diff options
Diffstat (limited to '1226')
405 files changed, 4803 insertions, 0 deletions
diff --git a/1226/CH11/EX11.1/EX11_1.jpg b/1226/CH11/EX11.1/EX11_1.jpg Binary files differnew file mode 100755 index 000000000..f1cf16af0 --- /dev/null +++ b/1226/CH11/EX11.1/EX11_1.jpg diff --git a/1226/CH11/EX11.1/EX11_1.sce b/1226/CH11/EX11.1/EX11_1.sce new file mode 100755 index 000000000..f9a178053 --- /dev/null +++ b/1226/CH11/EX11.1/EX11_1.sce @@ -0,0 +1,17 @@ +clc;funcprot(0);//EXAMPLE 11.1
+// Initialisation of Variables
+d=0.1;..................//Cylinder bore in m
+l=0.12;................//Cylinder stroke in m
+N=1800;..................//Engine rpm
+d2=0.028;................//Throat diameter in m
+Cda=0.8;................//Co efficient of air flow
+etaV=0.75;..................//Volumetric efficiency
+rhoa=1.2;................//Density of air in kg/m^3
+n=4;.......................//No of cylinders
+//Calculations
+Vs=(%pi/4)*d*d*l*n;.................//Stroke Volume in m^3
+Va=etaV*Vs;.......................//Actual volume per stroke in m^3
+Vas=Va*(N/2)*(1/60);.............//Actual volume sucked per second
+ma=Vas*rhoa;.........................//Air consumed in kg/sec
+delp=((ma/(Cda*(%pi/4)*d2*d2))^2)/(2*rhoa);.............//Suction at throat in N/m^2
+disp(delp,"Suction at throat (in N/m^2):")
diff --git a/1226/CH11/EX11.10/EX11_10.jpg b/1226/CH11/EX11.10/EX11_10.jpg Binary files differnew file mode 100755 index 000000000..9d6d101e1 --- /dev/null +++ b/1226/CH11/EX11.10/EX11_10.jpg diff --git a/1226/CH11/EX11.10/EX11_10.sce b/1226/CH11/EX11.10/EX11_10.sce new file mode 100755 index 000000000..438641b13 --- /dev/null +++ b/1226/CH11/EX11.10/EX11_10.sce @@ -0,0 +1,29 @@ +clc;funcprot(0);//EXAMPLE 11.10
+// Initialisation of Variables
+d=0.11;..................//Engine bore in m
+l=0.11;..................//Engine length in m
+da=0.042;................//Throat diameter of the choke tube in m
+N=3000;..................//Engine rpm
+etaV=0.75;...............//Volumetric efficiency
+Ra=287;..................//Gas constant for air in J/kgK
+Rv=97;...................//Gas constant for fuel vapour in J/kgK
+t=273;....................//Temperature in Kelvin
+p=1.013;...................//Pressure in bar
+delpa=0.12;.................//Pressure depression in bar
+t2=273+15;...................//Temperature at throat
+n=8;........................//No of cylinders
+mO=32;.......................//Mass of Oxygen molecule in amu
+mC=12;........................//Mass of Carbon molecule in amu
+mH=1;.......................//Mass of Hydrogen molecule in amu
+cC=84;......................//Composition of carbon in %
+cH2=16;.....................//Composition of Hydrogen in %
+//Calculations
+Vfm=(%pi/4)*d*d*l*n*(N/2)*etaV;.....................//Volume of fuel mixture supplied in m^3/min
+afr=((cC*(mO/mC))+(cH2*(mO/(4*mH))))/23;..................//Air fuel ratio
+va=(Ra*t)/(p*10^5);.....................//Volume of 1 kg of air in m^3/kg
+vf=(Rv*t)/(p*10^5);......................//Volume of 1 kg of fuel vapour in m^3/kg
+fc=(Vfm/((afr*va)+vf))*60;...............//Fuel consumption in kg/h
+disp(fc,"Fuel consumption (in kg/h):")
+rhoa=((p-delpa)*10^5)/(Ra*t2);...............//Density of air at the throat in kg/m^3
+Ca=(afr*(fc/3600))/((%pi/4)*da*da*rhoa);................//Velocity of air at the throat in m/s
+disp(Ca,"Velocity of air at the throat (in m/s):")
diff --git a/1226/CH11/EX11.11/EX11_11.sce b/1226/CH11/EX11.11/EX11_11.sce new file mode 100755 index 000000000..a24862008 --- /dev/null +++ b/1226/CH11/EX11.11/EX11_11.sce @@ -0,0 +1,11 @@ +clc;funcprot(0);//EXAMPLE 11.11
+// Initialisation of Variables
+a=4500;.................//Altitude
+afr=14;...............//Air fuel ratio at sea level
+t1=25;...........//Temperature at sea level in Celsius
+p1=1.013;...........//Pressure at sea level in bar
+//Calculations
+t2=t1-(0.0064*a);.........................//Temperature at the given altitude using the given formula in Celsius
+p2=p1/(10^(a/19300));....................//Pressure at the given altitude using the given formula in bar
+afr2=afr*sqrt((p2*(t1+273))/(p1*(t2+273)));...................//Air fuel ratio at the altitude
+disp(afr2,"Air fuel ratio at the altitude:")
diff --git a/1226/CH11/EX11.11/Ex11_11.jpg b/1226/CH11/EX11.11/Ex11_11.jpg Binary files differnew file mode 100755 index 000000000..602e73fcf --- /dev/null +++ b/1226/CH11/EX11.11/Ex11_11.jpg diff --git a/1226/CH11/EX11.2/EX11_2.jpg b/1226/CH11/EX11.2/EX11_2.jpg Binary files differnew file mode 100755 index 000000000..ab6250deb --- /dev/null +++ b/1226/CH11/EX11.2/EX11_2.jpg diff --git a/1226/CH11/EX11.2/EX11_2.sce b/1226/CH11/EX11.2/EX11_2.sce new file mode 100755 index 000000000..dabc52965 --- /dev/null +++ b/1226/CH11/EX11.2/EX11_2.sce @@ -0,0 +1,18 @@ +clc;funcprot(0);//EXAMPLE 11.2
+// Initialisation of Variables
+cp=5;.................//Consumption of petrol in kg/h
+afr = 16;...............//Air fuel ratio
+Af=2*10^(-6);..............//Fuel orifice area in m^2
+z=0.005;................//Distance between tip of jet and level of petrol in float chamber in m
+spgrp=0.75;..............//Specific gravity of petrol
+rhow=1000;.................//Density of water in kg/m^3
+rhoa=1.2;....................//Density of air in kg/m^3
+Cda=0.8;...............//Coefficient of discharge for venturi throat
+g=9.81;...............//Acceleration due to gravity in m/sec^2
+//Calculations
+mf=cp/3600;.................//Fuel consumed in kg/sec
+delp=(((mf/(Af*Cda))^2)*(1/(2*spgrp*rhow)))+(g*z*spgrp*rhow);
+disp(delp,"Suction at the throat in (N/m^2)")
+ma=mf*afr;................//Air flow rate
+Atsqr=((ma/Cda)^2)*(1/(2*rhoa*delp));....................//Throat area in m^2
+disp(sqrt(Atsqr)*10^4,"Throat area (in cm^2)")
diff --git a/1226/CH11/EX11.3/EX11_3.jpg b/1226/CH11/EX11.3/EX11_3.jpg Binary files differnew file mode 100755 index 000000000..09e4131a8 --- /dev/null +++ b/1226/CH11/EX11.3/EX11_3.jpg diff --git a/1226/CH11/EX11.3/EX11_3.sce b/1226/CH11/EX11.3/EX11_3.sce new file mode 100755 index 000000000..202343d54 --- /dev/null +++ b/1226/CH11/EX11.3/EX11_3.sce @@ -0,0 +1,22 @@ +clc;funcprot(0);//EXAMPLE 11.3
+// Initialisation of Variables
+pc=7.2;.................//Petrol consumed in kg/h
+spgrp=0.75;................//Specific gravity of fuel
+rhow=1000;.................//Density of water in kg/m^3
+t1=300;...................//Temperature of air in Kelvin
+afr=15;....................//Air fuel ratio
+d2=0.024;....................//Diameter of choke tube in m
+z=0.0042;...................//The height of the jet above petrol level in float chamber in m
+Cda=0.8;....................//Coefficient of discharge for air
+Cdf=0.7;.....................//Coefficient of discharge for fuel
+p1=1.013;.....................//Atmospheric pressure in bar
+g=9.81;.......................//Acceleration due to gravity in m/s^2
+R=287;........................//Gas constant in J/kg.K
+//calculations
+mf=pc/3600;....................//Rate of fuel consumption in kg/sec
+rhof=spgrp*rhow;...............//Density of fuel in kg/m^3
+rhoa=(p1*10^5)/(R*t1);............//Density of air in kg/m^3
+ma=mf*afr;.......................//Air flow rate
+delpa=((ma/(Cda*(%pi/4)*d2^2))^2)*(1/(2*rhoa));....................//Suction in N/m^2
+df=sqrt((mf/sqrt(2*rhof*(delpa-(g*z*rhof))))*(1/(Cdf*(%pi/4))));.................//Diameter of fuel jet in m
+disp(df*1000,"Diameter of the fuel jet (in mm):")
diff --git a/1226/CH11/EX11.4/EX11_4.jpg b/1226/CH11/EX11.4/EX11_4.jpg Binary files differnew file mode 100755 index 000000000..d2270cd7e --- /dev/null +++ b/1226/CH11/EX11.4/EX11_4.jpg diff --git a/1226/CH11/EX11.4/EX11_4.sce b/1226/CH11/EX11.4/EX11_4.sce new file mode 100755 index 000000000..51a09fc59 --- /dev/null +++ b/1226/CH11/EX11.4/EX11_4.sce @@ -0,0 +1,25 @@ +clc;funcprot(0);//EXAMPLE 11.4
+// Initialisation of Variables
+pc=5.45;......................//Petrol consumption in kg/h
+afr=15;......................//Air fuel ratio
+af=2*10^(-6);................//Fuel jet orifice area in m^2
+z=0.00635;...................//Distance between tip of fuel jet and level of petrol in the float chamber in m
+Cda=0.8;............................//Coefficient of discharge of venturi throat
+rhoa=1.29;........................//Density of air in kg/m^3
+spgrp=0.72;........................//Specific gravity of fuel
+rhow=1000;.........................//Density of water in kg/m^3
+g=9.81;..............................//Acceleration due to gravity in m/s^2
+Cdf=0.75;........................//Coefficient of discharge of the fuel
+//calculations
+mf=pc/3600;....................//Fuel consumed in kg/sec
+rhof=spgrp*rhow;...............//Density of fuel in kg/m^3
+delp=(((mf/(af*Cdf))^2)*(1/(2*rhof)))+(g*z*rhof);......................//Depression in venturi throat in N/m^2
+h2odep=delp/(g*1000);................................//Depression in venturi throat in cm of Water
+disp(h2odep*100,"Suction at the throat (in cm of Water):")
+ma=mf*afr;................//Air flow rate
+At=sqrt(((ma/Cda)^2)*(1/(2*rhoa*delp)));....................//Throat area in m^2
+dt=sqrt(At/(%pi/4));........................................//Throat diameter in m
+disp(dt*100,"Throat area (in cm):")
+Ct=sqrt((2*g*z*rhof)/rhoa);..........................//Velocity of air across the venturi throat in m/sec
+disp(Ct,"Velocity of air across the venturi throat (in m/s):")
+
diff --git a/1226/CH11/EX11.5/EX11_5.jpg b/1226/CH11/EX11.5/EX11_5.jpg Binary files differnew file mode 100755 index 000000000..3df5a742d --- /dev/null +++ b/1226/CH11/EX11.5/EX11_5.jpg diff --git a/1226/CH11/EX11.5/EX11_5.sce b/1226/CH11/EX11.5/EX11_5.sce new file mode 100755 index 000000000..2efd834d5 --- /dev/null +++ b/1226/CH11/EX11.5/EX11_5.sce @@ -0,0 +1,16 @@ +clc;funcprot(0);//EXAMPLE 11.5
+// Initialisation of Variables
+afr=15;.....................//Air fuel ratio
+p1=1;.........................//Atmospheric pressure in bar
+p2=0.8;.......................//Pressure at venturi throat in bar
+pd=30;....................//Pressure drop to air cleaner in mm of Hg
+rhohg=13600;....................//Density of Hg in kg/m^3
+af=240;........................//Air flow at sea level in kg/h
+g=9.81;.....................//Acceleration due to gravity in m/s^2
+//calculations
+delpa=p1-p2;........................//When there is no air cleaner
+pt=1-(rhohg*g*(pd/1000)*10^(-5))-delpa;..........................//Throat pressure in bar
+disp(pt,"Throat pressure (in bar):")
+afrn=afr*sqrt(delpa/(p1-pt));...............................//Air fuel ratio when the air cleaner is fitted
+disp(afrn,"Air fuel ratio when the air cleaner is fitted:")
+
diff --git a/1226/CH11/EX11.6/EX11_6.jpg b/1226/CH11/EX11.6/EX11_6.jpg Binary files differnew file mode 100755 index 000000000..f0c3b8e6b --- /dev/null +++ b/1226/CH11/EX11.6/EX11_6.jpg diff --git a/1226/CH11/EX11.6/EX11_6.sce b/1226/CH11/EX11.6/EX11_6.sce new file mode 100755 index 000000000..912f94e7f --- /dev/null +++ b/1226/CH11/EX11.6/EX11_6.sce @@ -0,0 +1,18 @@ +clc;funcprot(0);//EXAMPLE 11.6
+// Initialisation of Variables
+as=4.6;........................//Air supply in kg/min
+p1=1.013;.......................//Atmospheric pressure in bar
+t1=298;......................//Atmospheric temperature in Kelvin
+C2=80;........................//Air flow velocity in m/s
+Cv=0.8;....................//Velocity co efficient
+ga=1.4;........................//Degree of freedom of gas
+R=0.287;........................//Gas constant in kJ/kgK
+//Calculations
+cp=R*(ga/(ga-1));.......................//Specific heat capacity of air in kJ/kgK
+p2=((1-(((C2/Cv)^2)*(1/(2*cp*1000*t1))))^(ga/(ga-1)))*p1;...................//Throat pressure in bar
+rho1=(p1*10^5)/(R*1000*t1);
+rho2=rho1*(p2/p1)^(1/ga);
+ma=as/60;...................//Air flow in kg/s
+A2=ma/(rho2*C2);.................//Throat area in m^2
+d2=sqrt((4*A2)/%pi);................//Throat diameter in m
+disp(d2,"Throat diameter in m")
diff --git a/1226/CH11/EX11.7/EX11_7.jpg b/1226/CH11/EX11.7/EX11_7.jpg Binary files differnew file mode 100755 index 000000000..566dad831 --- /dev/null +++ b/1226/CH11/EX11.7/EX11_7.jpg diff --git a/1226/CH11/EX11.7/EX11_7.sce b/1226/CH11/EX11.7/EX11_7.sce new file mode 100755 index 000000000..4ff361c77 --- /dev/null +++ b/1226/CH11/EX11.7/EX11_7.sce @@ -0,0 +1,31 @@ +clc;funcprot(0);//EXAMPLE 11.7
+// Initialisation of Variables
+as=6;........................//Air supply in kg/min
+fs=0.45;..........................//Fuel supply in kg/min
+p1=1.013;.......................//Atmospheric pressure in bar
+t1=300;......................//Atmospheric temperature in Kelvin
+rhof=740;......................//Density of fuel in kg/m^3
+C2=92;........................//Air flow velocity in m/s
+Cda=0.8;....................//Velocity co efficient
+Cdf=0.6;.........................//Coefficient of discharge for fuel
+ga=1.4;........................//Degree of freedom of gas
+r=0.75;......................//ratio of pressure drop across venturi and of that of choke
+R=0.287;........................//Gas constant in kJ/kgK
+//Calculations
+ma=as/60;.................................//Air flow in kg/s
+mf=fs/60;.................................//Fuel flow in kg/s
+cp=R*(ga/(ga-1));.......................//Specific heat capacity of air in kJ/kgK
+p2=((1-(((C2/Cda)^2)*(1/(2*cp*1000*t1))))^(ga/(ga-1)))*p1;...................//Throat pressure in bar
+v1=(R*t1*1000)/(p1*10^5);
+v2=v1*(p1/p2)^(1/ga);................//specific volume in m^3/kg
+A2=(ma*v2)/(C2);.................//Throat area in m^2
+d2=sqrt((4*A2)/%pi);................//Throat diameter in m
+disp(d2*100,"Throat diameter (in cm):")
+pdv=p1-p2;..........//Pressure drop at venturi in bar
+pdj=r*pdv;.............//Pressure drop at jet in bar
+Af=((mf/Cdf)*(1/sqrt(2*rhof*pdj*10^5)));.............//Area of orifice in m^2
+df=sqrt((4*Af)/%pi);................//Orifice diameter in m
+disp(df,"Orifice diameter (in cm):")
+
+
+
diff --git a/1226/CH11/EX11.8/EX11_8.jpg b/1226/CH11/EX11.8/EX11_8.jpg Binary files differnew file mode 100755 index 000000000..f57b0aec5 --- /dev/null +++ b/1226/CH11/EX11.8/EX11_8.jpg diff --git a/1226/CH11/EX11.8/EX11_8.sce b/1226/CH11/EX11.8/EX11_8.sce new file mode 100755 index 000000000..24e8c7aea --- /dev/null +++ b/1226/CH11/EX11.8/EX11_8.sce @@ -0,0 +1,35 @@ +clc;funcprot(0);//EXAMPLE 11.8
+// Initialisation of Variables
+Vs=1489*10^(-6);.......................//Capacity of engine in m^3
+N=4200;...............//Engine rpm at which max speed is developed
+etaV=0.75;.....................//Volumetric efficiency
+afr=13;........................//air fuel ratio
+Ct=85;..........................//Theoretical air speed at peak power in m/s
+C2=Ct;
+Cda=0.82;....................//Coefficient of discharge for the venturi
+Cdf=0.65;....................//Coefficient of discharge of main petrol jet
+spgr=0.74;..................//Specific gravity of petrol
+z=0.006;.................................//Level of petrol surface below choke
+p1=1.013;......................//Atmospheric pressure in bar
+t1=293;.........................//Atmospheric temperature in Kelvin
+r=0.4;.............................//Ratio of diameter of emulsion tube to choke diameter
+R=0.287;.............................//Gas constant in kJ/kgK
+ga=1.4;..............................//Degree of freedom for air
+g=9.81;..............................//Acceleration due to gravity in m/s^2
+rhow=1000;...........................//Density of water in kg/m^3
+//calculations
+rhof=rhow*spgr;............................//Density of fuel in kg/m^3
+Va=(etaV*Vs*N)/(60*2);.....................//Volume of air induced in m^3/s
+ma=(p1*10^5*Va)/(R*t1*1000);...............//mass flow of air in kg/s
+cp=R*(ga/(ga-1));.......................//Specific heat capacity of air in kJ/kgK
+p2=((1-(((C2)^2)*(1/(2*cp*1000*t1))))^(ga/(ga-1)))*p1;...................//Throat pressure in bar
+pt=p2;
+vt=Va*(p1/p2)^(1/ga);.....................//Volume flow of air at choke in m^3/s
+At=vt/(Ct*Cda);...................//Area of emulsion tube in m
+D=sqrt((4*At*10^6)/(%pi*(1-r^2)));...................//Diameter of choke in mm
+disp(D,"Diameter of choke (in mm):")
+mf=ma/afr;..................//Mass flow of fuel in kg/s
+delpa=(p1-p2)*10^5;
+df=sqrt((mf/sqrt(2*rhof*(delpa-(g*z*rhof))))*(1/(Cdf*(%pi/4))));.................//Diameter of fuel jet in m
+disp(df*1000,"Diameter of the fuel jet (in mm):")
+
diff --git a/1226/CH11/EX11.9/EX11_9.jpg b/1226/CH11/EX11.9/EX11_9.jpg Binary files differnew file mode 100755 index 000000000..26dc797bf --- /dev/null +++ b/1226/CH11/EX11.9/EX11_9.jpg diff --git a/1226/CH11/EX11.9/EX11_9.sce b/1226/CH11/EX11.9/EX11_9.sce new file mode 100755 index 000000000..a7f6061e9 --- /dev/null +++ b/1226/CH11/EX11.9/EX11_9.sce @@ -0,0 +1,18 @@ +clc;funcprot(0);//EXAMPLE 11.9
+// Initialisation of Variables
+da=0.018;..........................//Throat Diameter in m
+df=0.0012;......................//Diameter of fuel orifice in m
+Cda=0.82;.................//Coefficient of air flow
+Cdf=0.65;......................//Coefficient of fuel flow
+z=0.006;........................//Level of petrol surface below the throat
+rhoa=1.2;.......................//density of air in kg/m^3
+rhof=750;.........................//density of fuel in kg/m^3
+g=9.81;........................//Acceleration due to gravity in m/s^2
+delp=0.065*10^5;...................//Pressure drop in N/m^2
+//Calculations
+afr1=(Cda/Cdf)*((da/df)^2)*sqrt(rhoa/rhof);..................//Air fuel ratio when the nozzle lip is neglected
+disp(afr1,"Air fuel ratio when the nozzle lip is neglected:")
+afr2=afr1*sqrt(delp/(delp-(g*z*rhof)));.....................//Air fuel ratio when nozzle lip is taken into account
+disp(afr2,"Air fuel ratio when nozzle lip is taken into account:")
+C2=sqrt((2*g*z*rhof)/rhoa);.........................//Minimum velocity of air in m/s
+disp(C2,"Minimum velocity of air (in m/s):")
diff --git a/1226/CH12/EX12.1/EX12_1.jpg b/1226/CH12/EX12.1/EX12_1.jpg Binary files differnew file mode 100755 index 000000000..0df4d7885 --- /dev/null +++ b/1226/CH12/EX12.1/EX12_1.jpg diff --git a/1226/CH12/EX12.1/EX12_1.sce b/1226/CH12/EX12.1/EX12_1.sce new file mode 100755 index 000000000..8dc144950 --- /dev/null +++ b/1226/CH12/EX12.1/EX12_1.sce @@ -0,0 +1,19 @@ +clc;funcprot(0);//EXAMPLE 12.1
+// Initialisation of Variables
+
+n=6;...............//No of cylinders
+BP=125;...............//Brake Power in kW
+N=3000;..............//Engine rpm
+bsfc=200;............//Brake Specific Fuel Consumption g/kWh
+spgr=0.85;.............//Specific Gravity
+
+//Calculations
+
+fc=(bsfc/1000)*BP;.........//Fuel consumption in kg/h
+fcpc=fc/n;..................//Fuel consumption per cylinder
+FCPC=(fcpc/60)/(N/2);................//Fuel Consumption per cycle in kg
+VFIC = (FCPC*1000)/spgr;...................//Volume of fuel injected per cycle in cc
+disp(VFIC,"Volume of Fuel Injected per Cycle (cc):")
+
+
+
diff --git a/1226/CH12/EX12.2/EX12_2.jpg b/1226/CH12/EX12.2/EX12_2.jpg Binary files differnew file mode 100755 index 000000000..55168e1a4 --- /dev/null +++ b/1226/CH12/EX12.2/EX12_2.jpg diff --git a/1226/CH12/EX12.2/EX12_2.sce b/1226/CH12/EX12.2/EX12_2.sce new file mode 100755 index 000000000..b1e7e2140 --- /dev/null +++ b/1226/CH12/EX12.2/EX12_2.sce @@ -0,0 +1,19 @@ +clc;funcprot(0);//EXAMPLE 12.2
+// Initialisation of Variables
+n=6;...............//No of cylinders
+N=1500;............//Engine rpm
+BP=220;.............//Brake Power in kW
+bsfc=0.273;..........//Brake Specific Fuel Consumption in kg/kWh
+theta=30;.............//The Period of Injection in degrees of crank angle
+spgr=0.85;............//Specific Gravity of fuel
+Cf=0.9;................//Orifice discharge co-efficient
+ip=160;...............//Injection pressure in bar
+cp=40;.................//Pressure in combustion chamber in bar
+rhow=1000;................//Density of water in kg/m^3
+//Calculations
+vf = Cf*sqrt((2*(ip-cp)*10^5)/(spgr*rhow));.............//Actual fuel velocity of injection in m/sec
+qf=(bsfc*BP)/(spgr*rhow*3600);..................// Volume of fuel injected per sec in m^3
+d=sqrt (qf/((%pi/4)*n*vf*(theta/360)*(60/N)*(N/120)));...........//Diameter of nozzle orifice
+disp(d,"Diameter of Nozzle Orifice is (m):")
+
+
diff --git a/1226/CH12/EX12.3/EX12_3.jpg b/1226/CH12/EX12.3/EX12_3.jpg Binary files differnew file mode 100755 index 000000000..7f0e8b106 --- /dev/null +++ b/1226/CH12/EX12.3/EX12_3.jpg diff --git a/1226/CH12/EX12.3/EX12_3.sce b/1226/CH12/EX12.3/EX12_3.sce new file mode 100755 index 000000000..3c7e4bd81 --- /dev/null +++ b/1226/CH12/EX12.3/EX12_3.sce @@ -0,0 +1,22 @@ +clc;funcprot(0);//EXAMPLE 12.3
+// Initialisation of Variables
+n=1;............//No of cylinders
+N=650;............//Engine rpm
+theta=28;...........//Crank Travel in degree
+fc=2.2;...........//Fuel consumption in kg/h
+spgr=0.875;............//Specific Gravity
+ip=150;................//Injection Pressure in bar
+cp=32;.................//Combustion chamber Pressure in bar
+Cd=0.88;...............//co-efficient of discharge of orifice
+rhow=1000;...........//Density of water in kg/m^3
+//Calculation
+fcpc = fc/60;..............//Fuel consumption per cylinder
+fipc = fcpc/(N/2);.........//Fuel Injected per cycle in kg
+vfpc = fipc/(spgr*rhow);....//volume of fuel injected per cycle
+disp(vfpc*10^6,"Volume of Fuel Injected per Cycle (cm^3):")
+tfic=(theta/360)*(60/N);....//Time for Fuel Injection per Cycle in sec
+mf = fipc/tfic;...............//Mass of fuel injected per cycle in kg/s
+vf = Cd*sqrt((2*(ip-cp)*10^5)/(spgr*rhow));.............//Actual fuel velocity of injection in m/sec
+d=sqrt((mf*4)/(%pi*vf*spgr*rhow))
+disp(d*1000,"Diameter of orifice (mm) :")
+
diff --git a/1226/CH12/EX12.4/EX12_4.jpg b/1226/CH12/EX12.4/EX12_4.jpg Binary files differnew file mode 100755 index 000000000..13541f026 --- /dev/null +++ b/1226/CH12/EX12.4/EX12_4.jpg diff --git a/1226/CH12/EX12.4/EX12_4.sce b/1226/CH12/EX12.4/EX12_4.sce new file mode 100755 index 000000000..aa3fc23ab --- /dev/null +++ b/1226/CH12/EX12.4/EX12_4.sce @@ -0,0 +1,19 @@ +clc;funcprot(0);//EXAMPLE 12.4
+// Initialisation of Variables
+N=2000;............//Engine rpm
+theta=30;...........//Crank Travel in degree
+sfc=0.272;...........//Fuel consumption in kg/kWh
+ip=120;................//Injection Pressure in bar
+cp=30;.................//Combustion chamber Pressure in bar
+Cd=0.9;...............//co-efficient of discharge of orifice
+rhow=1000;...........//Density of water in kg/m^3
+api = 32;..............//API in degree
+pw=15;..................//Power Output in kW
+//Calculation
+spgr= 141.5/(131.5+api);............//Specific Gravity
+fcpc = (sfc*pw)/((N/2)*60);..............//Fuel consumption per cycle in kg
+tfic=(theta/360)*(60/N);....//Time for Fuel Injection per Cycle in sec
+mf = fcpc/tfic;...............//Mass of fuel injected per cycle in kg/s
+vf = Cd*sqrt((2*(ip-cp)*10^5)/(spgr*rhow));.............//Actual fuel velocity of injection in m/sec
+d=sqrt((mf*4)/(%pi*vf*spgr*rhow))
+disp(d*1000,"Diameter of orifice (mm) :")
diff --git a/1226/CH12/EX12.5/EX12_5.jpg b/1226/CH12/EX12.5/EX12_5.jpg Binary files differnew file mode 100755 index 000000000..150fd70f1 --- /dev/null +++ b/1226/CH12/EX12.5/EX12_5.jpg diff --git a/1226/CH12/EX12.5/EX12_5.sce b/1226/CH12/EX12.5/EX12_5.sce new file mode 100755 index 000000000..e0c12adae --- /dev/null +++ b/1226/CH12/EX12.5/EX12_5.sce @@ -0,0 +1,20 @@ +clc;funcprot(0);//EXAMPLE 12.5
+// Initialisation of Variables
+N=1800;............//Engine rpm
+theta=32;...........//Crank Travel in degree
+ip=118.2;................//Injection Pressure in bar
+cp=31.38;.................//Combustion chamber Pressure in bar
+Cd=0.9;...............//co-efficient of discharge of orifice
+rhow=1000;...........//Density of water in kg/m^3
+api = 32;..............//API in degree
+pw=11;..................//Power Output in kW
+d=0.47;...................//Fuel Injection orifice diameter in mm
+//Calculation
+spgr= 141.5/(131.5+api);............//Specific Gravity
+tfic=(theta/360)*(60/N);....//Time for Fuel Injection per Cycle in sec
+vf = Cd*sqrt((2*(ip-cp)*10^5)/(spgr*rhow));.............//Actual fuel velocity of injection in m/sec
+mf=vf*spgr*rhow*(%pi/4)*(d/1000)^2;
+tncp=(N/2)*60;...............//Total no of cycles per hour
+FIPC=mf*tfic;.................//Mass of fuel injected per cycle in kg/cycle
+fc=FIPC*tncp*(1/pw);...................//Fuel consumption in kg/kWh
+disp(fc,"Fuel consumption in kg/kWh :")
diff --git a/1226/CH12/EX12.6/EX12_6.jpg b/1226/CH12/EX12.6/EX12_6.jpg Binary files differnew file mode 100755 index 000000000..4b601fe2a --- /dev/null +++ b/1226/CH12/EX12.6/EX12_6.jpg diff --git a/1226/CH12/EX12.6/EX12_6.sce b/1226/CH12/EX12.6/EX12_6.sce new file mode 100755 index 000000000..63fd35180 --- /dev/null +++ b/1226/CH12/EX12.6/EX12_6.sce @@ -0,0 +1,27 @@ +clc;funcprot(0);//EXAMPLE 12.6
+// Initialisation of Variables
+n=8;......//No of cylinders
+pw=386.4;...........//Power output in kW
+N=800;.............//Engine rpm
+fc=0.25;.............//Fuel Consumption in kg/kWh
+theta=12;..............//Crank Travel in degree (for injection)
+spgr=0.85;...........//Specific Gravity
+patm=1.013;............//Atmospheric pressure
+cf=0.6;................//Co-efficient of discharge for injector
+pcB=32;................//Pressure in cylinder in beginning in bar
+piB=207;...............//Pressure in injector in beginning in bar
+pcE=55;...............//Pressure in cylinder at the end in bar
+piE=595;................//Pressure in injector at the end in bar
+rhow=1000;..............//density of water in kg/m^3
+//calculations
+pwpc = pw/n;......................//Output per cylinder
+fcpc = (pwpc*fc)/60;.............//Fuel consumption per cylinder in kg/min
+fipc = fcpc/(N/2);................//Fuel injected per cycle in kg
+tfic = (theta*60)/(360*N);...........//Time for fuel Injection per cycle
+mf = fipc/tfic;......................//Mass of fuel injected per second
+pdb = piB-pcB;....................//Pressure difference at beginning
+pde = piE-pcE;...................//Pressure difference at end
+apd = (pdb+pde)/2;
+Ao=mf/(cf*sqrt(2*apd*10^5*spgr*rhow));
+disp(Ao*10000,"Orifice Area Required per injector (cm^2):")
+
diff --git a/1226/CH12/EX12.7/EX12_7.jpg b/1226/CH12/EX12.7/EX12_7.jpg Binary files differnew file mode 100755 index 000000000..fb144cc1d --- /dev/null +++ b/1226/CH12/EX12.7/EX12_7.jpg diff --git a/1226/CH12/EX12.7/EX12_7.sce b/1226/CH12/EX12.7/EX12_7.sce new file mode 100755 index 000000000..c6ac1bc1c --- /dev/null +++ b/1226/CH12/EX12.7/EX12_7.sce @@ -0,0 +1,26 @@ +clc;funcprot(0);//EXAMPLE 12.7
+// Initialisation of Variables
+n=6;...............//No of cylinders
+afr=20;...........//Air fuel ratio
+d = 0.1;...............//cylinder bore in mm
+l=0.14;..............//Cylinder length in mm
+etav=0.8;............//Volumetric Efficiency
+pa=1;.................//Pressure at the beginning of the compression in bar
+ta = 300;.............//Temperature at the beginning of the compression in Kelvin
+theta = 20;...............//Crank travel in degree for injection
+N = 1500;...................//engine rpm
+rhof=960;.................//Fuel density in kg/m^3
+cf=0.67;................//Co efficient of discharge for injector
+pi=150;....................//injection pressure in bar
+pc=40;....................//combustion pressure in bar
+R=287;........................//gas constant for air in kJ/kg.K
+//calculations
+V=(%pi/4)*d^2*l*etav;......................//Volume of air supplied per cylinder per cycle in m^3
+ma=(pa*10^5*V)/(R*ta);.....................//Mass of this air at suction conditions in kg/cycle
+mf=ma/afr;............................//Mass of fuel in kg/cycle
+fipc = (theta*60)/(360*N);...........//Time taken for fuel injection per cycle in seconds
+MF = mf/fipc;........................//Mass of fuel injected into each cylinder per second
+disp(MF,"The mass of fuel injected into each cylinder per second in kg/s :")
+vf=cf*sqrt((2*(pi-pc)*10^5)/rhof);.............//fuel velocity injection in m/s
+d0=sqrt((MF*4)/(%pi*vf*rhof));..................//diameter of fuel orifice in m
+disp(d0*1000,"Diameter of the fuel orifice in mm :")
diff --git a/1226/CH12/EX12.8/EX12_8.jpg b/1226/CH12/EX12.8/EX12_8.jpg Binary files differnew file mode 100755 index 000000000..9208f7142 --- /dev/null +++ b/1226/CH12/EX12.8/EX12_8.jpg diff --git a/1226/CH12/EX12.8/EX12_8.sce b/1226/CH12/EX12.8/EX12_8.sce new file mode 100755 index 000000000..00eb1cfad --- /dev/null +++ b/1226/CH12/EX12.8/EX12_8.sce @@ -0,0 +1,18 @@ +clc;funcprot(0);//EXAMPLE 12.8
+// Initialisation of Variables
+Vpbes=7;.................//Volume of fuel in the pump barrel before commencement of effective stroke in cc
+df=3;.................//Diameter of fuel line from pump to injector in mm
+lf=700;.................//Length of fuel line from pump to injector in mm
+Vfiv=2;................//Volume of fuel in the injection valve in cc
+Vfd=0.1;.................//Volume of fuel to be delivered in cc
+p1=150;..............//Pressure at which fuel is delivered in bar
+p2=1;.................//atmospheric pressure in bar
+cc=78.8*10^(-6);..........//Co - efficient of compressibility per bar
+dp=7;..............//Diameter of plunger in mm
+//calculations
+V1=Vpbes+(%pi/4)*((df/10)^2)*(lf/10)+Vfiv;...................//Total initial fuel volume
+delV=cc*(p1-p2)*V1;................//Change in volume due to compression
+displu=delV+Vfd;.....................//Total displacement of plunger
+disp(displu,"Total displacement of plunger in cc :")
+lp=(displu*4)/(%pi*(dp/10)^2);.............//Effective stroke of plunger
+disp(lp,"Effective stroke of plunger in mm:")
diff --git a/1226/CH12/EX12.9/EX12_9.jpg b/1226/CH12/EX12.9/EX12_9.jpg Binary files differnew file mode 100755 index 000000000..92d189996 --- /dev/null +++ b/1226/CH12/EX12.9/EX12_9.jpg diff --git a/1226/CH12/EX12.9/EX12_9.sce b/1226/CH12/EX12.9/EX12_9.sce new file mode 100755 index 000000000..4ad7e8f6a --- /dev/null +++ b/1226/CH12/EX12.9/EX12_9.sce @@ -0,0 +1,14 @@ +clc;funcprot(0);//EXAMPLE 12.9
+// Initialisation of Variables
+p1=145;...........//injection pressure in bar
+p2=235;.........//Injection pressure in bar (2nd case)
+t1=16;.............//spray penetration time in milliseconds
+s1=22;................//spray penetration length in cm
+s2=22;.................//spray penetration length in cm (2nd case)
+pc=30;.................//combustion chamber pressure in bar
+//calculations
+delp1=p1-pc;
+delp2=p2-pc;
+t2=(s2/s1)*t1*sqrt(delp1/delp2);..........//Spray time in seconds for 2nd case
+//Given that s=t*sqrt(delp)
+disp(t2,"The time required for spray penetration at an injection pressure of 235 bar in milliseconds:")
diff --git a/1226/CH15/EX15.1/EX15_1.jpg b/1226/CH15/EX15.1/EX15_1.jpg Binary files differnew file mode 100755 index 000000000..9f1677ce6 --- /dev/null +++ b/1226/CH15/EX15.1/EX15_1.jpg diff --git a/1226/CH15/EX15.1/EX15_1.sce b/1226/CH15/EX15.1/EX15_1.sce new file mode 100755 index 000000000..0c4468bb7 --- /dev/null +++ b/1226/CH15/EX15.1/EX15_1.sce @@ -0,0 +1,18 @@ +clc;funcprot(0);//EXAMPLE 15.1
+// Initialisation of Variables
+BP=90;.................//Brake Power in kW
+deltw=27;.................//Raise in temperature of water
+etaP=0.25;...................//Efficiency of petrol engine
+etaD=0.3;....................//Efficiency od diesel engine
+Pec=32;......................//Percentage of energy going to coolant in petrol engine
+Dec=28;......................//Percentage of energy going to coolant in diesel engine
+cp=4.187;..........//specific heat of water at constant pressure
+//Calculations
+hsP = BP/etaP;............//Heat supplied in kW or kJ/s
+ecP=hsP*(Pec/100);.............//Energy going to cooling water in kg/s
+mwP=ecP/(cp*deltw);.............//Mass of cooling water required
+hsD = BP/etaD;............//Heat supplied in kW or kJ/s
+ecD=hsD*(Dec/100);.............//Energy going to cooling water in kg/s
+mwD=ecD/(cp*deltw);.............//Mass of cooling water required
+disp(mwP*3600,"The mass of cooling water required (kg/h)for petrol engine:")
+disp(mwD*3600,"The mass of cooling water required (kg/h)for diesel engine:")
diff --git a/1226/CH15/EX17.28/EX17_28.jpg b/1226/CH15/EX17.28/EX17_28.jpg Binary files differnew file mode 100755 index 000000000..df0220d63 --- /dev/null +++ b/1226/CH15/EX17.28/EX17_28.jpg diff --git a/1226/CH15/EX17.28/EX17_28.sce b/1226/CH15/EX17.28/EX17_28.sce new file mode 100755 index 000000000..bf5f14f63 --- /dev/null +++ b/1226/CH15/EX17.28/EX17_28.sce @@ -0,0 +1,24 @@ +clc;funcprot(0);//EXAMPLE 17.28
+// Initialisation of Variables
+D=0.2;.................//Engine bore in m
+L=0.25;...............//Engine stroke in m
+n=2;......................//No of cylinders
+r=13;......................//Compression ratio
+fc=14;..................//Fuel consumption in kg/h
+N=300;....................//Engine rpm
+etarel=0.65;..............//Relative efficiency
+etamech=0.76;.............//Mechanical efficiency
+co=0.05;.....................//Cut off of the stroke
+C=41800;.....................//Calorific value of fuel in kJ/kg
+k=1;........................//Two stroke engine
+ga=1.4;.......................//Degree of freedom
+//calculations
+rho=1+(co*(r-1));
+etast=1-((1/(r^(ga-1)))*(1/ga)*((rho^ga)-1)*(1/(rho-1)));............//Air standard efficiency
+etath=etarel*etast;........................//Thermal efficiency
+IP=etath*(fc/3600)*C;........................//Indicated power in kW
+BP=etamech*IP;................................//Brake power in kW
+pmi=(6*IP)/(n*N*L*(%pi/4)*D*D*k*10);............//mean effective pressure in bar
+disp(pmi,"Mean effective pressure (in bar):")
+pmb=pmi*etamech;...........................//Brake mean effective pressure in bar
+disp(pmb,"Brake mean effective pressure (in bar):")
diff --git a/1226/CH16/EX16.1/EX16_1.jpg b/1226/CH16/EX16.1/EX16_1.jpg Binary files differnew file mode 100755 index 000000000..630d6e377 --- /dev/null +++ b/1226/CH16/EX16.1/EX16_1.jpg diff --git a/1226/CH16/EX16.1/EX16_1.sce b/1226/CH16/EX16.1/EX16_1.sce new file mode 100755 index 000000000..0b90ee070 --- /dev/null +++ b/1226/CH16/EX16.1/EX16_1.sce @@ -0,0 +1,31 @@ +clc;funcprot(0);//EXAMPLE 16.1
+// Initialisation of Variables
+pwu=735;............//Power developed by naturally aspirated engine in kW
+afru=12.8;.............//Air fuel ratio for naturally aspirated engine
+bsfc=0.350;......//Brake specific fuel consumption in kg/kWh
+metau=0.86;...........//Mechanical efficiency of naturally aspirated engine
+pi=730;...........//Inlet pressure in mm of Hg absolute
+tm=325;...........//Mixture temperature in Kelvin
+pr=1.6;.............//Pressure ratio of supercharged engine
+etaa=0.7;.............//Adiabatic efficiency of supercharged engine
+metas=0.9;..............//Mechanical efficiency of supercharged engine
+afrs=12.8;.............//Air fuel ratio for supercharged engine
+rhohg=13600;.............//Density of mercury in kg/m^3
+R=0.287;...................//Gas constant in kJ/kgK
+ga=1.4;................//Degree of freedom for gas
+cp=1.005;..................//Specific heat of the fuel
+g=9.81;................//Acceleration due to gravity in m/s^2
+//calculations
+t2=tm*(pr)^((ga-1)/ga);..............//Ideal temperature for the supercharged engine
+t2a=tm+(t2-tm)/etaa;................//Actual temperature for the supercharged engine
+wa=cp*(t2a-tm);.....................//Work of the supercharger
+wsup=cp*(t2a-tm)/metas;..............//Work required to drive the supercharger in kJ/kg of air
+//When unsupercharged
+p1=(pi/1000)*((g*rhohg)/1000);..............//Inlet pressure in kN/m^2
+rhounsup=p1/(R*tm);
+maunsup=(bsfc*pwu*afrs)/3600;...................//Air consumption in kg/s for unsupercharged engine
+//When supercharged
+rhosup=(pr*p1)/(R*t2a);
+masup=maunsup*(rhosup/rhounsup);..................//Air consumption in kg/s
+Psup=masup*wsup;...............//Power required to run the supercharger in kW
+disp(Psup,"The Power required to run the supercharger (kW):")
diff --git a/1226/CH16/EX16.2/EX16_2.jpg b/1226/CH16/EX16.2/EX16_2.jpg Binary files differnew file mode 100755 index 000000000..b78360d7a --- /dev/null +++ b/1226/CH16/EX16.2/EX16_2.jpg diff --git a/1226/CH16/EX16.2/EX_2.sce b/1226/CH16/EX16.2/EX_2.sce new file mode 100755 index 000000000..dcfc22821 --- /dev/null +++ b/1226/CH16/EX16.2/EX_2.sce @@ -0,0 +1,27 @@ +clc;funcprot(0);//EXAMPLE 16.2
+// Initialisation of Variables
+p1=1.0132;..............//Mean pressure at sea level in bar
+t1=283;................//Mean temperature at sea level in Kelvin
+BP=260;....................//Brake Power output in kW
+etaV=0.78;..................//Volumetric efficiency at sea level free air condition
+sfc=0.247;............//Specific Fuel consumption in kg/kW.h
+afr=17;...................//Air fuel ratio
+N=1500;...................//Engine rpm
+at=2700;.................//Altitude in mts
+p2=0.72;................//Pressure in bar at the given altitude
+Psup=0.08;.................//8% power of engine is taken by the supercharger
+R=287;...................//Gas constant in J/kgK
+t2=32+273;..............//Temperature in Kelvin at the given altitude
+//calculations
+mf=(sfc*BP)/60;.............//Fuel consumption in kg/min
+ma = mf*afr;..................//Air consumption in ig/min
+acps = ma/(N/2);............//Air consumption per stroke in kg
+Vs=(acps*R*t1)/(etaV*p1*10^5);................//Engine capacity in m^3
+disp(Vs,"The Engin Capacity in m^3:")
+pmb=(BP*6)/(Vs*10*(N/2));........//Brake Mean Effective Pressure in bar
+disp(pmb,"The Brake mean effective pressure is (bar) :")
+gp=BP/(1-Psup);.................//Gross power produced by supercharged engine in kW
+masup=ma*gp/BP;......................//Mass of air required for supercharged engine in kg
+matc=masup/(N/2);..............//Mass of air taken per cycle
+pressure=(matc*R*t2)/(etaV*10^5*Vs);
+disp(pressure-p2,"The Increase of pressure required (in bar):")
diff --git a/1226/CH16/EX16.3/EX16_3.jpg b/1226/CH16/EX16.3/EX16_3.jpg Binary files differnew file mode 100755 index 000000000..6eb77072d --- /dev/null +++ b/1226/CH16/EX16.3/EX16_3.jpg diff --git a/1226/CH16/EX16.3/EX16_3.sce b/1226/CH16/EX16.3/EX16_3.sce new file mode 100755 index 000000000..8773bfb1e --- /dev/null +++ b/1226/CH16/EX16.3/EX16_3.sce @@ -0,0 +1,33 @@ +clc;funcprot(0);//EXAMPLE 16.3
+// Initialisation of Variables
+ec=3600*10^(-6);.............//Engine capacity in m^3
+pw=13;...............//Power developed in kW per m^3 of free air induced per minute
+etaV=0.82;............//Volumetric Efficiency
+N=3000;................//Engine rpm
+p1=1.0132;...........................//Initial Air pressure in bar
+t1=298;........................//Initial Temperature in Kelvin
+pr=1.8;.....................//Pressure ratio in rotary compressor
+etaC=0.75;.................//Isentropic efficiency of compressor
+etaM=0.8;....................//Mechanical efficiency
+ga=1.4;.....................//Degree of freedom for the gas
+td=4;.......................//The amount by which the temperature is kess than delivery temperature from compressor
+R=287;......................//Gas constant in J/kg.K
+cp=1.005;.....................//Specific heat capacity
+//Calculations
+Vs=(ec*N)/2;....................//Swept volume in m^3/min
+Vu=Vs*etaV;....................//Unsupercharged volume induced per min
+rcdp=pr*p1;........//Rotary compressor delivery pressure
+t2=t1*(pr)^((ga-1)/ga);..............//Ideal temperature for the supercharged engine
+t2a=t1+(t2-t1)/etaC;................//Actual temperature for the supercharged engine
+ta=t2a-td;............................//Temperature of air at intake to the engine cylinder
+V1=(rcdp*Vs*t1)/(p1*ta);.................//Equivalent volume at 1.0132 bar and 298 K
+Vinc=V1-Vs;...........................//Increase in induced Volume of air in m^3/min
+ipincai=pw*Vinc;.......................//Increase in IP from air induced in kW
+ipinciip=((rcdp-p1)*10^5*Vs)/(60*1000);...........//Increase in IP due to increased induction pressure kW
+ipinctot=ipincai+ipinciip;...............//Total increase in Input Power in kW
+bpinc=ipinctot*etaM;....................//Increase in Brake Power of the engine in kW
+ma=(rcdp*10^5*Vs)/(60*R*ta);...................//Mass of air delivered by the compressor kg/s
+pc=(ma*cp*(t2a-t1))/etaM;....................//Power required by the compressor
+bpincnet=bpinc-pc;..........................//Net Increase in BP
+disp(bpincnet,"The Net increase in Brake Power in kW:")
+
diff --git a/1226/CH16/EX16.4/EX16_4.jpg b/1226/CH16/EX16.4/EX16_4.jpg Binary files differnew file mode 100755 index 000000000..4a7daa816 --- /dev/null +++ b/1226/CH16/EX16.4/EX16_4.jpg diff --git a/1226/CH16/EX16.4/EX16_4.sce b/1226/CH16/EX16.4/EX16_4.sce new file mode 100755 index 000000000..c2cd44971 --- /dev/null +++ b/1226/CH16/EX16.4/EX16_4.sce @@ -0,0 +1,27 @@ +clc;funcprot(0);//EXAMPLE 16.4
+// Initialisation of Variables
+p1=1.0132;..............//Mean pressure at sea level in bar
+t1=283;................//Mean temperature at sea level in Kelvin
+BP=250;....................//Brake Power output in kW
+etaV=0.78;..................//Volumetric efficiency at sea level free air condition
+sfc=0.245;............//Specific Fuel consumption in kg/kW.h
+afr=17;...................//Air fuel ratio
+N=1500;...................//Engine rpm
+at=2700;.................//Altitude in mts
+p2=0.72;................//Pressure in bar at the given altitude
+Psup=0.08;.................//8% power of engine is taken by the supercharger
+R=287;...................//Gas constant in J/kgK
+t2=32+273;..............//Temperature in Kelvin at the given altitude
+//calculations
+mf=(sfc*BP)/60;.............//Fuel consumption in kg/min
+ma = mf*afr;..................//Air consumption in ig/min
+acps = ma/(N/2);............//Air consumption per stroke in kg
+Vs=(acps*R*t1)/(etaV*p1*10^5);................//Engine capacity in m^3
+disp(Vs,"The Engin Capacity in m^3:")
+pmb=(BP*6)/(Vs*10*(N/2));........//Brake Mean Effective Pressure in bar
+disp(pmb,"The Brake mean effective pressure is (bar) :")
+gp=BP/(1-Psup);.................//Gross power produced by supercharged engine in kW
+masup=ma*gp/BP;......................//Mass of air required for supercharged engine in kg
+matc=masup/(N/2);..............//Mass of air taken per cycle
+pressure=(matc*R*t2)/(etaV*10^5*Vs);
+disp(pressure-p2,"The Increase of pressure required (in bar):")
diff --git a/1226/CH16/EX16.5/EX16_5.jpg b/1226/CH16/EX16.5/EX16_5.jpg Binary files differnew file mode 100755 index 000000000..d23d474d8 --- /dev/null +++ b/1226/CH16/EX16.5/EX16_5.jpg diff --git a/1226/CH16/EX16.5/EX16_5.sce b/1226/CH16/EX16.5/EX16_5.sce new file mode 100755 index 000000000..850a06dbb --- /dev/null +++ b/1226/CH16/EX16.5/EX16_5.sce @@ -0,0 +1,30 @@ +clc;funcprot(0);//EXAMPLE 16.5
+// Initialisation of Variables
+t1=298;.................//Temperature of the air while entering the compressor in Kelvin
+qrej=1210;..............//Amount of heat rejected in cooler in kJ/min
+t2=273+65;...............//Temperature of the air leaving the cooler in Kelvin
+p2=1.75;.................//Pressure of the air leaving the cooler in bar
+n=6;.....................//No of cylinders
+d=0.1;...................//Bore of the cylinder in m
+l=0.11;...................//Stroke of the cylinder in m
+etaV=0.72;................//volumetric efficiency
+N=2000;...............//Engine rpm
+Tout=150;..................//Torque Output in Nm
+etaM=0.8;..................//Mechanical efficiency
+R=287;.......................//Gas constant for air in J/kgK
+cp=1.005;...................//Specific capacity of air
+//calculations
+BP=(2*%pi*N*Tout)/(60*1000);...........//Brake power in kW
+IP=BP/etaM;..........//Input Power in kW
+Vc=(%pi/4)*d*d*l;...................//Cylinder Volume in m^3
+pmi=(6*IP)/(n*Vc*(N/2)*10);................//Indicated mean effective pressure
+disp(pmi,"The indicated mean effective pressure (in bar):")
+Vs=Vc*6*(N/2);.........................//Engine Swept Volume in m^3/min
+Vaa=Vs*etaV;..........................//Aspirated volume of air into engine in m^3/min
+maa=(p2*10^5*Vaa)/(R*t2);..............//Aspirated air mass flow into the engine in kg/min
+disp(maa,"The total aspirated air mass flow into the engine (in kg/min):")
+t2a=((((BP/cp)/(qrej/(60*cp)))*t2)-t1)/(((BP/cp)/(qrej/(60*cp)))-1);
+mc=((BP/cp)/(t2a-t1))*60;........................//Air flow into the compressor in kg/min
+disp(mc,"Air flow into the compressor in kg/min:")
+
+
diff --git a/1226/CH17/EX17.1/EX17_1.jpg b/1226/CH17/EX17.1/EX17_1.jpg Binary files differnew file mode 100755 index 000000000..e1e101daf --- /dev/null +++ b/1226/CH17/EX17.1/EX17_1.jpg diff --git a/1226/CH17/EX17.1/EX17_1.sce b/1226/CH17/EX17.1/EX17_1.sce new file mode 100755 index 000000000..730d921f5 --- /dev/null +++ b/1226/CH17/EX17.1/EX17_1.sce @@ -0,0 +1,12 @@ +clc;funcprot(0);//EXAMPLE 17.1
+// Initialisation of Variables
+Pmi=6;.....................//Mean effective pressure in bar
+N=1000;....................//Engine rpm
+d=0.11;.....................//Diameter of piston in m
+l=0.14;.....................//Stroke length in m
+n=1;........................//No of cylinders
+k=1;........................//k=1 for two stroke engine
+//Calculations
+V=l*(%pi/4)*d*d;.............//Volume of the cylinder in m^3
+IP=(n*Pmi*V*k*10*N)/6;.........//Indicated Power developed in kW
+disp(IP,"Indicated power developed (in kW):")
diff --git a/1226/CH17/EX17.10/EX17_10.jpg b/1226/CH17/EX17.10/EX17_10.jpg Binary files differnew file mode 100755 index 000000000..661c29020 --- /dev/null +++ b/1226/CH17/EX17.10/EX17_10.jpg diff --git a/1226/CH17/EX17.10/EX17_10.sce b/1226/CH17/EX17.10/EX17_10.sce new file mode 100755 index 000000000..e494833a4 --- /dev/null +++ b/1226/CH17/EX17.10/EX17_10.sce @@ -0,0 +1,16 @@ +clc;funcprot(0);//EXAMPLE 17.10
+// Initialisation of Variables
+Db=0.7;.............................//Diameter of brake pulley in m
+d=0.025;............................//Diameter of the rope in m
+W=50;...............................//Load on the tight side of the rope in kg
+S=50;...............................//Spring balance reading in N
+N=900;..............................//Engine rpm
+mf=4;...............................//Rate of fuel consumption in kg/h
+C=44000;............................//Calorific value of fuel in kJ/kg
+g=9.81;.............................//Acceleration due to gravity in m/s^2
+//Calculations
+BP=(((W*g)-S)*%pi*(Db+d)*N)/(60*1000);........................//Brake power in kW
+bsfc=mf/BP;...................................................//Brake specific fuel consumption in kJ/hW-h
+disp(bsfc,"Brake specific fuel consumption (in kJ/hW-h)")
+etathB=(BP*3600)/(mf*C);.............................................//Brake thermal efficiency
+disp(etathB*100,"Brake thermal efficiency:")
diff --git a/1226/CH17/EX17.11/EX17_11.jpg b/1226/CH17/EX17.11/EX17_11.jpg Binary files differnew file mode 100755 index 000000000..aed64d39d --- /dev/null +++ b/1226/CH17/EX17.11/EX17_11.jpg diff --git a/1226/CH17/EX17.11/EX17_11.sce b/1226/CH17/EX17.11/EX17_11.sce new file mode 100755 index 000000000..3c010bdce --- /dev/null +++ b/1226/CH17/EX17.11/EX17_11.sce @@ -0,0 +1,23 @@ +clc;funcprot(0);//EXAMPLE 17.11
+// Initialisation of Variables
+n=4;.......................//No of cylinders
+k=0.5;.....................//Four stroke engine
+r=8;.......................//Compression ratio
+d=0.1;.....................//Engine bore in m
+l=0.1;.....................//Engine stroke in m
+etaV=0.75;.................//Volumetric efficiency
+N=4800;....................//Engine rpm
+afr=15;....................//Air fuel ratio
+C=42000000;................//Calorific value of fuel
+rhoa=1.12;.................//Atmospheric density in kg/m^3
+Pmi=10;....................//Mean effective pressure in bar
+etamech=0.8;...............//Mechanical efficiency
+//Calculations
+IP=(n*Pmi*l*(%pi/4)*d*d*N*k*10)/6;.................//Indicated power in kW
+Ac=n*(%pi/4)*d*d*l*(N/2)*(etaV/60);.....................//Air consumption in m^3/s
+ma=Ac*rhoa;........................................//Mass flow of air in kg/s
+mf=ma/afr;.........................................//Mass flow of fuel in kg/s
+etath=(IP*1000)/(mf*C);...................................//Indicated thermal efficiency
+disp(etath*100,"Indicated thermal efficiency (%):")
+BP=IP*etamech;.....................................//Brake Power in kW
+disp(BP,"Brake power (in kW):")
diff --git a/1226/CH17/EX17.12/EX17_12.jpg b/1226/CH17/EX17.12/EX17_12.jpg Binary files differnew file mode 100755 index 000000000..a29b4a202 --- /dev/null +++ b/1226/CH17/EX17.12/EX17_12.jpg diff --git a/1226/CH17/EX17.12/EX17_12.sce b/1226/CH17/EX17.12/EX17_12.sce new file mode 100755 index 000000000..7c1a49161 --- /dev/null +++ b/1226/CH17/EX17.12/EX17_12.sce @@ -0,0 +1,18 @@ +clc;funcprot(0);//EXAMPLE 7.12
+// Initialisation of Variables
+N=1800;...................//Engine rpm
+l=0.11;...................//Engine stroke in m
+d=0.085;..................//Engine bore in m
+ma=0.56;..................//Air flow rate in kg/min
+BP=6;.....................//Brake power developed in kW
+afr=20;...................//Air fuel ratio
+C=42550;..................//Calorific value of fuel in kJ/kg
+rhof=1.18;................//Density of fuel in kg/m^3
+//calculations
+V=(%pi/4)*d*d*l*(N/2);.....................//Volume displacemt in m^3/min
+Ma=V*rhof;.................................//Mass of air in kg/min
+etaV=ma/Ma;................................//Volumetric efficiency
+fc=ma/afr;.................................//Fuel concumption
+bsfc=(fc*60)/BP;...........................//Brake specific fuel consumption in kg/kWh
+disp(etaV*100,"The volumetric efficiency (in %):")
+disp(bsfc,"Brake specific fuel consumption (in kg/kWh):")
diff --git a/1226/CH17/EX17.13/EX17_13.jpg b/1226/CH17/EX17.13/EX17_13.jpg Binary files differnew file mode 100755 index 000000000..4ffe10574 --- /dev/null +++ b/1226/CH17/EX17.13/EX17_13.jpg diff --git a/1226/CH17/EX17.13/EX17_13.sce b/1226/CH17/EX17.13/EX17_13.sce new file mode 100755 index 000000000..c3e617bb8 --- /dev/null +++ b/1226/CH17/EX17.13/EX17_13.sce @@ -0,0 +1,22 @@ +clc;funcprot(0);//EXAMPLE 17.13
+// Initialisation of Variables
+pmicover=6.5;....................//Mean effective pressure on cover side in bar
+pmicrank=7;......................//Mean effective pressure on crank side in bar
+D=0.2;...........................//Engine bore in m
+l=0.35;..........................//Engine stroke in m
+drod=0.02;.........................//Diameter of piston rod in m
+W=1370;............................//Dead load on the brake in N
+S=145;.............................//Spring balance reading in N
+Db=1.2;............................//Brake wheel diameter in m
+d=0.02;............................//Brake rope diameter in m
+k=0.5;.............................//Four stroke engine
+N=420;.......................//Engine rpm
+//calculations
+Acover=(%pi/4)*D*D;.......................//Area of cylinder on the cover side in m^2
+Acrank=(%pi/4)*((D^2)-(drod^2));..........//Effective area of cylinder on the crank end side in m^2
+IPcover=(pmicover*l*Acover*N*k*10)/6;................//Indicated power on the cover end side in kW
+IPcrank=(pmicrank*l*Acrank*N*k*10)/6;................//Indicated power on the crank end side in kW
+IPtotal=IPcover+IPcrank;....................//TOtal
+BP=((W-S)*%pi*(Db+d)*N)/(60*1000);...................//Brake power in kW
+etamech=BP/IPtotal;..................................//Mechanical efficiency
+disp(etamech*100,"The mechanical efficiency is (%):")
diff --git a/1226/CH17/EX17.14/EX17_14.jpg b/1226/CH17/EX17.14/EX17_14.jpg Binary files differnew file mode 100755 index 000000000..19293e7cf --- /dev/null +++ b/1226/CH17/EX17.14/EX17_14.jpg diff --git a/1226/CH17/EX17.14/EX17_14.sce b/1226/CH17/EX17.14/EX17_14.sce new file mode 100755 index 000000000..95830edb8 --- /dev/null +++ b/1226/CH17/EX17.14/EX17_14.sce @@ -0,0 +1,22 @@ +clc;funcprot(0);//EXAMPLE 17.14
+// Initialisation of Variables
+BP=14.7;........................//Brake power in kW
+p1=0.9;.........................//Suction pressure in bar
+etamech=0.8;....................//Mechanical efficiency
+r=5;............................//Compression ratio
+p3=24;..........................//maximum explosion pressure in bar
+N=1000;.........................//Engine rpm
+rld=1.5;........................//Ratio of length and stroke
+ic=1.35;........................//Index of compression curve
+ie=1.3;.........................//Index of expansion curve
+k=0.5;..........................//Four stroke engine
+//calculations
+p2=(r^ic)*p1;......................//intermediate pressure (in bar) during compression
+p4=p3/(r^ie);......................//Intermediate pressure (in bar) during expansion
+pm=((((p3-r*p4)/(ie-1))-((p2-p1*r)/(ic-1)))*(10^5))/(r-1);...........//Mean effective pressure in N/m^2
+pmb=pm/100000;........................................//Mean effective pressure in bar
+IP=BP/etamech;........................................//Indicated power in kW
+D=((IP*6*4)/(pmb*rld*(%pi)*N*k*10))^(1/3);............//Engine bore in m
+L=rld*D;..............................................//Engine stroke in m
+disp(D*1000,"Engine bore (in mm):")
+disp(L*1000,"Engine stroke (in mm):")
diff --git a/1226/CH17/EX17.15/EX17_15.jpg b/1226/CH17/EX17.15/EX17_15.jpg Binary files differnew file mode 100755 index 000000000..6e89c056b --- /dev/null +++ b/1226/CH17/EX17.15/EX17_15.jpg diff --git a/1226/CH17/EX17.15/EX17_15.sce b/1226/CH17/EX17.15/EX17_15.sce new file mode 100755 index 000000000..e8cfd34f8 --- /dev/null +++ b/1226/CH17/EX17.15/EX17_15.sce @@ -0,0 +1,15 @@ +clc;funcprot(0);//EXAMPLE 17.15
+//Initialisation of Variables
+IP=30;........................//Indicated power in kW
+BP=26;........................//Brake power in kW
+N=1000;.......................//Engine rpm
+fpbph=0.35;...................//Fuel per brake power hour in kg/B.P.h
+C=43900;......................//Calorific value of fuel used in kJ/kg
+//Calculations
+mf=BP*fpbph;.............//Fuel consumption per hour in kg/h
+etaIth=IP/((mf/3600)*C);.................//Indicated thermal efficiency
+etaBth=BP/((mf/3600)*C);.................//Indicated brake efficiency
+etamech=BP/IP;...........................//Mechanical efficiency
+disp(etaIth*100,"Indicated thermal efficiency (in %):")
+disp(etaBth*100,"Indicated brake efficiency (in %):")
+disp(etamech*100,"Mechanical efficiency (in %):")
diff --git a/1226/CH17/EX17.16/EX17_16.jpg b/1226/CH17/EX17.16/EX17_16.jpg Binary files differnew file mode 100755 index 000000000..42c9cf346 --- /dev/null +++ b/1226/CH17/EX17.16/EX17_16.jpg diff --git a/1226/CH17/EX17.16/EX17_16.sce b/1226/CH17/EX17.16/EX17_16.sce new file mode 100755 index 000000000..897a5761c --- /dev/null +++ b/1226/CH17/EX17.16/EX17_16.sce @@ -0,0 +1,15 @@ +clc;funcprot(0);//EXAMPLE 17.16
+//Initialisation of Variables
+Db=0.75;.....................//Diameter of brake pulley in m
+d=0.05;......................//Rope diameter in m
+W=400;.......................//Dead load in N
+S=50;........................//Spring balance reading in N
+cf=4.2;......................//Consumption of fuel in kg/h
+N=1000;......................//Engine rpm
+C=43900;.....................//Calorific value of fuel in kJ/kg
+//Calculations
+BP=((W-S)*%pi*(Db+d)*N)/(60*1000);...............//Brake power in kW
+bsfc=cf/BP;......................................//Brake specific fuel consumption in kg/kWh
+etabth=BP/((cf/3600)*C);.........................//Brake thermal efficiency
+disp(bsfc,"Brake specific fuel consumption (in kg/kWh):")
+disp(etabth*100,"Brake thermal efficiency (in %):")
diff --git a/1226/CH17/EX17.17/EX17_17.jpg b/1226/CH17/EX17.17/EX17_17.jpg Binary files differnew file mode 100755 index 000000000..bd85f7116 --- /dev/null +++ b/1226/CH17/EX17.17/EX17_17.jpg diff --git a/1226/CH17/EX17.17/EX17_17.sce b/1226/CH17/EX17.17/EX17_17.sce new file mode 100755 index 000000000..712d3ad36 --- /dev/null +++ b/1226/CH17/EX17.17/EX17_17.sce @@ -0,0 +1,20 @@ +clc;funcprot(0);//EXAMPLE 17.17
+//Initialisation of Variables
+n=6;.............................//No of cylinders
+D=0.09;..........................//Bore of cylinder in m
+L=0.1;...........................//Stroke length in m
+r=7;.............................//Compression ratio
+etarel=0.55;.....................//Relative efficiency
+isfc=0.3;........................//Indicated specific fuel consumption in kg/kWh
+imep=8.6;........................//Indicated mean effective pressure in bar
+N=2500;..........................//Engine speed
+ga=1.4;..........................//Degree of freedom for air
+k=0.5;...........................//Four stroke engine
+//calculations
+etastan=1-1/(r^(ga-1));...................//Air standard efficiency
+etath=etarel*etastan;.....................//Indicated thermal efficiency
+C=3600/(etath*isfc);.......................//Calorific value of fuel in kJ/kg
+IP=(n*imep*L*D*D*(%pi/4)*N*k*10)/6;................//Indicated power in kW
+fc=IP*isfc;.............................//Fuel consumption in kg/h
+disp (C,"The calorific value of the fuel used (in kJ/kg):")
+disp(fc,"Fuel consumption (kg/h):")
diff --git a/1226/CH17/EX17.18/EX17_18.jpg b/1226/CH17/EX17.18/EX17_18.jpg Binary files differnew file mode 100755 index 000000000..bacd6af8e --- /dev/null +++ b/1226/CH17/EX17.18/EX17_18.jpg diff --git a/1226/CH17/EX17.18/EX17_18.sce b/1226/CH17/EX17.18/EX17_18.sce new file mode 100755 index 000000000..35f55d4f9 --- /dev/null +++ b/1226/CH17/EX17.18/EX17_18.sce @@ -0,0 +1,19 @@ +clc;funcprot(0);//EXAMPLE 17.18
+// Initialisation of Variables
+BP=30;........................//Brake power in kW
+pmi=8;.........................//Mean effective pressure in bar
+etamech=0.8;....................//Mechanical efficiency
+n=4;............................//No of cylinders
+N=2500;.........................//Engine rpm
+rld=1.5;........................//Ratio of length and stroke
+etabth=0.28;......................//Brake thermal efficiency
+k=1;..........................//Two stroke engine
+C=43900;.........................//Calorific value of fuel in kJ/kg
+//calculations
+IP=BP/etamech;........................................//Indicated power in kW
+D=((IP*6*4)/(pmi*n*rld*(%pi)*N*k*10))^(1/3);............//Engine bore in m
+L=rld*D;..............................................//Engine stroke in m
+disp(D*1000,"Engine bore (in mm):")
+disp(L*1000,"Engine stroke (in mm):")
+mf=BP/(etabth*C);..............................//Fuel consumption in kg/s
+disp(mf*3600,"Fuel consumption in (kg/h):")
diff --git a/1226/CH17/EX17.19/EX17_19.jpg b/1226/CH17/EX17.19/EX17_19.jpg Binary files differnew file mode 100755 index 000000000..80559eb43 --- /dev/null +++ b/1226/CH17/EX17.19/EX17_19.jpg diff --git a/1226/CH17/EX17.19/EX17_19.sce b/1226/CH17/EX17.19/EX17_19.sce new file mode 100755 index 000000000..8bda7c01a --- /dev/null +++ b/1226/CH17/EX17.19/EX17_19.sce @@ -0,0 +1,24 @@ +clc;funcprot(0);//EXAMPLE 17.19
+// Initialisation of Variables
+n=6;......................//No of cylinders
+pdpc=700*10^(-6);.................//Piston displacement per cylinder in m^3
+P=78;............................//Power developed in kW
+N=3200;.............................//Engine rpm
+mf=27;.............................//Fuel consumption in kg/h
+C=44000;...........................//Calorific value of fuel in kJ/kg
+afr=12;..............................//Air fuel ratio
+p1=0.9;..........................//Intake air pressure
+pa=p1;
+t1=305;...............................//Intake air temperature
+ta=t1;
+R=0.287;.....................//Gas constant in kJ/kgK
+//Calculations
+ma=afr*mf;............................//maaa of air in kg/h
+Va=(ma*R*t1)/(p1*100);.............//Volume of air intake in m^3/h
+Vs=pdpc*n*(N/2)*60;.....................//Swept volume in m^3/h
+etaV=Va/Vs;.............................//Volumetric efficiency
+disp(etaV*100,"The volumetric efficiency of the engine (in %):")
+etabt=P/(mf*(C/3600));...................//Brake thermal efficiency
+disp(etabt*100,"The brake thermal efficiency of the engine (in %):")
+Tb=(P*60)/(2*%pi*N);..........................//Brake torque in kNm
+disp(Tb,"Brake torque (in kNm):")
diff --git a/1226/CH17/EX17.2/EX17_2.jpg b/1226/CH17/EX17.2/EX17_2.jpg Binary files differnew file mode 100755 index 000000000..e5eb7ea0f --- /dev/null +++ b/1226/CH17/EX17.2/EX17_2.jpg diff --git a/1226/CH17/EX17.2/EX17_2.sce b/1226/CH17/EX17.2/EX17_2.sce new file mode 100755 index 000000000..ba68eac53 --- /dev/null +++ b/1226/CH17/EX17.2/EX17_2.sce @@ -0,0 +1,13 @@ +clc;funcprot(0);//EXAMPLE 17.2
+// Initialisation of Variables
+n=4;........................//No of cylinders
+P=14.7;....................//Power developed in kW
+N=1000;....................//Engine speed in rpm
+Pmi=5.5;....................//Mean effective pressure in bar
+lbyd=1.5;...................//Ratio of stroke to bore
+k=0.5;.......................//For four stroke engine
+//Calculations
+d=((P*6)/(n*Pmi*N*k*10*(%pi/4)*lbyd))^(1/3);......................//Calculation of bore in m
+l=lbyd*d;................................//Calculation of stroke in m
+disp(d*1000,"The bore of the engine (in mm):")
+disp(l*1000,"The stroke of the engine (in mm):")
diff --git a/1226/CH17/EX17.20/EX17_20.jpg b/1226/CH17/EX17.20/EX17_20.jpg Binary files differnew file mode 100755 index 000000000..0ae13ec17 --- /dev/null +++ b/1226/CH17/EX17.20/EX17_20.jpg diff --git a/1226/CH17/EX17.20/EX17_20.sce b/1226/CH17/EX17.20/EX17_20.sce new file mode 100755 index 000000000..2513a101e --- /dev/null +++ b/1226/CH17/EX17.20/EX17_20.sce @@ -0,0 +1,15 @@ +clc;funcprot(0);//EXAMPLE 17.20
+// Initialisation of Variables
+n=6;.......................//No of cylinders
+Vs=1.75*10^(-3);..............//Stroke volume in m^3
+IP=26.3;.....................//Indicated power in kW
+Ne=504;.......................//Expected Engine rpm
+Pmi=6;........................//Mean effective pressure in bar
+k=0.5;.........................//Four stroke engine
+//Calculations
+Na=floor((IP*6)/(n*Pmi*Vs*k*10));.......................//Actual Engine rpm
+af=(Na*n)/2;.......................//Actual no of fires in min
+ef=(Ne*n)/2;.......................//Expected no of fires in min
+Nm=ef-af;........................//No of misfires/min
+nm=Nm/n;....................//Average no of times each cylinder misfires in one min
+disp(nm,"Average no of times each cylinder misfires in one min:")
diff --git a/1226/CH17/EX17.21/EX17_21.jpg b/1226/CH17/EX17.21/EX17_21.jpg Binary files differnew file mode 100755 index 000000000..a517f6fc7 --- /dev/null +++ b/1226/CH17/EX17.21/EX17_21.jpg diff --git a/1226/CH17/EX17.21/EX17_21.sce b/1226/CH17/EX17.21/EX17_21.sce new file mode 100755 index 000000000..fd55e95e4 --- /dev/null +++ b/1226/CH17/EX17.21/EX17_21.sce @@ -0,0 +1,26 @@ +clc;funcprot(0);//EXAMPLE 17.21
+// Initialisation of Variables
+n=4;.......................//No of cylinders
+D=0.075;.......................//Engine bore in m
+L=0.09;........................//Engine length in m
+err=39/8;.......................//Engine to rear axle ratio
+Dw=0.65;.........................//Wheel diameter in m
+pc=0.227;.......................//Petrol consumption in kg
+pmi=5.625;.........................//Mean effective pressure in bar
+C=43470;..............................//Calorific value of petrol in kJ/kg
+k=0.5;.............................//Four stroke engine
+sc=48;............................//Speed of the car in km/h
+d=3.2;.............................//Distance covered by car in km
+//Calculations
+sc1=sc*(1000/60);...................//Speed of the car in m/min
+Nt=sc1/(%pi*Dw);......................//Revolutions made by tire per min
+Ne=Nt*err;............................//Speed of engine shaft
+IP=(n*pmi*L*(%pi/4)*D*D*Ne*k*10)/6;........//Indicated power in kW
+disp(IP,"Indicated power (in kW):")
+sc2=sc/60;.......................//Speed of the car in km/min
+t=d/sc2;..........................//Time for covering 3.2 km in min
+fc=pc/(t*60);.....................//Fuel consumed per second in kg
+etait=IP/(fc*C);...............//Indicated thermal efficiency
+disp(etait*100,"Indicated thermal efficiency (%):")
+
+
diff --git a/1226/CH17/EX17.22/EX17_22.jpg b/1226/CH17/EX17.22/EX17_22.jpg Binary files differnew file mode 100755 index 000000000..e64db2089 --- /dev/null +++ b/1226/CH17/EX17.22/EX17_22.jpg diff --git a/1226/CH17/EX17.22/EX17_22.sce b/1226/CH17/EX17.22/EX17_22.sce new file mode 100755 index 000000000..7e01ebfef --- /dev/null +++ b/1226/CH17/EX17.22/EX17_22.sce @@ -0,0 +1,24 @@ +clc;funcprot(0);//EXAMPLE 17.22
+// Initialisation of Variables
+n=1;.................//No of cylinders
+D=0.25;................//Engine bore in m
+L=0.4;.................//Engine stroke in m
+pmg=7;.................//Gross mean effective pressure in bar
+pmp=0.5;...............//Pumping mean effective pressure in bar
+N=250;..................//Engine rpm
+Db=1.5;................//Effective diameter of the brake in m
+Nl=1080;..............//Net load on the brake in N
+fh=10;.................//Fuel used per hour in kg
+C=44300;...............//Calorific value of fuel in kJ/kg
+k=0.5;.................//Four stroke engine
+//Calculations
+mf=fh/3600;.........................//Fuel used per second in kg
+pm=pmg-pmp;.......................//Net pressure
+IP=(n*pm*L*(%pi/4)*D*D*N*k*10)/6;..........///Indicated power in kW
+disp(IP,"Indicated power (in kW):")
+BP=((Nl)*%pi*Db*N)/(60*1000);...............//Brake power in kW
+disp(BP,"Brake power (in kW):")
+etamech=BP/IP;...........................//Mechanical efficiency
+disp(etamech*100,"Mechanical efficiency (in %):")
+etath=IP/(mf*C);.........................//Indicated thermal efficiency
+disp(etath*100,"Indicated thermal efficiency (in %):")
diff --git a/1226/CH17/EX17.23/EX17_23.jpg b/1226/CH17/EX17.23/EX17_23.jpg Binary files differnew file mode 100755 index 000000000..dc2b8cb59 --- /dev/null +++ b/1226/CH17/EX17.23/EX17_23.jpg diff --git a/1226/CH17/EX17.23/EX17_23.sce b/1226/CH17/EX17.23/EX17_23.sce new file mode 100755 index 000000000..d5592968a --- /dev/null +++ b/1226/CH17/EX17.23/EX17_23.sce @@ -0,0 +1,12 @@ +clc;funcprot(0);//EXAMPLE 17.23
+// Initialisation of Variables
+etabth=0.3;....................//Brake thermal efficiency
+afrw=20;........................//Air fuel ratio by weight
+C=41800;.........................//Calorific value of fuel used in kJ/kg
+R=287;........................//Gas constant in J/kg
+//Calculations
+Wp=etabth*C;...................//Work produced per kg of fuel in kJ
+p1=1.0132;t=273+15;............//STP conditions in bar and Kelvin
+V=(afrw*t*R)/(p1*10^5);.......//Volume of air used in m^3
+pmb=(Wp*1000)/(V*10^5);........//Brake mean effective pressure in bar
+disp(pmb,"Brake mean effective pressure (in bar):")
diff --git a/1226/CH17/EX17.24/EX17_24.jpg b/1226/CH17/EX17.24/EX17_24.jpg Binary files differnew file mode 100755 index 000000000..ffb87006d --- /dev/null +++ b/1226/CH17/EX17.24/EX17_24.jpg diff --git a/1226/CH17/EX17.24/EX17_24.sce b/1226/CH17/EX17.24/EX17_24.sce new file mode 100755 index 000000000..58a01b0d9 --- /dev/null +++ b/1226/CH17/EX17.24/EX17_24.sce @@ -0,0 +1,22 @@ +clc;funcprot(0);//EXAMPLE 17.24
+// Initialisation of Variables
+v1=0.216;.....................//Gas consumption in m^3/min
+pw=75;........................//Pressure of gas in mm of water
+t1=290;......................//Temperature of gas in K
+ac=2.84;....................//Air consumption in kg/min
+br=745;......................//Barometer reading in m of Hg
+D=0.25;.....................//Engine bore in m
+L=0.475;......................//Engine stroke in m
+N=240;........................//Engine rpm
+R=287;......................//Gas constant for air in J/kgK
+//Calculations
+p1=br+(pw/13.6);...................//Pressure of gas in mm of mercury
+p2=760;t2=273;.....................//NTP conditions in mm of Hg and Kelvin
+v2=(p1*v1*t2)/(t1*p2);...............//Volume of gas used at NTP in m^3
+gs=v2/(N/2);.........................//Gas used per stroke in m^3
+v=(ac*R*t2)/(1.0132*10^5);...........//Volume occupied by air at NTP in m^3/min
+aps=v/(N/2);...........................//Air used per stroke
+Va=gs+aps;.....................//Actual volume of mixture in m^3 drawn per stroke at NTP
+Vs=(%pi/4)*D*D*L;...............//Swept volume in mm^3
+etaV=(Va/Vs);...................//Volumetric efficiency
+disp(etaV*100,"Volumetric efficiency (in %):")
diff --git a/1226/CH17/EX17.25/EX17_25.jpg b/1226/CH17/EX17.25/EX17_25.jpg Binary files differnew file mode 100755 index 000000000..b41edc8fb --- /dev/null +++ b/1226/CH17/EX17.25/EX17_25.jpg diff --git a/1226/CH17/EX17.25/EX17_25.sce b/1226/CH17/EX17.25/EX17_25.sce new file mode 100755 index 000000000..96acceab3 --- /dev/null +++ b/1226/CH17/EX17.25/EX17_25.sce @@ -0,0 +1,31 @@ +clc;funcprot(0);//EXAMPLE 17.25
+// Initialisation of Variables
+t=1;...................//Duration of trial in hrs
+Rev=14000;.............//Revolutions
+nmc=500;...............//Number of missed cycles
+bl=1470;................//Net Brake load in N
+mep=7.5;................//Mean effective pressure in bar
+gc=20000;...............//Gas consumption in litres
+lcv=21;.................//LCV of gas at supply condition in kJ/litre
+D=0.25;.................//Engine bore in m
+L=0.4;.................//Engine stroke in m
+r=6.5;..................//Compression ratio
+n=1;......................//No of cylinders
+Cb=4;......................//Effective brake Circumference
+k=0.5;....................//Four stroke engine
+ga=1.4;......................//Degree of freedom
+//Calculations
+N=Rev/60;..............//Engine rpm
+Vg=gc/3600;.............//Fuel consumption in litres/s
+Na=((Rev/2)-nmc)/60;................//Working cycles per min
+IP=(n*mep*L*(%pi/4)*D*D*Na*10)/6;............//indicated power in kW
+disp(IP,"Indicated power (in kW):")
+BP=((bl)*Cb*N)/(60*1000);...............//Brake power in kW
+disp(BP,"Brake power (in kW):")
+etamech=BP/IP;...........................//Mechanical efficiency
+disp(etamech*100,"Mechanical efficiency (in %):")
+etath=IP/(Vg*lcv);.........................//Indicated thermal efficiency
+disp(etath*100,"Indicated thermal efficiency (in %):")
+etast=1-(1/r^(ga-1));............//Air standard efficiency
+etarel=etath/etast;............//Relative efficiency
+disp(etarel*100,"Relative efficiency (in %):")
diff --git a/1226/CH17/EX17.26/EX17_26.jpg b/1226/CH17/EX17.26/EX17_26.jpg Binary files differnew file mode 100755 index 000000000..7f74928be --- /dev/null +++ b/1226/CH17/EX17.26/EX17_26.jpg diff --git a/1226/CH17/EX17.26/EX17_26.sce b/1226/CH17/EX17.26/EX17_26.sce new file mode 100755 index 000000000..e41fc0e0c --- /dev/null +++ b/1226/CH17/EX17.26/EX17_26.sce @@ -0,0 +1,16 @@ +clc;funcprot(0);//EXAMPLE 17.26
+// Initialisation of Variables
+n=1.3;...................//Index of compression
+pa=1.4;pb=3.6;posa=(1/4);..........//Point a - the position 1/4 of the stroke
+posb=(3/4);..........//Point b - the position 3/4 of the stroke
+ga=1.4;...............//Degree of freedom for gas
+etarel=0.4;...................//Relative efficiency
+C=18800;....................//Calorific value of fuel in kJ/m^3
+//Calculations
+r=1+((((pb/pa)^(1/n))-1)/(posb-(((pb/pa)^(1/n))*(posa))));.........//Compression ratio
+disp(r,"The compression ratio :")
+etast=1-(1/r^(ga-1));............//Air standard efficiency
+etath=etarel*etast;............//Thermal efficiency
+disp(etath*100,"Thermal efficiency (in %):")
+v=1/(etath*C);...............//Gas consumption per IP sec
+disp(v*3600,"Gas consumption (in m^3/IP hour):")
diff --git a/1226/CH17/EX17.27/EX17_27.jpg b/1226/CH17/EX17.27/EX17_27.jpg Binary files differnew file mode 100755 index 000000000..62b4350a3 --- /dev/null +++ b/1226/CH17/EX17.27/EX17_27.jpg diff --git a/1226/CH17/EX17.27/EX17_27.sce b/1226/CH17/EX17.27/EX17_27.sce new file mode 100755 index 000000000..8050ff4de --- /dev/null +++ b/1226/CH17/EX17.27/EX17_27.sce @@ -0,0 +1,18 @@ +clc;funcprot(0);//EXAMPLE 17.27
+// Initialisation of Variables
+n=6;.....................//No of cylinders
+r=5;..................//Compression ratio
+Vc=0.000115;................//Clearance volume of each cylinder in m^3
+fc=10.5;.....................//Fuel consumed in kg/h
+C=41800;......................//Calorific value of fuel in kJ/kg
+N=2500;.......................//Engine speed in rpm
+er=0.65;.......................//Efficiency ratio
+ga=1.4;........................//Degree of freedom
+//calculations
+etast=1-(1/r^(ga-1));...............................//Air standard efficiency
+etath=etast*er;.................................//Thermal efficiency
+IP=etath*(fc/3600)*C;..........................//Indicated power in kW
+Wnet=(IP*(10^3)*60)/(n*(N/2));..............//Net work froom one cycle per cylinder in N-m
+Vs=(r-1)*Vc;......................//Swept volume in m^3
+pm=Wnet/(Vs*10^5);...................//Mean effective pressure developed
+disp(pm,"Mean effective pressure developed (in bar):")
diff --git a/1226/CH17/EX17.28/EX17_28.jpg b/1226/CH17/EX17.28/EX17_28.jpg Binary files differnew file mode 100755 index 000000000..df0220d63 --- /dev/null +++ b/1226/CH17/EX17.28/EX17_28.jpg diff --git a/1226/CH17/EX17.28/EX17_28.sce b/1226/CH17/EX17.28/EX17_28.sce new file mode 100755 index 000000000..bf5f14f63 --- /dev/null +++ b/1226/CH17/EX17.28/EX17_28.sce @@ -0,0 +1,24 @@ +clc;funcprot(0);//EXAMPLE 17.28
+// Initialisation of Variables
+D=0.2;.................//Engine bore in m
+L=0.25;...............//Engine stroke in m
+n=2;......................//No of cylinders
+r=13;......................//Compression ratio
+fc=14;..................//Fuel consumption in kg/h
+N=300;....................//Engine rpm
+etarel=0.65;..............//Relative efficiency
+etamech=0.76;.............//Mechanical efficiency
+co=0.05;.....................//Cut off of the stroke
+C=41800;.....................//Calorific value of fuel in kJ/kg
+k=1;........................//Two stroke engine
+ga=1.4;.......................//Degree of freedom
+//calculations
+rho=1+(co*(r-1));
+etast=1-((1/(r^(ga-1)))*(1/ga)*((rho^ga)-1)*(1/(rho-1)));............//Air standard efficiency
+etath=etarel*etast;........................//Thermal efficiency
+IP=etath*(fc/3600)*C;........................//Indicated power in kW
+BP=etamech*IP;................................//Brake power in kW
+pmi=(6*IP)/(n*N*L*(%pi/4)*D*D*k*10);............//mean effective pressure in bar
+disp(pmi,"Mean effective pressure (in bar):")
+pmb=pmi*etamech;...........................//Brake mean effective pressure in bar
+disp(pmb,"Brake mean effective pressure (in bar):")
diff --git a/1226/CH17/EX17.29/EX17_29.jpg b/1226/CH17/EX17.29/EX17_29.jpg Binary files differnew file mode 100755 index 000000000..18124abf9 --- /dev/null +++ b/1226/CH17/EX17.29/EX17_29.jpg diff --git a/1226/CH17/EX17.29/EX17_29.sce b/1226/CH17/EX17.29/EX17_29.sce new file mode 100755 index 000000000..6dc7dfe32 --- /dev/null +++ b/1226/CH17/EX17.29/EX17_29.sce @@ -0,0 +1,32 @@ +clc;funcprot(0);//EXAMPLE 17.29
+// Initialisation of Variables
+n=4;.................//No of cylinders
+C=45200;..................//calorific value of fuel in kJ/kg
+etamech=0.82;...............//Mechanical efficiency
+etarel=0.7;.................//Relative efficiency
+etast=0.52;...............//Air standard efficiency
+etav=0.78;...............//Volumetric efficiency
+sbr=1.25;...................//Stroke bore ratio
+N=2400;...................//Engine rpm
+p=1;.......................//Suction pressure in bar
+t=298;....................//Suction temperature in bar
+BP=72;...................//Brake power in kW
+ga=1.4;......................//Degree of freedom
+afr=16;.................//Air fuel ratio
+R=287;.......................//Gas constant in J/kg
+//calculations
+r=(1/(1-etast))^(1/(ga-1));............//Compression ratio
+disp(r,"The compression ratio :")
+etath=etast*etarel;.....................//Indicated thermal efficiency
+disp(etath*100,"Indicated thermal efficiency:")
+IP=BP/etamech;....................//Indicated power in kW
+mf=IP/(etath*C);......................//Fuel consumption in kg/s
+bsfc=mf/BP;......................//Brake specific fuel consumption in kg/kWs
+disp(bsfc*3600,"Brake specific fuel consumption (in kg/kWs):")
+mafm=afr+1;......................//Mass of air fuel mixture in kg/kg of fuel
+mafm1=mafm*mf;....................//Mass of air fuel mixture when mf amount of fuel is supplied to engine per second
+v=(mafm1*R*t)/(p*10^5);.......................///Volume of air fuel mixture supplied to the engine in m^3
+Vs=v/etav;..............................//Swept volume in m^3
+D=((Vs)/((%pi/4)*sbr*n*(N/(2*60))))^(1/3);............//Engine bore in m
+disp(D*1000,"Engine bore (in mm):")
+disp(D*1000*sbr,"Engine stroke (in mm):")
diff --git a/1226/CH17/EX17.3/EX17_3.jpg b/1226/CH17/EX17.3/EX17_3.jpg Binary files differnew file mode 100755 index 000000000..bdb44ceb2 --- /dev/null +++ b/1226/CH17/EX17.3/EX17_3.jpg diff --git a/1226/CH17/EX17.3/EX17_3.sce b/1226/CH17/EX17.3/EX17_3.sce new file mode 100755 index 000000000..2c6567faa --- /dev/null +++ b/1226/CH17/EX17.3/EX17_3.sce @@ -0,0 +1,10 @@ +clc;funcprot(0);//EXAMPLE 17.3
+// Initialisation of Variables
+Db=0.6;.....................//Diameter of the brake wheel in m
+d=0.026;......................//Diameter of the rope in m
+W=200;.......................//Dead load on the brake in N
+S=30;......................//Spring balance reading in N
+N=450;......................//Engine speed in rpm
+//Calculations
+BP=((W-S)*%pi*(Db+d)*N)/(60*1000);...............//Brake Power in KW
+disp(BP,"Brake Power (in KW):")
diff --git a/1226/CH17/EX17.30/EX17_30.jpg b/1226/CH17/EX17.30/EX17_30.jpg Binary files differnew file mode 100755 index 000000000..e08ba2a26 --- /dev/null +++ b/1226/CH17/EX17.30/EX17_30.jpg diff --git a/1226/CH17/EX17.30/EX17_30.sce b/1226/CH17/EX17.30/EX17_30.sce new file mode 100755 index 000000000..b7cb36c73 --- /dev/null +++ b/1226/CH17/EX17.30/EX17_30.sce @@ -0,0 +1,21 @@ +clc;funcprot(0);//EXAMPLE 17.30
+// Initialisation of Variables
+n=1;.......................//No of cylinders
+D=0.18;...................//Engine bore in m
+L=0.34;....................//Engine stroke in m
+N=400;......................//Engine rpm
+mepw=6.4;.................//Mean effective pressure of working loop in bar
+mepp=0.36;..................//Mean effective pressure of pumping loop in bar
+mepd=0.64;.................//Mean effective pressure (dead cycle) iin bar
+fs=46;................//Firing strokes per min
+//calculations
+pminet=mepw-mepp;..........//Net indicated mean effective pressure in bar
+dc=(N/2)-fs;...............//Dead cycles per min
+IPnet=(n*pminet*(%pi/4)*L*D*D*fs*4*10)/6;.............//Net indicated power output in kW
+ppdc=(n*pminet*L*(%pi/4)*D*D*10*dc)/6;.............//Pumping power of dead cycles in kW
+FP=IPnet-ppdc;...........................//Frictional power in kW
+IP=(n*pminet*L*(%pi/4)*D*D*(N/2)*10)/6;...............//Indicated power in kW
+BP=IP-FP;..................//Brake power in kW
+disp(BP,"Brake power (in kW):")
+etamech=BP/IP;.................//Mechanical efficiency
+disp(etamech*100,"Mechanical efficiency (in %):")
diff --git a/1226/CH17/EX17.31/EX17_31.jpg b/1226/CH17/EX17.31/EX17_31.jpg Binary files differnew file mode 100755 index 000000000..c0f053cb1 --- /dev/null +++ b/1226/CH17/EX17.31/EX17_31.jpg diff --git a/1226/CH17/EX17.31/EX17_31.sce b/1226/CH17/EX17.31/EX17_31.sce new file mode 100755 index 000000000..992a3790a --- /dev/null +++ b/1226/CH17/EX17.31/EX17_31.sce @@ -0,0 +1,25 @@ +clc;funcprot(0);//EXAMPLE 17.31
+// Initialisation of Variables
+n=1;..............//No of cylinders
+B=0.32;...............//Engine bore in m
+L=0.42;..............//Engine stroke in m
+N=200;................//Engine rpm
+Nk=90;..................//No of explosions per min
+v1=11.68;............//Gas used in m^3/h
+pg=170;................//Pressure of gas in mm of water
+br=755;................//Barometer reading in mm of Hg
+pmi=6.2;.................//Mean effective pressure in bar
+C=21600;.......................//Calorific value of gas in kJ/kg
+bl=2040;......................//Net load on brake in N
+Db=1.2;......................//Brake drum diameter in m
+t1=298;.....................//Ambient temperature in Kelvin
+//Calculations
+IP=(n*pmi*L*(%pi/4)*B*B*Nk*10)/6;..........................//Indicated power in kW
+BP=(bl*%pi*Db*N)/(60*1000);.........................//Brake power in kW
+etamech=(BP/IP);...................//Mechanical efficiency
+disp(etamech*100,"Mechanical efficiency (in %):")
+p1=br+(pg/13.6);.................//In mm of Hg
+p2=760;t2=273;...................//NTP conditions in mm of Hg and Kelvin
+v2=(p1*v1*t2)/(p2*t1);
+etabth=BP/((v2/3600)*C);..............//Brake thermal efficiency
+disp(etabth*100,"Brake thermal efficiency (in %):")
diff --git a/1226/CH17/EX17.32/EX17_32.jpg b/1226/CH17/EX17.32/EX17_32.jpg Binary files differnew file mode 100755 index 000000000..6637d5fca --- /dev/null +++ b/1226/CH17/EX17.32/EX17_32.jpg diff --git a/1226/CH17/EX17.32/EX17_32.sce b/1226/CH17/EX17.32/EX17_32.sce new file mode 100755 index 000000000..21640613a --- /dev/null +++ b/1226/CH17/EX17.32/EX17_32.sce @@ -0,0 +1,36 @@ +clc;funcprot(0);//EXAMPLE 17.32
+// Initialisation of Variables
+n=1;...................//No of cylinders
+d=0.032;................//Diameter of circular orifice in m
+Cd=0.62;.............//Co efficient of discharge
+hw=150;.................//Pressure across orfice in mm of water
+t=20+273;..............//Temperature of air in the room in Kelvin
+p=1.0132;.................//Ambient pressure in bar
+pd=0.00178;............//Piston displacement in m^3
+R=287;....................//Gas constant in J/kg
+r=6.5;..................//Compression ratio
+fc=0.135;................//Fuel consumption in kg/min
+C=43900;.................//Calorific value of fuel in kJ/kg
+BP=28;................//Brake power in kW
+N=2500;...................//Engine rpm
+k=0.5;....................//Four stroke engine
+g=9.81;.......................//Acceleration due to gravity in m/s^2
+rhow=1000;....................//Density of water in kg/m^3
+ga=1.4;........................//Degree of freedom
+//calculations
+mbyv=(p*10^5)/(R*t);
+pw=(hw/rhow)*rhow;....................//Pressure across orifice in kg/m^2
+H=pw/mbyv;........................//Head of air column causing the flow in m
+ma=Cd*(%pi/4)*d*d*sqrt(2*g*H);................//Air flow through orifice in m^3/s
+maps=(ma*60)/(N/2);........................//Air consumption per stroke
+etav=maps/pd;.................//Volumetric efficiency
+disp(etav*100,"Volumetric efficiency (in %):")
+ac=ma*60*mbyv;...............//Mass of air drawn into cylinder per min in kg
+afr=ac/fc;...................//Air fuel ratio
+disp(afr,"Air fuel ratio:")
+pmb=(6*BP)/(n*pd*N*k*10);...................//Mean effective pressure in bar
+disp(pmb,"Mean effective pressure (in bar):")
+etast=1-(1/(r^(ga-1)));...............//Air standard efficiency
+etabth=BP/((fc/60)*C);...............//Brake thermal efficiency
+etarel=etabth/etast;.................//Relative efficiency
+disp(etarel*100,"Relative efficiency (in %):")
diff --git a/1226/CH17/EX17.33/EX17_33.jpg b/1226/CH17/EX17.33/EX17_33.jpg Binary files differnew file mode 100755 index 000000000..5aa20e368 --- /dev/null +++ b/1226/CH17/EX17.33/EX17_33.jpg diff --git a/1226/CH17/EX17.33/EX17_33.sce b/1226/CH17/EX17.33/EX17_33.sce new file mode 100755 index 000000000..0bf50d72c --- /dev/null +++ b/1226/CH17/EX17.33/EX17_33.sce @@ -0,0 +1,29 @@ +clc;funcprot(0);//EXAMPLE 17.33
+// Initialisation of Variables
+N=400;.................//Engine rpm
+n=1;....................//no of cylinders
+W=370;.................//Load on the brake in N
+S=50;..................//Spring balance readin in N
+Db=1.2;.................//Diameter of the brake drum
+mf=2.8;.................//Fuel consumption in kg/h
+C=41800;..................//Calorific value of fuel in kJ/kg
+D=0.16;...................//Engine bore in m
+L=0.2;....................//Engine stroke in m
+k=0.5;.....................//Four stroke engine
+Sc=1;....................//Spring constant in bar/mm
+l=40;....................//Length of diagram in mm
+aic=300;.................//Area of indicator card in mm^2
+//Calculations
+pmi=aic*(Sc/l);..................//Mean effective pressure in bar
+IP=(n*pmi*L*(%pi/4)*D*D*k*N*10)/6;..............//Indicated power in kW
+disp(pmi,"Indicated power (in kW):")
+BP=((W-S)*%pi*Db*N)/(60*1000);............//Brake power in kW
+disp(BP,"Brake power (in kW):")
+pmb=(BP*6)/(n*L*D*D*(%pi/4)*k*N*10);...........//Brake mean effective pressure in bar
+disp(pmb,"Brake mean effective pressure (in bar):")
+bsfc=mf/BP;.................//Brake specific fuel consumption in kg/BP h
+disp(bsfc,"Brake specific fuel consumption (in kg/BP h)")
+etabth=BP/((mf/3600)*C);..................//Brake thermal efficiency
+disp(etabth*100,"Brake thermal efficiency (in %):")
+etaith=IP/((mf/3600)*C);....................//Indicated thermal efficiency
+disp(etaith*100,"Indicated thermal efficiency (in %):")
diff --git a/1226/CH17/EX17.34/EX17_34.jpg b/1226/CH17/EX17.34/EX17_34.jpg Binary files differnew file mode 100755 index 000000000..01183df5d --- /dev/null +++ b/1226/CH17/EX17.34/EX17_34.jpg diff --git a/1226/CH17/EX17.34/EX17_34.sce b/1226/CH17/EX17.34/EX17_34.sce new file mode 100755 index 000000000..a734546df --- /dev/null +++ b/1226/CH17/EX17.34/EX17_34.sce @@ -0,0 +1,30 @@ +clc;funcprot(0);//EXAMPLE 17.34
+// Initialisation of Variables
+R=287;................//Gas constant in J/kg K
+n=4;...................//No of cylinders
+D=0.0825;..............//Engine bore in m
+L=0.13;................//Engine stroke in m
+BP=28;..................//Brake power in kW
+N=1500;.................//Engine rpm
+afrth=14.8;...............//theoretical air fuel ratio
+C=45980;..................//Calorific value of fuel in kJ/kg
+etamech=0.9;.............//Mechanical efficiency
+ap=70;..................//Percentage of Volume of air in he cylinder
+fr=20;..................//Percentage richness of the fuel
+p1=1.0132;.................//Ambient pressure in bar
+pc=762;...................//Pressure in the cylinder in mm of Hg
+tc=273+15.5;...............//Temperature in the cylinder in Kelvin
+k=0.5;..................//Four stroke engine
+//Calculations
+Vs=(%pi/4)*D*D*L;.......................//Swept volume in m^3
+va=(ap/100)*Vs;.....................//Volume of air drawn in m^3
+p=(pc/760)*p1;
+m=(p*(10^5)*va)/(R*tc);...................//Mass of air per stroke per cylinder
+tmau=m*(N/2)*n;...................//Theoretical mass of air used per minute in kg
+tmfu=tmau/afrth;..................//Theoretical mass of fyel used per min in kg
+mf=(tmfu/60)*((100+fr)/100);...............//Mass of fuel burnt per second in kg
+IP=BP/etamech;.........................//Indicated power in kW
+etaith=IP/(mf*C);.....................//Indicated thermal efficiency
+disp(etaith*100,"Indicated thermal efficiency (in %):")
+pmb=(BP*6)/(n*L*D*D*(%pi/4)*N*10*k);...............//Mean effective pressure in bar
+disp(pmb,"Mean effective pressure (in bar):")
diff --git a/1226/CH17/EX17.35/EX17_35.jpg b/1226/CH17/EX17.35/EX17_35.jpg Binary files differnew file mode 100755 index 000000000..58c29e1dd --- /dev/null +++ b/1226/CH17/EX17.35/EX17_35.jpg diff --git a/1226/CH17/EX17.35/EX17_35.sce b/1226/CH17/EX17.35/EX17_35.sce new file mode 100755 index 000000000..4470c5db6 --- /dev/null +++ b/1226/CH17/EX17.35/EX17_35.sce @@ -0,0 +1,28 @@ +clc;funcprot(0);//EXAMPLE 17.35
+// Initialisation of Variables
+n=1;..................//No of cylinders
+D=0.2;............//Engine bore in m
+L=0.4;..............//Engine stroke in m
+Nt=9400;...............//Total no of revolutions
+Ne=4200;...............//Total no of explosions
+t=40;...................//Duration of testing in min
+Nk=Ne/t;...............//No of explosions
+bl=540;...............//Brake load in N
+Db=1.6;.................//Diameter of brake wheel in m
+d=0.02;................//Diameter of rope in m
+gu=8.5;..................//Gas used in m^3/sec
+C=15900;...............//Calorific value of fuel in kJ/kg
+Vg=(gu/(t*60));.................//Volume of gas used in m^3/sec
+aic=550;.....................//Area of indicator diagram mm^2
+l=72;.......................//Length of indicator diagram in mm
+s=0.8;.....................//Spring number in bar/mm
+//calculations
+pmi=(aic*s)/l;................//Mean effective pressure in bar
+IP=(n*pmi*L*D*D*(%pi/4)*Nk*10)/6;............//Indicated power in kW
+disp(IP,"Indicated power (in kW):")
+BP=(bl*%pi*(Db+d)*(Nt/t))/(60*1000);...............//Brake power in kW
+disp(BP,"Brake power (in kW):")
+etaith=IP/(Vg*C);...............//Indicated thermal efficiency
+disp(etaith*100,"Indicated thermal efficiency (in %):")
+etabth=BP/(Vg*C);...............//Brake thermal efficiency
+disp(etabth*100,"Brake thermal efficiency (in %):")
diff --git a/1226/CH17/EX17.36/EX17_36.jpg b/1226/CH17/EX17.36/EX17_36.jpg Binary files differnew file mode 100755 index 000000000..f29c2b350 --- /dev/null +++ b/1226/CH17/EX17.36/EX17_36.jpg diff --git a/1226/CH17/EX17.36/EX17_36.sce b/1226/CH17/EX17.36/EX17_36.sce new file mode 100755 index 000000000..e8e33b770 --- /dev/null +++ b/1226/CH17/EX17.36/EX17_36.sce @@ -0,0 +1,40 @@ +clc;funcprot(0);//EXAMPLE 17.36
+// Initialisation of Variables
+n=6;....................//No of cylinders
+D=0.125;................//Engine bore in m
+L=0.125;...............//Engine stroke in m
+N=2400;.................//Engine rpm
+W=490;...............//Load on the dynamometer in N
+CD=16100;...............//Dynamometer constant
+d0=0.055;...................//Air orifice diameter in m
+Cd=0.66;...................//Co efficient of discharge
+hw=310;.................//Head causing flow through prifice in mm of water
+br=760;................//Barometer reading in mm of Hg
+t=298;..................//Ambient temperature in Kelvin
+fc=22.1;..................//Fuel consumption per hour in kg
+C=45100;..................//Calorific value of fuel used in kJ/kg
+perc=85;...................//Percentage of carbon in the fuel
+perh=15;...................//Percentage of hydrogen in the fuel
+p1=1.013;....................//Pressure of air at the end of suction stroke in bar
+t1=298;......................//Temperature of air the the end of suction stroke in Kelvin
+k=0.5;.......................//Four stroke engine
+R=287;.......................//Gas constant in J/kgK
+//calculations
+BP=W*(N/CD);................//Brake power in kW
+pmb=(BP*6)/(L*D*D*k*10*N*n*(%pi/4));................//Brake mean effective pressure in bar
+disp(pmb,"Brake mean effective pressure (in bar):")
+bsfc=fc/BP;.......................//Brake specific fuel consumption in kg/kWh
+disp(bsfc,"Brake specific fuel consumption (in kg/kWh):")
+etathb=BP/((fc/3600)*C);......................//Brake thermal efficiency
+disp(etathb*100,"Brake thermal efficiency (in %):")
+Vst=(%pi/4)*D*D*L;..............//Stroke volume in m^3
+Val=840*(%pi/4)*d0*d0*Cd*sqrt((hw/10)/((p1*10^5)/(R*t1)));............//Volume of air passing through orifice of air box per min
+Vac=Val/n;.........................//Actual volume of air per cylinder in m^3/min
+asps=Vac/(N/2);.......................//Air supplied per stroke per cylinder in m^3
+etav=asps/Vst;....................//Volumetric efficiency
+disp(etav*100,"Volumetric efficiency (in %)")
+Qa=(100/23)*(((perc/100)*(8/3))+((perh/100)*(8/1)));.....................//Quantity of air required per kg of fuel combustion
+aqas=(Val*((p1*10^5)/(R*t1))*60)/fc;....................//Actual quantity of air supplied per kg of fuel
+pe=(aqas-Qa)/Qa;....................//Fraction of excess air supplied to engine
+disp(pe*100,"Percentage of excess air supplied :")
+
diff --git a/1226/CH17/EX17.37/EX17_37.jpg b/1226/CH17/EX17.37/EX17_37.jpg Binary files differnew file mode 100755 index 000000000..096bee759 --- /dev/null +++ b/1226/CH17/EX17.37/EX17_37.jpg diff --git a/1226/CH17/EX17.37/EX17_37.sce b/1226/CH17/EX17.37/EX17_37.sce new file mode 100755 index 000000000..911dcc168 --- /dev/null +++ b/1226/CH17/EX17.37/EX17_37.sce @@ -0,0 +1,38 @@ +clc;funcprot(0);//EXAMPLE 17.37
+// Initialisation of Variables
+n=1;......................//No of cylinders
+D=0.3;....................//Engine bore in m
+L=0.45;....................//Engine stroke in m
+mf=8.8;...................//Fuel consumption in kg/h
+C=41800;...................//Calorific value of fuel in kJ/kg
+N=200;....................//Engine rpm
+pmi=5.8;....................//Mean effective pressure in bar
+bl=1860;....................//Brake load in N
+Db=1.22;...................//Diameter of brake drum in m
+k=0.5;........................//four stroke engine
+mw=650;......................//Mass of cooling water in kg
+cpw=4.18;....................//Specific heat capacity of water
+delt=22;......................//Temperature rise
+//Calculations
+IP=(n*L*D*D*k*10*pmi*N*(%pi/4))/6;...............//Indicated power in kW
+BP=(bl*%pi*Db*N)/(60*1000);..................//Brake power in kW
+etamech=BP/IP;............//Mechanical efficiency
+disp(etamech*100,"Mechanical efficiency (in %):")
+etathb=BP/((mf/3600)*C);...................//Brake thermal efficiency
+disp(etathb*100,"Brake thermal efficiency (in %):")
+//Heat supplied
+hip=IP*3600;...........//Heat equivalent of IP in kJ/h
+hcw=mw*cpw*delt;..........//Heat carried away by cooling water
+hf=mf*C;................//heat supplied by fuel
+hex=hf-hip-hcw;..........//Heat carried by exhaust gasses
+pf=100;pip=(hip/hf)*100;pcw=(hcw/hf)*100;pex=(hex/hf)*100
+printf("\n\n")
+printf("HEAT BALANCE TABLE\n")
+printf("_______________________________________________________________________\n")
+printf("Item kJ Percent\n")
+printf("_______________________________________________________________________\n")
+printf("Heat supplied by fuel %d %f\n",hf,pf)
+printf("Heat absorbed in IP %d %f\n",hip,pip)
+printf("Heat taken away by cooling water %d %f\n",hcw,pcw)
+printf("Heat carried away by exhaust gases %d %f\n",hex,pex)
+printf("_____________________________________________________________________")
diff --git a/1226/CH17/EX17.38/EX17_38.jpg b/1226/CH17/EX17.38/EX17_38.jpg Binary files differnew file mode 100755 index 000000000..5a43f1a51 --- /dev/null +++ b/1226/CH17/EX17.38/EX17_38.jpg diff --git a/1226/CH17/EX17.38/EX17_38.sce b/1226/CH17/EX17.38/EX17_38.sce new file mode 100755 index 000000000..7739e117d --- /dev/null +++ b/1226/CH17/EX17.38/EX17_38.sce @@ -0,0 +1,41 @@ +clc;funcprot(0);//EXAMPLE 17.38
+// Initialisation of Variables
+r=15;................//Compression ratio
+n=1;...................//No of cylinders
+mf=10.2;..................//Fuel consumption in kg/h
+C=43890;.................//Calorific value of fuel in kJ/kg
+ma=3.8;.................//Consumption of air in kg/min
+N=1900;...................//Engine rpm
+T=186;....................//Torque on brake drum in Nm
+mw=15.5;.................//Mass of cooling water used in kg/min
+delt=36;..................//temperature rise
+tg=410;..................//Exhaust gas temperature in Celsius
+tr=20;...................//Room temperature in Celsius
+cp=1.17;.................//Specific heat capacity for exhaust gases kJ/kgK
+cpw=4.18;..................//Specific heat capacity for water in kJ/kgK
+//calculations
+BP=(2*%pi*N*T)/(60*1000);................//Brake power in kW
+disp(BP,"Brake power in kW:")
+bsfc=mf/BP;.............................//Brake specific fuel consumption in kg/kWh
+disp(bsfc,"Brake specific fuel consumption in kg/kWh:")
+etabth=BP/((mf/3600)*C);....................//Brake thermal efficiency
+disp(etabth*100,"Brake thermal efficiency in %:")
+//Heat supplied
+mg=(mf/60)+ma;....................//Mass of exhaust gases in kg/min
+hbp=BP*60;...........//Heat equivalent of BP in kJ/min
+hcw=mw*cpw*delt;..........//Heat carried away by cooling water
+hf=(mf/60)*C;................//heat supplied by fuel
+hex=mg*cp*(tg-tr);..........//Heat carried by exhaust gasses
+ha=round(hf)-round(hbp+hex+hcw);............//Unaccounted heat
+pf=100;pbp=(hbp/hf)*100;pcw=(hcw/hf)*100;pex=(hex/hf)*100;pa=(ha/hf)*100;
+printf("\n\n")
+printf("HEAT BALANCE TABLE\n")
+printf("_______________________________________________________________________\n")
+printf("Item kJ Percent\n")
+printf("_______________________________________________________________________\n")
+printf("Heat supplied by fuel %d %f\n",hf,pf)
+printf("Heat absorbed in BP %d %f\n",hbp,pbp)
+printf("Heat taken away by cooling water %d %f\n",hcw,pcw)
+printf("Heat carried away by exhaust gases %d %f\n",hex,pex)
+printf("Unaccounted heat %d %f\n",ha,pa)
+printf("_____________________________________________________________________")
diff --git a/1226/CH17/EX17.39/EX17_39.jpg b/1226/CH17/EX17.39/EX17_39.jpg Binary files differnew file mode 100755 index 000000000..04b5d6b18 --- /dev/null +++ b/1226/CH17/EX17.39/EX17_39.jpg diff --git a/1226/CH17/EX17.39/EX17_39.sce b/1226/CH17/EX17.39/EX17_39.sce new file mode 100755 index 000000000..d6215bdf6 --- /dev/null +++ b/1226/CH17/EX17.39/EX17_39.sce @@ -0,0 +1,50 @@ +clc;funcprot(0);//EXAMPLE 17.39
+// Initialisation of Variables
+Cpw=4.18;..............//Specific heat of water in kJ/kgK
+n=1;................//No of cylinders
+N=350;.......//Engine rpm
+pmi=3.1;..........//Mean effective pressure in bar
+bl=640;..........//Brake load in N
+mf=1.52;............//Fuel consumption in kg
+mw=162;..............//Mass of cooling water
+tw1=30;...............//Water inlet temperature in C
+tw2=55;................//Water outlet temperature in C
+ma=32;..................//Mass of air used per kg of fuel in kg
+tr=25;.................//Room temperature in C
+tg=305;.................//Exhaust temperature in C
+D=0.2;.................//Engine bore in m
+L=0.28;.................//Engine stroke in m
+Db=1;......................//Brake drum diameter in m
+ms=1.4;......................//Mass of steam formed per kg of fuel exhaust in kg
+C=43900;...................//Calorirfic value of fuel in kJ/kg
+Cps=2.09;..................//Specific heat of steamm in exhaust in kJ/kgK
+Cpg=1.0;...................//Specific heat of dry exhaust gases in kJ/kgK
+k=1;....................//Two stroke engiine
+t=20;.....................//Duration of testing in min
+//Calculations
+IP=(n*pmi*N*D*D*L*k*10*(%pi/4))/6;...................//Indicated power in kW
+disp(IP,"Indicated power in kW:")
+BP=(bl*%pi*Db*N)/(60*1000);......................//Brake power in kW
+disp(BP,"Brake power in kW:")
+//Heat supplied
+hf=mf*C;................//heat supplied by fuel
+hip=IP*60*t;...........//Heat equivalent of BP in kJ/min
+hcw=mw*Cpw*(tw2-tw1);..........//Heat carried away by cooling water
+mg=mf+(ma*mf);....................//Mass of exhaust gases in kg/min
+mst=mf*ms;..................//Mass of steam formed
+hg=(mg-mst)*Cpg*(tg-tr);..........//Heat carried by exhaust gasses
+hst=mst*(417.5+2257.9+(Cps*(305-99.6)));....................//Heat carried by exhaust steam, the obtained values are from steam table and hence are constants at NTP
+ha=round(hf)-round(hip+hg+hst+hcw);............//Unaccounted heat
+pf=100;pip=(hip/hf)*100;pcw=(hcw/hf)*100;pg=(hg/hf)*100;pa=(ha/hf)*100;pst=(hst/hf)*100;
+printf("\n\n")
+printf("HEAT BALANCE TABLE\n")
+printf("_______________________________________________________________________\n")
+printf("Item kJ Percent\n")
+printf("_______________________________________________________________________\n")
+printf("Heat supplied by fuel %d %f\n",hf,pf)
+printf("Heat absorbed in IP %d %f\n",hip,pip)
+printf("Heat taken away by cooling water %d %f\n",hcw,pcw)
+printf("Heat carried away by dry exhaust gases %d %f\n",hg,pg)
+printf("Heat carried away by steam in exhaust gases %d %f\n",hst,pst)
+printf("Unaccounted heat %d %f\n",ha,pa)
+printf("_____________________________________________________________________")
diff --git a/1226/CH17/EX17.4/EX17_4.jpg b/1226/CH17/EX17.4/EX17_4.jpg Binary files differnew file mode 100755 index 000000000..6116ac243 --- /dev/null +++ b/1226/CH17/EX17.4/EX17_4.jpg diff --git a/1226/CH17/EX17.4/EX17_4.sce b/1226/CH17/EX17.4/EX17_4.sce new file mode 100755 index 000000000..839f6f9b4 --- /dev/null +++ b/1226/CH17/EX17.4/EX17_4.sce @@ -0,0 +1,13 @@ +clc;funcprot(0);//EXAMPLE 17.4
+// Initialisation of Variables
+n=4;........................//No of cylinders
+k=0.5;......................//For four stroke engine
+Tb=160;.....................//Max brake torque in Nm
+N=3000;......................//Engine rpm
+Pm=9.6;....................//Brake mean effective pressure in bar
+//Calculations
+D=((2*%pi*N*Tb*6)/(60*1000*Pm*(%pi/4)*N*k*10))^(1/3);.....................//Bore of engine in m
+L=D;...................//Given that the stroke is equal to bore
+Disp=(%pi/4)*D*D*L;....................................//Displacement in m^3
+disp(D*1000,"Since it is given that the stroke is equal to bore, their value is (in mm): ")
+disp(Disp,"The engine displacement (in m^3):")
diff --git a/1226/CH17/EX17.40/EX17_40.jpg b/1226/CH17/EX17.40/EX17_40.jpg Binary files differnew file mode 100755 index 000000000..a8eee183b --- /dev/null +++ b/1226/CH17/EX17.40/EX17_40.jpg diff --git a/1226/CH17/EX17.40/EX17_40.sce b/1226/CH17/EX17.40/EX17_40.sce new file mode 100755 index 000000000..61569e101 --- /dev/null +++ b/1226/CH17/EX17.40/EX17_40.sce @@ -0,0 +1,34 @@ +clc;funcprot(0);//EXAMPLE 17.40
+// Initialisation of Variables
+n=6;................//No of cylinders
+D=0.1;...............//Engine bore in m
+L=0.14;...............//Engine stroke in m
+N=2500;...............//Engine rpm
+k=0.5;..................//Four stroke
+bl=480;.................//Brake load in N
+br=76;..................//Barometer reading in cm of Hg
+d0=3.3/100;..............//Orifice diameter in m
+Cd=0.62;.................//Co efficient of discharge of orifice
+pd=14;...................//Pressure drop across orifice in cm of Hg
+tr=25;...............//Room temperature in C
+mf=0.32;................//Fuel consumption in kg/min
+rhohg=13600;.................//Density of Hg in kg/m^3
+R=0.287;...................//gas constant in kJ/kgK
+g=9.81;.................//Acceleration due to gravity in m/s^2
+CD=17000;....................//dynamometer constant
+//Calculations
+Vs=(%pi/4)*D*D*L*(N/2)*(n/60);..............//Swept volume in m^3
+br1=(br/100)*rhohg*g*(10^-3);.............//Barometer reading into kN/m^2
+rhoa=br1/(R*(tr+273));...............//Density of air
+pd1=(pd/100)*rhohg*g;......................//Conversion of pd into N/m^2
+ha=pd1/(rhoa*g);.......................//Head of air causing flow in m
+Va=Cd*(%pi/4)*d0*d0*sqrt(2*g*ha);............//Volume of air passing through orifice of air box per min
+etav=Va/Vs;....................//Volumetric efficiency
+disp(etav*100,"Volumetric efficiency in %:")
+BP=bl*(N/CD);................//Brake power in kW
+pmb=(BP*6)/(L*D*D*k*10*N*n*(%pi/4));................//Brake mean effective pressure in bar
+disp(pmb,"Brake mean effective pressure (in bar):")
+T=(BP*60*1000)/(2*%pi*N);....................//Engine torque in N-m
+disp(T,"Engine torque in N-m:")
+bsfc=(mf*60)/BP;.......................//Brake specific fuel consumption in kg/kWh
+disp(bsfc,"Brake specific fuel consumption in kg/kWh:")
diff --git a/1226/CH17/EX17.41/EX17_41.jpg b/1226/CH17/EX17.41/EX17_41.jpg Binary files differnew file mode 100755 index 000000000..48337a085 --- /dev/null +++ b/1226/CH17/EX17.41/EX17_41.jpg diff --git a/1226/CH17/EX17.41/EX17_41.sce b/1226/CH17/EX17.41/EX17_41.sce new file mode 100755 index 000000000..aa91759ca --- /dev/null +++ b/1226/CH17/EX17.41/EX17_41.sce @@ -0,0 +1,52 @@ +clc;funcprot(0);//EXAMPLE 17.41
+// Initialisation of Variables
+Cpw=4.18;..............//Specific heat of water in kJ/kgK
+n=1;................//No of cylinders
+N=350;.......//Engine rpm
+pmi=2.74;..........//Mean effective pressure in bar
+bl=600;..........//Brake load in N
+mf=4.22;............//Fuel consumption in kg
+mw=495;..............//Mass of cooling water
+tw1=13;...............//Water inlet temperature in C
+tw2=38;................//Water outlet temperature in C
+ma=135;..................//Mass of air used in kg/h
+tr=20;.................//Room temperature in C
+tg=370;.................//Exhaust temperature in C
+D=0.2;.................//Engine bore in m
+L=0.28;.................//Engine stroke in m
+Db=1;......................//Brake drum diameter in m
+C=44670;...................//Calorirfic value of fuel in kJ/kg
+Cps=2.093;..................//Specific heat of steamm in exhaust in kJ/kgK
+Cpg=1.005;...................//Specific heat of dry exhaust gases in kJ/kgK
+k=1;....................//Two stroke engiine
+t=60;.....................//Duration of testing in min
+perh=15;.................//Percentage of H2 in the fuel
+//Calculations
+IP=(n*pmi*N*D*D*L*k*10*(%pi/4))/6;...................//Indicated power in kW
+disp(IP,"Indicated power in kW:")
+BP=(bl*%pi*Db*N)/(60*1000);......................//Brake power in kW
+etaith=(IP)/((mf/3600)*C);.................//Indicated thermal efficiency
+disp(etaith*100,"Indicated thermal efficiency in %:")
+//Heat supplied
+hf=(mf/t)*C;................//heat supplied by fuel
+hbp=BP*t;...........//Heat equivalent of BP in kJ/min
+hcw=(mw/60)*Cpw*(tw2-tw1);..........//Heat carried away by cooling water
+mg=(mf+ma)/t;....................//Mass of exhaust gases in kg/min
+mst=9*(perh/100)*(mf/60);..................//Mass of steam formed
+mdg=mg-mst;..............................//Mass of dry exhaust gases per min
+hg=(mdg)*Cpg*(tg-tr);..........//Heat carried by exhaust gasses
+hst=mst*(417.5+2257.9+(Cps*(305-99.6)));....................//Heat carried by exhaust steam, the obtained values are from steam table and hence are constants at NTP
+ha=round(hf)-round(hbp+hg+hst+hcw);............//Unaccounted heat
+pf=100;pbp=(hbp/hf)*100;pcw=(hcw/hf)*100;pg=(hg/hf)*100;pa=(ha/hf)*100;pst=(hst/hf)*100;
+printf("\n\n")
+printf("HEAT BALANCE TABLE\n")
+printf("_______________________________________________________________________\n")
+printf("Item kJ Percent\n")
+printf("_______________________________________________________________________\n")
+printf("Heat supplied by fuel %f %f\n",hf,pf)
+printf("Heat equivalent of BP %f %f\n",hbp,pbp)
+printf("Heat taken away by cooling water %f %f\n",hcw,pcw)
+printf("Heat carried away by dry exhaust gases %f %f\n",hg,pg)
+printf("Heat carried away by steam in exhaust gases %f %f\n",hst,pst)
+printf("Unaccounted heat %f %f\n",ha,pa)
+printf("_____________________________________________________________________")
diff --git a/1226/CH17/EX17.42/EX17_42.jpg b/1226/CH17/EX17.42/EX17_42.jpg Binary files differnew file mode 100755 index 000000000..e78d77b87 --- /dev/null +++ b/1226/CH17/EX17.42/EX17_42.jpg diff --git a/1226/CH17/EX17.42/EX17_42.sce b/1226/CH17/EX17.42/EX17_42.sce new file mode 100755 index 000000000..5e16eb4c5 --- /dev/null +++ b/1226/CH17/EX17.42/EX17_42.sce @@ -0,0 +1,51 @@ +clc;funcprot(0);//EXAMPLE 17.42
+// Initialisation of Variables
+Cpw=4.18;..............//Specific heat of water in kJ/kgK
+n=1;................//No of cylinders
+N=350;.......//Engine rpm
+pmi=2.8;..........//Mean effective pressure in bar
+bl=590;..........//Brake load in N
+mf=4.3;............//Fuel consumption in kg
+mw=500;..............//Mass of cooling water
+tw1=25;...............//Water inlet temperature in C
+tw2=50;................//Water outlet temperature in C
+ma=33;..................//Mass of air used per kg of fuel in kg
+tr=25;.................//Room temperature in C
+tg=400;.................//Exhaust temperature in C
+D=0.22;.................//Engine bore in m
+L=0.28;.................//Engine stroke in m
+Db=1;......................//Brake drum diameter in m
+C=43900;...................//Calorirfic value of fuel in kJ/kg
+Cps=2.09;..................//Specific heat of steamm in exhaust in kJ/kgK
+Cpg=1.0;...................//Specific heat of dry exhaust gases in kJ/kgK
+k=1;....................//Two stroke engiine
+perh=15;...................//Percentage of hydrogen
+//Calculations
+IP=(n*pmi*N*D*D*L*k*10*(%pi/4))/6;...................//Indicated power in kW
+disp(IP,"Indicated power in kW:")
+BP=(bl*%pi*Db*N)/(60*1000);......................//Brake power in kW
+disp(BP,"Brake power in kW:")
+//Heat supplied
+hf=(mf/60)*C;................//heat supplied by fuel
+hip=IP*60;...........//Heat equivalent of BP in kJ/min
+hcw=(mw/60)*Cpw*(tw2-tw1);..........//Heat carried away by cooling water
+mg=(mf+(mf*ma))/60;....................//Mass of exhaust gases in kg/min
+mst=9*(perh/100)*(mf/60);..................//Mass of steam formed
+mdg=mg-mst;..............................//Mass of dry exhaust gases per min
+hg=(mdg)*Cpg*(tg-tr);..........//Heat carried by exhaust gasses
+hst=mst*(417.5+2257.9+(Cps*(400-99.6)));....................//Heat carried by exhaust steam, the obtained values are from steam tables at NTP
+mg=mf+(ma*mf);....................//Mass of exhaust gases in kg/min
+ha=round(hf)-round(hip+hg+hst+hcw);............//Unaccounted heat
+pf=100;pip=(hip/hf)*100;pcw=(hcw/hf)*100;pg=(hg/hf)*100;pa=(ha/hf)*100;pst=(hst/hf)*100;
+printf("\n\n")
+printf("HEAT BALANCE TABLE\n")
+printf("_______________________________________________________________________\n")
+printf("Item kJ Percent\n")
+printf("_______________________________________________________________________\n")
+printf("Heat supplied by fuel %d %f\n",hf,pf)
+printf("Heat absorbed in IP %d %f\n",hip,pip)
+printf("Heat taken away by cooling water %d %f\n",hcw,pcw)
+printf("Heat carried away by dry exhaust gases %d %f\n",hg,pg)
+printf("Heat carried away by steam in exhaust gases %d %f\n",hst,pst)
+printf("Unaccounted heat %d %f\n",ha,pa)
+printf("_____________________________________________________________________")
diff --git a/1226/CH17/EX17.43/EX17_43.jpg b/1226/CH17/EX17.43/EX17_43.jpg Binary files differnew file mode 100755 index 000000000..07f5e2bf5 --- /dev/null +++ b/1226/CH17/EX17.43/EX17_43.jpg diff --git a/1226/CH17/EX17.43/EX17_43.sce b/1226/CH17/EX17.43/EX17_43.sce new file mode 100755 index 000000000..358cf780c --- /dev/null +++ b/1226/CH17/EX17.43/EX17_43.sce @@ -0,0 +1,38 @@ +clc;funcprot(0);//EXAMPLE 17.43
+// Initialisation of Variables
+I=210;.....................//Output of generator in A
+V=200;.....................//Generator voltage in V
+etag=0.82;.................//Generator efficiency
+mf=11.2;....................//Fuel used in kg/h
+C=42600;.......................//Calorific value of fuel in kJ/kg
+afr=18;....................//Air fuel ratio
+mc=580;.....................//Mass of water through calorimeter in kg/h
+delt=36;....................//Temperature raise in C
+tg=98;........................//Temperature of exhaust in C
+ta=20;.......................//Ambient temperature in C
+phcw=0.32;.....................//Heat lost to cooling jacket is 32% of heat supplied
+cpe=1.05;...................//Specific heat of exhause gases in kJ/kgK
+cpw=4.18;...................//Specific heat of water in kJ/kgK
+//Calculations
+pow=V*I;......................//Total power generated in W
+BP=(pow/1000)/etag;..................//Brake power in kW
+hf=(mf/60)*C;...................//Heat supplied to the engine
+hbp=BP*60;.........................//Heat equivalent of BP
+mg=(mf/60)*(afr+1);...............//Mass of exhaust gases formed per min in kg
+hg=((mc/60)*cpw*(delt))+(mg*cpe*(tg-ta));..........//Heat carried by exhaust gases per min
+hcw=phcw*hf;...................//Heat lost to cooling jacket
+ha=hf-(hcw+hg+hbp);...................//Unaccounted heat
+pf=100;pbp=(hbp/hf)*100;pcw=(hcw/hf)*100;pg=(hg/hf)*100;pa=(ha/hf)*100
+printf("\n\n")
+printf("HEAT BALANCE TABLE\n")
+printf("_______________________________________________________________________\n")
+printf("Item kJ Percent\n")
+printf("_______________________________________________________________________\n")
+printf("Heat supplied by fuel %d %f\n",hf,pf)
+printf("Heat absorbed in BP %d %f\n",hbp,pbp)
+printf("Heat taken away by cooling water %d %f\n",hcw,pcw)
+printf("Heat carried away by exhaust gases %d %f\n",hg,pg)
+printf("Unaccounted heat %d %f\n",ha,pa)
+printf("_____________________________________________________________________")
+
+
diff --git a/1226/CH17/EX17.44/EX17_44.jpg b/1226/CH17/EX17.44/EX17_44.jpg Binary files differnew file mode 100755 index 000000000..63fb36897 --- /dev/null +++ b/1226/CH17/EX17.44/EX17_44.jpg diff --git a/1226/CH17/EX17.44/EX17_44.sce b/1226/CH17/EX17.44/EX17_44.sce new file mode 100755 index 000000000..161e94115 --- /dev/null +++ b/1226/CH17/EX17.44/EX17_44.sce @@ -0,0 +1,62 @@ +clc;funcprot(0);//EXAMPLE 17.44
+// Initialisation of Variables
+D=0.34;..............//Engine bore in m
+k=0.5;...............//Four stroke engine
+n=1;..................//No of cylinders
+L=0.44;................//Engine stroke in m
+Ne=400;................//Engine rpm
+aic=465;..............//Area of indicator diagram in mm^2
+l=60;..................//Length of diagram in mm
+s=0.6;...............//Spring constant in bar/mm
+W=950;.................//Load of dynamometer in N
+CD=7460;................//Dynamometer constant
+mf=10.6;................//Fuel used in kg/h
+Ca=49500;.................//Calorific value of fuel in kJ/kg
+mw=25;...................//Cooling water circulated in kg/min
+cpw=4.18;..................//Specific heat capacity of water in kJ/kgC
+delt=25;..................//Rise in temperature of water
+//Mass analysis of fuel
+C=84;..................//Percentage of carbon
+H=15;..................//Percentage of hydrogen
+In=1;..................//Percentage of incombustible
+//Volume analysis of exhaust gases
+CO2=9;..................//Percentage of caron dioxide
+O=10;..................//Percentage of oxygen
+N=81;..................//Percentage of nitrogen
+tg=400;................//Temperature of exhaust gases in C
+cpg=1.05;..............//Specific heat of exhaust gases in kJ/kgC
+tr=25;.................//Temperature of room in C
+ppst=0.03;..............//Partial pressure of steam in exhaust gases in bar
+cpst=2.1;.................//Specific heat of superheated steam in kJ/kgC
+//Calculations
+pmi=(aic*s)/l;................//Mean effective pressure in bar
+IP=(n*pmi*L*D*D*k*10*Ne*(%pi/4))/6;...............//Indicated power in kW
+BP=(W*Ne)/CD;.......................//Brake power in kW
+FP=IP-BP;...........................//Frictional power in kW
+hf=(mf/60)*Ca;...................//Heat supplied in kJ per min
+hbp=BP*60;.....................//Heat equivalent of Brake power in kW
+hfp=FP*60;......................//heat equivalent of frictional power in kW
+hcw=mw*cpw*delt;..................//Heat carried away by cooling water
+ma1=(N*C)/(33*(CO2));...........//Mass of air supplied per kg of fuel
+mg1=ma1+1;.......................//Mass of exhaust gases per kg of fuel
+mg=mg1*(mf/60);.................//Mass of exhaust gas formed per min
+mst1=9*(H/100);.................//Mass of steam formed per kg of fuel
+mst=mst1*(mf/60);..................//Mass of steam formed per min
+mdg=mg-mst;.......................//Mass of dry exhaust gas
+hex=mdg*cpg*(tg-tr);...............//Heat carried by exhaust gases
+hst=(2545.5+(cpst*(tg-24.1)))*mst;................//Heat carried by steam in exhaust gases in kJ/kg.....The values are from steam tables corresponding to the partial pressure 0.03 and temperature 400 Celsius
+ha=hf-(hbp+hfp+hcw+hex+hst);.....................//Unaccounted heat
+pf=100;pbp=(hbp/hf)*100;pfp=(hfp/hf)*100;pcw=(hcw/hf)*100;pex=(hex/hf)*100;pa=(ha/hf)*100;pst=(hst/hf)*100;
+printf("\n\n")
+printf("HEAT BALANCE TABLE\n")
+printf("_______________________________________________________________________\n")
+printf("Item kJ Percent\n")
+printf("_______________________________________________________________________\n")
+printf("Heat supplied by fuel %d %f\n",hf,pf)
+printf("Heat absorbed in BP %d %f\n",hbp,pbp)
+printf("Heat lost by FP %d %f\n",hfp,pfp)
+printf("Heat taken away by cooling water %d %f\n",hcw,pcw)
+printf("Heat carried away by dry exhaust gases %d %f\n",hex,pex)
+printf("Heat carried away by steam in exhaust gases %d %f\n",hst,pst)
+printf("Unaccounted heat %d %f\n",ha,pa)
+printf("_____________________________________________________________________")
diff --git a/1226/CH17/EX17.45/EX17_45.jpg b/1226/CH17/EX17.45/EX17_45.jpg Binary files differnew file mode 100755 index 000000000..fd870fd85 --- /dev/null +++ b/1226/CH17/EX17.45/EX17_45.jpg diff --git a/1226/CH17/EX17.45/EX17_45.sce b/1226/CH17/EX17.45/EX17_45.sce new file mode 100755 index 000000000..daebb5226 --- /dev/null +++ b/1226/CH17/EX17.45/EX17_45.sce @@ -0,0 +1,28 @@ +clc;funcprot(0);//EXAMPLE 17.45
+// Initialisation of Variables
+n=4;........................//No of cylinders
+ga=1.4;...................//Degree of freedom
+D=0.075;..................//Engine bore in m
+L=0.1;...................//Engine stroke in m
+mf=6;.......................//Fuel consumption in kg/h
+C=83600;..................//Calorific value of fuel used
+Vc=0.0001;.................//Clearence volume in m^3
+BP=15.6;.................//Brake power wilh all cylinder working in kW
+BP1=11.1;...................//Brake power wilh cylinder no 1 cutout in kW
+BP2=11.03;...................//Brake power wilh cylinder no 2 cutout in kW
+BP3=10.88;...................//Brake power wilh cylinder no 3 cutout in kW
+BP4=10.66;...................//Brake power wilh cylinder no 4 cutout in kW
+//Calculations
+IP1=BP-BP1;...........................//Indicated power produced in cylinder 1 in kW
+IP2=BP-BP2;...........................//Indicated power produced in cylinder 2 in kW
+IP3=BP-BP3;...........................//Indicated power produced in cylinder 3 in kW
+IP4=BP-BP4;...........................//Indicated power produced in cylinder 4 in kW
+IP=IP1+IP2+IP3+IP4;.............................//Total Indicated power produced in kW
+etamech=BP/IP;..............................//Mechanical efficiency
+disp(etamech*100,"Mechanical efficiency in %:")
+etaith=IP/((mf/3600)*C);.....................//Indicated thermal efficiency
+disp(etaith*100,"Indicated thermal efficiency in %:")
+Vs=(%pi/4)*D*D*L;..........................//Stroke volume in m^3
+r=(Vs+Vc)/Vc;................................//Compression ratio
+etast=1-(1/(r^(ga-1)));...........................//Air standard efficiency
+disp(etast*100,"Air standard efficiency in %:")
diff --git a/1226/CH17/EX17.46/EX17_46.jpg b/1226/CH17/EX17.46/EX17_46.jpg Binary files differnew file mode 100755 index 000000000..43ae071de --- /dev/null +++ b/1226/CH17/EX17.46/EX17_46.jpg diff --git a/1226/CH17/EX17.46/EX17_46.sce b/1226/CH17/EX17.46/EX17_46.sce new file mode 100755 index 000000000..203e014e3 --- /dev/null +++ b/1226/CH17/EX17.46/EX17_46.sce @@ -0,0 +1,37 @@ +clc;funcprot(0);//EXAMPLE 17.46
+// Initialisation of Variables
+n=4;..........................//No of cylinders
+D=0.06;......................//Engine bore in m
+L=0.09;.......................//Engine stroke in m
+N=2800;.......................//Engine rpm
+Ta=0.37;.......................//Length of torque arm in m
+spgr=0.74;.....................//Specific graviy of fuel
+fc=8.986;......................//Fuel consumption in ltrs/h
+mf=fc*spgr;.....................//Fuel consumed in kg/h
+C=44100;......................//Calorific value of fuel in kJ/kg
+BPnl=160;.................//Net brake load in N
+BP1=110;...................//Brake load with cylinder no 1 cutout in N
+BP2=107;...................//Brake load with cylinder no 2 cutout in N
+BP3=104;...................//Brake load with cylinder no 3 cutout in N
+BP4=110;...................//Brake load with cylinder no 4 cutout in N
+k=0.5;.....................//Four stroke engine
+//Calculations
+T=BPnl*Ta;.......................//Engine torque in N-m
+disp(T,"Engine torque in Nm:")
+BP=(2*%pi*N*T)/(60*1000);..........................//Brake power in kW
+pmb=(BP*6)/(n*D*D*L*N*10*(%pi/4)*k);...................//Brake mean effective pressure in bar
+disp(pmb,"Brake mean effective pressure in bar:")
+etabth=BP/((mf/3600)*C);...........................//Brake thermal efficiency
+disp(etabth*100,"Brake thermal efficiency in %:")
+sfc=mf/BP;.......................//Specific fuel consumption in kg/kWh
+disp(sfc,"Specific fuel consumption in kg/kWh:")
+IP1=BPnl-BP1;...........................//Indicated power produced in cylinder 1 in kW
+IP2=BPnl-BP2;...........................//Indicated power produced in cylinder 2 in kW
+IP3=BPnl-BP3;...........................//Indicated power produced in cylinder 3 in kW
+IP4=BPnl-BP4;...........................//Indicated power produced in cylinder 4 in kW
+IP=IP1+IP2+IP3+IP4;.............................//Total Indicated power produced in kW
+etamech=BPnl/IP;..............................//Mechanical efficiency
+disp(etamech*100,"Mechanical efficiency in %:")
+pmi=pmb/etamech;............................//Indicated mean effective pressure in bar
+disp(pmi,"Indicated mean effective pressure in bar:")
+
diff --git a/1226/CH17/EX17.5/EX17_5.jpg b/1226/CH17/EX17.5/EX17_5.jpg Binary files differnew file mode 100755 index 000000000..de6615a65 --- /dev/null +++ b/1226/CH17/EX17.5/EX17_5.jpg diff --git a/1226/CH17/EX17.5/EX17_5.sce b/1226/CH17/EX17.5/EX17_5.sce new file mode 100755 index 000000000..2825050d0 --- /dev/null +++ b/1226/CH17/EX17.5/EX17_5.sce @@ -0,0 +1,15 @@ +clc;funcprot(0);//EXAMPLE 17.5
+// Initialisation of Variables
+n=6;.....................//No of cylinders
+Pmb=6;....................//Brake mean effective pressure in bar
+N=1000;..................//Engine rpm
+k=0.5;.......................//For four stroke engine
+Wce=820;.................//Work during compression and expansion in kW
+Wie=50;...................//Work during intake and exhaust in kW
+f=150;......................//Rubbing friction in engiine in kW
+WnetT=40;...................//Net work done by turbine in kW
+//Calculations
+BP=Wce-(Wie+f+WnetT);.....................//Net work available or brake power in kW
+D=((BP*6)/(n*Pmb*(%pi/4)*N*k*10))^(1/3);......................//Bore of engine in m
+L=D;.........................................//Given that bore is equal to stroke
+disp(D*1000,"Since the stroke and bore are equal, their value is (in mm):")
diff --git a/1226/CH17/EX17.6/EX17_6.jpg b/1226/CH17/EX17.6/EX17_6.jpg Binary files differnew file mode 100755 index 000000000..d361747a9 --- /dev/null +++ b/1226/CH17/EX17.6/EX17_6.jpg diff --git a/1226/CH17/EX17.6/EX17_6.sce b/1226/CH17/EX17.6/EX17_6.sce new file mode 100755 index 000000000..5776d08c6 --- /dev/null +++ b/1226/CH17/EX17.6/EX17_6.sce @@ -0,0 +1,8 @@ +clc;funcprot(0);//EXAMPLE 17.6
+// Initialisation of Variables
+Cm=50150;............................//Heating value of methane in kJ/kg
+Co=44880;............................//Heating value of octane in kJ/kg
+//Calculations
+//Since Energy supplied is proportional to mass of fuel supplied time calorific value of the fuel supplied
+ratioP=Cm/Co;.........................//Ratio of the power input of the engine with methane fuel to that with octane
+disp(ratioP,"Ratio of the power input of the engine with methane fuel to that with octane:")
diff --git a/1226/CH17/EX17.7/EX17_7.jpg b/1226/CH17/EX17.7/EX17_7.jpg Binary files differnew file mode 100755 index 000000000..675ac05c4 --- /dev/null +++ b/1226/CH17/EX17.7/EX17_7.jpg diff --git a/1226/CH17/EX17.7/EX17_7.sce b/1226/CH17/EX17.7/EX17_7.sce new file mode 100755 index 000000000..d3f43d439 --- /dev/null +++ b/1226/CH17/EX17.7/EX17_7.sce @@ -0,0 +1,13 @@ +clc;funcprot(0);//EXAMPLE 17.7
+// Initialisation of Variables
+N=2000;...........................//Engine rpm
+k=0.5;..............................//Four stroke engine
+Disp=0.025;........................//Engine displacement in m^3
+Pmb=6;..............................//Brake mean effective pressure in bar
+mf=0.018;............................//Fuel consumption in kg/s
+Cf=42000;............................//Calorific value of fuel in kJ/kg
+//Calcuations
+BP=(Pmb*Disp*N*k*10)/(6);................//Brake power in kW
+etaBT=BP/(mf*Cf);.................//Brake thermal efficiency
+disp(BP,"The Brake power (in kW):")
+disp(etaBT*100,"Brake thermal efficiency (in %):")
diff --git a/1226/CH17/EX17.8/EX17_8.jpg b/1226/CH17/EX17.8/EX17_8.jpg Binary files differnew file mode 100755 index 000000000..109bf8865 --- /dev/null +++ b/1226/CH17/EX17.8/EX17_8.jpg diff --git a/1226/CH17/EX17.8/EX17_8.sce b/1226/CH17/EX17.8/EX17_8.sce new file mode 100755 index 000000000..b6c2ae4a0 --- /dev/null +++ b/1226/CH17/EX17.8/EX17_8.sce @@ -0,0 +1,7 @@ +clc;funcprot(0);//EXAMPLE 17.8
+// Initialisation of Variables
+T=175;.......................//Torque due to brake load in Nm
+N=500;.........................//Engine speed in rpm
+//calcuations
+BP=(2*%pi*N*T)/(60*1000);.......................//Brake power developed by engine in kW
+disp(BP,"Brake power developed by engine (in kW):")
diff --git a/1226/CH17/EX17.9/EX17_9.jpg b/1226/CH17/EX17.9/EX17_9.jpg Binary files differnew file mode 100755 index 000000000..c27596e79 --- /dev/null +++ b/1226/CH17/EX17.9/EX17_9.jpg diff --git a/1226/CH17/EX17.9/EX17_9.sce b/1226/CH17/EX17.9/EX17_9.sce new file mode 100755 index 000000000..fbad6bc7d --- /dev/null +++ b/1226/CH17/EX17.9/EX17_9.sce @@ -0,0 +1,18 @@ +clc;funcprot(0);//EXAMPLE 17.9
+// Initialisation of Variables
+D=0.3;.............................//Bore of engine cylinder in m
+L=0.45;............................//Stroke of engine cylinder in m
+N=300;.............................//Engine rpm
+Pmi=6;.............................//Indicated mean effective pressure in bar
+Nbl=1.5;...........................//Net brake load in kN
+Db=1.8;............................//Diameter of brake drum in m
+d=0.02;............................//Brake rope diameter
+k=0.5;.............................//Four stroke engine
+n=1;...............................//No of cylinders
+//Calculations
+IP=(n*Pmi*L*(%pi/4)*D*D*N*k*10)/6;......................//Indicated power in kW
+BP=(Nbl*%pi*(Db+d)*N)/60;...............................//Brake power in kW
+etam=BP/IP;.............................................//Mechanical efficiency
+disp(IP,"Indicated power (in kW):")
+disp(BP,"Brake power (in kW):")
+disp(etam*100,"Mechanical efficiency (%):")
diff --git a/1226/CH20/EX20.1/EX20_1.jpg b/1226/CH20/EX20.1/EX20_1.jpg Binary files differnew file mode 100755 index 000000000..7e949f14b --- /dev/null +++ b/1226/CH20/EX20.1/EX20_1.jpg diff --git a/1226/CH20/EX20.1/EX20_1.sce b/1226/CH20/EX20.1/EX20_1.sce new file mode 100755 index 000000000..f505de132 --- /dev/null +++ b/1226/CH20/EX20.1/EX20_1.sce @@ -0,0 +1,14 @@ +clc;funcprot(0);//EXAMPLE 20.1
+// Initialisation of Variables
+v1=1;.........//Volume of air taken in m^3/min
+p1=1.013;...............//Intake pressure in bar
+t1=288;...............//Intake temperature in K
+p2=7;......................//Delivery pressure in bar
+n=1.35;..............//Adiabatic index
+R=287;..............//Gas constant in kJ/kgK
+//Calculations
+m=(p1*v1*10^5)/(R*t1);..............//Mass of air delivered per min in kg
+t2=t1*((p2/p1)^((n-1)/n));...........//Delivery temperature in K
+iw=(n/(n-1))*m*R*(t2-t1);............//Indicated work in kJ/min
+IP=iw/(60*1000);....................//Indicated power
+disp(IP,"Indicated power in kW:")
diff --git a/1226/CH20/EX20.10/EX20_10.jpg b/1226/CH20/EX20.10/EX20_10.jpg Binary files differnew file mode 100755 index 000000000..81a051674 --- /dev/null +++ b/1226/CH20/EX20.10/EX20_10.jpg diff --git a/1226/CH20/EX20.10/EX20_10.sce b/1226/CH20/EX20.10/EX20_10.sce new file mode 100755 index 000000000..c8444a23a --- /dev/null +++ b/1226/CH20/EX20.10/EX20_10.sce @@ -0,0 +1,14 @@ +clc;funcprot(0);//EXAMPLE 20.10
+// Initialisation of Variables
+L=88;...........//Compressor stroke in cm
+k=0.02;...........//Clearance ratio
+p3=8.2;...........//Delivery pressure in bar
+p4=1.025;.......//Suction pressure in bar
+p1=p4;.......//Suction pressure in bar
+n=1.3;.........//Compression index
+lo=0.55;...//Length of distance piece fitted after overhaul in cm
+//Calculations
+pcfa=(((L+(L*k))-((L*k)*((p3/p4)^(1/n))))-(((k*L)+lo+L)-(((k*L)+lo)*((p3/p4)^(1/n)))))/((L+L*k)-((L*k)*((p3/p4)^(1/n))))
+disp(pcfa*100,"Percentage change in free air delivery:")
+pcpa=pcfa;......//Percentage change in power delivered
+disp(pcpa*100,"Percentage change in power delivered:")
diff --git a/1226/CH20/EX20.11/EX20_11.jpg b/1226/CH20/EX20.11/EX20_11.jpg Binary files differnew file mode 100755 index 000000000..8e6cc21cb --- /dev/null +++ b/1226/CH20/EX20.11/EX20_11.jpg diff --git a/1226/CH20/EX20.11/EX20_11.sce b/1226/CH20/EX20.11/EX20_11.sce new file mode 100755 index 000000000..c8be82cbc --- /dev/null +++ b/1226/CH20/EX20.11/EX20_11.sce @@ -0,0 +1,26 @@ +clc;funcprot(0);//EXAMPLE 20.11
+// Initialisation of Variables
+v=30;.............//Suction volume in m^3/min
+p1=1;...........//Suction pressure in bar
+t1=300;.........//Suction temperature in K
+p2=16;...........//Delivery pressure in bar
+N=320;..........//Compressor rpm
+k=0.04;.........//Clearance ratio
+rld=1.2;.........//Ratio of stroke to bore
+etamech=0.82;....//Mechanical efficiency
+n=1.32;.........//Compression index
+ti=39+273;......//Temperature inside the suction chamber in K
+nc=4;.........//No of cylineders
+//Calculations
+W=(n/(n-1))*(p1/1000)*10^5*(v/60)*(((p2/p1)^((n-1)/n))-1);........//Work done in kW
+mp=W/etamech;..........//Motor power in kW
+disp(mp,"Motor power in kW:")
+etav=((1+k)-(k*((p2/p1)^(1/n))))*(t1/ti);........//Volumetric efficiency
+Vs=(v/nc)*(1/(2*N))*(1/etav);............//Swept volume of cylinder in m^3
+D=(Vs/((%pi/4)*rld))^(1/3);.............//Compressor bore in m
+L=D*rld;..............//Compresor stroke in m
+disp(D*1000,"Compressor bore in mm:")
+disp(L*1000,"Compressor stroke in mm:")
+
+
+
diff --git a/1226/CH20/EX20.12/EX20_12.jpg b/1226/CH20/EX20.12/EX20_12.jpg Binary files differnew file mode 100755 index 000000000..b37c41eb0 --- /dev/null +++ b/1226/CH20/EX20.12/EX20_12.jpg diff --git a/1226/CH20/EX20.12/EX20_12.sce b/1226/CH20/EX20.12/EX20_12.sce new file mode 100755 index 000000000..92057e6a7 --- /dev/null +++ b/1226/CH20/EX20.12/EX20_12.sce @@ -0,0 +1,28 @@ +clc;funcprot(0);//EXAMPLE 20.12
+// Initialisation of Variables
+n=2;........//No of cylinders
+ma=16;........//Mass of air supplied per min in kg
+p1=1;........//Suction pressure in bar
+t1=288;.......//Suction temperature in K
+k=0.04;.......//Clearance ratio
+ni=1.3;........//Compression index
+R=0.287;........//Gas constant in kJ/kgK
+N=2000;........//Engine rpm
+p3=7;...........//Delivery pressure in bar
+rld=1.2;...........//Ratio of stroke to bore for compressor cylinder and engine cylinder
+etamech=0.82;.........//Mechanical efficiency of engine
+pmb=5.5;..........//Mean effective pressure in bar in engine
+ne=4;.............//No of engine cylinders
+//Calculations
+Vs=(((ma/n)*R*1000*t1)/(p1*10^5*N))/((1+k)-(k*((p3/p1)^(1/ni))));
+Dc=(Vs/((%pi/4)*rld))^(1/3);.........//Diameter of compressor cylinder in m
+Lc=rld*Dc;.............//Stroke of the compressor cylinder in m
+disp(Dc*1000,"Diameter of compressor cylinder in mm:")
+disp(Lc*1000,"Stroke of compressor cylinder in mm:")
+IP=(ni/(ni-1))*(ma/60)*R*t1*(((p3/p1)^((ni-1)/ni))-1);......//Indicated power of the compressor in kW
+BP=IP/etamech;...............//Brake power of the engine in kW
+De=((BP*60*1000)/(ne*pmb*10^5*rld*(%pi/4)*N))^(1/3);......//Diameter of the engine cylinder in m
+Le=rld*De;...........//Stroke of the engine cylinder in m
+disp(De*1000,"Diameter of engine cylinder in mm:")
+disp(Le*1000,"Stroke of engine cylinder in mm:")
+
diff --git a/1226/CH20/EX20.13/EX20_13.jpg b/1226/CH20/EX20.13/EX20_13.jpg Binary files differnew file mode 100755 index 000000000..a7196436d --- /dev/null +++ b/1226/CH20/EX20.13/EX20_13.jpg diff --git a/1226/CH20/EX20.13/EX20_13.sce b/1226/CH20/EX20.13/EX20_13.sce new file mode 100755 index 000000000..c91b136e1 --- /dev/null +++ b/1226/CH20/EX20.13/EX20_13.sce @@ -0,0 +1,26 @@ +clc;funcprot(0);//EXAMPLE 20.13
+// Initialisation of Variables
+nc=1.25;......//Index of compression
+ne=1.3;......//Index of expansion
+etamech=0.85;.......//Mechanical efficiency
+p1=1;.........//Suction pressure in bar
+p2=7.5;.......//Delivery pressure in bar
+t1=25+273;....//Suction temperature in bar
+Vamb=2.2;.....//Volume of free air delivered in m^3
+N=310;........//Engine rpm
+k=0.05;.......//Clearance ratio
+pamb=1.03;.....//Ambient pressure in bar
+tamb=293;......//Ambient temperature in K
+//Calculations
+etav=(1+k-(k*((p2/p1)^(1/ne))));........//Volumetric efficiency
+disp(etav*100,"Volumetric efficiency in %:")
+v1=(pamb*Vamb*t1)/(p1*tamb);.......//Volume of air delivered at suction condition in m^3
+vs=(v1/(etav*N*2));.........//Swept volume in m^3
+D=(vs/(%pi/4))^(1/3);........//Diameter of the cylinder in m
+L=D;
+disp(D*100,"Diameter of the cylinder in cm:")
+disp(L*100,"Stroke of the cylinder in cm:")
+W=2*vs*10^5*(((nc)/(nc-1))*p1*(1+k)*(((p2/p1)^((nc-1)/(nc)))-1)-((ne)/(ne-1))*p1*(k*((p2/p1)^(1/ne)))*(((p2/p1)^((ne-1)/(ne)))-1));..........//Work done per cycle of operation in Nm/cycle
+IP=W*N/(60*1000);...............//Indicated power in kW
+BP=IP/etamech;.............//Brake power in kW
+disp(BP,"Brake power in kW:")
diff --git a/1226/CH20/EX20.14/EX20_14.jpg b/1226/CH20/EX20.14/EX20_14.jpg Binary files differnew file mode 100755 index 000000000..6d42e3007 --- /dev/null +++ b/1226/CH20/EX20.14/EX20_14.jpg diff --git a/1226/CH20/EX20.14/EX20_14.sce b/1226/CH20/EX20.14/EX20_14.sce new file mode 100755 index 000000000..f6fa526ca --- /dev/null +++ b/1226/CH20/EX20.14/EX20_14.sce @@ -0,0 +1,16 @@ +clc;funcprot(0);//EXAMPLE 20.14
+// Initialisation of Variables
+v=14;..........//Volume of air delivered in m^3
+p1=1;........//Suction pressure in bar
+p2=7;........//Delivery pressure in bar
+N=310;........//Compressor rpm
+n=1.35;........//Compression index
+k=0.05;........//Clearance ratio
+rld=1.5;.........//Ratio of cylinder length and diameter
+//Calculations
+etav=(1+k)-(k*((p2/p1)^(1/n)));..........//Volumetric efficiency
+Vs=v/(etav*N);.............//Swept volume in m^3
+D=((Vs)/((%pi/4)*rld))^(1/3);......//Compressor diameter in m
+L=rld*D;......................//Compressor stroke in m
+disp(D*100,"Compressor diameter in cm:")
+disp(L*100,"Compressor stroke in cm:")
diff --git a/1226/CH20/EX20.15/EX20_15.jpg b/1226/CH20/EX20.15/EX20_15.jpg Binary files differnew file mode 100755 index 000000000..c11848e0d --- /dev/null +++ b/1226/CH20/EX20.15/EX20_15.jpg diff --git a/1226/CH20/EX20.15/EX20_15.sce b/1226/CH20/EX20.15/EX20_15.sce new file mode 100755 index 000000000..daa9897b3 --- /dev/null +++ b/1226/CH20/EX20.15/EX20_15.sce @@ -0,0 +1,28 @@ +clc;funcprot(0);//EXAMPLE 20.15
+// Initialisation of Variables
+D=0.33;.........//Cylinder diameter in m
+L=0.35;.........//Cylinder stroke in m
+k=0.05;.........//Clearance ratio
+N=300;..........//Compressor rpm
+psuc=0.95;........//Suction pressure in bar
+tsuc=298;.........//Suction temperature in K
+pamb=1.013;......//Ambient pressure in bar
+tamb=293;.........//Ambient temperature in K
+p2=4.5;...........//Delivery pressure in bar
+n=1.25;..........//Compression index
+cv=0.717;...........//Specific heat at constant volume in kJ/kgK
+ga=1.4;..........//Ratio of specific heats
+etamech=0.8;......//Mechanical efficiency
+R=0.287;.........//Gas constant in kJ/kgK
+//Calculations
+Vs=(%pi/4)*D*D*L*N*2;............//Swept volume in m^3
+p1=psuc;etav=1-(k*(((p2/p1)^(1/n))-1));........//Volumetric efficiency
+Vad=Vs*etav;................//Actual air drawn per min in m^3
+FAD=(psuc/pamb)*(tamb/tsuc)*Vad;............//Free air delivered in m^3/min
+disp(FAD,"Free air delivered in m^3/min:")
+t1=tsuc;ma=(p1*10^5*Vad)/(R*1000*t1);.......//Mass of air delivered per min in kg
+t2=t1*((p2/p1)^((n-1)/n));..........//Delivery temperature in K
+Qr=ma*cv*((ga-n)/(n-1))*(t2-t1);..........//Heat rejected during compression in kJ/min
+disp(Qr,"Heat rejected during compression in kJ/min:")
+P=((n)/(n-1))*R*t1*(ma/60)*(((p2/p1)^((n-1)/(n)))-1)*(1/etamech);..........//Power needed to drive the compressor in kW
+disp(P,"Power needed to drive the compressor in kW:")
diff --git a/1226/CH20/EX20.16/EX20_16.jpg b/1226/CH20/EX20.16/EX20_16.jpg Binary files differnew file mode 100755 index 000000000..87eae87bb --- /dev/null +++ b/1226/CH20/EX20.16/EX20_16.jpg diff --git a/1226/CH20/EX20.16/EX20_16.sce b/1226/CH20/EX20.16/EX20_16.sce new file mode 100755 index 000000000..128c386fe --- /dev/null +++ b/1226/CH20/EX20.16/EX20_16.sce @@ -0,0 +1,16 @@ +clc;funcprot(0);...//Example 20.16
+//Initialisation of variables
+p1=1.03;...........//Intake pressure in bar
+t1=300;............//Intake temperature in K
+p2=7;.............//Intake pressure for High pressure cylinder in bar
+t2=310;..............//Temperature of air entering high pressure cylinder in K
+p3=40;............//Pressure of air after compression in bar
+V=30;.........//volume of air delivered in m^3/h
+R=0.287;............//Gas constant for air in kJ/kgK
+ga=1.4;...........//Ratio of specific heats
+//Calculations
+m=p1*10^5*V/(R*1000*t1);..........//Mass of air compressed in kg/h
+t21=t1*((p2/p1)^((ga-1)/ga));.......//Actual temperature of air entering high pressure cylinder in K
+t3=t2*((p3/p2)^((ga-1)/ga));........//Actual temperature of air after compression in K
+W=((ga)/(ga-1))*m*(R/3600)*(t21-t1+t3-t2);..........//Power required to run compressor in kW
+disp(W,"Power required to run the compressor in kW:")
diff --git a/1226/CH20/EX20.17/EX20_17.jpg b/1226/CH20/EX20.17/EX20_17.jpg Binary files differnew file mode 100755 index 000000000..65e1fe5b5 --- /dev/null +++ b/1226/CH20/EX20.17/EX20_17.jpg diff --git a/1226/CH20/EX20.17/EX20_17.sce b/1226/CH20/EX20.17/EX20_17.sce new file mode 100755 index 000000000..6a3122106 --- /dev/null +++ b/1226/CH20/EX20.17/EX20_17.sce @@ -0,0 +1,22 @@ +clc;funcprot(0);//EXAMPLE 20.17
+// Initialisation of Variables
+FAD=6;.......//Free air delivered in m^3/min
+p1=1;........//suction pressure in bar
+t1=300;......//Suction temperature in K
+p3=40;.......//Delivery pressure in bar
+p2=6;........//Intermediate pressure in bar
+t3=300;........//Temperature at the inlet to 2nd stage in K
+n=1.3;.........//Compression index
+etamech=0.8;.....//Mechanical efficiency
+N=400;............//Compressor rpm
+R=0.287;.........//Gas constant in kJ/kgK
+//Calculations
+dlp=(FAD/(N*(%pi/4)))^(1/3);...............//Diameter of the low pressure cylinder in m
+dhp=sqrt(1/(dlp*N*(%pi/4)));............//Diameter of high pressure cylinder in m
+disp(dlp*1000,"Diameter of low pressure cylinder in mm:")
+disp(dhp*1000,"Diameter of high pressure cylinder in mm:")
+m=(p1*FAD*10^5)/(R*t1*1000*60);........//Mass flow of air in kg/s
+W=n*(1/(n-1))*m*R*t1*(((p2/p1)^((n-1)/n))+((p3/p2)^((n-1)/n))-2);........//Indicated work in kJ/s
+P=W/etamech;...............//Power required in kW
+disp(P,"Power required to run the compressor:")
+
diff --git a/1226/CH20/EX20.18/EX20_18.jpg b/1226/CH20/EX20.18/EX20_18.jpg Binary files differnew file mode 100755 index 000000000..7013e5550 --- /dev/null +++ b/1226/CH20/EX20.18/EX20_18.jpg diff --git a/1226/CH20/EX20.18/EX20_18.sce b/1226/CH20/EX20.18/EX20_18.sce new file mode 100755 index 000000000..61a6fd81a --- /dev/null +++ b/1226/CH20/EX20.18/EX20_18.sce @@ -0,0 +1,24 @@ +clc;funcprot(0);//EXAMPLE 20.18
+// Initialisation of Variables
+ns=2;.............//No of stages
+v1=0.2;.........//Intake volume in m^3/s
+p1=1;..........//Intake pressure in bar
+t1=289;...............//Intake temperature in K
+p3=7;.........//Final pressure in bar
+n=1.25;.......//Compression index
+N=600;........//Compressor rpm
+cp=1.005;.....//Specific heat at constant pressure in kJ/kgK
+R=0.287;......//Gas constant in kJ/kgK
+//Calculations
+p2=sqrt(p1*p3);......//Intermediate pressure in bar
+disp(p2/10,"Intermediate pressure in Mpa:")
+vslp=60*v1/N;..........//Volume of low pressure cylinder in m^3
+vshp=p1*vslp/p2;..........//Volume of high pressure cylinder in m^3
+disp(vslp,"Volume of low pressure cylinder in m^3:")
+disp(vshp,"Volume of high pressure cylinder in m^3:")
+W=(ns*(n/(n-1)))*p1*10^5*(v1/1000)*(((p3/p1)^((n-1)/(ns*n)))-1);...........//Power required to drive the compressor in kW
+disp(W,"Power required to drive the compressor in kW:")
+m=p1*10^5*v1/(R*t1*1000);.........//Mass of air handled in kg/s
+t2=t1*((p2/p1)^((n-1)/n));.........//Temperature at the end of first stage compression in K
+Qr=m*cp*(t2-t1);.......//Heat rejected in the intercooler in kW
+disp(Qr,"Heat rejected in the intercooler in kW:")
diff --git a/1226/CH20/EX20.19/EX20_19.jpg b/1226/CH20/EX20.19/EX20_19.jpg Binary files differnew file mode 100755 index 000000000..17b61ae3b --- /dev/null +++ b/1226/CH20/EX20.19/EX20_19.jpg diff --git a/1226/CH20/EX20.19/EX20_19.sce b/1226/CH20/EX20.19/EX20_19.sce new file mode 100755 index 000000000..601cd78cc --- /dev/null +++ b/1226/CH20/EX20.19/EX20_19.sce @@ -0,0 +1,11 @@ +clc,funcprot(0);.......//Example 20.19
+//initialisation of variables
+p3=30;..........//delivery pressure in bar
+p1=1;.........//suction pressure in bar
+t1=273+15;.......//suction temperature in K
+n=1.3;.........//adiabatic index
+//calculation
+p2=sqrt(p1*p3);.....//Pressure before entering High pressure cylinder in bar
+t21=t1*((p2/p1)^((n-1)/n));.........//Actual temperature before entering the high pressure turbine in K
+r=sqrt((p2^(1/n))*(t21/t1));............//Ratio of cylinder diameters
+disp(r,"Ratio of cylinder diameters:")
diff --git a/1226/CH20/EX20.2/EX20_2.jpg b/1226/CH20/EX20.2/EX20_2.jpg Binary files differnew file mode 100755 index 000000000..5a571ba93 --- /dev/null +++ b/1226/CH20/EX20.2/EX20_2.jpg diff --git a/1226/CH20/EX20.2/EX20_2.sce b/1226/CH20/EX20.2/EX20_2.sce new file mode 100755 index 000000000..e14c38c34 --- /dev/null +++ b/1226/CH20/EX20.2/EX20_2.sce @@ -0,0 +1,25 @@ +clc;funcprot(0);//EXAMPLE 20.2
+// Initialisation of Variables
+N=300;............//Compressor rpm
+afr=15;.........//Air fuel ratio
+etamech=0.85;....//Mechanical efficiency
+etamt=0.9;.......//Motor transmission efficiency
+v=1;............//Volume dealt with per min at inlet in m^3/min
+rld=1.5;........//Ratio of stroke to diameter
+v1=1;.........//Volume of air taken in m^3/min
+p1=1.013;...............//Intake pressure in bar
+t1=288;...............//Intake temperature in K
+p2=7;......................//Delivery pressure in bar
+n=1.35;..............//Adiabatic index
+R=287;..............//Gas constant in kJ/kgK
+//Calculations
+m=(p1*v1*10^5)/(R*t1);..............//Mass of air delivered per min in kg
+t2=t1*((p2/p1)^((n-1)/n));...........//Delivery temperature in K
+iw=(n/(n-1))*m*R*(t2-t1);............//Indicated work in kJ/min
+IP=iw/(60*1000);....................//Indicated power in kW
+vdc=v/N;........//Volume drawn in per cycle in m^3
+D=(vdc/((%pi/4)*rld))^(1/3);..........//Cylinder bore in m
+disp(D*1000,"Cylinder bore in mm:")
+pc=IP/etamech;.........//Power input to the compressor in kW
+mp=pc/etamt;..........//Motor power in kW
+disp(mp,"Motor power in kW:")
diff --git a/1226/CH20/EX20.20/EX20_20.jpg b/1226/CH20/EX20.20/EX20_20.jpg Binary files differnew file mode 100755 index 000000000..6ca870408 --- /dev/null +++ b/1226/CH20/EX20.20/EX20_20.jpg diff --git a/1226/CH20/EX20.20/EX20_20.sce b/1226/CH20/EX20.20/EX20_20.sce new file mode 100755 index 000000000..5d7ad79c7 --- /dev/null +++ b/1226/CH20/EX20.20/EX20_20.sce @@ -0,0 +1,22 @@ +clc;funcprot(0);//EXAMPLE 20.20
+// Initialisation of Variables
+ns=2;.........//No of stages
+p1=1;........//Suction pressure in bar
+p2=7.4;.......//Intercooler pressure in bar
+p3=42.6;.......//Delivery pressure in bar
+t1=15+273;......//Suction temperature in K
+n=1.3;........//Compression index
+R=0.287;.......//Gas constant in kJ/kgK
+dlp=0.09;.......//Diameter of low pressure cylinder in m
+dhp=0.03;.......//Diameter of high pressure cylinder in m
+etav=0.9;.....//Volumetric efficiency
+//Calculations
+W=n*(1/(n-1))*R*t1*(((p2/p1)^((n-1)/n))+((p3/p2)^((n-1)/n))-2);
+disp(W,"Work done in compressing 1 kg of gas in kJ:")
+//Given that stroke length is same in both cases
+rV=p2/p1;.........//Ratio of volumes
+rECV=((dlp/dhp)^2)*etav;.........//Ratio of effective cylinder volumes
+if (rECV>rV) then disp("Pressure in the intercooler would rise.")
+else if (rECV<rV) then disp("Pressure in the intercooler would fall")
+ end
+end
diff --git a/1226/CH20/EX20.21/EX20_21.jpg b/1226/CH20/EX20.21/EX20_21.jpg Binary files differnew file mode 100755 index 000000000..4609b876f --- /dev/null +++ b/1226/CH20/EX20.21/EX20_21.jpg diff --git a/1226/CH20/EX20.21/EX20_21.sce b/1226/CH20/EX20.21/EX20_21.sce new file mode 100755 index 000000000..5110213d3 --- /dev/null +++ b/1226/CH20/EX20.21/EX20_21.sce @@ -0,0 +1,23 @@ +clc;funcprot(0);//EXAMPLE 20.21
+// Initialisation of Variables
+V=4;...........//Volume of air handled in m^3/min
+p1=1.016;.....//Suction pressure in bar
+t1=288;........//Suction temperature in K
+N=250;.........//Compressor rpm
+p3=78.65;.....//Delivery pressure in bar
+vp=3;........//Piston speed in m/s
+etamech=0.75;.....//mechanical efficiency
+etav=0.8;........//Volumetric efficiency
+n=1.25;..........//Compression index
+R=287;...........//Gas constant in J/kgK
+ns=2;............//No of stages
+//Calculations
+l=(vp*60)/(2*N);..........//Stroke length in m
+d=sqrt(V/((%pi/4)*l*N*etav));.......//Bore in m
+disp(l,"Stroke length in m:")
+disp(d,"Bore in m:")
+m=(p1*10^5*V)/(R*t1);.......//Mass of air handled by the compressor in kg/min
+p2=sqrt(p1*p3);.............//Intermediate pressure in bar
+t2=t1*((p2/p1)^((n-1)/n));.........//Temperature at the end of first stage compression in K
+W=ns*(n/(n-1))*(m/60)*(R/1000)*(t2-t1)*(1/etamech);..........//Work required in kW
+disp(W,"Work required in kW:")
diff --git a/1226/CH20/EX20.22/EX20_22.jpg b/1226/CH20/EX20.22/EX20_22.jpg Binary files differnew file mode 100755 index 000000000..9801fdb57 --- /dev/null +++ b/1226/CH20/EX20.22/EX20_22.jpg diff --git a/1226/CH20/EX20.22/EX20_22.sce b/1226/CH20/EX20.22/EX20_22.sce new file mode 100755 index 000000000..74bb9ca88 --- /dev/null +++ b/1226/CH20/EX20.22/EX20_22.sce @@ -0,0 +1,24 @@ +clc;funcprot(0);//EXAMPLE 20.22
+// Initialisation of Variables
+m=4.5;.........//Amount of air compressed in kg/min
+ps=1.013;.......//Suction pressure in bar
+ts=288;.........//Suction temperature in K
+rp=9;...........//Pressure ratio
+n=1.3;.........//Compression index
+k=0.05;........//Clearance ratio
+N=300;.........//Compressor rpm
+R=287;.........//Gas constant in J/kgK
+ns=2;............//No of stages
+//Calculations
+ti=round(ts*((sqrt(rp))^((n-1)/n)));......//Intermediate temperature in K
+W=round(ns*n*(1/(n-1))*m*(R/1000)*(ti-ts));..........//Work required per min in kJ
+IP=W/60;.........//Indicated power in kW
+disp(IP,"Indicated power in kW:")
+mc=m/N;...........//Mass induced per cycle in kg
+etav=(1+k)-(k*(sqrt(rp)^(1/n)));.......//Volumetric efficiency
+Vs=(mc*R*ts)/(ps*10^5*etav);........//Swept volume for low pressure cylinder in m^3
+disp(Vs,"Swept volume for low pressure cylinder in m^3:")
+vdhp=(mc*ts*R)/(sqrt(rp)*ps*10^5);............//Volume of air drawn in high pressure cylinder per cycle in m^3
+vshp=vdhp/etav;...............//Swept volume ofhigh pressure cylinder in m^3
+disp(vshp,"Swept volume of high pressure cylinder in m^3:")
+
diff --git a/1226/CH20/EX20.23/EX20_23.jpg b/1226/CH20/EX20.23/EX20_23.jpg Binary files differnew file mode 100755 index 000000000..027eceddb --- /dev/null +++ b/1226/CH20/EX20.23/EX20_23.jpg diff --git a/1226/CH20/EX20.23/EX20_23.sce b/1226/CH20/EX20.23/EX20_23.sce new file mode 100755 index 000000000..c425c2342 --- /dev/null +++ b/1226/CH20/EX20.23/EX20_23.sce @@ -0,0 +1,30 @@ +clc;funcprot(0);//EXAMPLE 20.23
+// Initialisation of Variables
+v1=2.2;...........//free air delivered by the compressor in m^3/min
+p1=1;........//Suction pressure in bar
+t1=298;.......//Suction temperature in K
+pd=55;........//Delivery pressure in bar
+N=210;.......//Compressor rpm
+n=1.3;........//Compression index
+k=0.05;.......//Clearance ratio for high pressure and low pressure cylinders
+R=287;.......//Gas constant in J/kgK
+ns=2;.......//No of stages
+//Calculations
+ps=p1;
+m =(p1*v1*10^5)/(R*t1);.........//Mass of air deivered in m^3/min
+W=(ns*(n/(n-1)))*m*R*t1*(((pd/ps)^((n-1)/(ns*n)))-1);...........//Work done by compressor in Nm/min
+P=W/(60*1000);...........//Power required to run the compressor
+disp(P,"Power required to run the compressor in kW:")
+pi=sqrt(ps*pd);........//Intermediate pressure in bar
+etav1=(1+k)-(k*((pi/p1)^(1/n)));...........//Volumetric efficiency of the low pressure cylinder
+Vs=(v1*10^6)/(etav1*N);............//Swept volume in cm^3
+dlp=(Vs/((%pi/4)))^(1/3);..........//Diameter of low pressure cylinder in cm
+llp=dlp;.................//Stroke of low pressure cylinder in cm
+disp(dlp,"Bore of low pressure cylinder in cm:")
+disp(llp,"Stroke of low pressure cylinder in cm:")
+dhp=sqrt(dlp*dlp/pi);.........//Diameter of high pressure cylinder in cm
+lhp=llp;
+disp(dhp,"Bore of high pressure cylinder in cm:")
+disp(lhp,"Stroke of high pressure cylinder in cm:")
+rcv=pi/ps;.....//Ratio of cylinder volumes
+disp(rcv,"Ratio of cylinder volumes:")
diff --git a/1226/CH20/EX20.24/EX20_24.jpg b/1226/CH20/EX20.24/EX20_24.jpg Binary files differnew file mode 100755 index 000000000..84f7b6f51 --- /dev/null +++ b/1226/CH20/EX20.24/EX20_24.jpg diff --git a/1226/CH20/EX20.24/EX20_24.sce b/1226/CH20/EX20.24/EX20_24.sce new file mode 100755 index 000000000..84094267b --- /dev/null +++ b/1226/CH20/EX20.24/EX20_24.sce @@ -0,0 +1,29 @@ +clc;funcprot(0);//EXAMPLE 20.24
+// Initialisation of Variables
+p1=1;........//Suction pressure in bar
+p2=4;.....//Intermediate pressure in bar
+p5=3.8;.......//Pressure of air leaving the interooler in bar
+p6=15.2;........//Delivery pressure in bar
+t1=300;..........//Suction temperature in K
+dlp=0.36;........//Diameter of low pressure cylinder in m
+llp=0.4;........//Stroke of low pressure cylinder in m
+N=220;........//Compressor rpm
+k=0.04;........//Clearance ratio
+cp=1.0035;.........//Specific heat at constant pressure in kJ/kgK
+n=1.3;........//Compression index
+R=0.287;........//Gas constant in kJ/kgK
+p8=p5;p3=p2;p7=p6;t5=t1;
+//Calculations
+Vslp=(%pi/4)*dlp*dlp*llp*N*2;.......//Swept volume in m^3
+etavlp=(1+k)-(k*((p2/p1)^(1/n)));.....//Volumetric efficiency
+valp=Vslp*etavlp;................//Volume of air drawn in low pressure cylinder in m^3
+m=(p1*10^5*valp)/(R*1000*t1);........//Mass of air drawin in kg/min
+t2=round(t1*((p2/p1)^((n-1)/n)));
+Qr=m*cp*(t2-t5);........//Heat rejected to the intercooler in kJ/min
+disp(Qr,"Heat rejected to the intercooler in kJ/min:")
+vahp=(m*R*t5*1000)/(p5*10^5);...//Volume of air drawn into high pressure cylinder per min in m^3
+Vshp=vahp/etavlp;.........//Swept volume of high pressure cylinder in m^3/min
+dhp=sqrt(Vshp/((%pi/4)*2*N*llp));..........//Diameter of high pressure cylinder in m
+disp(dhp*1000,"Diameter of high pressure cylinder in mm:")
+P=(n/(n-1))*m*(1/60)*R*(t2-t1);.......//Power required for high pressure cylinder in kW
+disp(P,"Power required for high pressure cylinder in kW:")
diff --git a/1226/CH20/EX20.25/EX20_25.jpg b/1226/CH20/EX20.25/EX20_25.jpg Binary files differnew file mode 100755 index 000000000..c896b686e --- /dev/null +++ b/1226/CH20/EX20.25/EX20_25.jpg diff --git a/1226/CH20/EX20.25/EX20_25.sce b/1226/CH20/EX20.25/EX20_25.sce new file mode 100755 index 000000000..05630ff5c --- /dev/null +++ b/1226/CH20/EX20.25/EX20_25.sce @@ -0,0 +1,27 @@ +clc;funcprot(0);//EXAMPLE 20.25
+// Initialisation of Variables
+ps=1;........//Suction pressure in bar
+pi=4.2;.....//Intermediate pressure in bar
+pi1=4;.......//Pressure of air leaving the interooler in bar
+pd=18;........//Delivery pressure in bar
+t1=298;..........//Suction temperature in K
+t5=t1;
+dlp=0.4;........//Diameter of low pressure cylinder in m
+llp=0.5;........//Stroke of low pressure cylinder in m
+N=200;........//Compressor rpm
+k=0.05;........//Clearance ratio
+cp=1.004;.........//Specific heat at constant pressure in kJ/kgK
+n=1.25;........//Compression index
+R=0.287;........//Gas constant in kJ/kgK
+//Calculations
+Vslp=(%pi/4)*dlp*dlp*llp;..........//Swept volume of low pressure cylinder in m^3
+etavlp=(1+k)-(k*((pi/ps)^(1/n)));.....//Volumetric efficiency
+t2=round(t1*((pi/ps)^((n-1)/n)));
+m=(ps*10^5*etavlp*Vslp)/(R*1000*t1);...//Mass of air in kg
+wlp=((n)/(n-1))*R*1000*t1*m*(((pi/ps)^((n-1)/(n)))-1);..........//Work done per min in Nm in low pressure cylinder
+whp=((n)/(n-1))*R*t5*m*1000*(((pd/pi1)^((n-1)/(n)))-1);..........//Work done per min in Nm in high pressure cylinder
+W=wlp+whp;.........//Net work done in Nm
+IP=(W*N)/(60*1000);............//Power required to run the compressor in kW
+disp(IP,"Power required to run the compressor in kW:")
+Qr=m*N*cp*(t2-t1);...........//Heat rejected in intercooler in kJ/min
+disp(Qr,"Heat rejected in intercooler in kJ/min:")
diff --git a/1226/CH20/EX20.26/EX20_26.jpg b/1226/CH20/EX20.26/EX20_26.jpg Binary files differnew file mode 100755 index 000000000..3115cdf9d --- /dev/null +++ b/1226/CH20/EX20.26/EX20_26.jpg diff --git a/1226/CH20/EX20.26/EX20_26.sce b/1226/CH20/EX20.26/EX20_26.sce new file mode 100755 index 000000000..67e6dbb48 --- /dev/null +++ b/1226/CH20/EX20.26/EX20_26.sce @@ -0,0 +1,37 @@ +clc;funcprot(0);//EXAMPLE 20.26
+// Initialisation of Variables
+p1=1;............//Intake pressure in bar
+p2=4;..............//Pressure after first stage in bar
+p3=16;............//Final pressure in bar
+ns=2;............//No of stages
+t1=300;............//Intake temperature in K
+n=1.3;............//Compression index
+klp=0.04;.........//Clearance ratio for low pressure cylinder
+khp=0.06;........//Clearance ratio for high pressure cylinder
+N=440;............//Engine rpm
+R=0.287;..........//Gas constant in kJ/kgK
+m=10.5;.............//Mass of air delivered in kg/min
+cp=1.005;.........//Specific heat at constant pressure in kJ/kgK
+//Calculations
+rp=sqrt(p1*p3);...........//Pressure ratio per stage
+P=((ns*n)/(n-1))*R*t1*(m/60)*(((p3/p1)^((n-1)/(ns*n)))-1);..........//Work done per min in Nm
+disp(P,"Power required in kW:")
+isoWd=(m/60)*R*t1*log(p3/p1);..........//Isothermal work done in Nm
+disp(isoWd,"Isothermal work done in kW:")
+etaiso=isoWd/P;...............//Isothermal efficiency
+disp(etaiso*100,"Isothermal efficiency in %:")
+FAD=(m*R*t1*1000)/(p1*10^5);.............//Free air delivered in m^3/min
+disp(FAD,"Free air delivered in m^3/min:")
+t2=t1*((p2/p1)^((n-1)/n));.....//Temperature at the end of compression in K
+Qt=(m/60)*cp*(t2-t1);..............//Heat transferred in intercooler in kW
+disp(Qt,"Heat transferred in intercooler in kW:")
+etavlp=(1+klp)-(klp*((p2/p1)^(1/n)));..........//Volumetric efficiency of low pressure stage
+etavhp=(1+khp)-(khp*((p2/p1)^(1/n)));..........//Volumetric efficiency of high pressure stage
+vslp=FAD/(N*etavlp);......//Swept volume for low pressure stage in m^3
+vclp=klp*vslp;..............//Clearance volume for low pressure stage in m^3
+printf("\nSwept volume for low pressure stage in m^3: %f\n",vslp)
+printf("\nClearance volume for low pressure stage in m^3: %f\n",vclp)
+vshp=FAD/(N*rp*etavhp);......//Swept volume for high pressure stage in m^3
+vchp=khp*vshp;..............//Clearance volume for high pressure stage in m^3
+printf("\nSwept volume for high pressure stage in m^3: %f\n",vshp)
+printf("\nClearance volume for high pressure stage in m^3: %f\n",vchp)
diff --git a/1226/CH20/EX20.27/EX20_27.jpg b/1226/CH20/EX20.27/EX20_27.jpg Binary files differnew file mode 100755 index 000000000..acfb6c9c7 --- /dev/null +++ b/1226/CH20/EX20.27/EX20_27.jpg diff --git a/1226/CH20/EX20.27/EX20_27.sce b/1226/CH20/EX20.27/EX20_27.sce new file mode 100755 index 000000000..9c45d9281 --- /dev/null +++ b/1226/CH20/EX20.27/EX20_27.sce @@ -0,0 +1,18 @@ +clc;funcprot(0);//EXAMPLE 20.27
+// Initialisation of Variables
+ns=3;......//No of stages
+p1=1.05;......//Intake pressure in bar
+pd=40;..........//Delivery pressure in bar
+V=3;..........//Volume of air xupplied per min in m^3
+n=1.25;........//Compression index
+//Calculations
+Wd=((ns*n)/(n-1))*p1*V*10^5*(((pd/p1)^((n-1)/(ns*n)))-1);..........//Work done per min in Nm
+disp(Wd,"Work done in Nm:")
+isoWd=10^5*p1*V*log(pd/p1);..........//Isothermal work done in Nm
+disp(isoWd,"Isothermal work done in Nm:")
+etaiso=isoWd/Wd;...............//Isothermal efficiency
+disp(etaiso*100,"Isothermal efficiency in %:")
+wdss=((n)/(n-1))*p1*V*10^5*(((pd/p1)^((n-1)/(n)))-1);..........//Single stage Work done per min in Nm
+disp(wdss,"Single stage work done per min in Nm:")
+perws=(wdss-Wd)/wdss;.......//Percentage of work saved
+disp(perws*100,"Percentage of work saved:")
diff --git a/1226/CH20/EX20.28/EX20_28.jpg b/1226/CH20/EX20.28/EX20_28.jpg Binary files differnew file mode 100755 index 000000000..323497c62 --- /dev/null +++ b/1226/CH20/EX20.28/EX20_28.jpg diff --git a/1226/CH20/EX20.28/EX20_28.sce b/1226/CH20/EX20.28/EX20_28.sce new file mode 100755 index 000000000..36945e207 --- /dev/null +++ b/1226/CH20/EX20.28/EX20_28.sce @@ -0,0 +1,17 @@ +clc;funcprot(0);//EXAMPLE 20.28
+// Initialisation of Variables
+p1=1;.............//Intake pressure in bar
+p4=36;........//Final pressure in bar
+n=1.25;.........//Compression index
+R=0.287;.......//Gas constant in kJ/kgK
+t1=300;..........//Intake temperature in K
+ns=3;...........//No of stages
+v=15;..........//Volume of air delivered in m^3
+//Calculations
+p2=p1*((p4/p1)^(1/ns));
+p3=p2*((p4/p1)^(1/ns));
+printf("\n\nIntermediate pressures\n\n p2=%f\n p3=%f\n\n",p2,p3)
+t2=t1*((p4/p1)^(((n-1)/n)*(1/ns)));....//Delivery temperature in K
+m=p1*10^5*v/(R*1000*t1);...........//Mass of air handled per min in kg
+Wt=((n/(n-1))*m*R*(1/60)*(t2-t1)*ns);........//Total work done in three stages
+disp(Wt,"Indicated power required in kW:")
diff --git a/1226/CH20/EX20.29/EX20_29.jpg b/1226/CH20/EX20.29/EX20_29.jpg Binary files differnew file mode 100755 index 000000000..c14cf3c4f --- /dev/null +++ b/1226/CH20/EX20.29/EX20_29.jpg diff --git a/1226/CH20/EX20.29/EX20_29.sce b/1226/CH20/EX20.29/EX20_29.sce new file mode 100755 index 000000000..123f65265 --- /dev/null +++ b/1226/CH20/EX20.29/EX20_29.sce @@ -0,0 +1,54 @@ +clc;funcprot(0);//EXAMPLE 20.29
+// Initialisation of Variables
+ns=3;........//No of stages
+N=200;.......//Compressor rpm
+p1=1;.......//Intake pressure in bar
+t1=20+273;....//Intake temperature in K
+D=0.35;......//Engine bore in m
+L=0.4;.......//Engine stroke in m
+p2=4;........//Discharge pressure from first stage in bar
+p6=16;........//Discharge pressure from second stage in bar
+p10=64;........//Discharge pressure from third stage in bar
+pd=0.2;........//Loss of pressure between intercoolers in bar
+R=0.287;......//Gas constant in kJ/kgK
+k=0.04;.......//Clearence volume in 4% of the stroke volume
+n1=1.2;.....//Compressor index for first stage
+n2=1.25;.....//Compressor index for second stage
+n3=1.3;.....//Compressor index for third stage
+cp=1.005;......//Specific heat at constant pressure in kJ/kgK
+etamech=0.8;.....//Mechanical efficiency
+//Calculations
+p5=p2-pd;p9=p6-pd;t5=t1;t9=t1;
+Vs=(%pi/4)*D*D*L*N*2;............//Swept volume of low pressure cylinder per min in m^3
+etav1=(1+k)-(k*((p2/p1)^(1/n1)));.....//Volumetric efficiency in first stage
+etav2=(1+k)-(k*((p6/p5)^(1/n2)));.....//Volumetric efficiency in second stage
+etav3=(1+k)-(k*((p10/p9)^(1/n3)));.....//Volumetric efficiency in third stage
+vain1=Vs*etav1;.................//Volume of air taken in first stage in m^3/min
+m=(p1*10^5)*vain1/(R*t1*1000);...........//Mass of air intake in kg/min in first stage
+t2=round(t1*((p2/p1)^((n1-1)/n1)));
+t6=t5*((p6/p5)^((n2-1)/n2));
+t10=t9*((p10/p9)^((n3-1)/n3));
+Qr1=m*cp*(t2-t5);........//Heat rejected in intercooler after first stage in kJ/min
+Qr2=m*cp*(t6-t9);........//Heat rejected in intercooler after second stage in kJ/min
+Qr3=m*cp*(t10-t1);........//Heat rejected in intercooler after third stage in kJ/min
+disp(Qr1,"Heat rejected in intercooler after first stage in kJ/min:")
+disp(Qr2,"Heat rejected in intercooler after second stage in kJ/min:")
+disp(Qr3,"Heat rejected in intercooler after third stage in kJ/min:")
+vainip=m*R*t5*1000/(p5*10^5);.........//Volume drawn in intermediate pressure cylinder/min
+Vsip=vainip/etav2;.............//Swept volume of intermediate cylinder in m^3/min
+Dip=sqrt(Vsip/(2*N*L*(%pi/4)));............//Diameter of the intermediate cylinder in m
+disp(Dip*1000,"Diameter of the intermediate cylinder in mm:")
+vainhp=m*R*t9*1000/(p9*10^5);.........//Volume drawn in high pressure cylinder/min
+Vshp=vainhp/etav3;.............//Swept volume of high pressure cylinder in m^3/min
+Dhp=sqrt(Vshp/(2*N*L*(%pi/4)));............//Diameter of the intermediate cylinder in m
+disp(Dhp*1000,"Diameter of the intermediate cylinder in mm:")
+Ps=[{(n1/(n1-1))*m*R*(t2-t1)}+{(n2/(n2-1))*m*R*(t6-t5)}+{(n3/(n3-1))*m*R*(t10-t9)}]*(1/(60*etamech));...//Shaft power in kW
+disp(Ps,"Shaft power in kW:")
+cv=cp-R;..........//Specific heat at constant volume in kJ/kgK
+ga=cp/cv;...........//Ratio of specific heats
+Qt1=cv*((ga-n1)/(ga-1))*(t2-t1)*m;............//Heat transfer during first stage in kJ/min
+Qt2=cv*((ga-n2)/(ga-1))*(t6-t1)*m;............//Heat transfer during second stage in kJ/min
+Qt3=cv*((ga-n3)/(ga-1))*(t10-t1)*m;............//Heat transfer during third stage in kJ/min
+printf("\nHeat transferred during first stage in kJ/min: %f\n",Qt1)
+printf("\nHeat transferred during second stage in kJ/min: %f\n",Qt2)
+printf("\nHeat transferred during third stage in kJ/min: %f\n",Qt3)
diff --git a/1226/CH20/EX20.3/EX20_3.jpg b/1226/CH20/EX20.3/EX20_3.jpg Binary files differnew file mode 100755 index 000000000..2e692fe28 --- /dev/null +++ b/1226/CH20/EX20.3/EX20_3.jpg diff --git a/1226/CH20/EX20.3/EX20_3.sce b/1226/CH20/EX20.3/EX20_3.sce new file mode 100755 index 000000000..56cad5a96 --- /dev/null +++ b/1226/CH20/EX20.3/EX20_3.sce @@ -0,0 +1,15 @@ +clc;funcprot(0);//EXAMPLE 20.3
+// Initialisation of Variables
+p1=1;......//Suction pressure in bar
+t1=293;.....//Suction temperature in K
+n=1.2;......//Compression index
+p2=10;......//Delivery pressure in bar
+R=0.287;....//Gas constant in kJ/kgK
+cv=0.718;...//Specific heat at constant volume in kJ/kgK
+//Calculations
+t2=t1*((p2/p1)^((n-1)/n));.....//Temperature at the end of compression in K
+disp(t2,"Temperature at the end of compression in K:")
+W=1*R*t1*(n/(n-1))*(((p2/p1)^((n-1)/n))-1);.......//Work done during compression of air in kJ
+disp(W,"Work done during compression per kg of air in kJ:")
+Q=(t2-t1)*(cv-((R)/(n-1)));..........//Heat transferred during compression of air in kJ/kg
+disp(Q,"Heat transferred during compression per kg of air in kJ:")
diff --git a/1226/CH20/EX20.30/EX20_30.jpg b/1226/CH20/EX20.30/EX20_30.jpg Binary files differnew file mode 100755 index 000000000..80e48733b --- /dev/null +++ b/1226/CH20/EX20.30/EX20_30.jpg diff --git a/1226/CH20/EX20.30/EX20_30.sce b/1226/CH20/EX20.30/EX20_30.sce new file mode 100755 index 000000000..4e9a369a9 --- /dev/null +++ b/1226/CH20/EX20.30/EX20_30.sce @@ -0,0 +1,18 @@ +clc;funcprot(0);//EXAMPLE 20.30
+// Initialisation of Variables
+p1=1;.....//Intake pressure in bar
+p5=125;.....//Pressure of the compressed air in bar
+rpr=4;.........//Pressure ratio is restricted to 4
+//Calculations
+X=(log(p5/p1)/log(rpr));
+if(X>round(X))
+x=round(X)+1;
+else
+ x=round(X);
+end
+disp(x,"No of stages:")
+esrp=(p5/p1)^(1/x);
+disp(esrp,"Exact stage pressure ratios:")
+p4=p5/esrp;p3=p4/esrp;p2=p3/esrp;......//Intermediate pressures in bar
+printf("\nIntermediate pressures\np4=%f\np3=%f\np2=%f",p4,p3,p2)
+
diff --git a/1226/CH20/EX20.31/EX20_31.jpg b/1226/CH20/EX20.31/EX20_31.jpg Binary files differnew file mode 100755 index 000000000..6f135ebf8 --- /dev/null +++ b/1226/CH20/EX20.31/EX20_31.jpg diff --git a/1226/CH20/EX20.31/EX20_31.sce b/1226/CH20/EX20.31/EX20_31.sce new file mode 100755 index 000000000..6f2fbf096 --- /dev/null +++ b/1226/CH20/EX20.31/EX20_31.sce @@ -0,0 +1,25 @@ +clc;funcprot(0);//EXAMPLE 20.31
+// Initialisation of Variables
+ps=1;.........//Suction pressure in bar
+t1=273+125;.......//Delivery temperature in K
+pd=160;...........//Delivery pressure in bar
+tm=40+273;........//Min temperature
+ts=298;........//Suction temperature in K
+n=1.25;......//Adiabatic index
+cv=0.71;.......//Specific heat at constant volume in kJ/kgK
+R=0.287;......//Gas constant in kJ/kgK
+ns=3;.......//No of stages
+//Calculations
+p1=ps*((t1/ts)^(n/(n-1)));
+x=(log(pd/p1))/(((n/(n-1))*(log(t1/tm))));
+disp(round(x)+1,"No of stages:")
+rp1=p1;...........//Pressure ratio in 1st stage
+rp=(pd/rp1)^(1/ns);.........//Pressure ratio in the following stage
+W=(n/(n-1))*R*ts*(((rp1)^((n-1)/n))-1);.........//Work done in first stage in kJ
+Wf=ns*(n/(n-1))*R*tm*(((rp)^((n-1)/n))-1);.........//Work done in next three stages in kJ
+wt=W+Wf;............//Total work done per kg in kJ
+disp(wt,"Total work done in kJ/kg:")
+cp=cv+R;..............//Specific heat at constant pressure in kJ/kgK
+Qr=ns*cp*(t1-tm);.............//Heat rejected in intercoolers in kJ/kg
+disp(Qr,"Heat rejected in intercoolers in kJ/kg:")
+
diff --git a/1226/CH20/EX20.32/EX20_32.jpg b/1226/CH20/EX20.32/EX20_32.jpg Binary files differnew file mode 100755 index 000000000..11b89f380 --- /dev/null +++ b/1226/CH20/EX20.32/EX20_32.jpg diff --git a/1226/CH20/EX20.32/EX20_32.sce b/1226/CH20/EX20.32/EX20_32.sce new file mode 100755 index 000000000..aa5828906 --- /dev/null +++ b/1226/CH20/EX20.32/EX20_32.sce @@ -0,0 +1,28 @@ +clc;funcprot(0);//EXAMPLE 20.32
+// Initialisation of Variables
+Vamb=10.5;........//Free air volume in m^3
+Pamb=1.013;...........//Free air presssure in bar
+Tamb=273+15;..........//Free air temperature in K
+T1=(273+25);...........//Temperature at the end of suction in all cylinders in K
+P1=1;............//Pressure at the suction in bar
+pd=95;...........//Delivery presssure in bar
+N=100;.........//Compressor rpm
+n=1.25;..........//Adiabatic index
+k=0.04;.........//Fractional clearances for LP
+k1=0.07;.........//Fractional clearances for HP
+//Calculations
+z=(pd/P1)^(1/3);.........//Pressure ratio
+pi1=z*P1;
+pi2=z*pi1;
+etavollp=1+k-(k*(z^(1/n)));
+etavolhp=1+k1-(k1*(z^(1/n)));
+v1=(Pamb*Vamb*T1)/(Tamb*P1);
+sclp=(round(v1))/(etavollp*N);.........//Swept capacity of LP cylinder in m^3
+disp(sclp,"Swept capacity of low pressure cylinder in m^3:")
+vip=(Pamb*Vamb*T1)/(pi1*Tamb);.........//Volume of free air reduced to suction conditions of IP cylinder
+scip=vip/(etavolhp*N);.........//Swept capacity of IP cylinder in m^3
+disp(scip,"Swept capacity of intermediate pressure cylinder in m^3:")
+vhp=(Pamb*Vamb*T1)/(pi2*Tamb);.........//Volume of free air reduced to suction conditions of HP cylinder
+schp=vhp/(etavolhp*N);.........//Swept capacity of HP cylinder in m^3
+disp(schp,"Swept capacity of intermediate pressure cylinder in m^3:")
+
diff --git a/1226/CH20/EX20.34/EX20_34.jpg b/1226/CH20/EX20.34/EX20_34.jpg Binary files differnew file mode 100755 index 000000000..e530ba4ed --- /dev/null +++ b/1226/CH20/EX20.34/EX20_34.jpg diff --git a/1226/CH20/EX20.34/EX20_34.sce b/1226/CH20/EX20.34/EX20_34.sce new file mode 100755 index 000000000..9dc128f18 --- /dev/null +++ b/1226/CH20/EX20.34/EX20_34.sce @@ -0,0 +1,29 @@ +clc;funcprot(0);//EXAMPLE 20.34
+// Initialisation of Variables
+D=0.0635;.......//Engine bore in m
+L=0.114;.........//Engine stroke in m
+p1=6.3;..........//Supply pressure in bar
+t1=273+24;.........//Supply temperature in K
+p4=1.013;..........//Exhaust pressure in bar
+cv=0.05;............//Clearance volume is 5% of the swept volume
+cr=0.5;..........//Cut off ratio
+n=1.3;...........//Adiabatic index
+R=287;...............//gas constant in kJ/kgK
+N=300;.............//Engine rpm
+ga=1.4;...........//Ratio of specific heats
+//Calculations
+Vs=(%pi*D*D*L)/4;........//Swept volume in m^3
+Vc=cv*Vs;..........//Clearance volume in m^3
+v6=Vc;v5=v6;
+v1=(Vs/2)+Vc;v2=Vs+Vc;v3=v2;p3=p4;v4=v5+(cv*Vs);
+p2=p1*((v1/v2)^n);.......//Pressure at the end of expansion
+t2=t1*((v1/v2)^(n-1));........//Temperature at the end of expansion in K
+disp(t2,"Temperature at the end of expansion in K:")
+p5=p4*((v4/v5)^n);
+w=((p1*(v1-v6))+(((p1*v1)-(p2*v2))/(n-1))-(p3*(v3-v4))-(((p5*v5)-(p4*v4))/(n-1)))*10^5;.......//Workk done per cycle in Nm
+IP=(w*N)/(60*1000);..........//Indicated power in kW
+disp(IP,"Indicated power of the motor in kW:")
+t3=t2*((p3/p2)^((ga-1)/ga));
+t4=t3;m4=(p4*v4*10^5)/(R*t4);m1=(p1*v1*10^5)/(R*t1);
+ma=(m1-m4)*N;..........//Mass of air supplied per min
+disp(ma,"Mass of air supplied per min in kg:")
diff --git a/1226/CH20/EX20.35/EX20_35.jpg b/1226/CH20/EX20.35/EX20_35.jpg Binary files differnew file mode 100755 index 000000000..90acd1d7d --- /dev/null +++ b/1226/CH20/EX20.35/EX20_35.jpg diff --git a/1226/CH20/EX20.35/EX20_35.sce b/1226/CH20/EX20.35/EX20_35.sce new file mode 100755 index 000000000..5d5bc0367 --- /dev/null +++ b/1226/CH20/EX20.35/EX20_35.sce @@ -0,0 +1,13 @@ +clc;funcprot(0);//EXAMPLE 20.35
+// Initialisation of Variables
+v=0.03;..............//Induced volume in m^3/rev
+p1=1.013;...........//Inlet pressure in bar
+rp=1.5;............//Pressure ratio
+ga=1.4;...........//Ratio of specific heats
+//Calculations
+p2=rp*p1;
+wr=(p2-p1)*(10^5)*v/1000;.....//Work input for roots compressor in kJ
+disp(wr,"Work input for roots compressor in kJ/rev")
+pi=(p2+p1)/2;
+wv=((p2-pi)*(10^5)*v*((p1/pi)^(1/ga))*(1/1000))+((ga/(ga-1))*p1*(10^5)*(v/1000)*(((pi/p1)^((ga-1)/ga))-1));...//Work input required for vane type in kJ/rev
+disp(wv,"Work input for vane compressor in kJ/rev")
diff --git a/1226/CH20/EX20.36/EX20_36.jpg b/1226/CH20/EX20.36/EX20_36.jpg Binary files differnew file mode 100755 index 000000000..74de6ed2d --- /dev/null +++ b/1226/CH20/EX20.36/EX20_36.jpg diff --git a/1226/CH20/EX20.36/EX20_36.sce b/1226/CH20/EX20.36/EX20_36.sce new file mode 100755 index 000000000..a3e6ac7a8 --- /dev/null +++ b/1226/CH20/EX20.36/EX20_36.sce @@ -0,0 +1,11 @@ +clc;funcprot(0);//EXAMPLE 20.36
+// Initialisation of Variables
+v=0.08;.........//Volume of air compressed in m^3
+p1=1;..........//Intake pressure in bar
+p2=1.5;........//Pressure after compression in in bar
+ga=1.4;.........//Ratio of specific heats
+//Calculations
+wac=v*(p2-p1)*10^5;........//Actual work done in Nm
+wid=(ga/(ga-1))*p1*v*(10^5)*(((p2/p1)^((ga-1)/ga))-1);...........//Ideal work done per revolution in Nw
+etac=wid/wac;................//Compressor efficiency
+disp(etac*100,"Compressor efficiency in %:")
diff --git a/1226/CH20/EX20.37/EX20_37.jpg b/1226/CH20/EX20.37/EX20_37.jpg Binary files differnew file mode 100755 index 000000000..291993e25 --- /dev/null +++ b/1226/CH20/EX20.37/EX20_37.jpg diff --git a/1226/CH20/EX20.37/EX20_37.sce b/1226/CH20/EX20.37/EX20_37.sce new file mode 100755 index 000000000..73a1bea0a --- /dev/null +++ b/1226/CH20/EX20.37/EX20_37.sce @@ -0,0 +1,25 @@ +clc;funcprot(0);//EXAMPLE 20.37
+// Initialisation of Variables
+m=2.5;..........//Air flow rate in kg/s
+p1=1;........//Inlet pressure in bar
+t1=290;............//Inlet temperature in bar
+C1=80;..........//Inlet Velocity in m/s
+p2=1.5;........//pressure after compression in bar
+t2=345;............//temperature after compression in bar
+C2=220;..........//Velocity after compression in m/s
+cp=1.005;...........//Specific heat at constant pressure in kJ/kgK
+ga=1.4;............//Ratio of specific heats
+R=287;..............//Gas constant for air in kJ/kgK
+//Calculations
+t21=t1*((p2/p1)^((ga-1)/ga));
+wisen=cp*(t21-t1)+((C2*C2)-(C1*C1))/(2*1000);.....//Isentropic work done in kJ/kg
+w=cp*(t2-t1)+((C2*C2)-(C1*C1))/(2*1000);.....//Actual work done (in impeller) in kJ/kg
+etaisen=wisen/w;...............//Isentropic efficiency
+disp(etaisen*100,"Isentropic efficiency in %:")
+P=m*w;..........//Power required to drive the coompressor in kW
+disp(P,"Power required to drive the coompressor in kW:")
+t3=(((C2*C2)-(C1*C1))/(2*1000*cp))+t2;....//Temperature of air after leaving the diffuser in K
+p3=p2*((t3/t2)^(ga/(ga-1)));..........//Pressure of air after leaving the diffuser in bar
+t31=t1*((p3/p1)^((ga-1)/ga));...........//Delivery temperature from diffuser in K
+etao=(t31-t1)/(t3-t1);...............//Overall efficiency
+disp(etao*100,"Overall efficiency in %:")
diff --git a/1226/CH20/EX20.38/EX20_38.jpg b/1226/CH20/EX20.38/EX20_38.jpg Binary files differnew file mode 100755 index 000000000..478717e10 --- /dev/null +++ b/1226/CH20/EX20.38/EX20_38.jpg diff --git a/1226/CH20/EX20.38/EX20_38.sce b/1226/CH20/EX20.38/EX20_38.sce new file mode 100755 index 000000000..51af04eeb --- /dev/null +++ b/1226/CH20/EX20.38/EX20_38.sce @@ -0,0 +1,32 @@ +clc;funcprot(0);//EXAMPLE 20.38
+// Initialisation of Variables
+ma=528;.............//Air flow in kg/min
+m=ma/60;.............//Air flow in kg/s
+p1=1;........//Inlet pressure in bar
+t1=293;............//Inlet temperature in bar
+N=20000;..............//Compressor rpm
+etaisen=0.8;.........//Isentropic efficiency
+po1=1;.........//Static pressure in bar
+p02=4;...........//Final total pressure in bar
+C1=145;.........//Velocity of air when entering the impeller in m/s
+rwt=0.9;..........//Ratio of whirl speed to tip speed
+dh=0.12;........//Hub diameter in m
+cp=1.005;...........//Specific heat at constant pressure in kJ/kgK
+ga=1.4;............//Ratio of specific heats
+R=287;..............//Gas constant for air in kJ/kgK
+//Calculations
+t01=t1+((C1*C1)/(2*cp*1000));..........//Stagnation temperature at the inlet to the machine in K
+p01=p1*((t01/t1)^(ga/(ga-1)));.....//Stagnation pressure at the inlet to the machine in bar
+t021=t01*((p02/p01)^((ga-1)/ga));
+deltisen=t021-t01;.........//Isentropic rise in temperature in K
+delt=round(deltisen/etaisen);........//Actual rise in temperature
+disp(delt,"Actual rise in temperature:")
+wc=cp*delt;.........//Work consumed by compressor in kJ/kg
+Cbl2=sqrt(wc*1000/rwt);
+d2=Cbl2*60/(%pi*N);..........//Tip diameter of the impeller in m
+disp(d2*100,"Tip diameter of the impeller in cm:")
+P=m*wc;............//Power required in kW
+disp(P,"Power required in kW:")
+rho1=(p1*10^5)/(R*t1);.......//Density at entry in kg/m^3
+d1=sqrt(((m*4)/(C1*rho1*%pi))+(dh^2));.......//Eye diameter in m
+disp(d1*100,"Diameter of the eye in cm:")
diff --git a/1226/CH20/EX20.39/EX20_39.jpg b/1226/CH20/EX20.39/EX20_39.jpg Binary files differnew file mode 100755 index 000000000..ab2d4f527 --- /dev/null +++ b/1226/CH20/EX20.39/EX20_39.jpg diff --git a/1226/CH20/EX20.39/EX20_39.sce b/1226/CH20/EX20.39/EX20_39.sce new file mode 100755 index 000000000..52e3d2082 --- /dev/null +++ b/1226/CH20/EX20.39/EX20_39.sce @@ -0,0 +1,36 @@ +clc;funcprot(0);//EXAMPLE 20.39
+// Initialisation of Variables
+N=10000;.................//Compressor rpm
+v=660;............//Volume of air delivered in m^3/min
+p1=1;.................//Inlet pressure in bar
+t1=293;.............//Inlet temperature in K
+rp=4;.............//Pressure ratio
+etaisen=0.82;........//Isentropic efficiency
+Cf2=62;...............//Flow velocity in m/s
+rr=2;.............//Ratio of outer radius of impeller to inner radius of impeller
+ka=0.9;..............//Blade area co efficient
+fis=0.9;...........//Slip factor
+cp=1.005;..............//Specific heat at constant pressure in kJ/kgK
+ga=1.4;............//Ratio of specific heats
+R=287;..............//Gas constant for air in kJ/kgK
+//Calculations
+t21=t1*(rp^((ga-1)/ga));Cf1=Cf2;
+t2=t1+((t21-t1)/etaisen);..........//Final temperature of air
+m=(p1*10^5*v/60)/(R*t1);...............//Mass flow rate in m^3/s
+P=m*cp*(t2-t1);.........//Theoretical power in kW
+disp(t2,"Final temperature of air in Kevin:")
+disp(P,"Theoretical power in kW:")
+Cbl2=sqrt(1000*cp*(t2-t1)/fis);
+d2=60*Cbl2/(%pi*N);..........//Impeller diameter at outlet in m
+d1=d2/rr;...............//Impeller diameter at inlet in m
+disp(d2*100,"Impeller diameter at outlet in cm")
+disp(d1*100,"Impeller diameter at inlet in cm")
+b1=(v/60)/(2*%pi*(d1/2)*Cf1*ka);.........//Breadth of impeller at inlet in m
+disp(b1*100,"Breadth of impeller at inlet in cm:")
+Cbl1=Cbl2/rr;
+beta1=(atan(Cf1/Cbl1))*180/%pi;
+al2=(atan(Cf2/(fis*Cbl2)))*180/%pi;
+disp(beta1,"Impeller blade angle at inlet in degrees:")
+disp(al2,"Diffuser blade angle at inlet in degrees")
+
+
diff --git a/1226/CH20/EX20.4/EX20_4.jpg b/1226/CH20/EX20.4/EX20_4.jpg Binary files differnew file mode 100755 index 000000000..cbe73fc84 --- /dev/null +++ b/1226/CH20/EX20.4/EX20_4.jpg diff --git a/1226/CH20/EX20.4/EX20_4.sce b/1226/CH20/EX20.4/EX20_4.sce new file mode 100755 index 000000000..3e1b8e0ca --- /dev/null +++ b/1226/CH20/EX20.4/EX20_4.sce @@ -0,0 +1,28 @@ +clc;funcprot(0);//EXAMPLE 20.4
+// Initialisation of Variables
+p1=1;........//Suction pressure in bar
+t1=293;.......//Suction temperature in K
+p2=6;..........//Discharge pressure in bar
+t2=453;.......//Discharge temperature in K
+N=1200;.........//Compressor rpm
+Ps=6.25;........//Shaft power in kW
+ma=1.7;........//Mass of air delivered in kg/min
+D=0.14;......//Engine bore in m
+L=0.10;.......//Engine stroke in m
+R=287;..........//Gas constant in kJ/kgK
+//Calculations
+Vd=(%pi/4)*D*D*L*N;.........//Displlacement volume in m^3/min
+FAD=ma*R*t1/(p1*10^5);........//Free air delivered
+etav=FAD/Vd;.....//Volumetric efficiency
+disp(etav*100,"Volumetric Efficiency in %:")
+n=1/(1-((log(t2/t1))/(log(p2/p1))));........//Index of compression
+IP=(n/(n-1))*(ma/60)*(R/1000)*t1*(((p2/p1)^((n-1)/n))-1);..........//Indicated power in kW
+disp(IP,"Indicated power in kW:")
+Piso=((ma/60)*(R/1000)*t1*(log(p2/p1)));..........//Isothermal power
+etaiso=Piso/IP;..............//Isothermal efficiency
+disp(etaiso*100,"Isothermal efficiency in %:")
+etamech=IP/Ps;...........//Mechanical efficiency
+disp(etamech*100,"Mechanical efficiency in %:")
+etao=Piso/Ps;........//Overall efficiency
+disp(etao*100,"Overall efficiency in %:")
+
diff --git a/1226/CH20/EX20.40/EX20_40.jpg b/1226/CH20/EX20.40/EX20_40.jpg Binary files differnew file mode 100755 index 000000000..2f25a363e --- /dev/null +++ b/1226/CH20/EX20.40/EX20_40.jpg diff --git a/1226/CH20/EX20.40/EX20_40.sce b/1226/CH20/EX20.40/EX20_40.sce new file mode 100755 index 000000000..4f797e38f --- /dev/null +++ b/1226/CH20/EX20.40/EX20_40.sce @@ -0,0 +1,27 @@ +clc;funcprot(0);//EXAMPLE 20.40
+// Initialisation of Variables
+v1=4.8;......//Volume of air compressed in m^3/s
+p1=1;....//Inlet pressure in bar
+t1=293;........//Inlet pressure in K
+n=1.5;........//Compression index
+Cf1=65;......//Air flow velocity at inlet in m/s
+Cf2=Cf1;......//Flow velocity is same at inlet and outlet
+d1=0.32;..........//Inlet impeller diameter in m
+d2=0.62;........//Outlet impeller diameter in m
+N=8000;........//Blower rpm
+cp=1.005;......//Specific heat at constant pressure in kJ/kgK
+//Calculations
+t21=t1*((n/p1)^((n-1)/n));....//Temperature at the outlet of compressor in K
+Cbl1=(%pi*d1*N)/60;......//Peripheral velocity at inlet in m/s
+Cbl2=(%pi*N*d2)/60;......//Tip peripheral velocity at outlet in m/s
+Cw2=(cp*(t21-t1)*1000)/Cbl2;
+be1=(atan(Cf1/Cbl1))*180/%pi;be2=(atan(Cf2/(Cbl2-Cw2)))*180/%pi;......//Blade angles at the tip of the impeller
+al2= (atan(Cf2/Cw2))*180/%pi;
+printf("\nBlade angles \n\n\t Blade angle at the inlet of the impeller: beta 1=%f \n\t Blade angle at the outlet of the impeller: beta 2=%f \n\t Absolute angle at the tip of impeller: alpha 2=%f\n\n",be1,be2,al2)
+b1=v1/(2*%pi*(d1/2)*Cf1);........//Breadth of blade at inlet in m
+disp(b1*100,"Breadth of the blade at inlet in cm")
+v2=(v1*t21*p1)/(n*t1);..............//Discharge at the outlet in m^3/s
+b2=v2/(2*%pi*(d2/2)*Cf2);........//Breadth of blade at outlet in m
+disp(b2*100,"Breadth of the blade at outlet in cm")
+
+
diff --git a/1226/CH20/EX20.41/EX20_41.jpg b/1226/CH20/EX20.41/EX20_41.jpg Binary files differnew file mode 100755 index 000000000..3691b8e2a --- /dev/null +++ b/1226/CH20/EX20.41/EX20_41.jpg diff --git a/1226/CH20/EX20.41/EX20_41.sce b/1226/CH20/EX20.41/EX20_41.sce new file mode 100755 index 000000000..8dd7cadb7 --- /dev/null +++ b/1226/CH20/EX20.41/EX20_41.sce @@ -0,0 +1,18 @@ +clc;funcprot(0);//EXAMPLE 20.41
+// Initialisation of Variables
+m=16.5;.......//Air flow in kg/s
+rp=4;........//Pressure ratio
+N=15000;.........//Compressor rpm
+t01=293;.........//Inlet head temperature
+fis=0.9;...........//Slip factor
+fiw=1.04;.........//Power input factor
+etaisen=0.8;.......//Isentropic efficiency
+cp=1.005;........//Specific heat at constant pressure in kJ/kgK
+ga=1.4;......//Ratio of specific heats
+//Calculations
+t021=t01*(rp^((ga-1)/ga));
+delt=(t021-t01)/etaisen;Cbl2=sqrt((1000*cp*delt)/(fiw*fis));
+D=(60*Cbl2)/(%pi*N);..............//Diameter of impeller
+disp(D,"Diameter of the impeller in m:")
+P=m*cp*delt;
+disp(P,"Power input to compressor in kW:")
diff --git a/1226/CH20/EX20.42/EX20_42.jpg b/1226/CH20/EX20.42/EX20_42.jpg Binary files differnew file mode 100755 index 000000000..60b8ac2b5 --- /dev/null +++ b/1226/CH20/EX20.42/EX20_42.jpg diff --git a/1226/CH20/EX20.42/EX20_42.sce b/1226/CH20/EX20.42/EX20_42.sce new file mode 100755 index 000000000..8a5e5acdc --- /dev/null +++ b/1226/CH20/EX20.42/EX20_42.sce @@ -0,0 +1,35 @@ +clc;funcprot(0);//EXAMPLE 20.42
+// Initialisation of Variables
+rp=3.6;..........//Pressure ratio
+die=0.35;.......//Diameter of inlet eye of compressor in m
+Cf=140;..........//Axial velocity in m/s
+m=12;.............//Mass flow in kg/s
+Cbl2=120;.........//Velocity in the delivery duct in m/s
+Ci=460;..........//The tip speed of the impeller in m/s
+N=16000;............//Speed of impeller in rpm
+etaisen=0.8;.......//Isentropic efficiency
+pc=0.73;........//Pressure co efficient
+pa=1.013;..........//Ambient pressure in bar
+ta=273+15;................//Ambient temperature in K
+ga=1.4;..........//Ratio of specific heats
+cp=1.005;.........//Specific heat at constant pressure in kJ/kgK
+R=0.287;........//Gas constant in kJ/kgK
+//Calculations
+delt=((ta*((rp^((ga-1)/ga))-1))/etaisen);.......//Rise in temperature
+t02=ta+delt;............//Total head temperature in K
+disp(t02,"Total head temperature in K:")
+t2=t02-((Cbl2*Cbl2)/(2*cp*1000));..........//Static temperature at outlet in K
+disp(t2,"Static temperature at outlet in K:")
+p02=pa*rp;
+p2=p02/(1+((Cbl2*Cbl2)/(2*R*t2*1000)));...........//Static pressure at exit in bar
+disp(p2,"Static pressure at exit in bar:")
+t1=ta-((Cf*Cf)/(2*cp*1000));.............//Static temperature at inlet in K
+disp(t1,"Static temperature at inlet in K:")
+p1=pa/(1+((Cf*Cf)/(2*R*t1*1000)));...........//Static pressure at inlet in bar
+disp(p1,"Static pressure at inlet in bar:")
+rp=p2/p1;.....//Static pressure ratio
+disp(rp,"Static pressure ratio:")
+W=cp*delt;...........//Work done on air in kJ/kg of air
+disp(W,"Work done on air in kJ/kg:")
+P=m*cp*delt;..........//Power required to drive the compressor in kW
+disp(P,"Power required to drve the compressor in kW:")
diff --git a/1226/CH20/EX20.43/EX20_43.jpg b/1226/CH20/EX20.43/EX20_43.jpg Binary files differnew file mode 100755 index 000000000..10a5a4be0 --- /dev/null +++ b/1226/CH20/EX20.43/EX20_43.jpg diff --git a/1226/CH20/EX20.43/EX20_43.sce b/1226/CH20/EX20.43/EX20_43.sce new file mode 100755 index 000000000..f6e191486 --- /dev/null +++ b/1226/CH20/EX20.43/EX20_43.sce @@ -0,0 +1,15 @@ +clc;funcprot(0);//EXAMPLE 20.43
+// Initialisation of Variables
+t1=300;.........//Inlet temperature in K
+N=18000;.............//Compressor rpm
+etaisen=0.76;.......//Isentropic efficiency
+od=0.55;......//Outer diameter of blade tip
+sf=0.82;......//Slip factor
+cp=1.005;.........//Specific heat capacity at constant pressure in kJ/kgK
+ga=1.4;.............//Ratio of specific heats
+//Calculations
+Cbl2=(%pi*od*N)/60;W=Cbl2*Cbl2*sf/1000;...........//Work done per kg of air in kW
+delt=W/cp;..............//Temperature rise of air while passing through compressor
+disp(delt,"Temperature rise of air while passing through compressor :")
+t21=(etaisen*delt)+t1;rp=((t21/t1)^(ga/(ga-1)));.....//Pressure ratio
+disp(rp,"Pressure ratio:")
diff --git a/1226/CH20/EX20.44/EX20_44.jpg b/1226/CH20/EX20.44/EX20_44.jpg Binary files differnew file mode 100755 index 000000000..da2891193 --- /dev/null +++ b/1226/CH20/EX20.44/EX20_44.jpg diff --git a/1226/CH20/EX20.44/EX20_44.sce b/1226/CH20/EX20.44/EX20_44.sce new file mode 100755 index 000000000..d50d231bb --- /dev/null +++ b/1226/CH20/EX20.44/EX20_44.sce @@ -0,0 +1,11 @@ +clc;funcprot(0);//EXAMPLE 20.44
+// Initialisation of Variables
+Cbl=240;........//Mean blade velocity in m/s
+Cf=190;.........//Air flow velocity in m/s
+al1=45;al2=14;.........//Blade angels in degrees
+rho=1;.........//Density of air in kg/m^3
+//Calculations
+pr=(1/2)*(rho*Cf*Cf/(10^5))*(((tan(al1*%pi/180))^2)-((tan(al2*%pi/180))^2));.......//Pressure rise in bar
+disp(pr,"Pressure rise in bar:")
+W=Cbl*Cf/1000*((tan(al1*%pi/180))-(tan(al2*%pi/180)));.............//Work done per kg of air in kW
+disp(W,"Work done per kg of air in kW:")
diff --git a/1226/CH20/EX20.45/EX20_45.jpg b/1226/CH20/EX20.45/EX20_45.jpg Binary files differnew file mode 100755 index 000000000..674bd6e5a --- /dev/null +++ b/1226/CH20/EX20.45/EX20_45.jpg diff --git a/1226/CH20/EX20.45/EX20_45.sce b/1226/CH20/EX20.45/EX20_45.sce new file mode 100755 index 000000000..95bd3b82c --- /dev/null +++ b/1226/CH20/EX20.45/EX20_45.sce @@ -0,0 +1,20 @@ +clc;funcprot(0);//EXAMPLE 20.45
+// Initialisation of Variables
+etaisen=0.82;.......//Overall isentropic efficiency
+N=8;............//No of stages
+t1=293;...........//Inlet temperature in K
+ga=1.4;............//Ratio of specific heats
+rp=4;.............//Pressure ratio
+Rd=0.5;................//Reaction factor
+Cbl=180;.................//Mean blade speed in m/s
+Cf=90;...............//Air flow velocity in m/s
+cp=1.005;.........//Specific heat at constant pressure in kJ/kgK
+//Calculations
+t21=t1*(rp^((ga-1)/ga));
+t2=((t21-t1)/etaisen)+t1;
+wrt=cp*(t2-t1);.........//Work done by the machine in kJ/kg
+disp(wrt,"Work done by the machine in kJ/kg")
+be1=atan(((cp*(t2-t1)*1000/(Cf*Cbl*N))+(Cbl/Cf))/2)*180/%pi;
+al1=atan((Cbl/Cf)-tan(be1*%pi/180))*180/%pi;
+printf("\nBlade angels are as follows (In degrees)\n\nalpha1=%f\tbeta1=%f\n\nalpha2=%f\tbeta2=%f\n\n",al1,be1,be1,al1)
+
diff --git a/1226/CH20/EX20.46/EX20_46.jpg b/1226/CH20/EX20.46/EX20_46.jpg Binary files differnew file mode 100755 index 000000000..37917a63c --- /dev/null +++ b/1226/CH20/EX20.46/EX20_46.jpg diff --git a/1226/CH20/EX20.46/EX20_46.sce b/1226/CH20/EX20.46/EX20_46.sce new file mode 100755 index 000000000..0034bb2f2 --- /dev/null +++ b/1226/CH20/EX20.46/EX20_46.sce @@ -0,0 +1,21 @@ +clc;funcprot(0);//EXAMPLE 20.46
+// Initialisation of Variables
+etaisen=0.85;.......//Overall isentropic efficiency
+t1=293;...........//Inlet temperature in K
+rp=4;.............//Pressure ratio
+Rd=0.5;................//Reaction factor
+Cbl=180;.................//Mean blade speed in m/s
+wip=0.82;..............//Work input factor
+al1=12;be1=42;......//Blade angels in degrees
+ga=1.4;............//Ratio of specific heats
+cp=1.005;.........//Specific heat at constant pressure in kJ/kgK
+//Calculations
+t21=t1*(rp^((ga-1)/ga));
+t2=((t21-t1)/etaisen)+t1;
+wrt=cp*(t2-t1);.........//Theoretical work required in kJ/kg
+Cf=Cbl/(tan(al1*%pi/180)+tan(be1*%pi/180));
+Cw1=Cf*tan(al1*%pi/180);Cw2=Cf*tan(be1*%pi/180);
+wcps=Cbl*(Cw2-Cw1)*wip/1000;.............//Work consumed per stage in kJ/kg
+N=round(wrt/wcps);.......//No of stages
+disp(Cf,"Flow velocity in m/s:")
+disp(N,"No of stages:")
diff --git a/1226/CH20/EX20.47/EX20_47.jpg b/1226/CH20/EX20.47/EX20_47.jpg Binary files differnew file mode 100755 index 000000000..c67706420 --- /dev/null +++ b/1226/CH20/EX20.47/EX20_47.jpg diff --git a/1226/CH20/EX20.47/EX20_47.sce b/1226/CH20/EX20.47/EX20_47.sce new file mode 100755 index 000000000..fadc557bc --- /dev/null +++ b/1226/CH20/EX20.47/EX20_47.sce @@ -0,0 +1,25 @@ +clc;funcprot(0);//EXAMPLE 20.47
+// Initialisation of Variables
+rp=5;..........//Stagnation pressure ratio ga
+etaisen=0.92;.......//Overall isentropic efficiency
+t1=290;.............//Inlet stagnation temperature in K
+p1=1;...............//Inlet stagnation pressure in bar
+Cbl=160;...........//Mean blade speed in m/s
+ga=1.4;...........//Ratio of specific heats
+Rd=0.5;............//Degree of reaction
+Cf=90;................//Axial velocity of air through compressor in m/s
+N=8;.............//No of stages
+m=1;.........//Mass flow in kg/s
+cp=1.005;............//Specific heat at constant pressure in kJ/kgK
+//Calculations
+tN1=t1*(rp^((ga-1)/ga));......//Temperature at the end of compression stage due to isentropic expansion in K
+tN=((tN1-t1)/etaisen)+t1;
+be1=atan(((cp*(tN-t1)*1000/(Cf*Cbl*N))+(Cbl/Cf))/2)*180/%pi;
+al1=atan((Cbl/Cf)-tan(be1*%pi/180))*180/%pi;
+printf("\nBlade angels are as follows (In degrees)\n\nalpha1=%f\t\tbeta1=%f\n\nalpha2=%f\tbeta2=%f\n\n",al1,be1,be1,al1)
+P=m*cp*(tN-t1);..........//Power required by the compressor in kW
+disp(P,"Power required by the compressor in kW:")
+
+
+
+
diff --git a/1226/CH20/EX20.48/EX20_48.jpg b/1226/CH20/EX20.48/EX20_48.jpg Binary files differnew file mode 100755 index 000000000..95c37b759 --- /dev/null +++ b/1226/CH20/EX20.48/EX20_48.jpg diff --git a/1226/CH20/EX20.48/EX20_48.sce b/1226/CH20/EX20.48/EX20_48.sce new file mode 100755 index 000000000..4f7027e52 --- /dev/null +++ b/1226/CH20/EX20.48/EX20_48.sce @@ -0,0 +1,36 @@ +clc;funcprot(0);//EXAMPLE 20.48
+// Initialisation of Variables
+rp=4;........//Stagnation pressure ratio
+etaisen=0.85;.....//Stagnation isentropic efficiency
+p1=1;.............//Inlet stagnation pressure in bar
+t1=300;...........//Inlet stagnation temperature in K
+Rd=0.5;............//Degree of reaction
+Cu=180;...........//Mean blade speed in m/s
+Wd=0.9;...........//Work done factor
+htr=0.42;.......//Hub tip ratio
+al1=12;be2=al1;.......//Relative air angle at rotor inlet in degrees
+al2=32;be1=al2;........//Relative air angle at rotor at outlet in degrees
+ga=1.4;...........//Ratio of specific heats
+cp=1.005;..........//Specific heat capacity at constant pressure in kJ/kgK
+R=287;..........//Gas constant in J/kgK
+m=19.5;..........//Mass flow in kg/s
+//Calculations
+tN1=t1*(rp^((ga-1)/ga));......//Temperature at the end of compression stage due to isentropic expansion in K
+tN=((tN1-t1)/etaisen)+t1;
+etap=log(rp^((ga-1)/ga))/log(tN/t1);...........//Stagnation polytropic efficiency
+disp(etap*100,"Stagnation polytropic efficiency in %:")
+Cf=Cu/(tan(al1*%pi/180)+tan(be1*%pi/180));
+Cw1=Cf*tan(al1*%pi/180);Cw2=Cf*tan(al2*%pi/180);
+wcps=Cu*(Cw2-Cw1)*Wd/1000;.............//Work consumed per stage in kJ/kg
+wc=cp*(tN-t1);...............//Work consumed by compressor in kJ/kg
+N=round(wc/wcps);.......//No of stages
+disp(N,"No of stages:")
+C1=Cf/cos(al1*%pi/180);.......//Absolute velocity at exit from guide vanes in m/s
+ti=t1-((C1*C1)/(2*cp*1000));..........//Inlet temperature in K
+disp(ti,"Inlet temperature in K:")
+pi=p1*((ti/t1)^(ga/(ga-1)));......//Inlet pressure in bar
+disp(pi,"Inlet pressure in bar:")
+rho1=(pi*10^5)/(R*ti);.............//Density of air approaching the first stage
+r1=sqrt(m/(rho1*%pi*Cf*(1-(htr^2))));rh=r1*htr;
+l=r1-rh;............//Height of the blade in the first stage in m
+disp(l*100,"Height of the blade in the first stage in cm:")
diff --git a/1226/CH20/EX20.49/EX20_49.jpg b/1226/CH20/EX20.49/EX20_49.jpg Binary files differnew file mode 100755 index 000000000..824e1d444 --- /dev/null +++ b/1226/CH20/EX20.49/EX20_49.jpg diff --git a/1226/CH20/EX20.49/EX20_49.sce b/1226/CH20/EX20.49/EX20_49.sce new file mode 100755 index 000000000..0d9d5541b --- /dev/null +++ b/1226/CH20/EX20.49/EX20_49.sce @@ -0,0 +1,21 @@ +clc;funcprot(0);//EXAMPLE 20.49
+// Initialisation of Variables
+ma=20;..........//Air flow rate in kg/s
+p1=1;.........//Inlet stagnation pressure in bar
+t1=290;.........//Inlet stagnation temperature in Kelvin
+t2=305;.........//Temperature at the end of first stage in K
+etapc=0.88;.....//Polytropic efficiency of compression
+P=4350;......//Power consumed by compressor in kW
+ga=1.4;.....//Ratio of specific heats
+cp=1.005;......//Specific heat at constant pressure
+//Calculations
+p2byp1=(%e^(etapc*log(t2/t1)))^(ga/(ga-1));
+tN=(P/(ma*cp))+t1;
+pN=p1*((tN/t1)^((etapc*ga)/(ga-1)));......//Delivery pressure in bar
+disp(pN,"Delivery pressure in bar:")
+N=log(pN/p1)/log(p2byp1);...........//No of stages
+disp(round(N),"No of stages:")
+tN1=t1*((pN/p1)^((ga-1)/ga));
+etao=(tN1-t1)/(tN-t1);...............//Overall efficiency
+disp(etao*100,"Overall efficiency in %:")
+
diff --git a/1226/CH20/EX20.5/EX20_5.jpg b/1226/CH20/EX20.5/EX20_5.jpg Binary files differnew file mode 100755 index 000000000..28950f8aa --- /dev/null +++ b/1226/CH20/EX20.5/EX20_5.jpg diff --git a/1226/CH20/EX20.5/EX20_5.sce b/1226/CH20/EX20.5/EX20_5.sce new file mode 100755 index 000000000..162f0eaa0 --- /dev/null +++ b/1226/CH20/EX20.5/EX20_5.sce @@ -0,0 +1,18 @@ +clc;funcprot(0);//EXAMPLE 20.5
+// Initialisation of Variables
+ma=6.75;.........//Mass of air compressed in kg/min
+p1=1;............//Initial pressure in atm
+cp=1.003;.........//Specifc heat at constant vpressure in kJ/kgK
+t1=21;...........//Initial temperature in Celsius
+t2=43;..........//Final temperature in Celsius
+rp=1.35;.........//Pressure ratio
+ga=1.4;.........//Ratio os specific heats
+delt=3.3;.......//Change in temperature
+cpw=4.18;.......//Specific heat for water in kJ/kgK
+//Calculations
+W=ma*cp*(t2-t1);............//Work output in kJ
+disp(W,"Work output in kW:")
+t21=(t1+273)*(rp^((ga-1)/ga));...........//Final temperature if the compression had been isentropic
+Qr=ma*cp*(t21-(t2+273));............//Heat rejected in kJ
+mw=Qr/(cpw*delt);........//Mass of cooling water in kg/min
+disp(mw,"Mass of cooling water in kg/min:")
diff --git a/1226/CH20/EX20.6/EX20_6.jpg b/1226/CH20/EX20.6/EX20_6.jpg Binary files differnew file mode 100755 index 000000000..22e5e4873 --- /dev/null +++ b/1226/CH20/EX20.6/EX20_6.jpg diff --git a/1226/CH20/EX20.6/EX20_6.sce b/1226/CH20/EX20.6/EX20_6.sce new file mode 100755 index 000000000..1ba994498 --- /dev/null +++ b/1226/CH20/EX20.6/EX20_6.sce @@ -0,0 +1,17 @@ +clc;funcprot(0);//EXAMPLE 20.6
+// Initialisation of Variables
+ma=14;........//Quantity of air delivered in kg/min
+p1=1.013;......//Intake pressure in bar
+t1=288;.........//Intake temperature in K
+p2=7;...........//Delivery pressure in bar
+N=300;..........//Compressor rpm
+pervc=0.05;.......//Percentage of clearance volume in the total stroke volume
+n=1.3;............//Compressor and expansion index
+//Calculations
+V1byVs=pervc+1;
+v1minv4=ma/(N*2);v4byv3=((p2/p1)^(1/n));v4byvs=v4byv3*pervc;Vs=v1minv4/(V1byVs-v4byvs);.....//Swept volume in m^3
+disp(Vs,"Swept volume in m^3:")
+t2=t1*((p2/p1)^((n-1)/n));........//Delivery Temperature in K
+disp(t2,"Delivery temperature in K:")
+IP=((n)/(n-1))*p1*(10^5)*((ma)/(60*1000))*(((p2/p1)^((n-1)/n))-1);
+disp(IP,"Indicated Power in kW:")
diff --git a/1226/CH20/EX20.7/EX20_7.jpg b/1226/CH20/EX20.7/EX20_7.jpg Binary files differnew file mode 100755 index 000000000..e5cecb615 --- /dev/null +++ b/1226/CH20/EX20.7/EX20_7.jpg diff --git a/1226/CH20/EX20.7/EX20_7.sce b/1226/CH20/EX20.7/EX20_7.sce new file mode 100755 index 000000000..7016d8fb2 --- /dev/null +++ b/1226/CH20/EX20.7/EX20_7.sce @@ -0,0 +1,21 @@ +clc;funcprot(0);//EXAMPLE 20.7
+// Initialisation of Variables
+FAD=14;...........//Free air delivered in m^3/min
+p1=0.95;.........//Induction pressure in bar
+t1=305;........//Induction temperature in K
+p2=7;...........//Delivery pressure in bar
+n=1.3;...........//Adiabatic index
+VcbyVs=0.05;........//Ratio of clearance volume and swept volume
+R=287;...........//Gas constant in J/kgK
+t=288;...........//free air temperature in K
+p=1.013;.........//free air pressure in bar
+//Calculations
+m=(p*100000*FAD)/(R*t);..........//Mass delivered per min in kg
+t2=t1*((p2/p1)^((n-1)/n));
+IP=((n/(n-1))*m*(R/1000)*(t2-t1))/60;.........//Indicated power in kW
+disp(IP,"Indicated power in kW:")
+v4byv3=(p2/p1)^(1/n);v4byvs=v4byv3*VcbyVs;v1minv4=(1+VcbyVs)-v4byvs;
+Vbyvs=v1minv4*(t/t1)*(p1/p);
+etav=Vbyvs/1;.............//Volumetric efficiency
+disp(etav*100,"Volumetric efficiency in %:")
+
diff --git a/1226/CH20/EX20.8/EX20_8.jpg b/1226/CH20/EX20.8/EX20_8.jpg Binary files differnew file mode 100755 index 000000000..7ccb52eec --- /dev/null +++ b/1226/CH20/EX20.8/EX20_8.jpg diff --git a/1226/CH20/EX20.8/EX20_8.sce b/1226/CH20/EX20.8/EX20_8.sce new file mode 100755 index 000000000..d8e14515b --- /dev/null +++ b/1226/CH20/EX20.8/EX20_8.sce @@ -0,0 +1,25 @@ +clc;funcprot(0);//EXAMPLE 20.8
+// Initialisation of Variables
+FAD=16;.......//Free air delivered in m^3/min
+p1=0.96;......//Suction pressure in bar
+t1=303;.......//Suction temperature in K
+n=1.3;........//Compression index
+k=0.04;........//Clearance ratio
+p2=6;.........//Delivery pressure in bar
+etamech=0.9;...//Mechanical efficiency
+vp=300;.......//Piston speed in m/min
+N=500;........//Compressor rpm
+p=1;.....//Ambient pressure in bar
+t=288;.....//Ambient temperature in K
+etac=0.85;...//Compressor efficiency
+R=0.287;......//Universal gas constant
+//Calculations
+m=(p*10^5*FAD)/(R*1000*t);...........//Mass flow rate of compressor in kg/min
+t2=t1*((p2/p1)^((n-1)/n));.....//Temperature at the end of compression in K
+P=(n/(n-1))*(m/60)*R*(t2-t1)*(1/etamech)*(1/etac);..........//Power input to compressor in kW
+disp(P,"Power input to compressor in kW:")
+L=vp/(2*N);.........//Stroke in m
+disp(L*1000,"Compressor stroke in mm:")
+etav=((t/t1)*(p1/p)*(1+k-(k*((p2/p1)^(1/n)))));........//Volumetric efficiency
+D=sqrt(FAD/((%pi/4)*L*N*2*etav));...........//Compressor bore in m
+disp(D*1000,"Compressor bore in mm:")
diff --git a/1226/CH20/EX20.9/EX20_9.jpg b/1226/CH20/EX20.9/EX20_9.jpg Binary files differnew file mode 100755 index 000000000..4ffdc1e56 --- /dev/null +++ b/1226/CH20/EX20.9/EX20_9.jpg diff --git a/1226/CH20/EX20.9/EX20_9.sce b/1226/CH20/EX20.9/EX20_9.sce new file mode 100755 index 000000000..bb9f7509f --- /dev/null +++ b/1226/CH20/EX20.9/EX20_9.sce @@ -0,0 +1,22 @@ +clc;funcprot(0);//EXAMPLE 20.9
+// Initialisation of Variables
+m=0.6;..........//Mass of air delivered in kg/min
+p2=6;.........//Delivery pressure in bar
+p1=1;..........//Induction pressure in bar
+t1=303;........//Induction temperature in K
+D=0.1;.........//Compressor bore in m
+L=0.15;........//Compressor stroke in m
+k=0.03;........//Clearance ratio
+etamech=0.85;....//Mechanical efficiency
+R=0.287;.......//Gas constant in kJ/kgK
+n=1.3;........//Compression index
+//Calculations
+etav=(1+k)-(k*((p2/p1)^(1/n)));..........//Volumetric efficiency
+disp(etav*100,"Volumetric efficiency in %:")
+IP=(n/(n-1))*(m/60)*R*t1*(((p2/p1)^((n-1)/n))-1);.........//Indicated power in kW
+P=IP/etamech;...........//Power required to drive the compressor in kW
+disp(P,"Power required to drive the compressor in kW:")
+FAD=(m*R*t1*1000)/(p1*10^5);...........//Free air delivery in m^3/min
+Vd=FAD/etav;........//Displacement volume in m^3/min
+N=Vd/((%pi/4)*D*D*L);.........//Compressor rpm
+disp(N,"Compressor rpm:")
diff --git a/1226/CH21/EX21.1/EX21_1.jpg b/1226/CH21/EX21.1/EX21_1.jpg Binary files differnew file mode 100755 index 000000000..70576a86e --- /dev/null +++ b/1226/CH21/EX21.1/EX21_1.jpg diff --git a/1226/CH21/EX21.1/EX21_1.sce b/1226/CH21/EX21.1/EX21_1.sce new file mode 100755 index 000000000..b2fde026e --- /dev/null +++ b/1226/CH21/EX21.1/EX21_1.sce @@ -0,0 +1,26 @@ +clc;funcprot(0);//EXAMPLE 21.1
+// Initialisation of Variables
+p1=1;.........//Pressure of air while entering the turbine in bar
+t1=293;........//Temperature of air entering the turbine in K
+p2=4;.........//Pressure of air after compression in bar
+etac=0.8;....//Efficiency of compressor
+etat=0.85;.....//Efficiency of turbine
+afr=90;........//Air fuel ratio
+ma=3;...........//Mass of air in kg/s
+ga=1.4;........//Ratio of specific heats
+cp=1;.............//Specific heat at constant pressure in kJ/kgK
+C=41800;.............//Calorific value of fuel in kJ/kg
+//Calculations
+t2=t1*((p2/p1)^((ga-1)/ga));...............//Ideal temperature of air after compression in K
+t21=((t2-t1)/etac)+t1;..............//Actual temperature of air after compression in K
+t3=round((C/((afr+1)*cp))+t21);..............//Temperature before expansion in turbine in K
+p4=p1;p3=p2;t4=t3*((p4/p3)^((ga-1)/ga));............//Ideal temperature after expansion in turbine in K
+t41=t3-(etat*(t3-t4));.................//Actual temperature after expansion in turbine in K
+wt=((afr+1)/afr)*cp*(t3-t41);........//Work done by turbine in kJ/kg of air
+wc=round(1*cp*(t21-t1));.................//Work done by compression in kJ/kg of air
+wnet=wt-wc;..........//Net work done in kJ/kg
+P=wnet*ma;.................//Power developed in kW/kg of air
+disp(P,"Power developed in kW/kg of air:")
+qs=(1/afr)*C;................//Heat supplied in kJ/kg of air
+etath=wnet/qs;................//Thermal efficiency
+disp(etath*100,"Thermal efficiency in %:")
diff --git a/1226/CH21/EX21.10/EX21_10.jpg b/1226/CH21/EX21.10/EX21_10.jpg Binary files differnew file mode 100755 index 000000000..e7186ba75 --- /dev/null +++ b/1226/CH21/EX21.10/EX21_10.jpg diff --git a/1226/CH21/EX21.10/EX21_10.sce b/1226/CH21/EX21.10/EX21_10.sce new file mode 100755 index 000000000..2611914ce --- /dev/null +++ b/1226/CH21/EX21.10/EX21_10.sce @@ -0,0 +1,34 @@ +clc;funcprot(0);//EXAMPLE 21.10
+// Initialisation of Variables
+t1=288;........//Temperature of air entering the turbine in K
+t3=883;..............//Temperature before expansion in turbine in K
+etac=0.82;....//Efficiency of compressor
+etathp=0.85;.....//Efficiency of high pressure turbine
+etatlp=0.85;.....//Efficiency of low pressure turbine
+rp=7;...........//Pressure ratio
+p1=1.01;...............//Pressure of air before entering compressor
+ga=1.4;........//Ratio of specific heats for compression
+gag=1.333;........//Ratio of specific heats for expansion
+cp=1.005;.............//Specific heat at constant pressure in kJ/kgK
+cpg=1.15;.............//Specific heat at constant pressure in kJ/kgK in generator
+//Calculations
+p2=p1*rp;
+t2=t1*((p2/p1)^((ga-1)/ga));...............//Ideal temperature of air after compression in K
+t21=((t2-t1)/etac)+t1;..............//Actual temperature of air after compression in K
+wc=cp*(t21-t1);............//Compressor work in kJ/kg
+t41=t3-(wc/cpg);..........//Temperature of gasses entering the turbine in K
+disp(t41,"Temperature of gasses entering the turbine in K:")
+t4=round(t3-((t3-t41)/etathp));.........//Ideal temperature of gases entering the turbine in K
+p3=p2;.........//Isobaric processes
+p4=p3/((t3/t4)^(1/((gag-1)/gag)));....//Pressure of gasses entering the power turbine in bar
+disp(p4,"Pressure of gasses entering the power turbine in bar:")
+t5=t41*((((t3/t4)^(1/((gag-1)/gag)))/(rp))^((gag-1)/gag));
+t51=t41-(etatlp*(t41-t5));
+wlp=cpg*(t41-t51);............//Net power output in kW
+disp(wlp,"Net power output in kW:")
+wr=wlp/(wlp+wc);............//Work ratio
+disp(wr,"Work ratio:")
+qs=cpg*(t3-t21);...........//Heat supplied in kJ/kg
+etath=wlp/qs;..........//Thermal efficiency
+disp(etath*100,"Thermal efficiency of the unit:")
+
diff --git a/1226/CH21/EX21.11/EX21_11.jpg b/1226/CH21/EX21.11/EX21_11.jpg Binary files differnew file mode 100755 index 000000000..068dc7c9b --- /dev/null +++ b/1226/CH21/EX21.11/EX21_11.jpg diff --git a/1226/CH21/EX21.11/EX21_11.sce b/1226/CH21/EX21.11/EX21_11.sce new file mode 100755 index 000000000..4b2fd919f --- /dev/null +++ b/1226/CH21/EX21.11/EX21_11.sce @@ -0,0 +1,23 @@ +clc;funcprot(0);//EXAMPLE 21.11
+// Initialisation of Variables
+rp=5.6;................//Pressure ratio
+t1=303;.............//Temperature of intake air in K
+p1=1;............//Pressure of intake air in bar
+t5=973;............//Highest temperature of the cycle in K
+etac=0.85;..........//Effeciency of compressor
+etat=0.9;..........//Efficiency of turbine
+ma=1.2;..........//Rate of air flow in kg/s
+cp=1.02;...........//Specific heat at constant volume in kJ/kgK
+ga=1.41;.............//Ratio of specific heats
+//Calculations
+t2=t1*((sqrt(rp))^((ga-1)/ga));
+t21=((t2-t1)/etac)+t1;
+wc=2*ma*cp*(t21-t1);............//Work input for the two stage compressor in kJ/s
+t6=t5/(rp^((ga-1)/ga));
+t61=t5-etat*(t5-t6);
+wt=ma*cp*(t5-t61);...............//Work output from turbine in kJ/s
+wnet=wt-wc;....................//Net work available in kJ/s
+disp(wnet,"Net work output in kW:")
+qs=ma*cp*(t5-t21);.................//Heat supplied in kJ/s
+etath=wnet/qs;
+disp(etath*100,"Power plant efficiency in %:")
diff --git a/1226/CH21/EX21.13/EX21_13.jpg b/1226/CH21/EX21.13/EX21_13.jpg Binary files differnew file mode 100755 index 000000000..471ac956a --- /dev/null +++ b/1226/CH21/EX21.13/EX21_13.jpg diff --git a/1226/CH21/EX21.13/EX21_13.sce b/1226/CH21/EX21.13/EX21_13.sce new file mode 100755 index 000000000..f0dd7cc42 --- /dev/null +++ b/1226/CH21/EX21.13/EX21_13.sce @@ -0,0 +1,23 @@ +clc;funcprot(0);//EXAMPLE 21.13
+// Initialisation of Variables
+t1=288;.............//Temperature of intake air in K
+rp=4;.............//Pressure ratio
+etac=0.82;.........//Compressor efficiency
+etahe=0.78;...........//Efficiency of heat exchanger
+etat=0.7;...........//Turbine efficiency
+t3=873;............//Temperature before expansion in turbine in K
+R=0.287;............//Gas constant for air in kJ/kgK
+ga=1.4;...........//Ratio of specific heats
+//Calculations
+t2=t1*((rp)^((ga-1)/ga));...............//Ideal temperature of air after compression in K
+t21=((t2-t1)/etac)+t1;...............//Actual temperature of air after compression in K
+t4=t3/(rp^((ga-1)/ga));............//Ideal temperature after expansion in turbine in K
+t41=t3-etat*(t3-t4);............//Actual temperature after expansion in turbine in K
+cp=R*(ga/(ga-1));..............//Specific heat at constant pressure in kJ/kgK
+wc=cp*(t21-t1);.............//Compressor work in kJ/kg
+wt=cp*(t3-t41);....................//Turbine work in kJ/kg
+wnet=wt-wc;....................//Net work available in kJ/s
+t5=(etahe*(t41-t21))+t21;
+qs=cp*(t3-t5);.................//Heat supplied in kJ/kg
+etac=wnet/qs;...............//Cycle efficiency
+disp(etac*100,"Cycle efficiency in %:")
diff --git a/1226/CH21/EX21.14/EX21_14.jpg b/1226/CH21/EX21.14/EX21_14.jpg Binary files differnew file mode 100755 index 000000000..72ab9025d --- /dev/null +++ b/1226/CH21/EX21.14/EX21_14.jpg diff --git a/1226/CH21/EX21.14/EX21_14.sce b/1226/CH21/EX21.14/EX21_14.sce new file mode 100755 index 000000000..a791ace2b --- /dev/null +++ b/1226/CH21/EX21.14/EX21_14.sce @@ -0,0 +1,35 @@ +clc;funcprot(0);//EXAMPLE 21.14
+// Initialisation of Variables
+etahe=0.72;.................//Efficiency of heat exchanger
+p1=1.01;.........//Pressure of air while entering the turbine in bar
+t1=293;........//Temperature of air entering the turbine in K
+p2=4.04;.........//Pressure of air after compression in bar
+etat=0.85;..........//Turbine efficiency
+pdhe=0.05;............//Pressure drop on each side of heat exchanger in bar
+pdcc=0.14;...........//Pressure drop in combustion chamber in bar
+etac=0.8;...........//Compressor efficiency
+ga=1.4;.............//Ratio of specific heats
+C=41800;.............//Calorific value of fuel in kJ/kg
+cp=1.024;...........//Specific heat at constant pressure in kJ/kgK
+afrc=90;..............//Air fuel ratio for simple cycle
+//Calculations
+t2=(t1*((p2/p1)^((ga-1)/ga)));...............//Ideal temperature of air after compression in K
+t21=round(((t2-t1)/etac)+t1);...............//Actual temperature of air after compression in K
+t3=((1*C)/(cp*(afrc+1)))+t21;............//Temperature before expansion in turbine in K
+p4=p1;p3=p2-pdcc;t4=round(t3*((p4/p3)^((ga-1)/ga)));............//Ideal temperature after expansion in turbine in K
+t41=t3-(etat*(t3-t4));.................//Actual temperature after expansion in turbine in K
+etath=(t3-t41-t21+t1)/(t3-t21);...........//Thermal efficiency in simple cycle
+disp(etath*100,"Thermal efficiency in simple cycle in %:")
+p3he=p2-pdhe-pdcc;..........//Pressure before expansion in turbine in bar in heat exchanger cycle
+p4he=p1+pdhe;................//Pressure after expansion in turbine in bar in heat exchanger cycle
+t4he=t3*((p4he/p3he)^((ga-1)/ga));............//Ideal temperature after expansion in turbine in K in heat exchanger cycle
+t41he=round(t3-(etat*(t3-t4he)));.................//Actual temperature after expansion in turbine in K in heat exchanger cycle
+t5=(etahe*(t41he-t21))+t21;
+etathhe=(t3-t41he-t21+t1)/(t3-t5);.............//Thermal efficiency for heat exchanger cycle
+disp(etathhe*100,"Thermal efficiency in heat exchanger cycle in %:")
+inc=etathhe-etath;
+disp(inc*100,"Increase in thermal efficiency in %:")
+
+
+
+
diff --git a/1226/CH21/EX21.15/EX21_15.jpg b/1226/CH21/EX21.15/EX21_15.jpg Binary files differnew file mode 100755 index 000000000..d03828580 --- /dev/null +++ b/1226/CH21/EX21.15/EX21_15.jpg diff --git a/1226/CH21/EX21.15/EX21_15.sce b/1226/CH21/EX21.15/EX21_15.sce new file mode 100755 index 000000000..ac5889c84 --- /dev/null +++ b/1226/CH21/EX21.15/EX21_15.sce @@ -0,0 +1,34 @@ +clc;funcprot(0);//EXAMPLE 21.15
+// Initialisation of Variables
+t1=293;........//Temperature of air entering the turbine in K
+rp=9;............//Overall pressure ratio
+etac=0.8;........//Efficiency of compressor
+t6=898;..........//Reheat remperature
+t8=t6;etat=0.85;.......//Efficiency of turbine
+etamech=0.95;..........//Mechanical efficiency
+etahe=0.8;...............//Heat exchanger thermal efficiency
+cpg=1.15;.............//Specific heat capacity for gases in heat exchanger in kJ/kgK
+cpa=1.005;............//Specific heat capacity for normal air in kJ/kgK
+gag=1.333;.............//Ratio of specific heats for gases in heat exchanger
+ga=1.4;...............//Ratio of specific heats for normal gases
+P=4500;.................//Power output of turbine in kW
+//Calculations
+t2=t1*((sqrt(rp))^((ga-1)/ga));
+t21=((t2-t1)/etac)+t1;
+wc=cpa*(t21-t1);............//Work input per compressor stage
+whp=(2*wc)/etamech;.........//Work output of HP turbine in kJ/kg
+t71=t6-(whp/cpg);t7=round(t6-((t6-t71)/etat));
+k=(rp/((t6/t7)^((gag)/(gag-1))))^((gag-1)/gag);
+k1=((round((k/2)*100))*2)/100;..............//Rounding off upto 2 decimals
+t9=t8/(k1);
+t91=t8-((t8-t9)*etat);
+wout=cpg*(t8-t91)*etamech;..............//Net work output in kJ/kg
+t5=etahe*(t91-t21)+t21;
+qs=cpg*(t6-t5)+cpg*(t8-t71);...............//Heat supplied
+etath=wout/qs;.................//Thermal efficiency
+disp(etath*100,"Thermal efficiency in %:")
+wgross=whp+(wout/etamech);.........//Gross work output in kJ/kg
+wr=wout/wgross;................//Work ratio
+disp(wr,"The workk ratio is:")
+m1=P/wout;...............//Mass flow in kg/s
+disp(m1,"Mass flow in kg/s:")
diff --git a/1226/CH21/EX21.16/EX21_16.jpg b/1226/CH21/EX21.16/EX21_16.jpg Binary files differnew file mode 100755 index 000000000..9b9e1cb15 --- /dev/null +++ b/1226/CH21/EX21.16/EX21_16.jpg diff --git a/1226/CH21/EX21.16/EX21_16.sce b/1226/CH21/EX21.16/EX21_16.sce new file mode 100755 index 000000000..5b158618d --- /dev/null +++ b/1226/CH21/EX21.16/EX21_16.sce @@ -0,0 +1,30 @@ +clc;funcprot(0);//EXAMPLE 21.16
+// Initialisation of Variables
+//Conditions of the closed gas turbine
+t1=293;.............//Temperature at the inlet of first stage compressor in K
+t5=1023;.................//Maximum temperature in K
+p1=1.5;................//Inlet pressure in bar
+p2=6;.................//Pressure in bar
+etac=0.82;..............//Compressor efficiency
+etat=0.82;..............//Turbine efficiency
+etare=0.70;................//Regenerator efficiency
+P=350;....................//Power developed by the plant in kW
+ga=1.4;................//Ratio of specific heats
+cp=1.005;..............//Specific heat at constant pressure in kJ/kgK
+t3=t1;
+//Calculations
+t2=t1*((sqrt(p2/p1))^((ga-1)/ga));
+t21=((t2-t1)/etac)+t1;t41=t21;
+t6=t5/((p2/sqrt(p1*p2))^((ga-1)/ga));
+t61=t5-(etat*(t5-t6));t81=t61;
+t7=t5;
+ta=(etare*(t81-t41))+t41;.......//Temperature of air coming out of regenerator in K
+wnet=2*cp*(t5-t61-t21+t1);........//Net work done in kJ/kg of air
+qs=cp*(t5-t41+t7-t61);...........//Heat supplied without regenerator in kJ/kg of air
+qsr=cp*(t5-ta+t7-t61);............//Heat supplied with regenerator in kJ/kg of air
+etath=wnet/qs;.............//Thermal efficiency (without regenerator)
+etathr=wnet/qsr;.........//Thermal efficiency (with regenerator)
+mfl=P/wnet;..........//mass of fluid circulated in kg/s
+disp(etath*100,"Thermal efficiency of the turbine without regenerator (in %):")
+disp(etathr*100,"Thermal efficiency of the turbine with regenerator (in %):")
+disp(mfl,"Mass of fluid circulated in kg/s:")
diff --git a/1226/CH21/EX21.17/EX21_17.jpg b/1226/CH21/EX21.17/EX21_17.jpg Binary files differnew file mode 100755 index 000000000..fe1aab3bf --- /dev/null +++ b/1226/CH21/EX21.17/EX21_17.jpg diff --git a/1226/CH21/EX21.17/EX21_17.sce b/1226/CH21/EX21.17/EX21_17.sce new file mode 100755 index 000000000..e9768bb95 --- /dev/null +++ b/1226/CH21/EX21.17/EX21_17.sce @@ -0,0 +1,37 @@ +clc;funcprot(0);//EXAMPLE 21.17
+// Initialisation of Variables
+t1=293;............//Temperature of inlet air into low pressure compressor in K
+p1=1.05;.........//Pressure of inlet air into low pressure compressor in bar
+t3=300;...........//Temperature of air after passing it through intercooler in K
+t6=1023;..........//temperature of air in combustion chamber in K
+rp=2;...........//Pressure ratio of each compressor
+etac=0.82;........//Compressor efficiency
+etat=0.82;..........//Turbine efficiency
+etaht=0.72;............//Heat exchanger efficiency
+ma=16;...........//Air flow in kg/s
+ga=1.4;...........//Ratio of specific heats for air
+gag=1.33;..........//Ratio of specific heats for gases
+cpa=1.0;...........//Specific heat at constant pressure in kJ/kgK for air
+cpg=1.15;.........//Specific heat at constant pressure in kJ/kgK for gases
+C=42000;.........//Calorific value of fuel in kJ/kg
+//Calculations
+t2=round(t1*(rp^((ga-1)/ga)));
+t21=round(((t2-t1)/etac)+t1);
+t4=t3*(rp^((ga-1)/ga));
+t41=round(((t4-t3)/etac)+t3);
+t71=round(((cpg*t6)-cpa*(t21-t1+t41-t3))/cpg);
+t7=t6-((t6-t71)/etat);
+p6=p1*rp*rp;
+p7=p6/((t6/t7)^((gag)/(gag-1)));
+t8=round(t71/((p7/p1)^((gag-1)/gag)));
+t81=round(t71-(etat*(t71-t8)));
+P=cpg*(t71-t81);...........//Net power output in kJ/kg
+disp(P*ma,"Net power output in kW: ")
+t5=etaht*(t81-t41)+t41;
+qs=ma*cpg*(t6-t5);......//Heat supplied in combustion chamber in kJ/s
+etath=P*ma/qs;.........//Thermal efficiency
+disp(etath*100,"Thermal efficiency is (in %):")
+afr=C/(cpg*(t6-t5));......//Air fuel ratio
+mf=ma*3600/afr;..............//Fuel supplied per hour in kg
+sfc=mf/(P*ma);...........//Specific fuel consumption in kg/kWh
+disp(sfc,"Specific fuel consumption in kg/kWh:")
diff --git a/1226/CH21/EX21.18/EX21_18.jpg b/1226/CH21/EX21.18/EX21_18.jpg Binary files differnew file mode 100755 index 000000000..7ef1cd3fc --- /dev/null +++ b/1226/CH21/EX21.18/EX21_18.jpg diff --git a/1226/CH21/EX21.18/EX21_18.sce b/1226/CH21/EX21.18/EX21_18.sce new file mode 100755 index 000000000..0c81c20b4 --- /dev/null +++ b/1226/CH21/EX21.18/EX21_18.sce @@ -0,0 +1,44 @@ +clc;funcprot(0);//EXAMPLE 21.18
+// Initialisation of Variables
+t1=293;............//Temperature of inlet air into low pressure compressor in K
+p1=1.1;.........//Pressure of inlet air into low pressure compressor in bar
+p2=3.3;..........//Pressure of air in the low pressure compressor in bar
+t3=300;.............//Intercooled temperature in K
+pli=0.15;..........//Loss in pressure due to intercooling in bar
+p3=p2-pli;...........//Pressure after intercooling in bar
+p4=9.45;............//Pressure of air after high pressure compressor in bar
+p6=p4;t6=973;.........//Temperature of gases supplied to high pressure turbine in K
+t8=943;.........//Reheat temperature in K
+plr=0.12;...........//Loss of pressure after reheating in bar
+p7=3.62;............//Pressure of gases at the end of expansion in high pressure turbine in bar
+p8=p7-plr;...........//Pressure of outlet gases in bar
+ga=1.4;...........//Ratio of specific heats for air
+gag=1.33;..........//Ratio of specific heats for gases
+cpa=1.005;...........//Specific heat at constant pressure in kJ/kgK for air
+cpg=1.15;.........//Specific heat at constant pressure in kJ/kgK for gases
+etac=0.82;........//Compressor efficiency
+etat=0.85;..........//Turbine efficiency
+etaht=0.65;.........//Efficiency of heat exchanger
+P=6000;..................//Power generated in kW
+p9=p1;
+//Calculations
+t2=round(t1*((p2/p1)^((ga-1)/ga)));
+t21=round(((t2-t1)/etac)+t1);
+t4=round(t3*((p4/p3)^((ga-1)/ga)));
+t41=round(((t4-t3)/etac)+t3);
+t7=round(t6/((p6/p7)^((gag-1)/gag)));
+t71=round(t6-(etat*(t6-t7)));
+t9=round(t8/((p8/p9)^((gag-1)/gag)));
+t91=round(t8-(etat*(t8-t9)));
+t5=round(etaht*(t91-t41)+t41);
+wthp=cpg*(t6-t71);.......//Work done by high pressure turbine in kJ/kg of gas
+wtlp=cpg*(t8-t9);.......//Work done by low pressure turbine in kJ/kg of gas
+wchp=cpg*(t21-t1);.......//Work done by high pressure compressor in kJ/kg of gas
+wclp=cpg*(t41-t3);.......//Work done by low pressure compressor in kJ/kg of gas
+qs=cpg*(t6-t5+t8-t71);.........//Heat supplied in kJ/kg of gas
+etath=(wthp+wtlp-wchp-wclp)/qs;..//Overall efficiency
+disp(etath*100,"Overall efficiency (in %):")
+wr=(wthp+wtlp-wchp-wclp)/(wthp+wtlp);......//Work ratio
+disp(wr,"Work ratio :")
+m=P/(wthp+wtlp-wchp-wclp);.....//Mass flow rate
+disp(m,"Mass flow rate in kg/s:")
diff --git a/1226/CH21/EX21.19/EX21_19.jpg b/1226/CH21/EX21.19/EX21_19.jpg Binary files differnew file mode 100755 index 000000000..2b04d3b0e --- /dev/null +++ b/1226/CH21/EX21.19/EX21_19.jpg diff --git a/1226/CH21/EX21.19/EX21_19.sce b/1226/CH21/EX21.19/EX21_19.sce new file mode 100755 index 000000000..c56dacef4 --- /dev/null +++ b/1226/CH21/EX21.19/EX21_19.sce @@ -0,0 +1,26 @@ +clc;funcprot(0);//EXAMPLE 21.19
+// Initialisation of Variables
+ma=60.2;...........//Rate of air consumption in kg/s
+delh=230;.......//Enthalpy change for nozzle in kJ/kg
+z=0.96;..........//Velocity co efficient
+afr=70;............//Air fuel ratio
+etaco=0.92;...............//Combustion eficiency
+CV=42000;..............//Calorific value of fuel in kJ/kg
+v=1000;............//Velocity of aircraft in km/h
+Ca=v*(5/18);............//Aircraft velocity in m/s
+//Calculations
+Cj=z*sqrt(2*delh*v);...........//Exit velocity of jet
+disp(Cj,"Exit velocity of jet in m/s:")
+mf=ma/afr;.........//Rate of fuel consumption
+disp(mf,"Rate of fuel consumption in kg/s:")
+tp=ma*(Cj-Ca);......//Thrust produced in N
+tsfc=mf/tp;.........//Thrust specific fuel consumption in kg/N
+disp(tsfc,"Thrust specific fuel consumption in kg/N:")
+etath=((Cj^2)-(Ca^2))/(2*(1/afr)*CV*etaco*1000);.........//Thermal efficiency
+disp(etath*100,"Thermal efficiency in %:")
+pp=(ma/1000)*((Cj^2)-(Ca^2))/2;................//Propulsive power in kW
+disp(pp,"Propulsive power in kW:")
+etapp=(2*Ca)/(Cj+Ca);......................//Propulsive efficiency
+disp(etapp*100,"Propulsive efficiency in %:")
+etao=((Cj-Ca)*Ca)/((1/afr)*CV*etaco*1000);............//Overall efficiency
+disp(etao*100,"Overall efficiency in %:")
diff --git a/1226/CH21/EX21.2/EX21_2.jpg b/1226/CH21/EX21.2/EX21_2.jpg Binary files differnew file mode 100755 index 000000000..42b97b5db --- /dev/null +++ b/1226/CH21/EX21.2/EX21_2.jpg diff --git a/1226/CH21/EX21.2/EX21_2.sce b/1226/CH21/EX21.2/EX21_2.sce new file mode 100755 index 000000000..1eb5b6758 --- /dev/null +++ b/1226/CH21/EX21.2/EX21_2.sce @@ -0,0 +1,23 @@ +clc;funcprot(0);//EXAMPLE 21.2
+// Initialisation of Variables
+t1=288;........//Temperature of air entering the turbine in K
+t3=883;..............//Temperature before expansion in turbine in K
+etac=0.8;....//Efficiency of compressor
+etat=0.82;.....//Efficiency of turbine
+rp=6;...........//Pressure ratio
+ma=16;...........//Mass of air in kg/s
+gac=1.4;........//Ratio of specific heats for compression process
+gae=1.333;............//Ratio of specific heats for expansion process
+cpc=1.005;.............//Specific heat at constant pressure in kJ/kgK during compression process
+cpe=1.11;.............//Specific heat at constant pressure in kJ/kgK during expansion process
+C=41800;.............//Calorific value of fuel in kJ/kg
+//Calculations
+t2=t1*((rp)^((gac-1)/gac));...............//Ideal temperature of air after compression in K
+t21=((t2-t1)/etac)+t1;..............//Actual temperature of air after compression in K
+t4=t3/((rp)^((gae-1)/gae));............//Ideal temperature after expansion in turbine in K
+t41=t3-(etat*(t3-t4));.................//Actual temperature after expansion in turbine in K
+wt=cpe*(t3-t41);........//Work done by turbine in kJ/kg of air
+wc=(1*cpc*(t21-t1));.................//Work done by compression in kJ/kg of air
+wnet=wt-wc;..........//Net work done in kJ/kg
+P=wnet*ma;.................//Power developed in kW/kg of air
+disp(P,"Power developed in kW/kg of air:")
diff --git a/1226/CH21/EX21.20/EX21_20.jpg b/1226/CH21/EX21.20/EX21_20.jpg Binary files differnew file mode 100755 index 000000000..917022c1b --- /dev/null +++ b/1226/CH21/EX21.20/EX21_20.jpg diff --git a/1226/CH21/EX21.20/EX21_20.sce b/1226/CH21/EX21.20/EX21_20.sce new file mode 100755 index 000000000..02a2cba37 --- /dev/null +++ b/1226/CH21/EX21.20/EX21_20.sce @@ -0,0 +1,24 @@ +clc;funcprot(0);//EXAMPLE 21.20
+// Initialisation of Variables
+v=800;.............//Speed of the turbojet in km/h
+etapp=0.55;......//Propulsive efficiency
+etao=0.17;.........//Overall efficiency
+al=9500;...............//Altitude in m
+rhoa=0.17;............//Density of air at the given altitude in kg/m^3
+dr=6100;...........//Drag on the plane in N
+CV=46000;.........//Calorific value of fuel in kJ/kg
+//Calculations
+Ca=v*(1000/3600);.........//Velocity of jet in m/s
+Cj=((2*Ca)/etapp)-Ca;........//Velocity of gases at nozzle exit relative to the aircraft in m/s
+disp(Cj-Ca,"Absolute velocity of jet in m/s:")
+ma=dr/(Cj-Ca);............//Rate of air flow in kg/s
+Va=(ma/rhoa)*60;..........//Volume of air compresssed per min in kg
+disp(Va,"Volume of air compressed in kg/min:")
+d=sqrt((Va*4)/(60*%pi*Cj));..........//Diameter of the jet in m
+disp(d*1000,"Diameter of the jet in mm:")
+tp=dr*(Ca/1000);...........//Thrust power in kW
+wt=tp/etapp;................//Turbine output in kW
+disp(wt,"Turbine output in kW:")
+mf=wt/(etao*CV);...........//Rate of fuel consumption in kg/s
+afr=ma/mf;..........//Air fuel ratio
+printf("\n\nAir fuel ratio is %f:1",afr)
diff --git a/1226/CH21/EX21.21/EX21_21.jpg b/1226/CH21/EX21.21/EX21_21.jpg Binary files differnew file mode 100755 index 000000000..e76cf6493 --- /dev/null +++ b/1226/CH21/EX21.21/EX21_21.jpg diff --git a/1226/CH21/EX21.21/EX21_21.sce b/1226/CH21/EX21.21/EX21_21.sce new file mode 100755 index 000000000..3528f33e6 --- /dev/null +++ b/1226/CH21/EX21.21/EX21_21.sce @@ -0,0 +1,29 @@ +clc;funcprot(0);//EXAMPLE 21.21
+// Initialisation of Variables
+t1=288;..........//Temperature of the inlet air into compressor in K
+p1=1.01;......//Pressure of the inlet air into compressor in bar
+t3=1023;.........//Maximum temperature in K
+p2=4.04;.........//Pressure of air at the end of compression in bar
+etac=0.82;.......//compressor efficiency
+etat=0.78;......//Turbine efficiency
+etan=0.88;........//Nozzle efficiency
+R=0.287;.........//Gas constant for air in kJ/kgK
+ga=1.4;............//Ratio of specific heats
+C=42000;..........//Calorific value of fuel in kJ/kg
+//Calculations
+t2=t1*((p2/p1)^((ga-1)/ga));........//Ideal temperature at the end of compression in K
+t21=((t2-t1)/etac)+t1;...........//Actual temperature at the end of compression in K
+cp=R*(ga/(ga-1));..............//Specific heat at constant pressure in kJ/kgK
+Pc=cp*(t21-t1);.............//Power required to drive the compressor in kW
+disp(Pc,"Power required to drive the compressor in kW:")
+afr=((C)/(cp*(t3-t21)))-1;....//Air fuel ratio
+printf("\n\nAir fuel ratio %f:1\n",afr)
+t41=t1+t3-t21;......//Actual temperatur of gases leaving the turbine in K
+t4=t3-((t3-t41)/etat);......//Ideal temperature of gases leaving the turbine in K
+p3=p2;p4=p3*((t4/t3)^(ga/(ga-1)));.......//Pressure of gases leaving the turbine in bar
+disp(p4,"Pressure of gases leaving the turbine in bar:")
+p5=p1;t5=t41/((p4/p5)^((ga-1)/ga));
+t51=t41-(etan*(t41-t5));
+Cj=sqrt(2*cp*(t41-t51)*1000);..............//Jet velocity in m/s
+th=Cj*1;..................//Thrust per kg per second in N
+disp(th,"Thrust per kg of air per second in N:")
diff --git a/1226/CH21/EX21.22/EX21_22.jpg b/1226/CH21/EX21.22/EX21_22.jpg Binary files differnew file mode 100755 index 000000000..60b7a65c9 --- /dev/null +++ b/1226/CH21/EX21.22/EX21_22.jpg diff --git a/1226/CH21/EX21.22/EX21_22.sce b/1226/CH21/EX21.22/EX21_22.sce new file mode 100755 index 000000000..2d586399d --- /dev/null +++ b/1226/CH21/EX21.22/EX21_22.sce @@ -0,0 +1,35 @@ +clc;funcprot(0);//EXAMPLE 21.22
+// Initialisation of Variables
+Ca=216;................//Speed of aircraft in m/s
+t1=265.8;...............//Intake air temperature in K
+p1=0.78;...............//Intake air pressure in bar
+rp=5.8;..................//Pressure ratio in compressor
+t4=1383;.................//Temperature of gases entering the gas turbine in K
+pd=0.168;...............//Pressure drop in combustion chamber in bar
+etad=0.9;..............//Diffuser efficiency
+etan=0.9;............//Nozzle efficiency
+etac=0.9;............//Compressor efficiency
+etat=0.8;.............//Turbine efficiency
+C=44150;............//Calorific value of fuel in kJ/kg
+cp=1.005;.............//Specific heat at constant pressure in kJ/kgK
+ga=1.4;...............//Ratio of specific heats
+cin=0.12;...............//Inlet cross sectio of the diffuser in m^3
+R=0.287;............//Gas constant in kJ/kgK
+//Calculations
+t2=t1+((Ca*Ca)/(2*cp*1000));......//For ideal diffuser
+t21=t1+((Ca*Ca)/(2*cp*etad*1000));......//For actual diffuser
+p2=p1*((t2/t1)^(ga/(ga-1)));
+t3=t21*(rp^((ga-1)/ga));t31=t21+((t3-t21)/etac);
+afr=(C-(cp*t4))/(cp*(t4-t31));............//Air fuel ratio
+disp(afr,"Air fuel ratio:")
+p3=p2*rp;p4=p3-pd;...............//Pressure of gases entering the turbine in bar
+t51=t4-(t31-t21);t5=round(t4-((t4-t51)/etat));
+p5=p4/((t4/t5)^(ga/(ga-1)));p6=p1;
+t6=t51/((p5/p6)^((ga-1)/ga));t61=t51-(etac*(t51-t6));
+Cj=44.72*sqrt(cp*(t51-t61));........//Velocity at the exit of the nozzle in m/s
+st=(1+(1/afr))*Cj;............//Specific thrust in N/kg
+disp(st,"Specific thrust in N/kg:")
+v1=Ca*cin;...........//Volume of flowing air in m^3/s
+ma=(p1*v1*10^5)/(R*t1*1000);.........//Mass flow of air
+tt=ma*st;..............//Total thrust in N
+disp(tt,"Total thrust in N:")
diff --git a/1226/CH21/EX21.23/EX21_23.jpg b/1226/CH21/EX21.23/EX21_23.jpg Binary files differnew file mode 100755 index 000000000..dcdee40c7 --- /dev/null +++ b/1226/CH21/EX21.23/EX21_23.jpg diff --git a/1226/CH21/EX21.23/EX21_23.sce b/1226/CH21/EX21.23/EX21_23.sce new file mode 100755 index 000000000..fe1152b49 --- /dev/null +++ b/1226/CH21/EX21.23/EX21_23.sce @@ -0,0 +1,42 @@ +clc;funcprot(0);//EXAMPLE 21.23
+// Initialisation of Variables
+al=9000;..........//Altitude in m
+Ca=215;...........//Speed of aircraft in m/s
+TP=750;.............//Thrust power developed in kW
+p1=0.32;...........//Inlet pressure of air in bar
+t1=231;.............//Inlet temperature of air in K
+t3=963;.............//Temperature of gases leaving the combustion chamber in K
+rpc=5.2;............//Pressure ratio
+C=42500;..........//Calorific value of fuel in kJ/kg
+C41=195;.........//Velocity in ducts
+etac=0.86;..........//Compressor efficiency
+ga=1.4;............//Ratio of specific heats for air
+gag=1.33;............//Ratio of specific heats for gases
+etat=0.86;..........//Turbine efficiency
+etajt=0.9;..........//Jet tube efficiency
+cp=1.005;............//Specific heat at constant pressure in kJ/kgK for air
+cpg=1.087;............//Specific heat at constant pressure in kJ/kgK for gases
+R=0.29;..................//Gas constant for exhaust gases in kJ/kgK
+//Calculations
+t2=t1*(rpc^((ga-1)/ga));
+t21=t1+((t2-t1)/etac);
+mf=(cpg*(t3-t21))/(C-(cpg*(t3-t21)));
+afr=1/mf;..........//Air fuel ratio
+t41=round(t3-((cp*(t21-t1))/(cpg*(1+mf))));
+t4=t3-((t3-t41)/etat);p4=rpc;
+rpt=(t3/t4)^(gag/(gag-1));.............//Expansion pressure ratio in turbine
+rpj=p4/rpt;....................//Expansion pressure ratio in jet tube
+t5=t41/(rpj^((gag-1)/gag));
+Cj=sqrt(etajt*2*((cpg*1000*(t41-t5))+((C41*C41)/2)));
+etao=((((1+mf)*Cj)-Ca)*Ca)/(1000*mf*C);......//Overall efficiency
+disp(etao*100,"Overall efficiency in %:")
+ma=(TP*1000)/((((1+mf)*Cj)-Ca)*Ca);........//Rate of air consumption in kg/s
+disp(ma,"Rate of air consumption in kg/s:")
+P=ma*(1+mf)*cpg*(t3-t41);..............//Power developed by the turbine in kW
+disp(P,"Power developed by turbine in kW:")
+t51=t41-(((Cj^2)-(C41^2))/(2*1000*cpg));
+rhoe=(p1*10^5)/(R*1000*t51);..........//Density of exhaust gases
+Ajt=(ma*(1+mf))/(Cj*rhoe);.......//Discharge of jet area in m^2
+disp(Ajt,"The outlet area of jet tube in m^2:")
+sfc=(mf*ma*3600)/(1000*(TP/Ca));..........//Specific fuel consumption in kg/thrust-hour
+disp(sfc,"Specific fuel consumption in kg per kg of thrust:")
diff --git a/1226/CH21/EX21.3/EX21_3.jpg b/1226/CH21/EX21.3/EX21_3.jpg Binary files differnew file mode 100755 index 000000000..d3c2c08c2 --- /dev/null +++ b/1226/CH21/EX21.3/EX21_3.jpg diff --git a/1226/CH21/EX21.3/EX21_3.sce b/1226/CH21/EX21.3/EX21_3.sce new file mode 100755 index 000000000..e20bc1aeb --- /dev/null +++ b/1226/CH21/EX21.3/EX21_3.sce @@ -0,0 +1,25 @@ +clc;funcprot(0);//EXAMPLE 21.3
+// Initialisation of Variables
+p1=1;.........//Pressure of air while entering the turbine in bar
+t1=300;........//Temperature of air entering the turbine in K
+p2=6.2;.........//Pressure of air after compression in bar
+etac=0.88;....//Efficiency of compressor
+etat=0.9;.....//Efficiency of turbine
+far=0.017;........//Fuel air ratio
+ga=1.4;........//Ratio of specific heats for compression
+gae=1.333;........//Ratio of specific heats for expansion
+cp=1.147;.............//Specific heat at constant pressure in kJ/kgK during expansion
+cpc=1.005;.............//Specific heat at constant pressure in kJ/kgK during compression
+C=44186;.............//Calorific value of fuel in kJ/kg
+//Calculations
+t2=t1*((p2/p1)^((ga-1)/ga));...............//Ideal temperature of air after compression in K
+t21=((t2-t1)/etac)+t1;..............//Actual temperature of air after compression in K
+t3=(((C*far)/((far+1)*cpc))+t21);..............//Temperature before expansion in turbine in K
+p4=p1;p3=p2;t4=t3*((p4/p3)^((gae-1)/gae));............//Ideal temperature after expansion in turbine in K
+t41=t3-(etat*(t3-t4));.................//Actual temperature after expansion in turbine in K
+wt=(cp*(t3-t41));........//Work done by turbine in kJ/kg of air
+wc=round(1*cpc*(t21-t1));.................//Work done by compression in kJ/kg of air
+wnet=wt-wc;..........//Net work done in kJ/kg
+qs=(far)*C;................//Heat supplied in kJ/kg of air
+etath=wnet/qs;................//Thermal efficiency
+disp(etath*100,"Thermal efficiency in %:")
diff --git a/1226/CH21/EX21.4/EX21_4.jpg b/1226/CH21/EX21.4/EX21_4.jpg Binary files differnew file mode 100755 index 000000000..a25e0590c --- /dev/null +++ b/1226/CH21/EX21.4/EX21_4.jpg diff --git a/1226/CH21/EX21.4/EX21_4.sce b/1226/CH21/EX21.4/EX21_4.sce new file mode 100755 index 000000000..531242c8f --- /dev/null +++ b/1226/CH21/EX21.4/EX21_4.sce @@ -0,0 +1,19 @@ +clc;funcprot(0);//EXAMPLE 21.4
+// Initialisation of Variables
+t1=300;........//Temperature of air entering the turbine in K
+t3=1148;..............//Temperature before expansion in turbine in K
+etac=0.8;....//Efficiency of compressor
+etat=0.852;.....//Efficiency of turbine
+rp=4;...........//Pressure ratio
+p1=1;...............//Pressure of air before entering compressor
+ga=1.4;........//Ratio of specific heats
+cp=1.0;.............//Specific heat at constant pressure in kJ/kgK
+C=42000;.............//Calorific value of fuel in kJ/kg
+perlcc=10;............//Percent loss of calorific value of fuel in combustion chamber
+//Calculations
+p2=p1*rp;.................//Pressure of air after compression in bar
+etacc=(100-perlcc)/100;.......//Efficiency of combustion chamber
+t2=t1*((rp)^((ga-1)/ga));...............//Ideal temperature of air after compression in K
+t21=((t2-t1)/etac)+t1;..............//Actual temperature of air after compression in K
+afr=((C*etacc)/(cp*(t3-t21)))-1;........//Air fuel ratio
+printf("Air fuel ratio is %d:1",round(afr))
diff --git a/1226/CH21/EX21.5/EX21_5.jpg b/1226/CH21/EX21.5/EX21_5.jpg Binary files differnew file mode 100755 index 000000000..8e30bf535 --- /dev/null +++ b/1226/CH21/EX21.5/EX21_5.jpg diff --git a/1226/CH21/EX21.5/EX21_5.sce b/1226/CH21/EX21.5/EX21_5.sce new file mode 100755 index 000000000..c59b20807 --- /dev/null +++ b/1226/CH21/EX21.5/EX21_5.sce @@ -0,0 +1,27 @@ +clc;funcprot(0);//EXAMPLE 21.5
+// Initialisation of Variables
+t1=300;........//Temperature of air entering the turbine in K
+t3=883;..............//Temperature before expansion in turbine in K
+etac=0.8;....//Efficiency of compressor
+etat=0.852;.....//Efficiency of turbine
+rp=4;...........//Pressure ratio
+p1=1;...............//Pressure of air before entering compressor
+ga=1.4;........//Ratio of specific heats
+cp=1.11;.............//Specific heat at constant pressure in kJ/kgK
+C=42000;.............//Calorific value of fuel in kJ/kg
+perlcc=10;............//Percent loss of calorific value of fuel in combustion chamber
+//Calculations
+p2=p1*rp;.................//Pressure of air after compression in bar
+etacc=(100-perlcc)/100;.......//Efficiency of combustion chamber
+t2=t1*((rp)^((ga-1)/ga));...............//Ideal temperature of air after compression in K
+t21=((t2-t1)/etac)+t1;..............//Actual temperature of air after compression in K
+qs=cp*(t3-t21);...................//Heat supplied in kJ/kg
+t4=t3/((rp)^((ga-1)/ga));............//Ideal temperature after expansion in turbine in K
+t41=t3-(etat*(t3-t4));.................//Actual temperature after expansion in turbine in K
+wt=cp*(t3-t41);........//Work done by turbine in kJ/kg of air
+wc=(1*cp*(t21-t1));.................//Work done by compression in kJ/kg of air
+wnet=wt-wc;..........//Net work done in kJ/kg
+etath=wnet/qs;................//Thermal efficiency
+disp(etath*100,"Thermal efficiency in %:")
+wrr=wnet/wt;...................//Work ratio
+disp(wrr,"The work ratio is:")
diff --git a/1226/CH21/EX21.6/EX21_6.jpg b/1226/CH21/EX21.6/EX21_6.jpg Binary files differnew file mode 100755 index 000000000..80d74b8ec --- /dev/null +++ b/1226/CH21/EX21.6/EX21_6.jpg diff --git a/1226/CH21/EX21.6/EX21_6.sce b/1226/CH21/EX21.6/EX21_6.sce new file mode 100755 index 000000000..a6246bbdd --- /dev/null +++ b/1226/CH21/EX21.6/EX21_6.sce @@ -0,0 +1,32 @@ +clc;funcprot(0);//EXAMPLE 21.6
+// Initialisation of Variables
+p1=1;.........//Pressure of air while entering the turbine in bar
+t1=293;........//Temperature of air entering the turbine in K
+p2=5;.........//Pressure of air after compression in bar
+plcc=0.1;.....//Pressure loss in combustion chamber in bar
+t3=953;............//Temperature before expansion in turbine in K
+etac=0.85;....//Efficiency of compressor
+etat=0.8;.....//Efficiency of turbine
+etacc=0.85;......//Efficiency of combustion chamber
+ga=1.4;........//Ratio of specific heats
+cp=1.024;.............//Specific heat at constant pressure in kJ/kgK
+P=1065;.............//Power developed by the plant in kW
+
+//Calculations
+p3=p2-plcc;........................//Pressure before expansion in turbine in bar
+p4=p1;
+t2=t1*((p2/p1)^((ga-1)/ga));...............//Ideal temperature of air after compression in K
+t21=((t2-t1)/etac)+t1;..............//Actual temperature of air after compression in K
+t4=t3*((p4/p3)^((ga-1)/ga));............//Ideal temperature after expansion in turbine in K
+t41=t3-(etat*(t3-t4));.................//Actual temperature after expansion in turbine in K
+wt=(cp*(t3-t41));........//Work done by turbine in kJ/kg of air
+wc=round(1*cp*(t21-t1));.................//Work done by compression in kJ/kg of air
+wnet=wt-wc;..........//Net work done in kJ/kg
+ma=P/wnet;.............//Quantity of air in circulation in kg
+disp(ma,"Quantity of air in circulation in kg")
+qs=cp*(t3-t21)/etac;..................//Actual heat supplied per kg of air circulation in kJ
+disp(qs,"Actual heat supplied per kg of air circulation in kJ:")
+etath=wnet/qs;.............//Thermal efficiency
+disp(etath*100,"Thermal efficiency in %:")
+
+
diff --git a/1226/CH21/EX21.7/EX21_7.jpg b/1226/CH21/EX21.7/EX21_7.jpg Binary files differnew file mode 100755 index 000000000..35e15d264 --- /dev/null +++ b/1226/CH21/EX21.7/EX21_7.jpg diff --git a/1226/CH21/EX21.7/EX21_7.sce b/1226/CH21/EX21.7/EX21_7.sce new file mode 100755 index 000000000..7696c8bb0 --- /dev/null +++ b/1226/CH21/EX21.7/EX21_7.sce @@ -0,0 +1,16 @@ +clc;funcprot(0);//EXAMPLE 21.7
+// Initialisation of Variables
+ma=20;..............//Air flow rate in kg/s
+t1=300;........//Temperature of air entering the turbine in K
+t3=1000;............//Temperature before expansion in turbine in K
+rp=4;...............//Pressure ratio
+cp=1;.............//Specific heat at constant pressure in kJ/kgK
+ga=1.4;........//Ratio of specific heats
+//Calculations
+t2=t1*((rp)^((ga-1)/ga));...............//Temperature of air after compression in K
+t4=t3-t2+t1;............//Temperature after expansion in turbine in K
+prlp=rp/((t3/t4)^(ga/(ga-1)));.............//Pressure ratio of low pressure turbine
+disp(prlp,"Pressure ratio of low pressure turbine:")
+t5=t4/((prlp)^((ga-1)/ga));............//Temperature of the exhaust from the unit in K
+disp(t5,"Temperature of the exhaust from the unit in K:")
+
diff --git a/1226/CH21/EX21.8/EX21_8.jpg b/1226/CH21/EX21.8/EX21_8.jpg Binary files differnew file mode 100755 index 000000000..e44e230fc --- /dev/null +++ b/1226/CH21/EX21.8/EX21_8.jpg diff --git a/1226/CH21/EX21.8/EX21_8.sce b/1226/CH21/EX21.8/EX21_8.sce new file mode 100755 index 000000000..12f09f1b1 --- /dev/null +++ b/1226/CH21/EX21.8/EX21_8.sce @@ -0,0 +1,22 @@ +clc;funcprot(0);//EXAMPLE 21.8
+// Initialisation of Variables
+p1=1;.........//Pressure of air while entering the turbine in bar
+t1=300;........//Temperature of air entering the turbine in K
+t21=490;........//Actual temperature of air after compression in K
+t3=1000;............//Temperature before expansion in turbine in K
+rp=5;.............//Pressure ratio
+etac=0.8;....//Efficiency of compressor
+etat=0.8;.....//Efficiency of turbine
+ga=1.4;........//Ratio of specific heats
+cp=1.005;.............//Specific heat at constant pressure in kJ/kgK
+//Calculations
+t4=t3/((rp)^((ga-1)/ga));............//Ideal temperature after expansion in turbine in K
+t41=t3-(etat*(t3-t4));.................//Actual temperature after expansion in turbine in K
+t5=((t41-t21)*etac)+t21;...........//Temperature of the exhaust from the unit in K
+wc=cp*(t21-t1);.............//Work consumed by compressor in kJ/kg
+wt=cp*(t3-t41);........//Work done by turbine in kJ/kg
+qs=cp*(t3-t5);..........//Heat supplied in kJ/kg
+etac=(wt-wc)/qs;.........//Cycle efficiency
+disp(etac*100,"Cycle efficiency in %:")
+
+
diff --git a/1226/CH21/EX21.9/EX21_9.jpg b/1226/CH21/EX21.9/EX21_9.jpg Binary files differnew file mode 100755 index 000000000..185861ab2 --- /dev/null +++ b/1226/CH21/EX21.9/EX21_9.jpg diff --git a/1226/CH21/EX21.9/EX21_9.sce b/1226/CH21/EX21.9/EX21_9.sce new file mode 100755 index 000000000..67d58dc7f --- /dev/null +++ b/1226/CH21/EX21.9/EX21_9.sce @@ -0,0 +1,30 @@ +clc;funcprot(0);//EXAMPLE 21.9
+// Initialisation of Variables
+p1=1;.........//Pressure of air while entering the turbine in bar
+t1=288;........//Temperature of air entering the turbine in K
+p2=8;.........//Pressure of air after compression in bar
+t3=1173;.............//Temperature before expansion in turbine in K
+etac=0.76;....//Efficiency of compressor
+etat=0.86;.....//Efficiency of turbine
+ma=23;.........//Quantity of air circulation in kg/s
+ga=1.4;........//Ratio of specific heats for compression
+gag=1.34;........//Ratio of specific heats for expansion
+cp=1.005;.............//Specific heat at constant pressure in kJ/kgK
+cpg=1.128;.............//Specific heat at constant pressure in kJ/kgK
+C=4200;.............//Calorific value of fuel in kJ/kg
+etamech=0.95;........//Mechanical efficiency
+etagen=0.96;.........//Generator efficiency
+//Calculations
+t2=t1*((p2/p1)^((ga-1)/ga));...............//Ideal temperature of air after compression in K
+t21=((t2-t1)/etac)+t1;..............//Actual temperature of air after compression in K
+p4=p1;p3=p2;.............//Isobaric processes
+t4=t3*((p4/p3)^((gag-1)/gag));............//Ideal temperature after expansion in turbine in K
+t41=t3-(etat*(t3-t4));.................//Actual temperature after expansion in turbine in K
+wc=cp*(t21-t1);................//Work dony by compressor
+m1=(wc)/(cpg*(t3-t41));.............//Flow through compressor turbine in kg
+m2=1-m1;..............//Flow through power turbine in kg
+wpt=m2*(cpg*(t3-t41));.........//turbine work in kJ/kg
+P=ma*wpt*etamech*etagen;.........//Power output in kW
+qi=cpg*t3-cp*t21;.............//Input heat in kJ/kg of air
+etath=wpt/qi;.............//Thermal efficiency of power turbine
+disp(etath*100,"Thermal efficiency of power turbine in %:")
diff --git a/1226/CH3/EX3.1/EX3_1.jpg b/1226/CH3/EX3.1/EX3_1.jpg Binary files differnew file mode 100755 index 000000000..64af51780 --- /dev/null +++ b/1226/CH3/EX3.1/EX3_1.jpg diff --git a/1226/CH3/EX3.1/EX3_1.sce b/1226/CH3/EX3.1/EX3_1.sce new file mode 100755 index 000000000..db743d9ec --- /dev/null +++ b/1226/CH3/EX3.1/EX3_1.sce @@ -0,0 +1,12 @@ +clc;funcprot(0);//EXAMPLE 3.1
+// Initialisation of Variables
+t1=673;.....................//Max temp in Kelvin
+t3=313;;...................//Min temp in Kelvin
+W=130;.................//Work produced in kJ
+//calculations
+etath=(t1-t3)/t1;................//Engine thermal efficiency
+disp(etath*100,"Engine thermal efficiency in %:")
+ha=W/etath;.................//Heat added in kJ
+disp(ha,"Head added in kJ:")
+dels=(ha-W)/t3;...........//Change in entropy
+disp(dels,"Change in entropy in kJ/K")
diff --git a/1226/CH3/EX3.10/EX3_10.jpg b/1226/CH3/EX3.10/EX3_10.jpg Binary files differnew file mode 100755 index 000000000..45f1db801 --- /dev/null +++ b/1226/CH3/EX3.10/EX3_10.jpg diff --git a/1226/CH3/EX3.10/EX3_10.sce b/1226/CH3/EX3.10/EX3_10.sce new file mode 100755 index 000000000..62d43d989 --- /dev/null +++ b/1226/CH3/EX3.10/EX3_10.sce @@ -0,0 +1,24 @@ +clc;funcprot(0);//EXAMPLE 3.10
+// Initialisation of Variables
+r=6;..............//Compression ratio
+p1=1;................//Pressure after isochoric expansion in bar
+t1=300;................//Temperature after isochoric expansion in K
+t3=1842;...............//Temperature after isochoric compression in K
+ga=1.4;...............//Ratio of specific heats
+//Calculations
+p2=p1*(r^ga);...............//Pressure after adiabatic compression in bar
+t2=t1*(r^(ga-1));.............//Temperature after adiabatic compression in K
+p3=p2*(t3/t2);..................//pressure after isochoric compression in bar
+t4=t3/(r^(ga-1));..............//Temperature after adiabatic expansion in K
+p4=p3*(1/(r^(ga)));...........//Pressure after adiabatic expansion in bar
+etaotto=1-(1/(r^(ga-1)));............//Efficiency of otto cycle
+p5=p1;
+t5=((p5/p3)^((ga-1)/ga))*t3;................//Atkinson cycle temp after further adiabatic expansion in K
+etatk=1-((ga*(t5-t1))/(t3-t2));...........//Efficiency of atkinson cycle
+disp(t2,"Temperature after adiabatic compression in K:")
+disp(p2,"Pressure after adiabatic compression in bar:")
+disp(t3,"Temperature after isochoric compression in K:")
+disp(p3,"Pressure after isochoric compression in bar:")
+disp(t4,"Temperature after adiabatic expansion in K:")
+disp(p4,"Pressure after adiabatic expansion in bar:")
+disp((etatk-etaotto)*100,"Improvement in efficiency in %:")
diff --git a/1226/CH3/EX3.11/EX3_11.jpg b/1226/CH3/EX3.11/EX3_11.jpg Binary files differnew file mode 100755 index 000000000..fe2e87a1a --- /dev/null +++ b/1226/CH3/EX3.11/EX3_11.jpg diff --git a/1226/CH3/EX3.11/EX3_11.sce b/1226/CH3/EX3.11/EX3_11.sce new file mode 100755 index 000000000..3f89aad85 --- /dev/null +++ b/1226/CH3/EX3.11/EX3_11.sce @@ -0,0 +1,16 @@ +clc;funcprot(0);//EXAMPLE 3.11
+// Initialisation of Variables
+p1=1;...................//Initial pressure in bar
+t1=343;..................//Initial temperature in K
+p2=7;....................//Pressure after adiabatic compression
+Qs=465;...............//Heat addition at constant volume in kJ/kg
+cp=1;.....................//Specific heat at constant pressure in kJ/kg
+cv=0.706;..................//Specific heat at constant volume in kJ/kg
+ga=cp/cv;.................//Ratio of specific heats
+//Calculations
+r=(p2/p1)^(1/ga);...............//Compression ratio
+t2=t1*(r^(ga-1));.....................//Temperature at the end of compression in K
+t3=t2+(Qs/cv);.............//Temperature at the end of heat addition in K
+disp(r,"Compression ratio:")
+disp(t2,"Temperature at the end of compression in K")
+disp(t3,"Temperature at the end of heat addition in K")
diff --git a/1226/CH3/EX3.12/EX3_12.jpg b/1226/CH3/EX3.12/EX3_12.jpg Binary files differnew file mode 100755 index 000000000..dcc32315a --- /dev/null +++ b/1226/CH3/EX3.12/EX3_12.jpg diff --git a/1226/CH3/EX3.12/EX3_12.sce b/1226/CH3/EX3.12/EX3_12.sce new file mode 100755 index 000000000..440a9ca19 --- /dev/null +++ b/1226/CH3/EX3.12/EX3_12.sce @@ -0,0 +1,19 @@ +clc;funcprot(0);//EXAMPLE 3.12
+// Initialisation of Variables
+ga=1.4;..............//Ratio of specific heats
+p2byp1=15;...............//Ratio pressure at the end of compression to that of pressure at the start
+t1=311;................//Initial temperature in K
+t3=2223;...............//Maximum temperature in K
+R=0.287;...............//Gas constant in kJ/kg K
+//Calculations
+r=p2byp1^(1/ga);...............//Compression ratio
+etath=1-(1/(r^(ga-1)));.............//Thermal efficiency
+t2=t1*(r^(ga-1));............//Temperature at the end of compression in K
+t4=t3/(r^(ga-1));...........//Temperature at the end of isothermal expansion in K
+cv=R/(ga-1);................//Specific heat at constant volume in kJ/kg
+Q=cv*(t3-t2);..............//Heat supplied in kJ/kg of air
+Qr=cv*(t4-t1);.................//Heat rejected in kJ/kg of air
+W=Q-Qr;.................//Work done
+disp(r,"Compression ratio:")
+disp(etath*100,"Thermal efficiency in %:")
+disp(W,"Work done in kJ:")
diff --git a/1226/CH3/EX3.13/EX3_13.jpg b/1226/CH3/EX3.13/EX3_13.jpg Binary files differnew file mode 100755 index 000000000..945612c00 --- /dev/null +++ b/1226/CH3/EX3.13/EX3_13.jpg diff --git a/1226/CH3/EX3.13/EX3_13.sce b/1226/CH3/EX3.13/EX3_13.sce new file mode 100755 index 000000000..191eb5b97 --- /dev/null +++ b/1226/CH3/EX3.13/EX3_13.sce @@ -0,0 +1,40 @@ +clc;funcprot(0);//EXAMPLE 3.13
+// Initialisation of Variables
+v1=0.45;.............//Initial volume in m^3
+p1=1;...............//Initial pressure in bar
+t1=303;.............//Initial temperature in K
+p2=11;...................//Pressure at the end of compression stroke in bar
+Q=210;...................//heat added at constant volume in kJ
+N=210;.................//No of working cycles per min
+ga=1.4;.............//Ratio of specific heats
+R=287;.................//Gas constant in kJ/kgK
+cv=0.71;.................//Specific heat at constant volume in kJ/kg
+//Calculations
+r=(p2/p1)^(1/ga);...................//Compression ratio
+t2=t1*(r^(ga-1));...................//Temperature at the end of adiabatic compression
+v2=(t2*p1*v1)/(t1*p2);.................//Volume at the end of adiabatic compression in m^3
+m=(p1*v1*10^5)/(R*t1);................//Mass of engine fluid in kg
+t3=(Q/(m*cv))+t2;...................//Temperature at the end of isochoric compression in K
+p3=(t3/t2)*p2;................//Pressure at the end of isochoric compression in bar
+v3=v2;
+t4=t3*(1/r)^(ga-1);...................//Temperature at the end of adiabatic expansion in K
+p4=p3*(1/r)^ga;......................//Pressure at the end of adiabatic expansion in bar
+v4=v1;
+pc=(v2*100)/(v1-v2);..................//Percentage clearence
+etaotto=1-(1/(r^(ga-1)));........................//Efficiency of otto cycle
+Qr=m*cv*(t4-t1);...............................//Heat rejected in kJ/kg
+pm=((Q-Qr)*1000)/((v1-v2)*100000);......//Mean effective pressure in bar
+P=(Q-Qr)*(N/60);........................//Power developed in kW
+printf("Temperature after adiabatic compression: %f K\n\n",t2)
+printf("Pressure after adiabatic compression: %f bar\n\n",p2)
+printf("Volume after adiabatic compression: %f m^3\n\n",v2)
+printf("Temperature after isochoric compression: %f K\n\n",t3)
+printf("Pressure after isochoric compression: %f bar\n\n",p3)
+printf("Volume after isochoric compression: %f m^3\n\n",v3)
+printf("Temperature after adiabatic expansion: %f K\n\n",t4)
+printf("Pressure after adiabatic expansion: %f bar\n\n",p4)
+printf("Volume after adiabatic expansion: %f m^3\n\n",v4)
+printf("Percentage clearance: %f\n\n",pc)
+printf("Efficiency of otto cycle: %f\n\n",etaotto*100)
+printf("Mean effective pressure: %f bar:\n\n",pm)
+printf("Power developed: %f kW\n\n",P)
diff --git a/1226/CH3/EX3.14/EX3_14.jpg b/1226/CH3/EX3.14/EX3_14.jpg Binary files differnew file mode 100755 index 000000000..741457185 --- /dev/null +++ b/1226/CH3/EX3.14/EX3_14.jpg diff --git a/1226/CH3/EX3.14/EX3_14.sce b/1226/CH3/EX3.14/EX3_14.sce new file mode 100755 index 000000000..b41dffa24 --- /dev/null +++ b/1226/CH3/EX3.14/EX3_14.sce @@ -0,0 +1,16 @@ +clc;funcprot(0);//EXAMPLE 3.14
+// Initialisation of Variables
+t1=310;................//Min temperature in K
+t3=1220;................//Max temperature in K
+ga=1.4;................//Ratio of specific heats for air
+cph=5.22;............//Specific heat at constant volume for helium in kJ/kg
+cvh=3.13;...............//Specific heat at constant pressure for helium in kJ/kg
+//Calculations
+r=(t3/t1)^(1/((ga-1)*2));..............//Compression ratio
+etaotto=1-(1/(r^(ga-1)));................//Air standard efficiency
+gah=cph/cvh;................//Ratio of specific heats for Helium
+rh=(t3/t1)^(1/((gah-1)*2));..............//Compression ratio when Helium is used
+etaottoh=1-(1/(rh^(gah-1)));................//Air standard efficiency when Helium is used
+disp(etaotto*100,"Air standard efficiency of the engine in %:")
+if ((round (etaotto)- round (etaottoh)) == 0) then disp("There is no change in efficiency when Helium is used as working fluid instead of air")
+end
diff --git a/1226/CH3/EX3.15/EX3_15.jpg b/1226/CH3/EX3.15/EX3_15.jpg Binary files differnew file mode 100755 index 000000000..715b748ce --- /dev/null +++ b/1226/CH3/EX3.15/EX3_15.jpg diff --git a/1226/CH3/EX3.15/EX3_15.sce b/1226/CH3/EX3.15/EX3_15.sce new file mode 100755 index 000000000..af248e957 --- /dev/null +++ b/1226/CH3/EX3.15/EX3_15.sce @@ -0,0 +1,12 @@ +clc;funcprot(0);//EXAMPLE 3.15
+// Initialisation of Variables
+t1=310;.........//Minimum temperature in K
+t3=1450;............//maximum temperature in K
+m=0.38;...........//Mass of working fluid in kg
+cv=0.71;...........//Specific heat at constant volume in kJ/kg
+//Calculations
+t4=sqrt(t1*t3);............//Temperature at the end of adiabatic expansion in K
+t2=t4;
+W=cv*(t3-t2-t4+t1);..................//Work done in kJ/kg
+P=W*(m/60);.................//Power developed in kW
+disp (P,"Power developed in kW:")
diff --git a/1226/CH3/EX3.17/EX3_17.jpg b/1226/CH3/EX3.17/EX3_17.jpg Binary files differnew file mode 100755 index 000000000..63f5d74fa --- /dev/null +++ b/1226/CH3/EX3.17/EX3_17.jpg diff --git a/1226/CH3/EX3.17/EX3_17.sce b/1226/CH3/EX3.17/EX3_17.sce new file mode 100755 index 000000000..ce02dded3 --- /dev/null +++ b/1226/CH3/EX3.17/EX3_17.sce @@ -0,0 +1,9 @@ +clc;funcprot(0);//EXAMPLE 3.17
+// Initialisation of Variables
+r=15;...................//Compression ratio
+ga=1.4;..............//Ratio os fpecific heats for air
+perQ=6;................//Heat addition at constant pressure takes place at 6% of stroke
+//Calculations
+rho=1+((perQ/100)*(r-1));.............//Cut off ratio
+etad=1-((((rho^ga)-1)/(rho-1))*(1/(ga*(r^(ga-1)))));..................//Efficiency of diesel engine
+disp(etad*100,"Efficiency of diesel engine in %:")
diff --git a/1226/CH3/EX3.18/EX3_18.jpg b/1226/CH3/EX3.18/EX3_18.jpg Binary files differnew file mode 100755 index 000000000..5f3178f07 --- /dev/null +++ b/1226/CH3/EX3.18/EX3_18.jpg diff --git a/1226/CH3/EX3.18/EX3_18.sce b/1226/CH3/EX3.18/EX3_18.sce new file mode 100755 index 000000000..3e7239c71 --- /dev/null +++ b/1226/CH3/EX3.18/EX3_18.sce @@ -0,0 +1,15 @@ +clc;funcprot(0);//EXAMPLE 3.18
+// Initialisation of Variables
+L=0.25;...............//Engine stroke in m
+D=0.15;..................//Engine bore in m
+v2=0.0004;...............//Clearance volume in m^3
+pers=5;...............//Percentage of stroke when fuel injection occurs
+ga=1.4;..............//Ratio of specific heats
+//Calculations
+Vs=(%pi/4)*D*D*L;..............//Swept volume in m^3
+Vt=Vs+v2;....................//Total cylinder volume in m^3
+v3=v2+((pers/100)*Vs);..............//Volume at point of cut off
+rho=v3/v2;............//Cut off ratio
+r=1+(Vs/v2);.............//Compression ratio
+etad=1-((((rho^ga)-1)/(rho-1))*(1/(ga*(r^(ga-1)))));..................//Efficiency of diesel engine
+disp(etad*100,"Efficiency of diesel engine in %:")
diff --git a/1226/CH3/EX3.19/EX3_19.jpg b/1226/CH3/EX3.19/EX3_19.jpg Binary files differnew file mode 100755 index 000000000..fb72aae1b --- /dev/null +++ b/1226/CH3/EX3.19/EX3_19.jpg diff --git a/1226/CH3/EX3.19/EX3_19.sce b/1226/CH3/EX3.19/EX3_19.sce new file mode 100755 index 000000000..b15d7357a --- /dev/null +++ b/1226/CH3/EX3.19/EX3_19.sce @@ -0,0 +1,15 @@ +clc;funcprot(0);//EXAMPLE 3.19
+// Initialisation of Variables
+r=14;....................//Compression ratio
+pers1=5;...............//Percentage of stroke when fuel cut off occurs
+pers2=8;...............//Percentage of stroke when delayed fuel cut off occurs
+v2=1;.....................//Clearance volume in m^3
+ga=1.4;..................//Ratio of specific heats
+//Calculations
+//When the fuel is cut off at 5 %
+rho1=((pers1/100)*(r-1))+1;.............//Cut off ratio
+etad1=1-((((rho1^ga)-1)/(rho1-1))*(1/(ga*(r^(ga-1)))));..................//Efficiency of diesel engine
+//When the fuel is cut off at 8 %
+rho2=((pers2/100)*(r-1))+1;.............// Delayed Cut off ratio
+etad2=1-((((rho2^ga)-1)/(rho2-1))*(1/(ga*(r^(ga-1)))));..................//Efficiency of diesel engine when cut off ratio is deyaled
+disp((etad1-etad2)*100,"Percentage loss in efficiency due to delay in cut off:")
diff --git a/1226/CH3/EX3.2/EX3_2.jpg b/1226/CH3/EX3.2/EX3_2.jpg Binary files differnew file mode 100755 index 000000000..4f3b62db5 --- /dev/null +++ b/1226/CH3/EX3.2/EX3_2.jpg diff --git a/1226/CH3/EX3.2/EX3_2.sce b/1226/CH3/EX3.2/EX3_2.sce new file mode 100755 index 000000000..3ad02ed4b --- /dev/null +++ b/1226/CH3/EX3.2/EX3_2.sce @@ -0,0 +1,24 @@ +clc;funcprot(0);//EXAMPLE 3.2
+// Initialisation of Variables
+m=0.5;.....................//Mass of air in kg
+etath=0.5;.................//Thermal efficiency of engine
+hie=40;...................//Heat transferred during isothermal expansion in kJ
+p1=7;....................//Pressure in bar at the beginning of expansion
+v1=0.12;..................//Volume in m^3 at the beginning of expansion
+cv=0.721;...................//Specific heat at constant volume in kJ/kgK
+cp=1.008;..................//Specific heat at constant pressure in kJ/kgK
+R=287;......................//Gas constant in J/kgK
+//Calculations
+t1=(p1*10^5*v1)/(R*m);....................//Max temp in K
+t2=t1*(1-etath);.......................//Min temp in K
+disp(t1,"The maximum temperature in Kelvin:")
+disp(t2,"The minimum temperature in Kelvin:")
+v2=(%e^((hie*1000)/(m*R*t1)))*v1;..................//Volume at the end of isothermal expansion in m^3
+disp(v2,"Volume at the end of isothermal expansion in m^3")
+printf("\n\n")
+printf("Process Heat transfer\n")
+printf("_______________________________________________________________\n")
+printf("Isothermal expansion %d kJ\n",hie)
+printf("Adiabatic reversible expansion %d kJ\n",0)
+printf("Isothermal compression %d kJ\n",-hie)
+printf("Adiabatic reversible compressions %d kJ",0)
diff --git a/1226/CH3/EX3.20/EX3_20.jpg b/1226/CH3/EX3.20/EX3_20.jpg Binary files differnew file mode 100755 index 000000000..2ec3d881f --- /dev/null +++ b/1226/CH3/EX3.20/EX3_20.jpg diff --git a/1226/CH3/EX3.20/EX3_20.sce b/1226/CH3/EX3.20/EX3_20.sce new file mode 100755 index 000000000..9e2676ea4 --- /dev/null +++ b/1226/CH3/EX3.20/EX3_20.sce @@ -0,0 +1,21 @@ +clc;funcprot(0);//EXAMPLE 3.20
+// Initialisation of Variables
+pm=7.5;.................//Mean effective pressure in bar
+r=12.5;..................//Compression ratio
+p1=1;....................//Initial pressure in bar
+ga=1.4;.................//Ratio of specific heats
+//Calculations
+k=(pm*(ga-1)*(r-1))/(p1*(r^ga));
+c1=(r^(1-ga))/k;c2=(-ga)/k;c=1+(ga/k)-((r^(1-ga))/k);
+function[f]=F(rho)
+ f=c1*(rho^ga)+c2*rho+c;
+endfunction
+//Initial guess
+rho=2;
+//Derivative
+function[z]=D(rho)
+ z=c1*ga*(rho^(ga-1))+c2;
+endfunction
+y=fsolve(rho,F,D)
+perc=((y-1)/(r-1))*100;..................//Percentage of cutoff
+disp(perc,"Cut off Percentage:")
diff --git a/1226/CH3/EX3.21/EX3_21.jpg b/1226/CH3/EX3.21/EX3_21.jpg Binary files differnew file mode 100755 index 000000000..b130bf106 --- /dev/null +++ b/1226/CH3/EX3.21/EX3_21.jpg diff --git a/1226/CH3/EX3.21/EX3_21.sce b/1226/CH3/EX3.21/EX3_21.sce new file mode 100755 index 000000000..03f2fdcce --- /dev/null +++ b/1226/CH3/EX3.21/EX3_21.sce @@ -0,0 +1,42 @@ +clc;funcprot(0);//EXAMPLE 3.21
+// Initialisation of Variables
+D=0.2;.................//Engine bore in m
+L=0.3;.............//Engine stroke in m
+p1=1;................//Initial pressure in bar
+N=380;.................//No of working cycles per min
+t1=300;..............//Initial temperature in K
+co=8;................//Cut off percentage
+r=15;..................//Compression ratio
+R=287;.................//gas constant in J/kg
+ga=1.4;................//Ratio of specific heats
+//Calculations
+Vs=(%pi/4)*D*D*L;.............//Stroke volume in m
+v1=(r/(r-1))*Vs;................//Volume at the end of isochoric compression in m^3
+m=(p1*v1*10^5)/(R*t1);................//Mass of air in cylinder in kg/cycle
+p2=p1*(r^ga);.......................//Pressure at the end of isentropic compression in bar
+t2=t1*(r^(ga-1));....................//Temperature at the end of isentropic compression in K
+v2=Vs/(r-1);..................//Volume at the end of isentropic compressionin m^3
+p3=p2;
+rho=((r-1)*(co/100))+1;................//Cut off ratio
+v3=rho*v2;.......................//Volume at the end of isobaric expansion in m^3
+t3=t2*(v3/v2);..................//Temperature at the end of isobaric expansion in K
+p4=((rho/r)^ga)*p3;..............//Pressure at the end of adiabatic expansion in bar
+t4=((rho/r)^(ga-1))*t3;..............//Temperature at the end of adiabatic expansion in K
+v4=v1;
+printf("Temperature after adiabatic compression: %f K\n\n",t2)
+printf("Pressure after adiabatic compression: %f bar\n\n",p2)
+printf("Volume after adiabatic compression: %f m^3\n\n",v2)
+printf("Temperature after isobaric compression: %f K\n\n",t3)
+printf("Pressure after isobaric compression: %f bar\n\n",p3)
+printf("Volume after isobaric compression: %f m^3\n\n",v3)
+printf("Temperature after adiabatic expansion: %f K\n\n",t4)
+printf("Pressure after adiabatic expansion: %f bar\n\n",p4)
+printf("Volume after adiabatic expansion: %f m^3\n\n",v4)
+etad=1-((((rho^ga)-1)/(rho-1))*(1/(ga*(r^(ga-1)))));..................//Efficiency of diesel engine
+disp(etad*100,"Efficiency of diesel engine in %:")
+pm=p1*(r^ga)*[ga*(rho-1)-((r^(1-ga))*((rho^ga)-1))]*(1/(ga-1))*1/(r-1);.......//Mean effective pressure
+disp(pm,"Mean effective pressure :")
+Wdc=(pm*Vs*10^5)/1000;..................//Work done per cycle in kJ/cycle
+P=(Wdc*N)/60;...........................//Power developed in kW
+disp(P,"Power developed in kW:")
+
diff --git a/1226/CH3/EX3.22/EX3_22.jpg b/1226/CH3/EX3.22/EX3_22.jpg Binary files differnew file mode 100755 index 000000000..28d5a2618 --- /dev/null +++ b/1226/CH3/EX3.22/EX3_22.jpg diff --git a/1226/CH3/EX3.22/EX3_22.sce b/1226/CH3/EX3.22/EX3_22.sce new file mode 100755 index 000000000..2563e2d1f --- /dev/null +++ b/1226/CH3/EX3.22/EX3_22.sce @@ -0,0 +1,30 @@ +clc;funcprot(0);//EXAMPLE 3.22
+// Initialisation of Variables
+rc=15.3;....................//Compression ratio
+re=7.5;...................//Expansion ratio
+cp=1.005;.................//Specific heat at constant pressure in kJ/kg K
+cv=0.718;..................//Specific heat at constant volume in kJ/kgK
+ga=1.4;....................//Ratio of specific heats
+p1=1;....................//Initial pressure in bar
+t1=300;..................//Initial temperature in K
+etamech=0.8;..................//Mechanical efficiency
+C=42000;...........................//Calorific value of fuel in kJ/kg
+rita=0.5;.........................//Ratio of indicated thermal efficiency to air standard efficiency
+R=287;..........................//Gas constant in kJ/kgK
+//Calculations
+t2=t1*(rc^(ga-1));.................//Temperature at the end of adiabatic compression in K
+p2=p1*(rc^ga);...................//Pressure at the end of adiabatic compression in bar
+t3=(rc*t2)/re;....................//Temperature at the end of constant pressure process in K
+v2=1;..................//Volume at the end of adiabatic process in m^3
+m=(p2*v2*10^5)/(R*t2);..................//Mass of working fluid in kg
+t4=t3*((1/re)^(ga-1));...................//Temperature at the end of adiabatic expansion in K
+W=[m*(cp*(t3-t2))]-[m*(cv*(t4-t1))];........//Work done in kJ
+pm=W/(rc-1);..............................//Mean effective pressure in kN/m^2
+disp(pm/100,"Mean effective pressure in bar:")
+disp((p2*100)/(pm),"Ratio of maximum pressure to mean effective pressure ")
+etacy=W/(m*cp*(t3-t2));...............//Cycle efficiency
+disp(etacy*100,"Cycle efficiency in %:")
+etaith=rita*etacy;..................//Indicated thermal efficiency
+etabth=etaith*etamech;...............//Brake thermal efficiency
+mf=3600/(etabth*C);................//Fuel consumption per kWh
+disp(mf,"Fuel consumption in kg/kWh:")
diff --git a/1226/CH3/EX3.23/EX3_23.jpg b/1226/CH3/EX3.23/EX3_23.jpg Binary files differnew file mode 100755 index 000000000..65a50f0bd --- /dev/null +++ b/1226/CH3/EX3.23/EX3_23.jpg diff --git a/1226/CH3/EX3.23/EX3_23.sce b/1226/CH3/EX3.23/EX3_23.sce new file mode 100755 index 000000000..726f589a0 --- /dev/null +++ b/1226/CH3/EX3.23/EX3_23.sce @@ -0,0 +1,18 @@ +clc;funcprot(0);//EXAMPLE 3.23
+// Initialisation of Variables
+Vs=0.0053;................//Swept volume in m^3
+Vc=0.00035;...............//Clearance volume in m^3
+v3=Vc;
+v2=Vc;
+p3=65;..................//Max pressure in bar
+co=5;...................//Cut off percentage
+p4=p3;ga=1.4;...............//Ratio of specific heats
+t1=353;....................//Temperature at the start of compression in K
+p1=0.9;...................//Pressure at the start of compression in bar
+//Calculations
+r=1+(Vs/Vc);...................//Compression ratio
+rho=(((co/100)*Vs)/Vc)+1;...................//Cut off ratio
+p2=p1*(r^ga);
+Beta=p3/p2;.............................//Explosion ratio
+etadual=1-[(1/(r^(ga-1)))*((Beta*(rho^ga))-1)*(1/((Beta-1)+(Beta*ga*(rho-1))))];............//Efficiency of dual cycle
+disp(etadual*100,"Efficiency of dual cycle:")
diff --git a/1226/CH3/EX3.24/EX3_24.jpg b/1226/CH3/EX3.24/EX3_24.jpg Binary files differnew file mode 100755 index 000000000..3708b6fe5 --- /dev/null +++ b/1226/CH3/EX3.24/EX3_24.jpg diff --git a/1226/CH3/EX3.24/EX3_24.sce b/1226/CH3/EX3.24/EX3_24.sce new file mode 100755 index 000000000..82d7eb9ae --- /dev/null +++ b/1226/CH3/EX3.24/EX3_24.sce @@ -0,0 +1,10 @@ +clc;funcprot(0);//EXAMPLE 3.24
+// Initialisation of Variables
+r=14;......................//Compression ratio
+Beta=1.4;................//Explosion ratio
+co=6;..................//Cut off percentage
+ga=1.4;.................//Ratio of specific heats
+//Calculation
+rho=((co/100)*(r-1))+1;...............//Cut off ratio
+etadual=1-[(1/(r^(ga-1)))*((Beta*(rho^ga))-1)*(1/((Beta-1)+(Beta*ga*(rho-1))))];............//Efficiency of dual cycle
+disp(etadual*100,"Efficiency of dual cycle:")
diff --git a/1226/CH3/EX3.25/EX3_25.jpg b/1226/CH3/EX3.25/EX3_25.jpg Binary files differnew file mode 100755 index 000000000..ca597ea82 --- /dev/null +++ b/1226/CH3/EX3.25/EX3_25.jpg diff --git a/1226/CH3/EX3.25/EX3_25.sce b/1226/CH3/EX3.25/EX3_25.sce new file mode 100755 index 000000000..7f4430301 --- /dev/null +++ b/1226/CH3/EX3.25/EX3_25.sce @@ -0,0 +1,34 @@ +clc;funcprot(0);//EXAMPLE 3.25
+// Initialisation of Variables
+D=0.25;.................//Engine bore in m
+L=0.3;.............//Engine stroke in m
+p1=1;................//Initial pressure in bar
+N=3;...............//No of cycles per second
+p3=60;................//Maximum pressure in bar
+t1=303;..............//Initial temperature in K
+co=4;................//Cut off percentage
+r=9;..................//Compression ratio
+R=287;.................//gas constant in J/kg
+cv=0.71;...............//Specific heat at constant volume in kJ/kgK
+cp=1.0;.................//Specific heat at constant pressure in kJ/kgK
+ga=1.4;...............//Ratio of specific heats
+//Calculations
+p4=p3;
+Vs=(%pi/4)*D*D*L;.............//Stroke volume in m^3
+Vc=Vs/(r-1);..................//Clearance volume in m^3
+rho=((r-1)*(co/100))+1;................//Cut off ratio
+v1=Vc+Vs;.................//Volume after isochoric compression in m^3
+p2=p1*(r^ga);................//Pressure after adiabatic compression in bar
+t2=t1*(r^(ga-1));..............//Temperature after adiabatic expansion in K
+t3=(p3*t2)/p2;..............//Temperature after isochoric compression in K
+t4=t3*rho;.....................//Temperature after isobaric expansion in K
+t5=t4*((rho/r)^(ga-1));.........//Temperature after adiabatic expansion in K
+p5=p4*(rho/r)^ga;...............//Pressure after adiabatic expansion in bar
+Qs=(cv*(t3-t2)+cp*(t4-t3));.....//Heat supplied in kJ/kg
+Qr=cv*(t5-t1);...................//Heat rejected in kJ/kg
+etast=1-(Qr/Qs);.................//Air standard efficiency
+disp(etast*100,"Air standard efficiency in %:")
+m=(p1*v1*10^5)/(R*t1);...............//Mass of air in cycle
+W=m*(Qs-Qr);....................//Work done per cycle in kJ
+P=W*N;............................//Power developed in kW
+disp(P,"Power developed in kW")
diff --git a/1226/CH3/EX3.26/EX3_26.jpg b/1226/CH3/EX3.26/EX3_26.jpg Binary files differnew file mode 100755 index 000000000..b577b8b29 --- /dev/null +++ b/1226/CH3/EX3.26/EX3_26.jpg diff --git a/1226/CH3/EX3.26/EX3_26.sce b/1226/CH3/EX3.26/EX3_26.sce new file mode 100755 index 000000000..c1e57f9b5 --- /dev/null +++ b/1226/CH3/EX3.26/EX3_26.sce @@ -0,0 +1,36 @@ +clc;funcprot(0);//EXAMPLE 3.26
+// Initialisation of Variables
+p1=1;................//Initial pressure in bar
+t1=363;.............//Initial temperature in K
+r=9;.................//Compression ratio
+p3=68;...............//Max pressure
+p4=p3;
+Qs=1750;..............//Total heat supplied
+ga=1.4;...............//Ratio of specific heats
+R=287;................//Gas constant in kJ/kgK
+cv=0.71;..............//Specific heat at constant volume in kJ/kgK
+cp=1;................//Specific heat at constant pressure in kJ/kgK
+//Calculations
+p2=p1*((r)^ga);............//Pressure at the end of adiabatic compression in bar
+t2=t1*((r)^(ga-1));..........//Temperature at the end of adiabatic compression in K
+t3=t2*(p3/p2);............//Temperature at the end of isochoric compression in K
+Qv=cv*(t3-t2);.............//Heat added at constant volume in kJ/kg
+Qp=Qs-Qv;.....................//Heat added at constant pressure in kJ/kg
+t4=(Qp/cp)+t3;................//Temperature at the end of isobaric expansion in kJ/kg
+rho=t4/t3;.....................//Cut off ratio
+p5=p4*((rho/r)^ga);................//Pressure at the end of adiabatic expansion in kJ/kg
+t5=t4*((rho/r)^(ga-1));...........//Temperature at the end of adiabatic expansion in kJ/kg
+printf("Temperature after adiabatic compression: %f K\n\n",t2)
+printf("Pressure after adiabatic compression: %f bar\n\n",p2)
+printf("Temperature after isochoric compression: %f K\n\n",t3)
+printf("Pressure after isochoric compression: %f bar\n\n",p3)
+printf("Temperature after isobaric expansion: %f K\n\n",t4)
+printf("Pressure after isobaric expansion: %f bar\n\n",p4)
+printf("Temperature after adiabatic expansion: %f K\n\n",t5)
+printf("Pressure after adiabatic expansion: %f bar\n\n",p5)
+Qr=cv*(t5-t1);....................//Heat rejected in kJ
+etast=1-(Qr/Qs);.................//Air standard efficiency
+disp(etast*100,"Air standard efficiency in %:")
+pm=(1/(r-1))*[(68*(rho-1))+(((p4*rho)-(p5*r))/(ga-1))-((p2-r)/(ga-1))];................//Mean effective pressure in bar
+disp(pm,"Mean effective pressure in bar:")
+
diff --git a/1226/CH3/EX3.27/EX3_27.jpg b/1226/CH3/EX3.27/EX3_27.jpg Binary files differnew file mode 100755 index 000000000..592127e91 --- /dev/null +++ b/1226/CH3/EX3.27/EX3_27.jpg diff --git a/1226/CH3/EX3.27/EX3_27.sce b/1226/CH3/EX3.27/EX3_27.sce new file mode 100755 index 000000000..c0588df7f --- /dev/null +++ b/1226/CH3/EX3.27/EX3_27.sce @@ -0,0 +1,13 @@ +clc;funcprot(0);//EXAMPLE 3.27
+// Initialisation of Variables
+t1=300;...............//Initial temperature
+rmami=70;....................//Ratio of max pressure and min pressure
+r=15;....................//Compression ratio
+ga=1.4;.................//Ratio of specific heats
+R=287;....................//Gas constant in kJ/kgK
+t2=t1*(r^(ga-1));.................//Temperature at the end of adiabatic compression in K
+t3=t2*(rmami/(r^ga));............//Temperature at the end of isochoric compression in K
+t4=t3+((t3-t2)/ga);..............//Temperature at the end of isobaric process in K
+t5=t4/((1/(t4/(t3*r)))^(ga-1));..........//Temperature at the end of adiabatic expansion in K
+etast=1-[(t5-t1)/((t3-t2)+ga*(t4-t3))];..............//Air standard efficiency
+disp(etast*100,"Air standard efficiency in %:")
diff --git a/1226/CH3/EX3.28/EX3_28.jpg b/1226/CH3/EX3.28/EX3_28.jpg Binary files differnew file mode 100755 index 000000000..6efce75f1 --- /dev/null +++ b/1226/CH3/EX3.28/EX3_28.jpg diff --git a/1226/CH3/EX3.28/EX3_28.sce b/1226/CH3/EX3.28/EX3_28.sce new file mode 100755 index 000000000..02aef3913 --- /dev/null +++ b/1226/CH3/EX3.28/EX3_28.sce @@ -0,0 +1,35 @@ +clc;funcprot(0);//EXAMPLE 3.28
+// Initialisation of Variables
+t1=373;.............//Initial temperature in K
+p1=1;...............//Initial pressure in bar
+p3=65;..............//Maximum pressure in bar
+R=287;.................//Gas constant in kJ/kg
+p4=p3;
+ga=1.41;.................//Ratio of specific heats
+Vs=0.0085;............//Swept volume in m^3
+afr=21;...............//Air fuel ratio
+r=15;.................//Compression ratio
+C=43890;..............//Calorific value of fuel in kJ/kg
+cp=1;................//Specific heat at constant pressure in kJ/kgK
+cv=0.71;..............//Specific heat at constant volume in kJ/kgK
+//Calculations
+Vc=Vs/(r-1);...............//Clearance volume in m^3
+v2=Vc;v1=Vs+v2;
+v3=Vc;v5=v1;
+p2=p1*(r^ga);.....................//Pressure at the end of adiabatic compression in bar
+t2=t1*(r^(ga-1));................//Temperature at the end of adiabatic compression in K
+t3=(t2*p3)/p2;...................//Temperature at the end of isochoric compression in K
+m=(p1*v1*10^5)/(R*t1);............//Mass of air in the cycle in kg
+Qv=m*cv*(t3-t2);.....................//Heat added during constant volume process in kJ
+fv=Qv/C;.............................//Fuel added during constant volume process in kg
+mf=m/afr;..................//Total amount of fuel added in kg
+mfib=mf-fv;....................//Total amount of fuel added in isobaric process in kg
+Qib=mfib*C;....................//Total amount of heat added in isobaric process in kJ
+t4=(Qib/((m+mf)*cp))+t3;........//Temperature at the end of isobaric process in K
+v4=(v3*t4)/t3;..................//Volume at the end of isobaric process in m^3
+t5=t4/((v5/v4)^(ga-1));.........//Temperature at the end of isochoric expansion in K
+Qrv=(m+mf)*cv*(t5-t1);...............//Heat rejected during constant volume process in kJ
+W=(Qib+Qv)-Qrv;................//Work done in kJ
+etath=W/(Qib+Qv);..................//Thermal efficiency
+disp(etath*100,"Thermal efficiency in %:")
+
diff --git a/1226/CH3/EX3.29/EX3_29.jpg b/1226/CH3/EX3.29/EX3_29.jpg Binary files differnew file mode 100755 index 000000000..11d782969 --- /dev/null +++ b/1226/CH3/EX3.29/EX3_29.jpg diff --git a/1226/CH3/EX3.29/EX3_29.sce b/1226/CH3/EX3.29/EX3_29.sce new file mode 100755 index 000000000..0c5b65af9 --- /dev/null +++ b/1226/CH3/EX3.29/EX3_29.sce @@ -0,0 +1,41 @@ +clc;funcprot(0);//EXAMPLE 3.29
+// Initialisation of Variables
+D=0.25;.............//Engine bore in m
+L=0.4;..............//Engine stroke in m
+t1=303;.............//Initial temperature in K
+R=287;...............//Gas constant in kJ/kgK
+p1=1;...............//Initial pressure in bar
+N=8;................//No of working cycles per sec
+cv=0.71;.............//Specific heat at constant volume in kJ/kgK
+cp=1;.................//Specific heat at constant pressure in kJ/kgK
+n=1.25;.............//Adiabatic index
+rc=9;...............//Compression ratio
+re=5;...............//Expansion ratio
+rqptqe=2;...........//Ratio of heat liberated at constant pressure to heat liberated at constant volume
+//Calculations
+p2=p1*(rc^n);.......................//Pressure at the end of adiabatic compression in bar
+t2=t1*(rc^(n-1));...................//Temperature at the end of adiabatic compression in K
+rho=rc/re;..........................//Cut off ratio
+t3=(2*cv*t2)/((2*cv)-(cp*(rho-1)));...............//Temperature at the end of isochoric compression in K
+p3=p2*(t3/t2);....................................//Pressure at the end of isochoric compression in bar
+p4=p3;t4=rho*t3;.................................//Temperature and pressure at the end of isobaric process
+p5=p4*(1/(re^n));.................................//Pressure at the end of adiabatic expansion in bar
+t5=t4*(1/(re^(n-1)));.............................//Temperature at the end of adiabatic expansion in K
+pm=(1/(rc-1))*[(p3*(rho-1))+(((p4*rho)-(p5*rc))/(n-1))-((p2-(p1*rc))/(n-1))];...............//Mean effective pressure
+printf("Temperature after adiabatic compression: %f K\n\n",t2)
+printf("Pressure after adiabatic compression: %f bar\n\n",p2)
+printf("Temperature after isochoric compression: %f K\n\n",t3)
+printf("Pressure after isochoric compression: %f bar\n\n",p3)
+printf("Temperature after isobaric expansion: %f K\n\n",t4)
+printf("Pressure after isobaric expansion: %f bar\n\n",p4)
+printf("Temperature after adiabatic expansion: %f K\n\n",t5)
+printf("Pressure after adiabatic expansion: %f bar\n\n",p5)
+disp(pm,"Mean effective pressure in bar:")
+Vs=(%pi/4)*D*D*L;....................//Swept volume in m^3
+W=(pm*(10^5)*Vs)/1000;.................//Work done per cycle in kJ
+m=(p1*(10^5)*(rc/(rc-1))*Vs)/(R*t1);.....................//Mass of air per cycle in kg
+Qs=m*[cv*(t3-t2)+cp*(t4-t3)];.....................//Heat supplied per cycle in kJ
+eta=W/Qs;....................//Engine efficiency
+disp(eta*100,"Engine efficiency in %:")
+P=W*N;.................//Power of the engine in kW
+disp(P,"Power of the engine in kW:")
diff --git a/1226/CH3/EX3.3/EX3_3.jpg b/1226/CH3/EX3.3/EX3_3.jpg Binary files differnew file mode 100755 index 000000000..ab8c6f32d --- /dev/null +++ b/1226/CH3/EX3.3/EX3_3.jpg diff --git a/1226/CH3/EX3.3/EX3_3.sce b/1226/CH3/EX3.3/EX3_3.sce new file mode 100755 index 000000000..559fb319d --- /dev/null +++ b/1226/CH3/EX3.3/EX3_3.sce @@ -0,0 +1,28 @@ +clc;funcprot(0);//EXAMPLE 3.3
+// Initialisation of Variables
+p1=18;..................//Maximum pressure in bar
+t1=410+273;.............//Maximum temperature in Kelvin
+ric=6;.....................//Ratio of isentropic compression
+rie=1.5;.................//Ratio of isothermal expansion
+v1=0.18;..................//Volume of air at the beginning of expansion
+ga=1.4;...................//Degree of freedom of gas
+R=287;.....................//Gas constant in J/kgK
+nc=210;..................//no of working cycles
+//Calculations
+
+t4=t1/(ric^(ga-1));.............//Min temp in K
+t3=t4;
+p4=p1/(ric^ga);..................//Min pressure in bar
+p2=p1/rie;.......................//pressure of gas before isentropic expansion in bar
+p3=p2*((1/6)^ga);.................//Pressure of gas after isentropic expansion in bar
+printf("p1=%f bar \np2=%f bar \np3=%f bar \np4=%f bar \nt1=t2=%f Kelvin \nt3=t4=%f Kelvin \n",p1,p2,p3,p4,t1,t3)
+dels=(p1*10^5*v1*log(rie))/(1000*t1);....................//Change in entropy
+disp(dels,"Change in entropy in kJ/K:")
+qs=t1*dels;.......................//Heat supplied in kJ
+Qr=t4*dels;.......................//Heat rejected in kJ
+eta=(qs-Qr)/qs;............//Efficiency of the cycle
+v3byv1=ric*rie;Vs=(v3byv1-1)*v1;.................//Stroke volume
+pm=((qs-Qr)*10^3)/(Vs*10^5);........//Mean effective pressure of the cycle in bar
+disp(pm,"Mean effective pressure of the cycle in bar:")
+P=(qs-Qr)*(nc/60);.........................//Power of engine
+disp(P,"Mean effective pressure of the cycle in bar:")
diff --git a/1226/CH3/EX3.31/EX3_31.jpg b/1226/CH3/EX3.31/EX3_31.jpg Binary files differnew file mode 100755 index 000000000..933dd6b79 --- /dev/null +++ b/1226/CH3/EX3.31/EX3_31.jpg diff --git a/1226/CH3/EX3.31/EX3_31.sce b/1226/CH3/EX3.31/EX3_31.sce new file mode 100755 index 000000000..04dc8d55e --- /dev/null +++ b/1226/CH3/EX3.31/EX3_31.sce @@ -0,0 +1,20 @@ +clc;funcprot(0);//EXAMPLE 3.31
+// Initialisation of Variables
+cp=0.92;..................//Specific heat at constant pressure in kJ/kgK
+cv=0.75;..................//Specific heat at constant volume in kJ/kgK
+p1=1;...................//Pressure at the end of adiabatic expansion in bar
+p2=p1;...................//Pressure at the end of isobaric compression in bar
+p3=4;....................//Pressure at the end of isobaric compression in bar
+p4=16;...................//Final pressure after heat addition in bar
+t2=300;.....................//Temperature at the end of isobaric compression in K
+ga=1.22;................//Ratio of specific heats
+//Calculations
+t3=t2*((p3/p2)^((ga-1)/ga));............//Temperature at the end of isobaric compression in K
+t4=(p4*t3)/p3;........................//Final temperature after heat addition in K
+t1=t4/((p4/p1)^((ga-1)/ga));...................//Temperature at the end of adiabatic compression in K
+Qs=cv*(t4-t3);.........................//Heat supplied in kJ/kg
+Qr=cp*(t1-t2);.........................//Heat rejected in kJ/kg
+W=Qs-Qr;.......................//Work done per kg of gas in kJ
+disp(W,"Work done in kJ/kg:")
+eta=W/Qs;......................//Efficiency of cycle
+disp(eta*100,"Efficiency of cycle in %:")
diff --git a/1226/CH3/EX3.32/EX3_32.jpg b/1226/CH3/EX3.32/EX3_32.jpg Binary files differnew file mode 100755 index 000000000..e622b41e1 --- /dev/null +++ b/1226/CH3/EX3.32/EX3_32.jpg diff --git a/1226/CH3/EX3.32/EX3_32.sce b/1226/CH3/EX3.32/EX3_32.sce new file mode 100755 index 000000000..3862c63ea --- /dev/null +++ b/1226/CH3/EX3.32/EX3_32.sce @@ -0,0 +1,13 @@ +clc;funcprot(0);//EXAMPLE 3.32
+// Initialisation of Variables
+p1=101.325;....................//Pressure of intake air in kPa
+t1=300;.......................//Temperature of intake air in kPa
+rp=6;.........................//Pressure ratio in the cycle
+ga=1.4;.........................//Ratio of specific heats
+rtc=2.5;...........................//Ratio of turbine work and compressor work
+//Calculations
+t2=t1*(rp^((ga-1)/ga));..................//Temperature at the end of isentropic expansion in K
+t3=(rtc*(t2-t1))/(1-(1/(rp^((ga-1)/ga))));........//Temperature at the end of isobaric expansion in K
+t4=t3/(rp^((ga-1)/ga));.......................//Temperature at the end of isentropic compression in K
+eta=(t3-t4-t2+t1)/(t3-t2);...................//Cycle efficiency
+disp(eta*100,"Cycle efficiency in %:")
diff --git a/1226/CH3/EX3.33/EX3_33.jpg b/1226/CH3/EX3.33/EX3_33.jpg Binary files differnew file mode 100755 index 000000000..194c40a6b --- /dev/null +++ b/1226/CH3/EX3.33/EX3_33.jpg diff --git a/1226/CH3/EX3.33/EX3_33.sce b/1226/CH3/EX3.33/EX3_33.sce new file mode 100755 index 000000000..6f0b920a4 --- /dev/null +++ b/1226/CH3/EX3.33/EX3_33.sce @@ -0,0 +1,12 @@ +clc;funcprot(0);//EXAMPLE 3.33
+// Initialisation of Variables
+p1=1;....................//Intake pressure in bar
+p2=5;....................//Supply pressure in bar
+t3=1000;..................//Supply temperature in Kelvin
+cp=1.0425;................//Specific heat at constant pressure in kJ/kgK
+cv=0.7662;.................//Specific heat at constant volume in kJ/kgK
+ga=cp/cv;..................//Ratio of specific heats
+//Calculations
+t4=t3*((p1/p2)^((ga-1)/ga));
+P=cp*(t3-t4);.....................//Power developed per kg of gas per second in kW
+disp(P,"Power developed per kg of gas per second in kW:")
diff --git a/1226/CH3/EX3.34/EX3_34.jpg b/1226/CH3/EX3.34/EX3_34.jpg Binary files differnew file mode 100755 index 000000000..cadc3e04b --- /dev/null +++ b/1226/CH3/EX3.34/EX3_34.jpg diff --git a/1226/CH3/EX3.34/EX3_34.sce b/1226/CH3/EX3.34/EX3_34.sce new file mode 100755 index 000000000..e5b57ee85 --- /dev/null +++ b/1226/CH3/EX3.34/EX3_34.sce @@ -0,0 +1,13 @@ +clc;funcprot(0);//EXAMPLE 3.34
+// Initialisation of Variables
+ma=0.1;...................//Air supplied in kg/s
+p1=1;.....................//Supply pressure in bar
+t4=285;.................//Temperature of air when supplied to cabin in K
+p2=4;...................//Pressure at inlet to turbine in bar
+cp=1.0;..................//Specific heat at constant pressure in kJ/kgK
+ga=1.4;..................//Ratio of specific heats
+//Calculations
+t3=t4*((p2/p1)^((ga-1)/ga));................//Temperature at turbine inlet in K
+disp(t3,"Temperature at turbine inlet in K:")
+P=ma*cp*(t3-t4);...........................//Power developed in kW
+disp(P,"Power developed in kW:")
diff --git a/1226/CH3/EX3.35/EX3_35.jpg b/1226/CH3/EX3.35/EX3_35.jpg Binary files differnew file mode 100755 index 000000000..2d8ca4792 --- /dev/null +++ b/1226/CH3/EX3.35/EX3_35.jpg diff --git a/1226/CH3/EX3.35/EX3_35.sce b/1226/CH3/EX3.35/EX3_35.sce new file mode 100755 index 000000000..415e82d7a --- /dev/null +++ b/1226/CH3/EX3.35/EX3_35.sce @@ -0,0 +1,21 @@ +clc;funcprot(0);//EXAMPLE 3.35
+// Initialisation of Variables
+p1=1;......................//Pressure of air entering the compressor in bar
+p2=3.5;.................//Pressure of air while leaving the compressor in bar
+t1=293;..................//Temperature of air at the onlet of the compressor in K
+t3=873;.................//Temperature of air at the turbine inlet in K
+cp=1.005;...............//Specific heat at constant pressure in kJ/kgK
+ga=1.4;...................//Ratio of specific heats
+//Calculations
+rp=p2/p1;....................//Pressure ratio of the cycle
+eta=1-(1/(rp^((ga-1)/ga)));..............//Efficiency of the cycle
+disp(eta*100,"Efficiency of the cycle:")
+t2=t1*((rp^((ga-1)/ga)));................//Temperature of air while leaving the compressor in K
+q1=cp*(t3-t2);................//Heat supplied to the air in kJ/kg
+disp(q1,"Heat supplied to the air in kJ/kg:")
+W=eta*q1;........................//Work available at the shaft in kJ/kg
+disp(W,"Work available at the shaft in kJ/kg:")
+q2=q1-W;................//Heat rejected in the cooler in kJ/kg
+disp(q2,"Heat rejected in the cooler in kJ/kg:")
+t4=t3/(rp^((ga-1)/ga));.......................//Temperature of air leaving the turbine in K
+disp(t4,"Temperature of air leaving the turbine in K:")
diff --git a/1226/CH3/EX3.36/EX3_36.jpg b/1226/CH3/EX3.36/EX3_36.jpg Binary files differnew file mode 100755 index 000000000..b90ed1230 --- /dev/null +++ b/1226/CH3/EX3.36/EX3_36.jpg diff --git a/1226/CH3/EX3.36/EX3_36.sce b/1226/CH3/EX3.36/EX3_36.sce new file mode 100755 index 000000000..5494dafd2 --- /dev/null +++ b/1226/CH3/EX3.36/EX3_36.sce @@ -0,0 +1,15 @@ +clc;funcprot(0);//EXAMPLE 3.36
+// Initialisation of Variables
+p1=1;...................//Pressure of air entering the compressor in bar
+t1=300;.................//Temperature of air entering the compressor in bar
+rp=6;...................//Pressure ratio
+rtc=2.5;.................//Ratio of turbine work to compressor work
+ga=1.4;............//Ratio of specific heats
+//calculations
+t2=t1*(rp^((ga-1)/ga));..................//Temperature at the end of isentropic expansion in K
+t3=(rtc*(t2-t1))/(1-(1/(rp^((ga-1)/ga))));........//Temperature at the end of isobaric expansion in K
+t4=t3/(rp^((ga-1)/ga));.......................//Temperature at the end of isentropic compression in K
+eta=(t3-t4-t2+t1)/(t3-t2);...................//Cycle efficiency
+disp(t3,"Maximum temperature in K:")
+disp(eta*100,"Cycle efficiency in %:")
+
diff --git a/1226/CH3/EX3.37/EX3_37.jpg b/1226/CH3/EX3.37/EX3_37.jpg Binary files differnew file mode 100755 index 000000000..b0df1c3eb --- /dev/null +++ b/1226/CH3/EX3.37/EX3_37.jpg diff --git a/1226/CH3/EX3.37/EX3_37.sce b/1226/CH3/EX3.37/EX3_37.sce new file mode 100755 index 000000000..12e37f585 --- /dev/null +++ b/1226/CH3/EX3.37/EX3_37.sce @@ -0,0 +1,14 @@ +clc;funcprot(0);//EXAMPLE 3.37
+// Initialisation of Variables
+t1=303;........................//Min temperature in K
+t3=1073;........................//Max temperature in K
+C=45000;.....................//Calorific value of fuel in kJ/kg
+cp=1;....................//Specific heat at constant pressure in kJ/kgK
+ga=1.4;........................//Ratio os specific heats
+diftc=100;..................//Difference between work done by turbine and compressor in kW
+//Calculations
+t2=sqrt(t1*t3); t4 = t2;.....//Assumed
+mf=diftc/[C*(1-((t4-t1)/(t3-t2)))];................//Fuel used in kg per second
+disp(mf,"Rate of fuel consumption in kg/s:")
+ma=[diftc-[mf*(t3-t4)]]/[(t3-t4-cp*(t2-t1))];............//Rate of air consumption in kg/s
+disp(ma,"Mass flow rate of air in kg/s:")
diff --git a/1226/CH3/EX3.38/EX3_38.jpg b/1226/CH3/EX3.38/EX3_38.jpg Binary files differnew file mode 100755 index 000000000..90bb2d68b --- /dev/null +++ b/1226/CH3/EX3.38/EX3_38.jpg diff --git a/1226/CH3/EX3.38/EX3_38.sce b/1226/CH3/EX3.38/EX3_38.sce new file mode 100755 index 000000000..88c24902a --- /dev/null +++ b/1226/CH3/EX3.38/EX3_38.sce @@ -0,0 +1,25 @@ +clc;funcprot(0);//EXAMPLE 3.38
+// Initialisation of Variables
+t1=300;.................//Inlet temperature in K
+p1=1;....................//Inlet pressure in bar
+ma=1;....................//Mass of air in kg
+rp=6.25;.............//Pressure ratio
+t3=1073;...........//Maximum temperature in K
+etac=0.8;............//Efficiency of compressor
+etat=0.8;.............//Efficiency of turbine
+ga=1.4;.................//Ratio of specific heats
+cp=1.005;.............//Specific heat at constant pressure in kJ/kgK
+//Calculations
+t2=t1*(rp^((ga-1)/ga));...........//Ideal Temperature of air while leaviing the compressor in K
+t21=((t2-t1)/etac)+t1;............//Actual Temperature of air while leaviing the compressor in K
+Wcomp=ma*cp*(t21-t1);.............//Compressor work in kJ/kg
+t4=t3/(rp^((ga-1)/ga));........//Ideal temperature of air while leaving the turbine in K
+t41=t3-(etat*(t3-t4));..........//Actual temperature of air while leaving the turbine in K
+Wtur=ma*cp*(t3-t41);..............//Turbine work in kJ/kg
+Wnet=Wtur-Wcomp;.................//Net work produced in kJ/kg
+Qs=ma*cp*(t3-t21);.................//Heat supplied in kJ/kg
+disp(Wcomp,"Compressor work in kJ/kg:")
+disp(Wtur,"Turbine work in kJ/kg:")
+disp(Qs,"Heat supplied in kJ/kg:")
+disp((Wnet/Qs)*100,"Cycle efficiency in %:")
+disp(t41,"Actual exhaust temperature of turbine in K")
diff --git a/1226/CH3/EX3.39/EX3_39.jpg b/1226/CH3/EX3.39/EX3_39.jpg Binary files differnew file mode 100755 index 000000000..b5f8f8cea --- /dev/null +++ b/1226/CH3/EX3.39/EX3_39.jpg diff --git a/1226/CH3/EX3.39/EX3_39.sce b/1226/CH3/EX3.39/EX3_39.sce new file mode 100755 index 000000000..a6aa5a4c8 --- /dev/null +++ b/1226/CH3/EX3.39/EX3_39.sce @@ -0,0 +1,19 @@ +clc;funcprot(0);//EXAMPLE 3.39
+// Initialisation of Variables
+etat=0.85;..............//Turbine efficiency
+etac=0.8;...............//Compressor efficiency
+t3=1148;................//Max temperature in K
+t1=300;................//Temperature of working fluid when entering the compressor in Kelvin
+cp=1;...................//specific heat at constant pressure in kJ/kgK
+ga=1.4;................//ratio of specific heats
+p1=1;...................//Pressure of working fluid while entering the compressor in bar
+rp=4;...................//Pressure ratio
+C=42000;...............//Calorific value of fuel used in kJ/kgK
+perlcc=10;.............//Percentage loss of calorific value in combustion chamber
+//calculations
+p2=p1*rp;.................//pressure of air while leaving the compressor in bar
+etacc=1-(perlcc/100);............//efficiency of combustion chamber
+t2=t1*(rp^((ga-1)/ga));...........//Ideal Temperature of air while leaviing the compressor in K
+t21=((t2-t1)/etac)+t1;............//Actual Temperature of air while leaviing the compressor in K
+afr=((C*etacc)/(cp*(t3-t21)))-1;...........//Air fuel ratio
+printf("Air fuel ratio is %d:1",round(afr))
diff --git a/1226/CH3/EX3.4/EX3_4.jpg b/1226/CH3/EX3.4/EX3_4.jpg Binary files differnew file mode 100755 index 000000000..f64ffde2f --- /dev/null +++ b/1226/CH3/EX3.4/EX3_4.jpg diff --git a/1226/CH3/EX3.4/EX3_4.sce b/1226/CH3/EX3.4/EX3_4.sce new file mode 100755 index 000000000..121ef04b8 --- /dev/null +++ b/1226/CH3/EX3.4/EX3_4.sce @@ -0,0 +1,10 @@ +clc;funcprot(0);//EXAMPLE 3.4
+// Initialisation of Variables
+eta=1/6;...................//Efficiency of the engine
+rts=70;.................//The amount of temp which is reduced in the sink in C
+//Calculation
+t1byt2=1/(1-eta);
+t2=(rts+273)/((2*eta*t1byt2)-t1byt2+1);............//Temperature of the sink in K
+disp(t2-273,"Temperature of the sink in Celsius:")
+t1=t1byt2*t2;...............//Temperature of source in K
+disp(t1-273,"temperature of source in Celsius:")
diff --git a/1226/CH3/EX3.40/EX3_40.jpg b/1226/CH3/EX3.40/EX3_40.jpg Binary files differnew file mode 100755 index 000000000..4c4d803d9 --- /dev/null +++ b/1226/CH3/EX3.40/EX3_40.jpg diff --git a/1226/CH3/EX3.40/EX3_40.sce b/1226/CH3/EX3.40/EX3_40.sce new file mode 100755 index 000000000..8afe73bc6 --- /dev/null +++ b/1226/CH3/EX3.40/EX3_40.sce @@ -0,0 +1,30 @@ +clc;funcprot(0);//EXAMPLE 3.40
+// Initialisation of Variables
+p1=1;...........//pressure before isothermal compression in bar
+t1=310;.........//temperature before isothermal compression in K
+p3=16;.........//pressure before isothermal expansion in bar
+t3=930;.........//temperature before isothermal expansion in K
+R=287;.............//Gas constant in kJ/kgK
+//Calculations
+v1=(R*t1)/(p1*10^5);...............//Volume before isothermal compression in m^3
+v3=(R*t3)/(p3*10^5);...............//Volume before isothermal expansion in m^3
+v2=v3;v4=v1;.................//2-3 and 1-4 are isochoric processes
+r=v1/v2;...................//Compression ratio
+q12=R*t1*log(r);...............//Work done and heat rejected in process 1-2
+w12=q12;
+disp(q12/1000,"Work done in process 1-2 in kJ/kg:")
+disp(w12/1000,"Heat rejected in process 1-2 in kJ/kg:")
+q23=0;w23=q23;..................//COnstant volume process and hence work done is zero
+disp(q23/1000,"Work done in process 2-3 in kJ/kg:")
+disp(q23/1000,"Heat rejected in process 2-3 in kJ/kg:")
+q34=R*t3*log(r);...............//Work done and heat rejected in process 1-2
+w34=q34;
+disp(q34/1000,"Work done in process 3-4 in kJ/kg:")
+disp(w34/1000,"Heat rejected in process 3-4 in kJ/kg:")
+q41=q34-q12;w41=q41;
+disp(q41/1000,"Work done in process 4-1 in kJ/kg:")
+disp(w41/1000,"Heat rejected in process 4-1 in kJ/kg:")
+etath=w41/q34;.....................//Thermal efficiency
+disp(etath*100,"Thermal efficiency of the cycle in %:")
+
+
diff --git a/1226/CH3/EX3.5/EX3_5.jpg b/1226/CH3/EX3.5/EX3_5.jpg Binary files differnew file mode 100755 index 000000000..cb42af077 --- /dev/null +++ b/1226/CH3/EX3.5/EX3_5.jpg diff --git a/1226/CH3/EX3.5/EX3_5.sce b/1226/CH3/EX3.5/EX3_5.sce new file mode 100755 index 000000000..1812770b2 --- /dev/null +++ b/1226/CH3/EX3.5/EX3_5.sce @@ -0,0 +1,11 @@ +clc;funcprot(0);//EXAMPLE 3.5
+// Initialisation of Variables
+t1=1990;....................//Temperature of the heat source in K
+t2=850;..................//Temperature of the sink in K
+Q=32.5;...................//Heat supplied in kJ/min
+P=0.4;....................//Power developed by the engine in kW
+//Calculations
+eta=1-(t2/t1);..........//Efficiency of carnot engine
+etath=P/(Q/60);..................//Efficiency of the given engine
+if (etath>eta) then printf("Since the efficiency of the given engine is more than efficiency of carnot engine, the claim is not true.")
+end
diff --git a/1226/CH3/EX3.7/EX3_7.jpg b/1226/CH3/EX3.7/EX3_7.jpg Binary files differnew file mode 100755 index 000000000..181bd037c --- /dev/null +++ b/1226/CH3/EX3.7/EX3_7.jpg diff --git a/1226/CH3/EX3.7/EX3_7.sce b/1226/CH3/EX3.7/EX3_7.sce new file mode 100755 index 000000000..5145aae02 --- /dev/null +++ b/1226/CH3/EX3.7/EX3_7.sce @@ -0,0 +1,7 @@ +clc;funcprot(0);//EXAMPLE 3.7
+// Initialisation of Variables
+etaotto=0.6;............//Efficiency of otto engine
+ga=1.5;.................//Ratio of specific heats
+//Calculations
+r=(1/(1-etaotto))^(1/(ga-1));................//Compression ratio
+disp(r,"The compression ratio of the engine is:")
diff --git a/1226/CH3/EX3.8/EX3_8.jpg b/1226/CH3/EX3.8/EX3_8.jpg Binary files differnew file mode 100755 index 000000000..203e8a71c --- /dev/null +++ b/1226/CH3/EX3.8/EX3_8.jpg diff --git a/1226/CH3/EX3.8/EX3_8.sce b/1226/CH3/EX3.8/EX3_8.sce new file mode 100755 index 000000000..539f6b493 --- /dev/null +++ b/1226/CH3/EX3.8/EX3_8.sce @@ -0,0 +1,18 @@ +clc;funcprot(0);//EXAMPLE 3.8
+// Initialisation of Variables
+D=0.25;......................//Engine bore in m
+L=0.375;...................//Engine stroke in m
+Vc=0.00263;................//Clearence volume in m^3
+p1=1;..................//Initial pressure in bar
+t1=323;...................//Initial temperature in K
+p3=25;....................//Max pressure in bar
+ga=1.4;....................//Ratio of specific heats
+//Calculations
+Vs=(%pi/4)*D*D*L;................//Swept volume in m^3
+r=round((Vs+Vc)/Vc);..........................//Compression ratio
+etaotto=1-(1/(r^(ga-1)));..................//Air standard efficiency of otto cycle
+disp(etaotto*100,"The air standard efficiency of otto cycle in %:")
+p2=p1*((r)^ga);
+rp=p3/p2;..........................//Pressure ratio
+pm=(p1*r*((r^(ga-1))-1)*(rp-1))/((ga-1)*(r-1));................//Mean effective pressure in bar
+disp(pm,"Mean effective pressure in bar:")
diff --git a/1226/CH3/EX3.9/EX3_9.jpg b/1226/CH3/EX3.9/EX3_9.jpg Binary files differnew file mode 100755 index 000000000..8e7d5c9c7 --- /dev/null +++ b/1226/CH3/EX3.9/EX3_9.jpg diff --git a/1226/CH3/EX3.9/EX3_9.sce b/1226/CH3/EX3.9/EX3_9.sce new file mode 100755 index 000000000..cd49625d8 --- /dev/null +++ b/1226/CH3/EX3.9/EX3_9.sce @@ -0,0 +1,25 @@ +clc;funcprot(0);//EXAMPLE 3.9
+// Initialisation of Variables
+p1=1;.....................//Pressure in bar
+t1=300;......................//Temperature in K
+Q=1500;.....................//Heat added in kJ/kg
+r=8;.......................//Compression ratio
+Cv=0.72;....................//Specific heat at constant volume
+ga=1.4;......................//Ratio of specific heats
+//Calculations
+t2=t1*(r)^(ga-1);..........//Temperature after adiabatic compression in K
+p2=p1*(r^ga);..............//Pressure after adiabatic compression in bar
+t3=(Q/Cv)+t2;.................//Temperature after isochoric compression in K
+p3=(p2*t3)/t2;................//Pressure after isochoric compression in bar
+t4=t3/(r^(ga-1));.......................//Temperature after adiabatic expansion in K
+p4=p3*(1/(r^(ga)));................//Pressure after adiabatic expansion in bar
+Ws=Cv*(t3-t2-t4+t1);.........//Specific work in kJ/kg
+etath=1-(1/(r^(ga-1)));............//Thermal efficiency
+disp(t2,"Temperature after adiabatic compression in K:")
+disp(p2,"Pressure after adiabatic compression in bar:")
+disp(t3,"Temperature after isochoric compression in K:")
+disp(p3,"Pressure after isochoric compression in bar:")
+disp(t4,"Temperature after adiabatic expansion in K:")
+disp(p4,"Pressure after adiabatic expansion in bar:")
+disp(Ws,"Specific work in kJ/kg :")
+disp(etath*100,"Thermal efficiency in %:")
diff --git a/1226/CH4/EX4.10/EX4_10.jpg b/1226/CH4/EX4.10/EX4_10.jpg Binary files differnew file mode 100755 index 000000000..b006ec6f4 --- /dev/null +++ b/1226/CH4/EX4.10/EX4_10.jpg diff --git a/1226/CH4/EX4.10/EX4_10.sce b/1226/CH4/EX4.10/EX4_10.sce new file mode 100755 index 000000000..a6038f4a4 --- /dev/null +++ b/1226/CH4/EX4.10/EX4_10.sce @@ -0,0 +1,21 @@ +clc;funcprot(0);//EXAMPLE 4.10
+// Initialisation of Variables
+r=7;....................//Compression Ratio
+t2=715;.................//Temperature at the end of isentropic compression in Kelvin
+t4=1610;................//Temperature at the end of expansion in Kelvin
+//Calculations
+vr2=65.8;..................//From steam table
+u2=524.2;..................//From steam table
+vr4=5.69;..................//From steam table
+u4=1307.63;..................//From steam table
+vr1=r*vr2;
+t1=338;..................//From steam table
+u1=241.38;..................//From steam table
+vr3=vr4/r;
+t3=2800;..................//From steam table
+u3=2462.5;..................//From steam table
+W=(u3-u2)-(u4-u1);..................//Work done
+Qa=(u3-u2);..........................//Heat added
+eta=W/Qa;...........................//Cycle efficiency
+disp(W,"The cycle work (in kJ/kg):")
+disp(eta*100,"The cycle efficiency (in %):")
diff --git a/1226/CH4/EX4.2/EX4_2.jpg b/1226/CH4/EX4.2/EX4_2.jpg Binary files differnew file mode 100755 index 000000000..cbe51bfe1 --- /dev/null +++ b/1226/CH4/EX4.2/EX4_2.jpg diff --git a/1226/CH4/EX4.2/EX4_2.sce b/1226/CH4/EX4.2/EX4_2.sce new file mode 100755 index 000000000..73354bece --- /dev/null +++ b/1226/CH4/EX4.2/EX4_2.sce @@ -0,0 +1,10 @@ +clc;funcprot(0);//EXAMPLE 4.2
+// Initialisation of Variables
+r=8;..........................//Compression Ratio
+ga=1.4;.......................//Degree of freedom for the gas
+Cvinc=1.1;....................//Increase of specific heat at constant volume in percentage
+//Calculations
+eta=1-1/(r^(ga-1));...........//efficiency of otto cycle
+deta=(1-eta)*(ga-1)*log(r)*(Cvinc/100);............//Change in efficiency
+etach=-deta/eta;............................//Percentage change in efficiency of change in efficiency
+disp(etach*100,"The percentage change in the efficiency of otto cycle (in %):")
diff --git a/1226/CH4/EX4.3/EX4_3.jpg b/1226/CH4/EX4.3/EX4_3.jpg Binary files differnew file mode 100755 index 000000000..4740057ea --- /dev/null +++ b/1226/CH4/EX4.3/EX4_3.jpg diff --git a/1226/CH4/EX4.3/EX4_3.sce b/1226/CH4/EX4.3/EX4_3.sce new file mode 100755 index 000000000..1d0562c3b --- /dev/null +++ b/1226/CH4/EX4.3/EX4_3.sce @@ -0,0 +1,10 @@ +clc;funcprot(0);//EXAMPLE 4.3
+// Initialisation of Variables
+r=7;..........................//Compression Ratio
+ga=1.4;.......................//Degree of freedom for the gas
+Cvinc=3;....................//Increase of specific heat at constant volume in percentage
+//Calculations
+eta=1-1/(r^(ga-1));...........//efficiency of otto cycle
+deta=(1-eta)*(ga-1)*log(r)*(Cvinc/100);............//Change in efficiency
+etach=-deta/eta;............................//Percentage change in efficiency of change in efficiency
+disp(etach*100,"The percentage change in the efficiency of otto cycle (in %):")
diff --git a/1226/CH4/EX4.4/EX4_4.jpg b/1226/CH4/EX4.4/EX4_4.jpg Binary files differnew file mode 100755 index 000000000..3790ceddd --- /dev/null +++ b/1226/CH4/EX4.4/EX4_4.jpg diff --git a/1226/CH4/EX4.4/EX4_4.sce b/1226/CH4/EX4.4/EX4_4.sce new file mode 100755 index 000000000..18c500235 --- /dev/null +++ b/1226/CH4/EX4.4/EX4_4.sce @@ -0,0 +1,13 @@ +clc;funcprot(0);//EXAMPLE 4.4
+// Initialisation of Variables
+r=18;..........................//Compression Ratio
+co=5;..........................//Cut off percent of stroke
+cv=0.71;.......................//Mean specific heat for cycle in kJ/kg K
+R=0.285;.......................//Charecteristic gas constant in kJ/kh K
+cvinc=2;.......................//Percentage increase in mean specific heat of the cycle
+//Calculation
+rho=(co/100)*(r-1)+1;
+ga=1+(R/cv);
+eta=1-(1/(ga*(r^(ga-1))))*((rho^ga)-1)/(rho-1);.....................//Efficiency of diesel cycle
+etach=-((1-eta)/eta)*(ga-1)*(log(r)-(((rho^ga)*log(rho))/((rho^ga)-1))+(1/ga))*(cvinc/100);...//Variation in the air standard efficiency
+disp(etach*100,"Percentage change in efficiency ")
diff --git a/1226/CH4/EX4.5/EX4_5.jpg b/1226/CH4/EX4.5/EX4_5.jpg Binary files differnew file mode 100755 index 000000000..5b3e35d1a --- /dev/null +++ b/1226/CH4/EX4.5/EX4_5.jpg diff --git a/1226/CH4/EX4.5/EX4_5.sce b/1226/CH4/EX4.5/EX4_5.sce new file mode 100755 index 000000000..3654687f8 --- /dev/null +++ b/1226/CH4/EX4.5/EX4_5.sce @@ -0,0 +1,19 @@ +clc;funcprot(0);//EXAMPLE 4.5
+// Initialisation of Variables
+r=7;......................//Compression ratio
+C=44000;..................//Calorific value of fuel used in kJ/kg
+afr=15;...................//Air fuel ratio
+t1=338;....................//Temperature of the charge at the end of the stroke in Kelvin
+p1=1;......................//Pressure of the charge at the end of the stroke in bar
+n=1.33;....................//Index of compression
+cv=0.71;......//Specific heat constant at constant volume in kJ/kgK
+k=20*10^(-5);
+//Calculations
+p2=p1*(r)^n;
+t2=(t1*p2)/(p1*r);
+ha=C/(afr+1);......................//Heat added per kg of charge in kJ
+t3=((-2*cv)+sqrt((4*cv*cv)+(4*k*((2*cv*t2)+(k*t2*t2)+(2*ha)))))/(2*k);
+p3=(p2*t3)/t2;.............................//Max pressure for constant volume process in bar
+P3=p2*((ha/cv)+t2)/t2;.....................//Max pressure for constant specific heat in bar
+disp(p3,"Max pressure in the cylinder (in bar):")
+disp(P3,"Max pressure for constant specific heat (in bar):")
diff --git a/1226/CH4/EX4.6/EX4_6.jpg b/1226/CH4/EX4.6/EX4_6.jpg Binary files differnew file mode 100755 index 000000000..11073c477 --- /dev/null +++ b/1226/CH4/EX4.6/EX4_6.jpg diff --git a/1226/CH4/EX4.6/EX4_6.sce b/1226/CH4/EX4.6/EX4_6.sce new file mode 100755 index 000000000..9e8c998a8 --- /dev/null +++ b/1226/CH4/EX4.6/EX4_6.sce @@ -0,0 +1,19 @@ +clc;funcprot(0);//EXAMPLE 4.6
+// Initialisation of Variables
+r=10;......................//Compression ratio
+C=48000;..................//Calorific value of fuel used in kJ/kg
+afr=15;...................//Air fuel ratio
+t1=330;....................//Temperature of the charge at the end of the stroke in Kelvin
+p1=1;......................//Pressure of the charge at the end of the stroke in bar
+n=1.36;....................//Index of compression
+cv=0.7117;......//Specific heat constant at constant volume in kJ/kgK
+k=2.1*10^(-4);
+//Calculations
+p2=p1*(r)^n;
+t2=t1*((p2/p1)^((n-1)/n));
+ha=C/(afr+1);......................//Heat added per kg of charge in kJ
+t3=((-2*cv)+sqrt((4*cv*cv)+(4*k*((2*cv*t2)+(k*t2*t2)+(2*ha)))))/(2*k);
+p3=(p2*t3)/t2;.............................//Max pressure for constant volume process in bar
+P3=p2*((ha/cv)+t2)/t2;.....................//Max pressure for constant specific heat in bar
+disp(p3,"Max pressure in the cylinder (in bar):")
+disp(P3,"Max pressure for constant specific heat (in bar):")
diff --git a/1226/CH4/EX4.7/EX4_7.jpg b/1226/CH4/EX4.7/EX4_7.jpg Binary files differnew file mode 100755 index 000000000..3cbddc989 --- /dev/null +++ b/1226/CH4/EX4.7/EX4_7.jpg diff --git a/1226/CH4/EX4.7/EX4_7.sce b/1226/CH4/EX4.7/EX4_7.sce new file mode 100755 index 000000000..2cf8d7f90 --- /dev/null +++ b/1226/CH4/EX4.7/EX4_7.sce @@ -0,0 +1,15 @@ +clc;funcprot(0);//EXAMPLE 4.7
+// Initialisation of Variables
+r=15;......................//Compression ratio
+C=43000;..................//Calorific value of fuel used in kJ/kg
+afr=27;...................//Air fuel ratio
+t2=870;....................//Temperature of the charge at the end of the stroke in Kelvin
+cv=0.71;......//Specific heat constant at constant volume in kJ/kgK
+R=0.287;.........................//Gas constant in kJ/kgK
+k=20*10^(-5);
+//Calculations
+cp=cv+R;............................//Specific heat at constant pressure
+ha=C/(afr+1);......................//Heat added per kg of charge in kJ
+t3=((-2*cp)+sqrt((4*cp*cp)+(4*k*((2*cp*t2)+(k*t2*t2)+(2*ha)))))/(2*k);
+co=((t3/t2)-1)/(r-1);.............//combustion occupies this amt of stroke
+disp(co*100,"Percentage of the stroke when the combustion is completed is :")
diff --git a/1226/CH4/EX4.8/EX4_8.jpg b/1226/CH4/EX4.8/EX4_8.jpg Binary files differnew file mode 100755 index 000000000..2d77cc006 --- /dev/null +++ b/1226/CH4/EX4.8/EX4_8.jpg diff --git a/1226/CH4/EX4.8/EX4_8.sce b/1226/CH4/EX4.8/EX4_8.sce new file mode 100755 index 000000000..9527a5111 --- /dev/null +++ b/1226/CH4/EX4.8/EX4_8.sce @@ -0,0 +1,23 @@ +clc;funcprot(0);//EXAMPLE 4.8
+// Initialisation of Variables
+r=14;......................//Compression ratio
+t1=87+273;....................//Temperature of the charge at the end of the stroke in Kelvin
+p1=1;......................//Pressure of the charge at the end of the stroke in bar
+hsupa=1700;............................//heat supplied per kg of air in kJ
+cv=0.71;......//Specific heat constant at constant volume in kJ/kgK
+k=20*10^(-5);
+ga=1.4;.....................//Degree of freedom
+R=0.287;......................//Gas constant in kJ/kgK
+//Calculations
+p2=p1*(r)^ga;
+t2=t1*(r^(ga-1));
+ha=hsupa/2;......................//Heat added per kg of charge in kJ
+t3=((-2*cv)+sqrt((4*cv*cv)+(4*k*((2*cv*t2)+(k*t2*t2)+(2*ha)))))/(2*k);
+p3=(p2*t3)/t2;.............................//Max pressure for constant volume process in bar
+P3=p2*((ha/cv)+t2)/t2;.....................//Max pressure for constant specific heat in bar
+disp(p3,"Max pressure in the cylinder (in bar):")
+cp=cv+R;.................................//Heat capacity at constant pressure in kJ/kgK
+t4=((-2*cp)+sqrt((4*cp*cp)+(4*k*((2*cp*t3)+(k*t3*t3)+(2*ha)))))/(2*k);
+co=((t4/t3)-1)/(r-1);.............//combustion occupies this amt of stroke
+disp(co*100,"Percentage of the stroke when the combustion is completed is :")
+
diff --git a/1226/CH4/EX4.9/EX4_9.jpg b/1226/CH4/EX4.9/EX4_9.jpg Binary files differnew file mode 100755 index 000000000..2f4971be9 --- /dev/null +++ b/1226/CH4/EX4.9/EX4_9.jpg diff --git a/1226/CH4/EX4.9/EX4_9.sce b/1226/CH4/EX4.9/EX4_9.sce new file mode 100755 index 000000000..810438a04 --- /dev/null +++ b/1226/CH4/EX4.9/EX4_9.sce @@ -0,0 +1,48 @@ +clc;funcprot(0);//EXAMPLE 4.9
+// Initialisation of Variables
+r=8;...........................//Compression ratio
+C=44000;............//Calorific value of fuel in kJ/kg
+afr=13.8;.....................//Air fuel ratio
+t1=343;.............................//Temperature of the mixture at the beginning of the compression in Kelvin
+p1=1;........................//Pressure of the mixture at the beginning of the compression in bar
+cv=0.716;.....................//Specific heat at constant volume in kJ/kgK
+in=1.35;.......................//Index of compression
+nc=6;..........................//No of carbon elements in the given fuel
+nh=14;.........................//No of hydrogen elements in the given fuel
+mc=12;...........................//Atomic mass of carbon in amu
+mh=2;.............................//atomic mass of hydrogen molecule in amu
+mo=32;...........................//Atomic mass of oxygen molecule in amu
+//Calculations
+//The chemical equation is C6H14 + xO2 ==> yCO2 + zH2O
+//x is the no of oxygen molecules required for complete combustion
+//y is the no of carbon dioxide molecules produced in complete combustion
+//z is the no of Water molecules produced in complete combustion
+y=nc;............................//As no of CO2 molecules is equal to no of C atoms in the fuel
+z=nh/2;..........................//No of H2O molecules is equal to half the no of H atoms in the fuel
+x=(z/2)+y;...........................//No of oxygen molecules required for combustionis half the no of water molecules plus the no of oxygen molecules
+gafr=((x*32)*(100/23))/((mc*y)+(mh*z));.................//Gravimetric air fuel ratio
+ms=(gafr/afr)*100;......................//Actual mixture strength
+//Since the mixture strength is greater than 100 %
+//The mixture is rich in fuel. The combustion is therefore incompplete and hence CO will be formed
+d=ms/100;......................//No of fuel molecules required for combustion
+//The chemical equation is d(C6H14) + 9.5(O2) ==> a(CO2) + b(CO) + c(H2O)
+c=(d*nh)/2;...............................//No of H2O molecules is equal to half the no of H atoms in the fuel
+a=(x*2)-(d*nc)-c;........................//Equating atoms of the same element on both sides of equation
+b=(d*nc)-a;
+//By adding nitrogen on both sides, we are adding the same molecular weight on both sides.
+//Air is 79 % nitrogen and 21 % oxygen
+//Both N2 and O2 are diatomic molecules
+n=x*(79/21);.............................//No of nitrogen molecules
+mbc=d+x+n;.............................//Moles before combustion
+mac=a+b+c+n;.............................//Moles after expansion
+me=(mac-mbc)/mbc;........................//Molecular expansion
+t2=(t1*(r^(in-1)));
+t3=(t2+(C/((afr+1)*cv)));..................//Maximum temperature ignoring molecular expansion in Kelvin
+p3=p1*r*(t3/t1);...........................//Maximum pressure ignoring molecular expansion in bar
+t3me=t3;...............................//Maximum temperature considering molecular expansion in Kelvin
+p3me=p3*(mac/mbc);....................//Maximum pressure considering molecular expansion in bar
+disp(t3,"Maximum temperature ignoring molecular expansion (in Kelvin):")
+disp(p3,"Maximum pressure ignoring molecular expansion (in bar):")
+disp(t3me,"Maximum temperature considering molecular expansion (in Kelvin):")
+disp(p3me,"Maximum pressure considering molecular expansion (in bar):")
+
diff --git a/1226/CH5/EX5.1/EX5_1.jpg b/1226/CH5/EX5.1/EX5_1.jpg Binary files differnew file mode 100755 index 000000000..254b16e62 --- /dev/null +++ b/1226/CH5/EX5.1/EX5_1.jpg diff --git a/1226/CH5/EX5.1/EX5_1.sce b/1226/CH5/EX5.1/EX5_1.sce new file mode 100755 index 000000000..f581217e5 --- /dev/null +++ b/1226/CH5/EX5.1/EX5_1.sce @@ -0,0 +1,19 @@ +clc;funcprot(0);//EXAMPLE 5.1
+// Initialisation of Variables
+d=10.2;............//Engine bore in cm
+spo=0.6;............//Spark plug offset in cm
+vf=15.8;............//Average flame speed in m/s
+thetas=20;.............//The angle of the crank when spark plug is fired
+theta=6.5;..........//Angle by which the Engine rotates for combustion to develop (degree)
+N=1200;................//Engine rpm
+//calculations
+dmax=(0.5*d)+spo;.........//Max distance of flame travel in cm
+tf=(dmax)/(vf*100);................//Time of flame travel in seconds
+degs=(N/60)*360;...................//Conversion of engine rpm into degree/second
+ctheta=tf*degs;...............//Crank angle for flame travel in degree
+tc=theta/degs;..................//time for combustion to develop in seconds
+top=tf+tc;......................//Time for one combustion process in seconds
+thetatot=theta+ctheta;................//Total crank rotation in degree
+thetacp = thetatot-thetas;..........//Crank position
+disp(top,"Time for one combustion process in seconds:")
+disp(thetacp,"The crank position is (in degree):")
diff --git a/1226/CH5/EX5.2/EX5_2.jpg b/1226/CH5/EX5.2/EX5_2.jpg Binary files differnew file mode 100755 index 000000000..f48a8dec8 --- /dev/null +++ b/1226/CH5/EX5.2/EX5_2.jpg diff --git a/1226/CH5/EX5.2/EX5_2.sce b/1226/CH5/EX5.2/EX5_2.sce new file mode 100755 index 000000000..76473abd1 --- /dev/null +++ b/1226/CH5/EX5.2/EX5_2.sce @@ -0,0 +1,17 @@ +clc;funcprot(0);//EXAMPLE 5.2
+// Initialisation of Variables
+dp=22;............//Delay period in degree
+cp=17;...............//Combustion period in degree
+dper=14;...............//Delay Percentage
+//Calculations
+thetad=dp/2;.........//Full throttle half speed will result in delay angle being reduced for the same time
+//Thus ignition timing should be arranged so that the total of thetad+cp ends 13 degree after TDC
+tsp=(thetad+cp)-13;............//Time of spark in degree
+disp(tsp,"The time of spark (in Degrees before TDC)")
+//Half throttle half speed will result in an increase of 14% in delay time over that at full throttle half speed
+theta=(dper*thetad)/100;
+dtheta=thetad+theta;............//Delay angle
+tp=dtheta+cp;................//Total period
+tsp=tp-13;..............//
+disp(tsp,"Time of spark (in degrees before TDC)")
+
diff --git a/1226/CH7/EX7.1/EX7_1.jpg b/1226/CH7/EX7.1/EX7_1.jpg Binary files differnew file mode 100755 index 000000000..e9a0701c2 --- /dev/null +++ b/1226/CH7/EX7.1/EX7_1.jpg diff --git a/1226/CH7/EX7.1/EX7_1.sce b/1226/CH7/EX7.1/EX7_1.sce new file mode 100755 index 000000000..7feefbd03 --- /dev/null +++ b/1226/CH7/EX7.1/EX7_1.sce @@ -0,0 +1,14 @@ +clc;funcprot(0);//EXAMPLE 7.1
+// Initialisation of Variables
+D=20.3;................//Diameter in cm
+L=30.5;.................//Length in cm
+N=300;................//Engine rpm
+eta=78;.................//Efficiency in percentage
+afr=4/1;.................//Air Fuel Ratio
+
+//Calculations
+StV = ((%pi)/4)*((D/100)^2)*(L/100);.......//Calculating the stroke volume
+Vinh= (eta/100)*StV;...................//Volume Inhaled
+Gainh= (Vinh/(4+1));..............//Gas Inhaled
+Gainhpm = Gainh*(N/2);
+disp (Gainhpm,"Gas Inhaled per minute:(m^3/min)")
diff --git a/1226/CH7/EX7.10/EX7_10.sce b/1226/CH7/EX7.10/EX7_10.sce new file mode 100755 index 000000000..d27d011d8 --- /dev/null +++ b/1226/CH7/EX7.10/EX7_10.sce @@ -0,0 +1,28 @@ +clc;funcprot(0)//EXAMPLE 7.10
+
+//Initializing the variables
+n=1;.....//No of cylinders
+D=0.32;.....//Bore of the cylinder in m
+L=0.38;......//Stroke of the cylinder in m
+N = 280;....//Engine rpm
+CV = 18600;....//calorific value of fues in kJ/m^3
+Tk1 = 300;....//Initial temperature in Kelvin
+p1 = 1.013;.....//Initial pressure in bar
+ma = 3.36;.......//mass of air consumed per min
+tgc = 0.25;......//test gas consumption in m^3/min
+pw = 120;.........//pressure of water in mm during the test gas consumption
+tgct = 300;.......//Temperature in Kelvin during test gas consumption
+rhow = 1000;.....//density of water in kg/m^3
+R=287;...........//Gas constant in J/kg.K
+//calculations
+V= (ma*R*Tk1)/(p1*(10^5));...//Volume of air consumed at inlet condition
+
+gsp = p1 +(pw/rhow)/10.2;...................//Gas supply pressure
+//1 bar = 10.2 m
+gcic = tgc*(gsp/p1);..........//Gas consumption at inlet condition
+Vi = gcic+V;.....//Volume of mixture at inlet condition
+Vswt = (%pi/4)*(D^2)*L*(N/2);......//Swept volume
+etaV = Vi/Vswt;.....//Volumetric efficiency
+disp(etaV*100,"The volumetric efficiency of the engine is (%):")
+hv = (gcic/Vi)*CV;......//Heating value
+disp(hv,"The heating value of 1 m^3 of charge at 25 degree Celsius in kJ.m^3")
diff --git a/1226/CH7/EX7.10/EX_10.jpg b/1226/CH7/EX7.10/EX_10.jpg Binary files differnew file mode 100755 index 000000000..8cb233a88 --- /dev/null +++ b/1226/CH7/EX7.10/EX_10.jpg diff --git a/1226/CH7/EX7.12/EX7_12.jpg b/1226/CH7/EX7.12/EX7_12.jpg Binary files differnew file mode 100755 index 000000000..cc6802169 --- /dev/null +++ b/1226/CH7/EX7.12/EX7_12.jpg diff --git a/1226/CH7/EX7.12/EX_12.sce b/1226/CH7/EX7.12/EX_12.sce new file mode 100755 index 000000000..47243b506 --- /dev/null +++ b/1226/CH7/EX7.12/EX_12.sce @@ -0,0 +1,32 @@ +clc;funcprot(0)//EXAMPLE 7.12
+
+//Initializing the variables
+Z=0.55;.............//Mach Index
+Dcy=0.11;............//Engine Bore in m
+L = 0.14;............//stroke length in m
+N = 2400;.............//Engine rpm
+N1 = 2800;............//Engine rpm after modification
+N2=4800;.............//Max rpm for unmodified engine
+p = 0.88;.........//pressure at intake valve in bar
+t=340;...............//temperature at intake valve in Kelvin
+ki = 0.33;...........//Inlet flow co-efficient
+ga = 1.4;...............//degree of freedom of the gas
+R = 287;.................//Gas constant for air in J/kg.K
+//calculations
+
+Us = sqrt(ga*R*t);......//sonic velocity of air-fuel mixture at the inlet valve
+Up = (2*L*N)/60;...........//piston speed
+Div = sqrt(((Dcy^2)*Up)/(Z*ki*Us));...............//Nominal diameter of the inlet valve in m
+disp(Div,"(i)Nominal diameter of the inlet valve is (m):")
+disp(Div*1000,"(mm)=")
+Div1 = sqrt(((Dcy^2)*2*L*N1)/(Z*ki*Us*60));.......// Nominal diameter of inlet valve for the modified engine in m
+disp(Div1,"(ii)When the engine is modified to develop max indicative power at 2800rpm, nominal diameter of the inlet valve is (m):")
+disp(Div1*1000,"(mm)=")
+Up1=(2*L*N1)/60;............//New piston speed for modified engine
+Z1 = ((Dcy/Div)^2)*(Up1/(ki*Us));
+disp(Z1,"(iii)The new mach index value is :")
+disp("Hence the volumetric efficiency drops (There is a steady decrease in volumetric efficiency of an engine if there is an increase in the mach index beyond 0.55, Refer the FIG 7_12)")
+Up2 = (2*L*N2)/60;..............//Piston speed at max rpm for unmodified engine
+Z2 = ((Dcy/Div)^2)*(Up2/(ki*Us));
+disp(Z2,"(iv)The mach index for the unmodified engine is :")
+disp("The volumetric efficiency is approximately 56% (from the FIG 7_12)")
diff --git a/1226/CH7/EX7.12/FIG7_12.jpg b/1226/CH7/EX7.12/FIG7_12.jpg Binary files differnew file mode 100755 index 000000000..6bd9b114f --- /dev/null +++ b/1226/CH7/EX7.12/FIG7_12.jpg diff --git a/1226/CH7/EX7.2/EX7_2.jpg b/1226/CH7/EX7.2/EX7_2.jpg Binary files differnew file mode 100755 index 000000000..a6c5dba29 --- /dev/null +++ b/1226/CH7/EX7.2/EX7_2.jpg diff --git a/1226/CH7/EX7.2/EX7_2.sce b/1226/CH7/EX7.2/EX7_2.sce new file mode 100755 index 000000000..7e85703d2 --- /dev/null +++ b/1226/CH7/EX7.2/EX7_2.sce @@ -0,0 +1,21 @@ +clc;funcprot(0)//EXAMPLE 7.2
+//Initializing the variables
+
+N=3600;................//engine rpm
+T=15;................//Inlet temperature in degree Celsius
+Tk = T+273;..............//Inlet temperature in Kelvin
+p=760;................//Inlet pressure in mm of Hg i.e. 1.013 x 10^5 Pa
+ppa=1.013*(10^5);.........// Inlet pressure in Pascals
+pdv=4066;..............//Total piston displacement volume in cm^3
+pdvsi=pdv*(10^(-6));.............//Total piston displacement volume in m^3
+afr=14/1;...................//Air fuel ratio is 14:1
+bsfc=0.38;..................// b.s.f.c in kg/kWh
+BP=86;.............//power output in kW
+R=287;................//Gas constant for air in J/kg.K
+//Calculations
+m = (BP*bsfc*afr)/60;...............//Air consumption
+V = (m*R*Tk)/ppa;
+DV= pdvsi*(N/2);.........//Displacement Volume
+VE=V/DV;...............//Volumetric Efficiency
+disp (VE,"Volumetric efficiency of the engine is:")
+
diff --git a/1226/CH7/EX7.3/EX7_3.jpg b/1226/CH7/EX7.3/EX7_3.jpg Binary files differnew file mode 100755 index 000000000..c6f42b29f --- /dev/null +++ b/1226/CH7/EX7.3/EX7_3.jpg diff --git a/1226/CH7/EX7.3/EX7_3.sce b/1226/CH7/EX7.3/EX7_3.sce new file mode 100755 index 000000000..42242e5e4 --- /dev/null +++ b/1226/CH7/EX7.3/EX7_3.sce @@ -0,0 +1,30 @@ +clc;funcprot(0)//EXAMPLE 7.3
+
+//Initializing the variables
+n=4;..............//No of cylinders
+d=5;.............//diameter of orifice in cm
+dsi=d/100;..........// diameter in m
+Cd=0.6;.............//Co-efficient of discharge
+D=10;..............//Engine bore in cm
+Dsi=d/100;............//Engine bore in m
+L=12;................//Engine stroke in cm
+Lsi=L/100;............//Engine stroke in m
+N=1200;...............//Engine rpm
+hw=0.046;............//Pressure drop across orifice in m of water
+T = 17;..........//Ambient Temparature in Degree Celsius
+Tk = T+273;..........// Ambient Temperature in Kelvin
+Pbar = 1;.............// Ambient pressure in bar
+Ppa = 1 * (10^5);.......//Ambient pressure in Pascal
+R = 287;.............// Gas constant in J/kg.K
+rhow = 1000;............//Density of water in kg/m^3
+g=9.81;...............//Acceleration due to gravity
+//Calculations
+
+rhoa= Ppa/(R*Tk);.........//Density of air
+ha= (hw*rhow)/rhoa;
+av= sqrt(2*g*ha);.............//Air velocity
+area = (%pi/4)*(dsi^2);
+Vact = Cd*area*av;.............// V actual
+Vswt = n*(%pi/4)*(Dsi^2)*Lsi*(N/60*2);
+eff = Vact/Vswt;...............//Volumetric efficiency
+disp (eff,"The volumetric efficiency based on the free air condition : ")
diff --git a/1226/CH7/EX7.4/EX7_4.jpg b/1226/CH7/EX7.4/EX7_4.jpg Binary files differnew file mode 100755 index 000000000..9a6aa173e --- /dev/null +++ b/1226/CH7/EX7.4/EX7_4.jpg diff --git a/1226/CH7/EX7.4/EX7_4.sce b/1226/CH7/EX7.4/EX7_4.sce new file mode 100755 index 000000000..2d4f8566e --- /dev/null +++ b/1226/CH7/EX7.4/EX7_4.sce @@ -0,0 +1,36 @@ +clc;funcprot(0)//EXAMPLE 7.4
+
+//Initializing the variables
+n=1;...................//No of cylinders
+k=0.5;
+Vs=7000;............//displacement volume in cm^3
+Vssi= Vs*(10^(-6));........//displacement volume in m^3
+OP=14.7;...................//Power developed in kW
+N=450;..................//Engine rpm
+sfc=0.272;................//Specific fuel consumption in kg/kWh
+//Fuel used is C7H16
+mC=12;.............//mass of carbon in amu
+mH=1;.................//mass of hydrogen in amu
+mO=16;.................//mass of oxygen in amu
+pi=1.013 * (10^5);................//initial pressure in pascal
+T=30;...................//initial temperature in degree celsius
+Tk=30+273;................//initial temperature in degree kelvin
+R=287;..................//Gas constant for air in J/kg.K
+//calculations
+disp("The given fuel C7H16 requires 11(O2) for complete combustion")
+mf=(7*mC)+(16*mH);
+disp (mf,"Hence, Mass of fuel is :")
+MO=11* 2 * mO;
+disp (MO,"Mass of Oxygen required is :")
+ma = MO/0.23;.......//mass of air
+//Air contains 23% of oxygen by weight
+afr = ma/mf;...............//air fuel ratio is the ratio of mass of air to mass of fuel
+disp(afr,"The air fuel ratio is :")
+MF = sfc * OP;...........//actual fuel consumed in kg/h
+MA = afr*MF;
+AAS = MA * (1+0.3);....................//actual air supplied in kg/h
+M = AAS + MF;................//mass of charge in kg/h
+VCS = ((M/60)*R*Tk)/pi;.............//Volume of charge sucked in m^3/min
+DVM = Vssi * (N/2);..............//Displacement volume/min
+eta = VCS/DVM;
+disp (eta*100,"The volumetric efficiency of the engine is (%) :")
diff --git a/1226/CH7/EX7.5/EX7_5.jpg b/1226/CH7/EX7.5/EX7_5.jpg Binary files differnew file mode 100755 index 000000000..d4d23db81 --- /dev/null +++ b/1226/CH7/EX7.5/EX7_5.jpg diff --git a/1226/CH7/EX7.5/EX7_5.sce b/1226/CH7/EX7.5/EX7_5.sce new file mode 100755 index 000000000..7a92fa227 --- /dev/null +++ b/1226/CH7/EX7.5/EX7_5.sce @@ -0,0 +1,23 @@ +clc;funcprot(0)//EXAMPLE 7.5
+
+//Initializing the variables
+n=6;................//No of cylinders
+vsi=730*(10^(-6));..........//Piston displacement per cylinder in m^3
+BP=80;.............//Power produced per cylinder in kW
+N=3100;...........//Engine rpm
+C=44*(10^6);...........//Calorific value of petrol in J/kg
+Pc=28;........//Petrol consumed per hour in kg
+afr = 13/1;.......//air fuel ratio
+pi=0.88*(10^5);..............//Intake pressure in pa
+T=300;............//Intake temperature in Kelvin
+R = 287;.........//gas constant in J/kg.K
+//calculations
+ma = (Pc*afr)/60;...........//air comsumed
+rhoa = pi/(R*T);.......//Density of air
+etaV=ma/(rhoa*vsi*n*(N/2));
+disp(etaV*100,"The volumetric efficiency is (%):")
+mf = Pc/3600;...............//Fuel consumed per sec
+etaBT = (BP*1000)/(mf*C);
+disp (etaBT*100,"The brake thermal efficiency is (%):")
+T=(BP*60*1000)/(2*(%pi)*N);
+disp (T,"The brake torque (Nm):")
diff --git a/1226/CH7/EX7.6/EX7_6.jpg b/1226/CH7/EX7.6/EX7_6.jpg Binary files differnew file mode 100755 index 000000000..046b94dd5 --- /dev/null +++ b/1226/CH7/EX7.6/EX7_6.jpg diff --git a/1226/CH7/EX7.6/EX7_6.sce b/1226/CH7/EX7.6/EX7_6.sce new file mode 100755 index 000000000..ce1f4afed --- /dev/null +++ b/1226/CH7/EX7.6/EX7_6.sce @@ -0,0 +1,23 @@ +clc;funcprot(0)//EXAMPLE 7.6
+
+//Initializing the variables
+etaV1 = 0.8;.........//Volumetric efficiency
+pi1 = 1.013;.......//Inlet pressure
+ pe1= 1.013;pi2= 1.013;
+pe2 = 1.15;.........//Exhaust pressure
+Tk1 = 298;...........//Temperature in Kelvin
+Tk2 = 318;...........//Temperature in Kelvin
+r = 7.5;........//compression ratio
+ga=1.4;..........//degree of freedom for gas
+//calculations
+//For pressure change
+eta_V2 = r - (pe2/pi2)^(1/ga);
+eta_V1 = r - (pe1/pi1)^(1/ga);
+x=eta_V2/eta_V1;
+//For inlet temperature change
+y = sqrt(Tk2/Tk1);
+//For volumetric efficiency, considering both pressure and temperature
+etaV2 = etaV1*x*y;
+disp(etaV2*100,"The volumetric efficiency is (%):")
+PO=((etaV1/Tk1)-(etaV2/Tk2))/(etaV1/Tk1);
+disp(PO*100,"Percentage Reduction in Output (%): ")
diff --git a/1226/CH7/EX7.7/EX7_7.jpg b/1226/CH7/EX7.7/EX7_7.jpg Binary files differnew file mode 100755 index 000000000..3093a9c99 --- /dev/null +++ b/1226/CH7/EX7.7/EX7_7.jpg diff --git a/1226/CH7/EX7.7/EX7_7.sce b/1226/CH7/EX7.7/EX7_7.sce new file mode 100755 index 000000000..eb6c01f57 --- /dev/null +++ b/1226/CH7/EX7.7/EX7_7.sce @@ -0,0 +1,26 @@ +clc;funcprot(0)//EXAMPLE 7.7
+
+//Initializing the variables
+pi1 = 1.013;.......//Inlet pressure
+ pe1= 1.013;pi2= 1.3;
+pe2 = 1.013;.........//Exhaust pressure
+Tk1 = 300;...........//Temperature in Kelvin
+Tk2 = 333;...........//Temperature in Kelvin
+r = 14;........//compression ratio
+ga=1.4;..........//degree of freedom for gas
+R=287;...........//gas constant in J/kg.K
+//calculations
+//For pressure change
+eta_V2 = r - (pe2/pi2)^(1/ga);
+eta_V1 = r - (pe1/pi1)^(1/ga);
+x=eta_V2/eta_V1;
+//For inlet temperature change
+y = sqrt(Tk2/Tk1);
+//For volumetric efficiency, considering both pressure and temperature
+pive = ((x*y)-1);.........//percentage increase in volumetric efficiency
+disp(pive*100,"The percentage increase in volumetric efficiency is (%):")
+rho1 = (pi1*10^5)/(R*Tk1);
+rho2 = (pi2*10^5)/(R*Tk2);
+z = (rho2/rho1)*x*y;
+pip = (z-1);
+disp (pip*100,"The percentage increase in power (%):")
diff --git a/1226/CH7/EX7.8/EX7_8.jpg b/1226/CH7/EX7.8/EX7_8.jpg Binary files differnew file mode 100755 index 000000000..db98ce017 --- /dev/null +++ b/1226/CH7/EX7.8/EX7_8.jpg diff --git a/1226/CH7/EX7.8/EX7_8.sce b/1226/CH7/EX7.8/EX7_8.sce new file mode 100755 index 000000000..d41c8e096 --- /dev/null +++ b/1226/CH7/EX7.8/EX7_8.sce @@ -0,0 +1,29 @@ +clc;funcprot(0)//EXAMPLE 7.8
+
+//Initializing the variables
+IP1 = 32;...............//Indicated power output in kW
+etamech=80;............//Mechanical efficiency at sea level
+p1=1.013;.............//initial pressure at sea level in bar
+tk1 = 308;...............//Initial temperature at sea level in Kelvin
+tk2 = 278;..................//temperature atop the hill in Kelvin
+rhoHg=13600;..............//Density of mercury in kg/m^3
+h=2000;.....................//Hill altitude
+g = 9.81;................//Acceleration due to gravity
+delp = 10;..............//drop of mercury in mm Hg per every 100 m climb
+//calculations
+
+disp("There is no change in volumetric efficiency due to inlet and exhaust pressure change")
+disp ("For inlet temperature change")
+x = sqrt (tk2/tk1);................//for inlet temperature change
+//x is the ratio of the efficiencies at the beginning and on hill top
+disp ((1-x)*100,"Percentage decrease in %:")
+dp = rhoHg*g*((delp/1000)*(h/100))*(10^(-5));........//Drop in pressure at hill station
+p2=p1-dp;
+IP_1 = p1/tk1;
+IP_2 = (x*p2)/tk2;
+k = IP_2/IP_1;..............//Ratio of indicative power output during initial and final conditions
+IP2 = (IP1 * k)/(etamech/100);
+//Since the engine speed is the same at two places, the friction and hence mechanical efficiency remains unchanged
+BP2 = IP2*(etamech/100);
+disp(BP2,"Brake power of the engine on the hill station in kW :")
+
diff --git a/1226/CH7/EX7.9/EX7_9.jpg b/1226/CH7/EX7.9/EX7_9.jpg Binary files differnew file mode 100755 index 000000000..8439ff948 --- /dev/null +++ b/1226/CH7/EX7.9/EX7_9.jpg diff --git a/1226/CH7/EX7.9/EX7_9.sce b/1226/CH7/EX7.9/EX7_9.sce new file mode 100755 index 000000000..dc0a06963 --- /dev/null +++ b/1226/CH7/EX7.9/EX7_9.sce @@ -0,0 +1,28 @@ +clc;funcprot(0)//EXAMPLE 7.9
+
+//Initializing the variables
+etaV1 = 0.81;.........//Volumetric efficiency
+pi1 = 1.01;.......//Inlet pressure before supercharger
+pe1= 1.01;...........//Exhaust pressure before supercharger
+pi2= 1.38;............//Inlet pressure after supercharger
+pe2 = 1.01;.........//Exhaust pressure in bar after addition of super charger
+Tk1 = 300;...........//Temperature in Kelvin
+Tk2 = 321;...........//Temperature in Kelvin
+r = 7.5;........//compression ratio
+ga=1.4;..........//degree of freedom for gas
+R=287;.............//Gas constant for air in J/kgK
+IP1=75;...............//Indicated power output before addition of supercharger
+//calculations
+//For pressure change
+eta_V2 = r - (pe2/pi2)^(1/ga);
+eta_V1 = r - (pe1/pi1)^(1/ga);
+x=eta_V2/eta_V1;
+//For inlet temperature change
+y = sqrt(Tk2/Tk1);
+//For volumetric efficiency, considering both pressure and temperature
+etaV2 = etaV1*x*y;
+disp(etaV2*100,"The volumetric efficiency of supercharged engine is (%):")
+rho1 = (pi1*10^5)/(R*Tk1);....//density of air before addition of supercharger
+rho2 = (pi2*10^5)/(R*Tk2);..//density of air after addition of supercharger
+IP2 = IP1 * (etaV2*rho2)/(etaV1*rho1);
+disp(IP2,"Indicated power of supercharged engine is (kW):")
|