1.txt
@@ -0,0 +1,2 @@
+ Polarisation vector is 1.770000e-05 C/m^2.
+ Displacement vector is 2.655000e-05 C/m^2
diff --git a/1271/CH9/EX9.1/example9_1.sce b/1271/CH9/EX9.1/example9_1.sce
new file mode 100755
index 000000000..4e9340107
--- /dev/null
+++ b/1271/CH9/EX9.1/example9_1.sce
@@ -0,0 +1,13 @@
+clc
+// Given that
+E = 10^6 // electric field inside the plates in V/m
+d = 0.02 // distance between the plates in meter
+k = 3 // dielectric constant of slab
+e_ = 8.85e-12 // electric permittivity of air in C^2/Nm^2
+// Sample Problem 1 on page no. 9.11
+printf("\n # PROBLEM 1 # \n")
+printf(" Standard formula used \n")
+printf(" D = e_*E+p. \n D=e_*k*E.\n\n ")
+D = e_*k*E
+P = D-e_*E
+printf("Polarization vector is %e C/m^2. \n Displacement vector is %e C/m^2",P,D)
diff --git a/1271/CH9/EX9.2/2.txt b/1271/CH9/EX9.2/2.txt
new file mode 100755
index 000000000..f749ed958
--- /dev/null
+++ b/1271/CH9/EX9.2/2.txt
@@ -0,0 +1,5 @@
+ # PROBLEM 2 #
+ Standard formula used
+ E = E_-P/e_.
+
+ The included charge density on the surface of the dielectric is 1.770000e-06 C/m^2 \ No newline at end of file
diff --git a/1271/CH9/EX9.2/example9_2.sce b/1271/CH9/EX9.2/example9_2.sce
new file mode 100755
index 000000000..f6dc86fea
--- /dev/null
+++ b/1271/CH9/EX9.2/example9_2.sce
@@ -0,0 +1,11 @@
+clc
+// Given that
+E1 = 3*10^5 // electric intensity when space between plates evacuated in V/m
+E2 = 1*10^5 // electric intensity when space between plates is filled with dielectric in V/m
+e_ = 8.85e-12 // electric permittivity of air in C^2/Nm^2
+// Sample Problem 2 on page no. 9.11
+printf("\n # PROBLEM 2 # \n")
+printf(" Standard formula used \n")
+printf(" E = E_-P/e_.\n\n ")
+sigma = e_*(E1 - E2)
+printf("The included charge density on the surface of the dielectric is %e C/m^2",sigma )
diff --git a/1271/CH9/EX9.3/3.txt b/1271/CH9/EX9.3/3.txt
new file mode 100755
index 000000000..146f8ed4b
--- /dev/null
+++ b/1271/CH9/EX9.3/3.txt
@@ -0,0 +1,3 @@
+ Polarization vector is 1.593000e-06 C/m^2.
+ Displacement vector is 2.478000e-06C/m^2.
+ Energy density is 0.123900 J/m^2.
diff --git a/1271/CH9/EX9.3/example9_3.sce b/1271/CH9/EX9.3/example9_3.sce
new file mode 100755
index 000000000..65c24b32f
--- /dev/null
+++ b/1271/CH9/EX9.3/example9_3.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+E = 1*10^5 // electric field strength inside the plates in V/m
+d = 6 // distance between the plates in mm
+k = 2.8 // dielectric constant of slab
+e_ = 8.85e-12 // electric permittivity of air in C^2/Nm^2
+// Sample Problem 3 on page no. 9.11
+printf("\n # PROBLEM 3 # \n")
+printf(" Standard formula used \n")
+printf(" P = e_*(k-1)*E.\n\n ")
+P = e_*(k-1)*E
+D = e_*k*E
+energy_density = 1/2 * k*e_*E^2
+printf("Polarization vector is %e C/m^2. \n Displacement vector is %eC/m^2. \n Energy density is %f J/m^3.",P,D,energy_density )
diff --git a/1271/CH9/EX9.4/4.txt b/1271/CH9/EX9.4/4.txt
new file mode 100755
index 000000000..de03d3dcc
--- /dev/null
+++ b/1271/CH9/EX9.4/4.txt
@@ -0,0 +1,2 @@
+ Value of e_r is 5 .
+ Total dipole moment of the slab is 2.000000e-04 C-m.
diff --git a/1271/CH9/EX9.4/example9_4.sce b/1271/CH9/EX9.4/example9_4.sce
new file mode 100755
index 000000000..51ab1a241
--- /dev/null
+++ b/1271/CH9/EX9.4/example9_4.sce
@@ -0,0 +1,15 @@
+clc
+// Given that
+D = 5e-4 // electric displacement vector in C/m^2
+P = 4e-4 // electric polarization vector in C/m^2
+v = 0.5 // volume of the slab in m^3
+e_ = 8.85e-12 // electric permittivity of air in C^2/Nm^2
+// Sample Problem 4 on page no. 9.12
+printf("\n # PROBLEM 4 # \n")
+printf(" Standard formula used \n")
+printf(" D= e_*E.\n\n ")
+E= (D-P)/ e_
+k = D/(e_*E)
+p = P*v
+energy_density = 1/2 * k*e_*E^2
+printf("Value of relative permittivity is %d. \n Total dipole moment of the slab is %e C-m.",k,p )
diff --git a/1271/CH9/EX9.5/5.txt b/1271/CH9/EX9.5/5.txt
new file mode 100755
index 000000000..bb351fed9
--- /dev/null
+++ b/1271/CH9/EX9.5/5.txt
@@ -0,0 +1 @@
+ Induce dipole moment of each is 7.306870e-36 C-m \ No newline at end of file
diff --git a/1271/CH9/EX9.5/example9_5.sce b/1271/CH9/EX9.5/example9_5.sce
new file mode 100755
index 000000000..323711c2a
--- /dev/null
+++ b/1271/CH9/EX9.5/example9_5.sce
@@ -0,0 +1,14 @@
+clc
+// Given that
+E = 3e4 // external field in V/m
+k = 1.00074 // dielectric constant of gas at N.T.P.
+e_ = 8.85e-12 // electric permittivity of air in C^2/Nm^2
+// Sample Problem 5 on page no. 9.12
+printf("\n # PROBLEM 5 # \n")
+printf(" Standard formula used \n")
+printf(" P=x*e_*E.\n\n ")
+x = k-1
+P = x*e_*E
+N = 6.023e23/22.4e-3
+p = P/N
+printf("Induce dipole moment of each is %e C-m",p)
diff --git a/1271/CH9/EX9.6/6.txt b/1271/CH9/EX9.6/6.txt
new file mode 100755
index 000000000..0fb630ed8
--- /dev/null
+++ b/1271/CH9/EX9.6/6.txt
@@ -0,0 +1 @@
+ Electric susceptibility at 0 degree centigrade is 4.100000e-05. \ No newline at end of file
diff --git a/1271/CH9/EX9.6/example9_6.sce b/1271/CH9/EX9.6/example9_6.sce
new file mode 100755
index 000000000..24508c614
--- /dev/null
+++ b/1271/CH9/EX9.6/example9_6.sce
@@ -0,0 +1,10 @@
+clc
+// Given that
+E = 3e4 // external field in V/m
+k = 1.000041 // dielectric constant of gas at 0 degree centigrate
+// Sample Problem 6 on page no. 9.1
+printf("\n # PROBLEM 6 # \n")
+printf(" Standard formula used \n")
+printf(" P=x*e_*E.\n\n ")
+x = k-1
+printf("Electric susceptibility at 0 degree centigrate is %e.",x)