diff options
Diffstat (limited to '1268/CH3')
-rw-r--r-- | 1268/CH3/EX3.12/3_12.sce | 7 | ||||
-rw-r--r-- | 1268/CH3/EX3.13/3_13.sce | 12 | ||||
-rw-r--r-- | 1268/CH3/EX3.2/3_2.sce | 16 | ||||
-rw-r--r-- | 1268/CH3/EX3.5/3_5.sce | 7 | ||||
-rw-r--r-- | 1268/CH3/EX3.6/3_6.sce | 9 | ||||
-rw-r--r-- | 1268/CH3/EX3.7/3_7.sce | 9 | ||||
-rw-r--r-- | 1268/CH3/EX3.9/3_9.sce | 16 |
7 files changed, 76 insertions, 0 deletions
diff --git a/1268/CH3/EX3.12/3_12.sce b/1268/CH3/EX3.12/3_12.sce new file mode 100644 index 000000000..ea25d989c --- /dev/null +++ b/1268/CH3/EX3.12/3_12.sce @@ -0,0 +1,7 @@ +clc;
+disp("Example 3.12")
+radiusratio=0.2;
+// From the appropriate equation we see the dependence of volumetric flow rate with radius
+ratio=1-(0.2^4)+((1-(0.2^2))^2)/log(0.2);
+disp("Q2/Q1= ");
+disp(ratio);
diff --git a/1268/CH3/EX3.13/3_13.sce b/1268/CH3/EX3.13/3_13.sce new file mode 100644 index 000000000..91d3b5d85 --- /dev/null +++ b/1268/CH3/EX3.13/3_13.sce @@ -0,0 +1,12 @@ +clc;
+disp("Example 3.13")
+density=1000 // in kg/m^3
+b= 0.005 // gap between plates in m
+mew=0.1 // viscosity in kg/ms
+q=1/60 // in m^3/s/m
+U= q/b
+// here the pressure gradient is delP= 12*mew*U/b*b
+delP= (12*mew*U)/(b*b)
+Re= b*U*density/mew
+disp(" Reynolds number is ")
+disp(Re)
diff --git a/1268/CH3/EX3.2/3_2.sce b/1268/CH3/EX3.2/3_2.sce new file mode 100644 index 000000000..3212ffdbd --- /dev/null +++ b/1268/CH3/EX3.2/3_2.sce @@ -0,0 +1,16 @@ +clc;
+disp("Example 3.2")
+// the formula used is u=2U(1-(r/R)^2)
+// In the first part u=U/2 and in second part u=U
+// first step
+//(r/R)^2=3/4
+R=5; // in cm
+r1=5*((0.75)^0.5);
+// second step
+// (r/R)^2=1/2
+r2=5*((0.5)^0.5);
+disp(" At r= ")
+disp(r1)
+disp(" cm we have half the avergae velocity and at r= ")
+disp(r2)
+disp(" we have axial velocity equal to avergae velocity.")
diff --git a/1268/CH3/EX3.5/3_5.sce b/1268/CH3/EX3.5/3_5.sce new file mode 100644 index 000000000..96cada3b7 --- /dev/null +++ b/1268/CH3/EX3.5/3_5.sce @@ -0,0 +1,7 @@ +clc;
+disp("Example 3.4")
+// flow rate is directly proprtional to radius ratio to the power 4
+radiusratio=2;
+volumetricrateratio=radiusratio^4;
+disp(" volumetric rate increases by a factor of ");
+disp(volumetricrateratio);
diff --git a/1268/CH3/EX3.6/3_6.sce b/1268/CH3/EX3.6/3_6.sce new file mode 100644 index 000000000..1292494e0 --- /dev/null +++ b/1268/CH3/EX3.6/3_6.sce @@ -0,0 +1,9 @@ +clc;
+disp("Example 3.6")
+pgrad= 12500; // pressure gardient in dynes/cm^3
+d=0.445; // diameter in metres
+mew=8; // viscosity in poise
+Q= %pi*pgrad*d*d*d*d/(128*mew);
+disp(" Volumetric flow rate is ");
+disp(Q);
+disp(" cc/s");
diff --git a/1268/CH3/EX3.7/3_7.sce b/1268/CH3/EX3.7/3_7.sce new file mode 100644 index 000000000..52a9f9b3b --- /dev/null +++ b/1268/CH3/EX3.7/3_7.sce @@ -0,0 +1,9 @@ +clc;
+disp("Example 3.7")
+pgrad= 12500; // pressure gardient in dynes/cm^3
+d=0.445; // diameter in metres
+mew=0.8; // viscosity in poise
+Q= %pi*pgrad*d*d*d*d/(128*mew);
+disp(" Volumetric flow rate is ");
+disp(Q);
+disp(" cc/s and it is ten times the value of the previous question");
diff --git a/1268/CH3/EX3.9/3_9.sce b/1268/CH3/EX3.9/3_9.sce new file mode 100644 index 000000000..c6f006813 --- /dev/null +++ b/1268/CH3/EX3.9/3_9.sce @@ -0,0 +1,16 @@ +clc;
+disp("Example 3.9")
+d= 0.005 // diameter in metres
+density= 900 // in kg/m^3
+mew=0.5 // kg/ms
+Q=5e-6 // flow rate in m^3/sec
+U= (4*Q)/(%pi*d*d) // volumetric flow rate per area of cross section
+
+Re= d*U*density/mew
+disp(" The Reynolds number is ")
+disp(Re)
+disp(" . Hence we can apply hagen poiseulli law.")
+pgrad=128*mew*Q/(%pi*d*d*d*d)
+disp(" Pressure gradient is ")
+disp(pgrad)
+disp(" N/m^3")
|