summaryrefslogtreecommitdiff
path: root/1268
diff options
context:
space:
mode:
Diffstat (limited to '1268')
-rw-r--r--1268/CH1/EX1.1/1_1.sce11
-rw-r--r--1268/CH1/EX1.3/1_3.sce11
-rw-r--r--1268/CH10/EX10.1/10_1.sce16
-rw-r--r--1268/CH10/EX10.2/10_2.sce18
-rw-r--r--1268/CH10/EX10.3/10_3.sce10
-rw-r--r--1268/CH10/EX10.4/10_4.sce12
-rw-r--r--1268/CH11/EX11.1/a_1.sce13
-rw-r--r--1268/CH11/EX11.10/a_10.sce9
-rw-r--r--1268/CH11/EX11.14/a_14.sce11
-rw-r--r--1268/CH11/EX11.15/a_15.sce5
-rw-r--r--1268/CH11/EX11.17/a_17.sce10
-rw-r--r--1268/CH11/EX11.19/a_19.sce10
-rw-r--r--1268/CH11/EX11.2/a_2.sce7
-rw-r--r--1268/CH11/EX11.3/a_3.sce22
-rw-r--r--1268/CH11/EX11.6/a_6.sce10
-rw-r--r--1268/CH11/EX11.7/a_7.sce9
-rw-r--r--1268/CH11/EX11.8/a_8.sce10
-rw-r--r--1268/CH11/EX11.9/a_9.sce6
-rw-r--r--1268/CH2/EX2.1/2_1.sce11
-rw-r--r--1268/CH2/EX2.4/2_4.sce14
-rw-r--r--1268/CH2/EX2.5/2_5.sce9
-rw-r--r--1268/CH2/EX2.6/2_6.sce16
-rw-r--r--1268/CH2/EX2.7/2_7.sce16
-rw-r--r--1268/CH2/EX2.8/2_8.sce14
-rw-r--r--1268/CH3/EX3.12/3_12.sce7
-rw-r--r--1268/CH3/EX3.13/3_13.sce12
-rw-r--r--1268/CH3/EX3.2/3_2.sce16
-rw-r--r--1268/CH3/EX3.5/3_5.sce7
-rw-r--r--1268/CH3/EX3.6/3_6.sce9
-rw-r--r--1268/CH3/EX3.7/3_7.sce9
-rw-r--r--1268/CH3/EX3.9/3_9.sce16
-rw-r--r--1268/CH4/EX4.10/4_10.sce14
-rw-r--r--1268/CH4/EX4.11/4_11.sce18
-rw-r--r--1268/CH4/EX4.12/4_12.sce13
-rw-r--r--1268/CH4/EX4.13/4_13.sce12
-rw-r--r--1268/CH4/EX4.14/4_14.sce10
-rw-r--r--1268/CH4/EX4.15/4_15.sce8
-rw-r--r--1268/CH4/EX4.18/4_18.sce14
-rw-r--r--1268/CH4/EX4.19/4_19.sce12
-rw-r--r--1268/CH4/EX4.20/4_20.sce11
-rw-r--r--1268/CH4/EX4.8/4_8.sce7
-rw-r--r--1268/CH4/EX4.9/4_9.sce11
-rw-r--r--1268/CH5/EX5.5/5_5.sce5
-rw-r--r--1268/CH5/EX5.6/5_6.sce5
-rw-r--r--1268/CH5/EX5.7/5_7.sce12
-rw-r--r--1268/CH6/EX6.2/6_2.sce9
-rw-r--r--1268/CH6/EX6.3/6_3.sce10
-rw-r--r--1268/CH6/EX6.4/6_4.sce12
-rw-r--r--1268/CH6/EX6.5/6_5.sce11
-rw-r--r--1268/CH7/EX7.2/7_2.sce9
-rw-r--r--1268/CH7/EX7.3/7_3.sce10
-rw-r--r--1268/CH7/EX7.4/7_4.sce14
-rw-r--r--1268/CH7/EX7.5/7_5.sce17
-rw-r--r--1268/CH8/EX8.1/8_1.sce14
-rw-r--r--1268/CH8/EX8.2/8_2.sce17
-rw-r--r--1268/CH8/EX8.3/8_3.sce13
-rw-r--r--1268/CH8/EX8.4/8_4.sce12
-rw-r--r--1268/CH8/EX8.6/8_6.sce10
-rw-r--r--1268/CH8/EX8.7/8_7.sce12
-rw-r--r--1268/CH8/EX8.9/8_9.sce8
-rw-r--r--1268/CH9/EX9.1/9_1.sce10
-rw-r--r--1268/CH9/EX9.2/9_2.sce11
-rw-r--r--1268/CH9/EX9.3/9_3.sce12
-rw-r--r--1268/CH9/EX9.4/9_4.sce11
-rw-r--r--1268/CH9/EX9.5/9_5.sce7
65 files changed, 737 insertions, 0 deletions
diff --git a/1268/CH1/EX1.1/1_1.sce b/1268/CH1/EX1.1/1_1.sce
new file mode 100644
index 000000000..38c51366d
--- /dev/null
+++ b/1268/CH1/EX1.1/1_1.sce
@@ -0,0 +1,11 @@
+clc;
+disp("Example 1.1")
+R=0.12
+// manometer reading in m
+densitym= 13600 // of mercury in kg/m^3
+densityw= 1000 // of water in kg/m^3
+g=9.81 // acceleration due to gravity in m/s^2
+p=R*g*(densitym-densityw)
+disp(" Pressure difference is ")
+disp(p)
+disp(" N/m^2 ")
diff --git a/1268/CH1/EX1.3/1_3.sce b/1268/CH1/EX1.3/1_3.sce
new file mode 100644
index 000000000..25d67d639
--- /dev/null
+++ b/1268/CH1/EX1.3/1_3.sce
@@ -0,0 +1,11 @@
+clc;
+disp("Example 1.3")
+density= 1200 // in kg/m^3
+r= 0.15 // bowl radius in m
+Ri=0.12 // interface position from the bowl axis in m
+n= 3500 // rotational speed in rpm
+omega= %pi*2*n/60
+p= density*omega*omega*(r^2-Ri^2)/2
+disp(" Gauge pressure is ")
+disp(p)
+disp(" N/m^2")
diff --git a/1268/CH10/EX10.1/10_1.sce b/1268/CH10/EX10.1/10_1.sce
new file mode 100644
index 000000000..ba85ad71b
--- /dev/null
+++ b/1268/CH10/EX10.1/10_1.sce
@@ -0,0 +1,16 @@
+clc;
+disp("Example 10.1")
+G=50 // in kg/m^2/s
+L=100 // length in m
+d=0.075 // diameter in m
+T=298 // in kelvin
+mew=1e-5 //viscosity
+p=1.1e5 // pressure of air
+m=16 // molecular mass
+Re=d*G/mew
+f=0.0014+(0.125/(Re^0.32))
+p1=(2*f*L*G*G*8314*T/(d*m)+(p^2))^0.5
+disp(p1,"Pressure is ")
+disp(" Pascals")
+printf("Pressure is %.2f Pa\n",p1);
+
diff --git a/1268/CH10/EX10.2/10_2.sce b/1268/CH10/EX10.2/10_2.sce
new file mode 100644
index 000000000..2fbcea3e6
--- /dev/null
+++ b/1268/CH10/EX10.2/10_2.sce
@@ -0,0 +1,18 @@
+clc;
+disp("Example 10.2")
+G=50 // in kg/m^2/s
+L=1000 // length in m
+d=0.075 // diameter in m
+T=298 // in kelvin
+mew=1e-5 //viscosity
+p2=1.1e5 // pressure of air
+m=16 // molecular mass
+Re=d*G/mew
+f=0.0014+(0.125/(Re^0.32))
+p1=(2*f*L*G*G*8314*T/(d*m)+(p2^2))^0.5
+if((p1/p2)>1) then
+ p1=(2*f*L*G*G*8314*T/(d*m)+(p2^2)+(2*G*G*8314*T*log(p1/p2)/m))^0.5
+end
+disp(p1,"Pressure is ")
+disp(" Pascals")
+
diff --git a/1268/CH10/EX10.3/10_3.sce b/1268/CH10/EX10.3/10_3.sce
new file mode 100644
index 000000000..b56f298ad
--- /dev/null
+++ b/1268/CH10/EX10.3/10_3.sce
@@ -0,0 +1,10 @@
+clc;
+disp("Example 10.3")
+ratio=5 // of the two pressures
+T=293 // inn K
+gama=1.4
+M=29 // molecular weight
+r=8314 // gas constant
+y=(ratio^((gama-1)/gama))-1
+w=r*T*gama*y/(M*(gama-1))
+disp(w,"Work done is ")
diff --git a/1268/CH10/EX10.4/10_4.sce b/1268/CH10/EX10.4/10_4.sce
new file mode 100644
index 000000000..7a037d117
--- /dev/null
+++ b/1268/CH10/EX10.4/10_4.sce
@@ -0,0 +1,12 @@
+clear;
+disp("Example 10.4")
+T=298 // temperature in K
+R=8314 // gas constant
+M=29 // molecular weight
+ratio=6 // of pressures
+gama = 1.4;
+y=(ratio^((gama-1)/gama))-1
+w=r*T*gama*y/(M*(gama-1))
+massrate=300/360
+power=massrate*w
+disp(power,"The power drawn is ")
diff --git a/1268/CH11/EX11.1/a_1.sce b/1268/CH11/EX11.1/a_1.sce
new file mode 100644
index 000000000..b13af849d
--- /dev/null
+++ b/1268/CH11/EX11.1/a_1.sce
@@ -0,0 +1,13 @@
+clc;
+disp("Example A.1")
+g=9.81
+density=1000 // of water in kg/m^3
+densitym=13600 // of mercury in kg/m^3
+h=0.1 // in m
+p1=density*g*h
+p2=p1+(densitym*g*h)
+waterhead=p2/(density*g)
+hghead=p2/(g*densitym)
+
+disp(waterhead,"Head of water is ")
+disp(hghead,"Head of mercury is ")
diff --git a/1268/CH11/EX11.10/a_10.sce b/1268/CH11/EX11.10/a_10.sce
new file mode 100644
index 000000000..558103a91
--- /dev/null
+++ b/1268/CH11/EX11.10/a_10.sce
@@ -0,0 +1,9 @@
+clc;
+disp("Example A.10")
+density=1000 // in kg/m^3
+Q=0.1/60 // flow rate in m^3/s
+mew=0.001 // viscosity in kg/ms
+tau=Q*density/(%pi*2)
+Re=4*tau/mew
+disp(Re,"Reynolds number is ")
+disp("It indicates viscous flow!")
diff --git a/1268/CH11/EX11.14/a_14.sce b/1268/CH11/EX11.14/a_14.sce
new file mode 100644
index 000000000..1633e2c0f
--- /dev/null
+++ b/1268/CH11/EX11.14/a_14.sce
@@ -0,0 +1,11 @@
+clc;
+disp("Example A.14")
+d=0.025 // diameter in m
+density= 1000 // in kg/m^3
+G=4*40/(60*%pi*d*d) // flow rate
+U=G/density // velocity in m/s
+mew=0.025
+Re=d*G/mew
+Q=40/60000
+delP=128*Q*mew/(%pi*d*d*d*d)
+disp(delP,"Pressure gradient for the liquid is ")
diff --git a/1268/CH11/EX11.15/a_15.sce b/1268/CH11/EX11.15/a_15.sce
new file mode 100644
index 000000000..a74ddcbd9
--- /dev/null
+++ b/1268/CH11/EX11.15/a_15.sce
@@ -0,0 +1,5 @@
+clc;
+disp("Example A.15")
+dratio=4/5
+pratio=dratio^-5
+disp(pratio,"Pressure drop is ")
diff --git a/1268/CH11/EX11.17/a_17.sce b/1268/CH11/EX11.17/a_17.sce
new file mode 100644
index 000000000..c1445ae25
--- /dev/null
+++ b/1268/CH11/EX11.17/a_17.sce
@@ -0,0 +1,10 @@
+clc;
+disp("Example A.17")
+d=14e-3 // diameter in m
+l=100 // length in m
+v=1e-5 // kinematic viscosity in kg/ms
+Re=2100
+U=Re*v/d
+h=32*v*l*U/(9.81*d*d)
+disp(h,"Head loss is ")
+
diff --git a/1268/CH11/EX11.19/a_19.sce b/1268/CH11/EX11.19/a_19.sce
new file mode 100644
index 000000000..3b6fed749
--- /dev/null
+++ b/1268/CH11/EX11.19/a_19.sce
@@ -0,0 +1,10 @@
+clc;
+disp("Example A.19")
+n=100 // in rpm
+omega=2*%pi*n/60
+r=0.05 // radius in m
+u=r*omega // velocity in m/s
+gap=0.001 // in m
+mew=0.5 // in kg/ms
+tau=mew*u/gap
+disp(tau,"Shear stress is ")
diff --git a/1268/CH11/EX11.2/a_2.sce b/1268/CH11/EX11.2/a_2.sce
new file mode 100644
index 000000000..315aaa478
--- /dev/null
+++ b/1268/CH11/EX11.2/a_2.sce
@@ -0,0 +1,7 @@
+clc;
+disp("Example A.2")
+x=1
+y=5
+z=x/y
+theta=asin(z)*180/%pi
+disp(theta, "The angle of inclination is ")
diff --git a/1268/CH11/EX11.3/a_3.sce b/1268/CH11/EX11.3/a_3.sce
new file mode 100644
index 000000000..940fa7e52
--- /dev/null
+++ b/1268/CH11/EX11.3/a_3.sce
@@ -0,0 +1,22 @@
+clear;
+disp("Example A.3")
+d=0.097 // diameter in m
+gradp= 16 // pressure gradient in N/m
+density=1000 // in kg/m^3
+tau=gradp*d/4
+u=(tau/density)^0.5
+y=0.02 // in m
+v=1e-6 // kinematic viscosity iin m^2/s
+ydash=y*u/v
+
+if(ydash>30) then
+ udash=2.5*log(ydash)+5.5
+ ugrad=2.5/ydash
+ ratio=2*y/d // ratio of ydash/rdash=y/r
+ x=(1-ratio)/ugrad-1
+ disp(x,"Turbulent viscosity to molecular viscosity at 2m is ")
+end
+rdash=d*u/(2*v)
+ydash=rdash/2
+x=(0.5*ydash/2.5)-1
+disp(x,"Turbulent viscosity to molecular viscosity at the point of maximum viscosity is ")
diff --git a/1268/CH11/EX11.6/a_6.sce b/1268/CH11/EX11.6/a_6.sce
new file mode 100644
index 000000000..61a321f0f
--- /dev/null
+++ b/1268/CH11/EX11.6/a_6.sce
@@ -0,0 +1,10 @@
+clear;
+disp("Example A.6")
+d=1e-4 // diameter in m
+mew=1e-3 // viscosity in kg/ms
+densityp=1200 // of particle in kg/m^3
+density= 1000 // of water in kg/m^3
+t=0.256*densityp*d*d/mew
+U=densityp*d*d*9.81*(1-(density/densityp))/(18*mew)
+Re=d*U*density/mew
+disp(t,"Time is ")
diff --git a/1268/CH11/EX11.7/a_7.sce b/1268/CH11/EX11.7/a_7.sce
new file mode 100644
index 000000000..34fd29f06
--- /dev/null
+++ b/1268/CH11/EX11.7/a_7.sce
@@ -0,0 +1,9 @@
+clc;
+disp("Example A.7")
+Q=700000/3600 // in m^3/s
+d=0.2 // diameter in m
+v=1.2e-5 // kinematic viscosity
+Re=4*Q/(%pi*d*v)
+ratio=0.0013
+f=0.3313/((log((ratio/3.7)+(5.74/(Re^0.9))))^2)
+disp(f,"Friction factor is ")
diff --git a/1268/CH11/EX11.8/a_8.sce b/1268/CH11/EX11.8/a_8.sce
new file mode 100644
index 000000000..d8ebbf63e
--- /dev/null
+++ b/1268/CH11/EX11.8/a_8.sce
@@ -0,0 +1,10 @@
+clc;
+disp("Example A.8")
+Re=90000
+f1=0.3313/((log(5.74/(Re^0.9)))^2)
+f2=0.079/(Re^0.25)
+if((f1-f2)<0.001) then
+ disp("Excellent agreement in friction factor is seen")
+end
+
+
diff --git a/1268/CH11/EX11.9/a_9.sce b/1268/CH11/EX11.9/a_9.sce
new file mode 100644
index 000000000..8a9f92fa3
--- /dev/null
+++ b/1268/CH11/EX11.9/a_9.sce
@@ -0,0 +1,6 @@
+clc;
+disp("Example A.9")
+dratio=10
+uratio=1/dratio
+fratio=uratio*uratio*dratio*dratio
+disp(fratio,"The ratio of model force to prototype force is ")
diff --git a/1268/CH2/EX2.1/2_1.sce b/1268/CH2/EX2.1/2_1.sce
new file mode 100644
index 000000000..58873b8d4
--- /dev/null
+++ b/1268/CH2/EX2.1/2_1.sce
@@ -0,0 +1,11 @@
+clc;
+disp("Example 2.1")
+mew= 5e-3
+//coefficient of viscosity in kg/ms
+u=0.1
+// velocity in m/s
+b=3.5e-3
+// width in metres
+tau= (mew*u)/b // the value of shear stress
+disp(" The value of shear stress is ")
+disp(tau)
diff --git a/1268/CH2/EX2.4/2_4.sce b/1268/CH2/EX2.4/2_4.sce
new file mode 100644
index 000000000..8d47ff5f4
--- /dev/null
+++ b/1268/CH2/EX2.4/2_4.sce
@@ -0,0 +1,14 @@
+clc;
+disp("Example 2.4")
+m=0.2
+// thickness in cm
+mew=1 // viscosity in poise
+w= 10
+// width of the plate in cm
+density=1 // density in gm/cc
+g=981 // acceleration due to gravity in cm/s^2
+//Q is the liquid flow rate
+Q=(density*g*m*m*m*w)/(3*mew)
+disp(" The flow rate is ")
+disp(Q)
+disp(" gm/cc")
diff --git a/1268/CH2/EX2.5/2_5.sce b/1268/CH2/EX2.5/2_5.sce
new file mode 100644
index 000000000..181dd693e
--- /dev/null
+++ b/1268/CH2/EX2.5/2_5.sce
@@ -0,0 +1,9 @@
+clc;
+disp("Example 2.5")
+// MAximum velocity is density*g*m^3/2*mew
+// avergare velocity is density*g*m^3/3*mew
+// hence the ratio is 1.5
+
+ratio=3/2
+disp("Mximum velocity/average velocity is ")
+disp(ratio)
diff --git a/1268/CH2/EX2.6/2_6.sce b/1268/CH2/EX2.6/2_6.sce
new file mode 100644
index 000000000..13ce70c05
--- /dev/null
+++ b/1268/CH2/EX2.6/2_6.sce
@@ -0,0 +1,16 @@
+clc;
+disp("Example 2.6")
+density= 900
+// density of the fluid in kg/m^3
+g=9.81
+// acceleration due to gravity in m/s^2
+m=0.003
+//thickness of the film in m
+mew= 0.2
+// coefficient of friction in ks/m*s
+Q= (density*g*m*m*m)/(3*mew)// volumetric flow rate per unit plate width
+
+Re=(4*Q*density)/mew
+disp("Volumetric flow rate is ")
+disp(Q)
+disp(" m^3/m/s and it is in the laminar regime.")
diff --git a/1268/CH2/EX2.7/2_7.sce b/1268/CH2/EX2.7/2_7.sce
new file mode 100644
index 000000000..edf8ff828
--- /dev/null
+++ b/1268/CH2/EX2.7/2_7.sce
@@ -0,0 +1,16 @@
+clc;
+disp("Example 2.7")
+// We know the value of volumetric flow rate per unit width from 2.6 which i have copy pasted from the previos example
+density= 900
+// density of the fluid in kg/m^3
+g=9.81
+// acceleration due to gravity in m/s^2
+m=0.003
+//thickness of the film in m
+mew= 0.2
+// coefficient of friction in ks/m*s
+Q= (density*g*m*m*m)/(3*mew)// volumetric flow rate per unit plate width
+U=Q/m
+disp("Liquid film velocity is ")
+disp(U)
+disp(" cm/s")
diff --git a/1268/CH2/EX2.8/2_8.sce b/1268/CH2/EX2.8/2_8.sce
new file mode 100644
index 000000000..6af5a1848
--- /dev/null
+++ b/1268/CH2/EX2.8/2_8.sce
@@ -0,0 +1,14 @@
+clc;
+disp("Example 2.8")
+m=0.2
+// thickness in cm
+mew=1 // viscosity in poise
+w= 10
+// width of the plate in cm
+density=1 // density in gm/cc
+g=981 // acceleration due to gravity in cm/s^2
+//Q is the liquid flow rate
+Q=(density*g*m*m*m*w)/(3*mew)
+disp(" The flow rate is ")
+disp(Q)
+disp(" gm/cc")
diff --git a/1268/CH3/EX3.12/3_12.sce b/1268/CH3/EX3.12/3_12.sce
new file mode 100644
index 000000000..ea25d989c
--- /dev/null
+++ b/1268/CH3/EX3.12/3_12.sce
@@ -0,0 +1,7 @@
+clc;
+disp("Example 3.12")
+radiusratio=0.2;
+// From the appropriate equation we see the dependence of volumetric flow rate with radius
+ratio=1-(0.2^4)+((1-(0.2^2))^2)/log(0.2);
+disp("Q2/Q1= ");
+disp(ratio);
diff --git a/1268/CH3/EX3.13/3_13.sce b/1268/CH3/EX3.13/3_13.sce
new file mode 100644
index 000000000..91d3b5d85
--- /dev/null
+++ b/1268/CH3/EX3.13/3_13.sce
@@ -0,0 +1,12 @@
+clc;
+disp("Example 3.13")
+density=1000 // in kg/m^3
+b= 0.005 // gap between plates in m
+mew=0.1 // viscosity in kg/ms
+q=1/60 // in m^3/s/m
+U= q/b
+// here the pressure gradient is delP= 12*mew*U/b*b
+delP= (12*mew*U)/(b*b)
+Re= b*U*density/mew
+disp(" Reynolds number is ")
+disp(Re)
diff --git a/1268/CH3/EX3.2/3_2.sce b/1268/CH3/EX3.2/3_2.sce
new file mode 100644
index 000000000..3212ffdbd
--- /dev/null
+++ b/1268/CH3/EX3.2/3_2.sce
@@ -0,0 +1,16 @@
+clc;
+disp("Example 3.2")
+// the formula used is u=2U(1-(r/R)^2)
+// In the first part u=U/2 and in second part u=U
+// first step
+//(r/R)^2=3/4
+R=5; // in cm
+r1=5*((0.75)^0.5);
+// second step
+// (r/R)^2=1/2
+r2=5*((0.5)^0.5);
+disp(" At r= ")
+disp(r1)
+disp(" cm we have half the avergae velocity and at r= ")
+disp(r2)
+disp(" we have axial velocity equal to avergae velocity.")
diff --git a/1268/CH3/EX3.5/3_5.sce b/1268/CH3/EX3.5/3_5.sce
new file mode 100644
index 000000000..96cada3b7
--- /dev/null
+++ b/1268/CH3/EX3.5/3_5.sce
@@ -0,0 +1,7 @@
+clc;
+disp("Example 3.4")
+// flow rate is directly proprtional to radius ratio to the power 4
+radiusratio=2;
+volumetricrateratio=radiusratio^4;
+disp(" volumetric rate increases by a factor of ");
+disp(volumetricrateratio);
diff --git a/1268/CH3/EX3.6/3_6.sce b/1268/CH3/EX3.6/3_6.sce
new file mode 100644
index 000000000..1292494e0
--- /dev/null
+++ b/1268/CH3/EX3.6/3_6.sce
@@ -0,0 +1,9 @@
+clc;
+disp("Example 3.6")
+pgrad= 12500; // pressure gardient in dynes/cm^3
+d=0.445; // diameter in metres
+mew=8; // viscosity in poise
+Q= %pi*pgrad*d*d*d*d/(128*mew);
+disp(" Volumetric flow rate is ");
+disp(Q);
+disp(" cc/s");
diff --git a/1268/CH3/EX3.7/3_7.sce b/1268/CH3/EX3.7/3_7.sce
new file mode 100644
index 000000000..52a9f9b3b
--- /dev/null
+++ b/1268/CH3/EX3.7/3_7.sce
@@ -0,0 +1,9 @@
+clc;
+disp("Example 3.7")
+pgrad= 12500; // pressure gardient in dynes/cm^3
+d=0.445; // diameter in metres
+mew=0.8; // viscosity in poise
+Q= %pi*pgrad*d*d*d*d/(128*mew);
+disp(" Volumetric flow rate is ");
+disp(Q);
+disp(" cc/s and it is ten times the value of the previous question");
diff --git a/1268/CH3/EX3.9/3_9.sce b/1268/CH3/EX3.9/3_9.sce
new file mode 100644
index 000000000..c6f006813
--- /dev/null
+++ b/1268/CH3/EX3.9/3_9.sce
@@ -0,0 +1,16 @@
+clc;
+disp("Example 3.9")
+d= 0.005 // diameter in metres
+density= 900 // in kg/m^3
+mew=0.5 // kg/ms
+Q=5e-6 // flow rate in m^3/sec
+U= (4*Q)/(%pi*d*d) // volumetric flow rate per area of cross section
+
+Re= d*U*density/mew
+disp(" The Reynolds number is ")
+disp(Re)
+disp(" . Hence we can apply hagen poiseulli law.")
+pgrad=128*mew*Q/(%pi*d*d*d*d)
+disp(" Pressure gradient is ")
+disp(pgrad)
+disp(" N/m^3")
diff --git a/1268/CH4/EX4.10/4_10.sce b/1268/CH4/EX4.10/4_10.sce
new file mode 100644
index 000000000..6fcb7a563
--- /dev/null
+++ b/1268/CH4/EX4.10/4_10.sce
@@ -0,0 +1,14 @@
+clc;
+disp("Example 4.10")
+d=0.05 // diameter in m
+density=1000 // density in kg/m^3
+mew= 0.001 // viscosity in kg/ms
+flowrate= 100/60 // in kg/s
+avgvelo=flowrate*4/(%pi*density*d*d)
+
+Re= avgvelo*d*density/mew
+if Re<50000 then
+ f=0.079/(Re^0.25)
+end
+disp(" The friction factor is ")
+disp(f)
diff --git a/1268/CH4/EX4.11/4_11.sce b/1268/CH4/EX4.11/4_11.sce
new file mode 100644
index 000000000..8df170c99
--- /dev/null
+++ b/1268/CH4/EX4.11/4_11.sce
@@ -0,0 +1,18 @@
+clc;
+disp("Example 4.11")
+d=0.1 // diameter in m
+l=25 // length in m
+density=1000 // density in kg/m^3
+delP= 14700 // in N/m^2
+mew= 0.001 // in kg/ms
+ka= d*density*((delP*d)^0.5)/(((2*density*l)^0.5)*mew)
+Re= (ka/0.281)^(8/7)
+if(Re<50000)
+ v1=Re*mew/(d*density)
+ disp(v1)
+end
+if(Re>50000)
+ Re=(ka/0.2145)^(10/9)
+ v1=Re*mew/(d*density)
+ disp(v1)
+end
diff --git a/1268/CH4/EX4.12/4_12.sce b/1268/CH4/EX4.12/4_12.sce
new file mode 100644
index 000000000..de3c1e4b5
--- /dev/null
+++ b/1268/CH4/EX4.12/4_12.sce
@@ -0,0 +1,13 @@
+clc;
+disp("Example 4.12")
+mplus= 5 // laminar sublayer thickness in dimensionless form
+d= 0.05 // diameter in m
+density= 1000 // in kg/m^3
+mu= 0.001 // viscosity in kg/ms
+nu = mu/density;
+U=1 // velocity in m/s
+Re=density*U*d/mew
+f= 0.0791/(Re^0.25)
+m= (mplus)*nu/(U*((f/2)^0.5))
+disp("Laminar sublayer thickness is ")
+disp(m)
diff --git a/1268/CH4/EX4.13/4_13.sce b/1268/CH4/EX4.13/4_13.sce
new file mode 100644
index 000000000..ccc49d734
--- /dev/null
+++ b/1268/CH4/EX4.13/4_13.sce
@@ -0,0 +1,12 @@
+clc;
+disp("Example 4.13")
+head= 5 // in m
+f= 0.0045
+l= 100 // pipe length in m
+d= 0.05 // pipe diameter in m
+//delP=f*density*u*2*u*l/d and delP should also be equal to density*9.8*head
+// equating these 2 we get a relation for u
+u=((head*9.81*d)/(f*2*l))^0.5
+flowrate= %pi*d*d*u/4
+disp("The flow rate is ")
+disp(flowrate," m^3/s")
diff --git a/1268/CH4/EX4.14/4_14.sce b/1268/CH4/EX4.14/4_14.sce
new file mode 100644
index 000000000..e87119394
--- /dev/null
+++ b/1268/CH4/EX4.14/4_14.sce
@@ -0,0 +1,10 @@
+clc;
+disp("Example 4.14")
+h= 5 // in m
+f=0.005
+Q=(18200/3600)*0.001 // flow rate in m^3/s
+l=50 // in m
+//from the formulae used in the last problem as well
+d=(((2*f*l*Q*4*Q*4)/(%pi*%pi*h*9.81))^0.2)
+disp("The diameter is ")
+disp(d)
diff --git a/1268/CH4/EX4.15/4_15.sce b/1268/CH4/EX4.15/4_15.sce
new file mode 100644
index 000000000..4cf8e046a
--- /dev/null
+++ b/1268/CH4/EX4.15/4_15.sce
@@ -0,0 +1,8 @@
+clc;
+disp("Example 4.15");
+Re= 5e5;
+f= 0.046/(Re^0.2)
+ratio= 1+(3.75*((f/2)^0.5));
+disp("the ratio is ");
+disp(ratio);
+disp("Note: The value shown in the book is 1.1453.");
diff --git a/1268/CH4/EX4.18/4_18.sce b/1268/CH4/EX4.18/4_18.sce
new file mode 100644
index 000000000..2a496cefb
--- /dev/null
+++ b/1268/CH4/EX4.18/4_18.sce
@@ -0,0 +1,14 @@
+clc;
+disp("Example 4.18")
+density=850 // in kg/m^3
+mew= 0.0005 // in kg/ms
+d= 0.0525 // diameter in m
+G= 7620 // in kg/m^2/s
+U=G/density
+Re=800000
+f= 0.0014+(0.125/(Re^0.32))
+v= mew/density
+m= 5*v/(U*((f/2)^0.5))
+disp(m,"Laminar sub layer thickness is")
+tau= f*density*U*U/2
+disp(tau,"Wall shear stress is ")
diff --git a/1268/CH4/EX4.19/4_19.sce b/1268/CH4/EX4.19/4_19.sce
new file mode 100644
index 000000000..dd00cbbd2
--- /dev/null
+++ b/1268/CH4/EX4.19/4_19.sce
@@ -0,0 +1,12 @@
+clc;
+disp("Example 4.19")
+U= 0.5 // in m/s
+l= 0.025 // side dimension
+area=l*l
+perimeter=4*l
+rh=area/perimeter
+dh=4*rh
+v=1e-6
+Re=dh*U/v
+f=0.0791/(Re^0.25)
+disp(f,"Friction factor is ")
diff --git a/1268/CH4/EX4.20/4_20.sce b/1268/CH4/EX4.20/4_20.sce
new file mode 100644
index 000000000..e8c870b36
--- /dev/null
+++ b/1268/CH4/EX4.20/4_20.sce
@@ -0,0 +1,11 @@
+clc;
+disp("Example 4.20")
+d=0.05 // in m
+G= 125 // Massflow rate per crosssection area in kg/m^2/s
+mew= 0.025 // in kg/ms
+Re=d*G/mew
+density=800
+V=G/density
+Vmax= 2*V
+Vgrad= -2*Vmax*2/d
+disp(Vgrad,"Velocity gradient on the wall is ")
diff --git a/1268/CH4/EX4.8/4_8.sce b/1268/CH4/EX4.8/4_8.sce
new file mode 100644
index 000000000..56107898a
--- /dev/null
+++ b/1268/CH4/EX4.8/4_8.sce
@@ -0,0 +1,7 @@
+clc;
+disp("Example 4.8")
+Re=100000 // Reynold number
+f=0.079/(Re^0.25) // friction factor according to 1/5th law
+ratio= 1+ 3.75*((f/2)^0.5)
+disp("The ratio of maximum velocity to the average velocity is ")
+disp(ratio)
diff --git a/1268/CH4/EX4.9/4_9.sce b/1268/CH4/EX4.9/4_9.sce
new file mode 100644
index 000000000..1bb51ed61
--- /dev/null
+++ b/1268/CH4/EX4.9/4_9.sce
@@ -0,0 +1,11 @@
+clc;
+disp("Example 4.9")
+// Here the required ratio in terms of n is 2n^2/((n+1)(2*n+1))
+// and the value of this ratio is 0.817
+// solving this we get the following quadratic equation
+// 0.366n^2-2.451n-0.817=0
+y=[0.366 -2.451 -0.817]
+z=roots(y)
+// z is a matrix that has the roots of the equation
+//since we need the positive value of n
+disp(z(1,1))
diff --git a/1268/CH5/EX5.5/5_5.sce b/1268/CH5/EX5.5/5_5.sce
new file mode 100644
index 000000000..395114163
--- /dev/null
+++ b/1268/CH5/EX5.5/5_5.sce
@@ -0,0 +1,5 @@
+clc;
+disp("Example 5.5")
+// WE need to calculate the integral of the manipulated expression in terms of y/delta
+int= integrate('2*y-(5*y*y)+(4*y*y*y)-(y*y*y*y)','y',2,1)
+disp(int, "Momentum thickness is ")
diff --git a/1268/CH5/EX5.6/5_6.sce b/1268/CH5/EX5.6/5_6.sce
new file mode 100644
index 000000000..33b0ee33b
--- /dev/null
+++ b/1268/CH5/EX5.6/5_6.sce
@@ -0,0 +1,5 @@
+clc;
+disp("Example 5.6")
+Rex=5e5
+Re=5.5*(Rex^0.5)
+disp(Re,"Reynolds number based on boundary layer thickness is approximately ")
diff --git a/1268/CH5/EX5.7/5_7.sce b/1268/CH5/EX5.7/5_7.sce
new file mode 100644
index 000000000..57d3a9b26
--- /dev/null
+++ b/1268/CH5/EX5.7/5_7.sce
@@ -0,0 +1,12 @@
+clc;
+disp("Example 5.7")
+U=12 // in m/s
+l=1.5 // length of the plate
+x=l/8
+v=1.8e-5
+density= 1.2
+Re=U*x/v
+m=x*((280/(13*Re))^0.5)
+disp(m,"Boundary layer thickness at 1/8th of the plate distance from the leading edge is ")
+tau=3*density*v*U/(2*m)
+disp(tau,"The wall shear stress is ")
diff --git a/1268/CH6/EX6.2/6_2.sce b/1268/CH6/EX6.2/6_2.sce
new file mode 100644
index 000000000..f92e4a70b
--- /dev/null
+++ b/1268/CH6/EX6.2/6_2.sce
@@ -0,0 +1,9 @@
+clc;
+disp("Example 6.2")
+density= 1200 // in kg/m^3
+mew= 2.25e-5 // viscosity in Pas
+g= 9.81 // acceleration due to gravity in m/s^2
+gasdensity= 1.15 // in kg/m^3
+velocity=0.2 // in m/s
+d=(18*mew*velocity/(g*(density-gasdensity)))^0.5
+disp(d, "Maximum particle size is ")
diff --git a/1268/CH6/EX6.3/6_3.sce b/1268/CH6/EX6.3/6_3.sce
new file mode 100644
index 000000000..ec9be7e4a
--- /dev/null
+++ b/1268/CH6/EX6.3/6_3.sce
@@ -0,0 +1,10 @@
+clear;
+disp("Example 6.3")
+d=0.1 // diameter of sphere in m
+velocity= 0.25 // in m/s
+mew= 1.9e-5
+density= 1.15 // in kg/m^3
+f=0.44
+area=%pi*d*d/4
+Fd=(f*density*velocity*velocity*area)/2
+disp(Fd,"The drag Force is ")
diff --git a/1268/CH6/EX6.4/6_4.sce b/1268/CH6/EX6.4/6_4.sce
new file mode 100644
index 000000000..3d9f8883b
--- /dev/null
+++ b/1268/CH6/EX6.4/6_4.sce
@@ -0,0 +1,12 @@
+clc;
+disp("Example 6.4")
+r=0.5 // radius in cm
+volume=4*%pi*r*r*r/3
+mass=0.05 // in g
+density=mass/volume
+liquiddensity=0.9 // in g/cc
+if(density<liquiddensity)
+ F=volume*981*(density-liquiddensity)
+ disp(F,"The drag force is ")
+ disp(" dynes")
+end
diff --git a/1268/CH6/EX6.5/6_5.sce b/1268/CH6/EX6.5/6_5.sce
new file mode 100644
index 000000000..0cc6778f0
--- /dev/null
+++ b/1268/CH6/EX6.5/6_5.sce
@@ -0,0 +1,11 @@
+clc;
+disp("Example 6.5")
+d=3e-4 // diameter in m
+particleD=2800 // inkg/m^3
+waterD=1000 // in kg/m^3
+mew= 0.001 // viscosity in kg/ms
+K=d*(((waterD*9.81*(particleD-waterD))/(mew*mew))^(1/3))
+Re= d*waterD/mew
+f=18.5/(Re^0.6)
+U=(((4*9.81*(particleD-waterD)*d)/(3*waterD*f))^0.5)^(10/7)
+disp(U)
diff --git a/1268/CH7/EX7.2/7_2.sce b/1268/CH7/EX7.2/7_2.sce
new file mode 100644
index 000000000..47364e316
--- /dev/null
+++ b/1268/CH7/EX7.2/7_2.sce
@@ -0,0 +1,9 @@
+clc;
+disp("Example 7.2")
+// The formula derived in the first part is
+//de=2*phi*dp*e/(3*(1-e))
+// and here de=dp/2 and we define x=de/dp
+x=1/2
+phi=1
+e=(3/(4*phi))/(1+(3/(4*phi)))
+disp(e)
diff --git a/1268/CH7/EX7.3/7_3.sce b/1268/CH7/EX7.3/7_3.sce
new file mode 100644
index 000000000..9bde77958
--- /dev/null
+++ b/1268/CH7/EX7.3/7_3.sce
@@ -0,0 +1,10 @@
+clc;
+disp("Example 7.3")
+massflux=54000/3600 // in kg/M^2/s
+d= 0.0022 // in m
+e= 0.32
+density= 1000 // in kg/m^3
+mew=0.001 // in kg/ms
+P=(massflux*massflux*(1-e)/(e*e*e*d*density))*(1.75+(150*mew*(1-e)/(d*massflux)))
+disp(P,"Frictional pressure drop is ")
+disp("The value shown in the book is 10278.1, which is different from the above, due to rounding off errors");
diff --git a/1268/CH7/EX7.4/7_4.sce b/1268/CH7/EX7.4/7_4.sce
new file mode 100644
index 000000000..2594534ff
--- /dev/null
+++ b/1268/CH7/EX7.4/7_4.sce
@@ -0,0 +1,14 @@
+clear;
+disp("Example 7.4")
+d=0.0025 // in m
+G=50000/3600 // in kg/m^2/s
+mew=0.1 // in kg/ms
+Re= d*G/mew
+density=1250
+U=G/density
+P=250000
+y=P*d*d/(150*U*mew)
+//we need to solve equation y*x^3+x^2-1=0
+p=[y,-1,2,-1]
+z=roots(p)
+disp(z(3,1),"Porosity is ")
diff --git a/1268/CH7/EX7.5/7_5.sce b/1268/CH7/EX7.5/7_5.sce
new file mode 100644
index 000000000..93c2c0642
--- /dev/null
+++ b/1268/CH7/EX7.5/7_5.sce
@@ -0,0 +1,17 @@
+clc;
+disp("Example 7.5")
+delD= 250 // difference of the 2 densities in kg/m^3
+density= 1000 // of water in kg/m^3
+mew= 0.001 // in kg/ms
+d=1.25e-3 // in m
+e= 0.4 // porosity
+g=9.81
+phi=1
+// we get an equation for velocity
+// a*u^2+b*u+c=0 where we calculate a,b and c as----
+c=-g*delD
+b= (150*mew*(1-e))/(d*d*e*e*e*phi*phi)
+a=1.75*density/(phi*d*e*e*e)
+p=[a,b,c]
+z=roots(p)
+disp(z(2,1),"Fluidization velocity is ")
diff --git a/1268/CH8/EX8.1/8_1.sce b/1268/CH8/EX8.1/8_1.sce
new file mode 100644
index 000000000..1a50df525
--- /dev/null
+++ b/1268/CH8/EX8.1/8_1.sce
@@ -0,0 +1,14 @@
+clc;
+disp("Example 8.1")
+d=0.05 // diameter in m
+density= 1680 // in kg/m^#
+mew= 0.45 // in kg/ms
+rate=10 // in kg/s
+Q=rate/density
+U=4*Q/(%pi*d*d)
+Re= d*density*U/mew
+if (Re<2100) then
+ f=16/Re
+ delP=2*f*density*U*U/d
+ disp(delP,"Pressure Gradient is ")
+end
diff --git a/1268/CH8/EX8.2/8_2.sce b/1268/CH8/EX8.2/8_2.sce
new file mode 100644
index 000000000..607dcee41
--- /dev/null
+++ b/1268/CH8/EX8.2/8_2.sce
@@ -0,0 +1,17 @@
+clc;
+disp("Example 8.2")
+U=1.5 // in m/s
+d=0.025 // in m
+density= 1000 // in kg/m^3
+mew=0.001 // in kg/ms
+Re=d*density*U/mew
+f=0.079/(Re^0.25)
+l=25 // length of the pipe in m
+delP=2*f*density*U*U*l/d
+h1=delP/(density*9.81)
+disp(h1,"Head loss is ")
+h2=15
+h=h1+h2
+flow=%pi*d*d*U*density/4
+power=flow*h*9.81
+disp(power,"Theoretical Power required is ")
diff --git a/1268/CH8/EX8.3/8_3.sce b/1268/CH8/EX8.3/8_3.sce
new file mode 100644
index 000000000..48987eb25
--- /dev/null
+++ b/1268/CH8/EX8.3/8_3.sce
@@ -0,0 +1,13 @@
+clc;
+disp("Example 8.3")
+d=0.025 // diameter in m
+l=120 // length in m
+density= 1000
+Q=2.525e-3 // volumetric flow rate in m^3/s
+U=4*Q/(%pi*d*d)
+Re=density*U*d/mew
+f=0.0014+(0.125/(Re^0.32))
+delP=2*f*l*U*U*density/d
+disp(delP,"Pressure head is ")
+Power=delP*Q
+disp(Power,"Power required to overcome friction is ")
diff --git a/1268/CH8/EX8.4/8_4.sce b/1268/CH8/EX8.4/8_4.sce
new file mode 100644
index 000000000..bfe709a89
--- /dev/null
+++ b/1268/CH8/EX8.4/8_4.sce
@@ -0,0 +1,12 @@
+clc;
+disp("Example 8.4")
+delZ=0.5
+densityw=1000 // of water
+densitym=13600 // of mercury
+g=9.81 // acceleration due to gravity in m/s^2
+reading=0.15
+delP=reading*(densitym-densityw)*g+delZ*g*densityw
+disp(delP)
+// applying bernoullis law and the relation U2=4U1
+U1=((2*g*(delP/(densityw*g)-0.5))/15)^0.5
+disp(U1,"Velocity is ")
diff --git a/1268/CH8/EX8.6/8_6.sce b/1268/CH8/EX8.6/8_6.sce
new file mode 100644
index 000000000..5e57ec1a9
--- /dev/null
+++ b/1268/CH8/EX8.6/8_6.sce
@@ -0,0 +1,10 @@
+clc;
+disp("Example 8.6")
+density= 1000 // in kg/m^s
+mew=0.1 // in kg/ms
+l=2 // length in m
+h=1 // height in m
+d=0.02 // diameter in m
+D=1
+t=(32*mew*l*D*D/(density*9.81*d*d*d*d))*log(1+h/l)
+disp(t,"Draining time of the liquid is ")
diff --git a/1268/CH8/EX8.7/8_7.sce b/1268/CH8/EX8.7/8_7.sce
new file mode 100644
index 000000000..201437270
--- /dev/null
+++ b/1268/CH8/EX8.7/8_7.sce
@@ -0,0 +1,12 @@
+clc;
+disp("Example 8.7")
+density= 1000 // in kg/m^s
+mew=0.1 // in kg/ms
+l=2 // length in m
+h=1 // height in m
+d=0.02 // diameter in m
+D=1
+delP=(h+l)*density*9.8
+q=%pi*delP*d*d*d*d/(128*mew*l)
+U=4*q/(d*d*%pi)
+disp(U,"Initial velocity of the liquid from the pipe is ")
diff --git a/1268/CH8/EX8.9/8_9.sce b/1268/CH8/EX8.9/8_9.sce
new file mode 100644
index 000000000..66bbfadcd
--- /dev/null
+++ b/1268/CH8/EX8.9/8_9.sce
@@ -0,0 +1,8 @@
+clc;
+disp("Example 8.9")
+number=5
+speed= 1 // in rotations per second
+density= 1000 // in kg/m^3
+d=0.6 // in m
+power=number*speed*speed*speed*density*(d^5)
+disp(power,"Power to the mixing system is ")
diff --git a/1268/CH9/EX9.1/9_1.sce b/1268/CH9/EX9.1/9_1.sce
new file mode 100644
index 000000000..31a3a62db
--- /dev/null
+++ b/1268/CH9/EX9.1/9_1.sce
@@ -0,0 +1,10 @@
+clc;
+disp("Example 9.1")
+density=1000 // in kg/m^3
+densitys=900 // in kg/m^3
+delh=0.025
+g=9.81
+delP=delh*g*(density-densitys)
+vmax=0.98*((2*delP/densitys)^0.5)
+vavg=0.85*vmax
+disp(vavg,"Average velocity is ")
diff --git a/1268/CH9/EX9.2/9_2.sce b/1268/CH9/EX9.2/9_2.sce
new file mode 100644
index 000000000..b335fff59
--- /dev/null
+++ b/1268/CH9/EX9.2/9_2.sce
@@ -0,0 +1,11 @@
+clc;
+disp("Example 9.2")
+density= 1000 // in kg/m^3
+densitym=13600 // of mercury in kg/m^3
+c=0.62 // orifice coefficient
+b=0.5
+U=135.6/60 // velocity in m/s
+delP= ((U*((1-b^4)^0.5)/c)^2)*density/2
+g=9.81
+R=delP/(g*(densitym-density))
+disp(R,"Reading on the manometer is ")
diff --git a/1268/CH9/EX9.3/9_3.sce b/1268/CH9/EX9.3/9_3.sce
new file mode 100644
index 000000000..79ab6a783
--- /dev/null
+++ b/1268/CH9/EX9.3/9_3.sce
@@ -0,0 +1,12 @@
+clc;
+disp("Example 9.3")
+reading=0.35 // of manometer in m
+g=9.81
+densitym=13600 /// in kg/m^3
+density=1200 // of water in kg/m^3
+delP=g*reading*(densitym-density)
+U=0.61*((2*delP/density)^0.5)
+Q=0.01
+A=Q/U
+d=(A*4/%pi)^0.5
+disp(d,"The orifice size is ")
diff --git a/1268/CH9/EX9.4/9_4.sce b/1268/CH9/EX9.4/9_4.sce
new file mode 100644
index 000000000..f7b1ab67a
--- /dev/null
+++ b/1268/CH9/EX9.4/9_4.sce
@@ -0,0 +1,11 @@
+clc;
+disp("Example 9.4")
+reading=9.7e-3 // of manometer in m
+g=9.81
+densitym=13600 /// in kg/m^3
+density=1200 // of water in kg/m^3
+delP=g*reading*(densitym-density)
+U=84/60
+b=0.333
+c=U*((density*(1-b^4)/(2*delP))^0.5)
+disp(c,"The venturi coefficient is ")
diff --git a/1268/CH9/EX9.5/9_5.sce b/1268/CH9/EX9.5/9_5.sce
new file mode 100644
index 000000000..f02b807d4
--- /dev/null
+++ b/1268/CH9/EX9.5/9_5.sce
@@ -0,0 +1,7 @@
+clear;
+disp("Example 9.5")
+U=10 // in m/s
+density=1000
+C=0.61
+delP=(U*(density^0.5)/(C*(2^0.5)))^2
+disp(delP,"Pressure loss is ")