summaryrefslogtreecommitdiff
path: root/1226/CH3
diff options
context:
space:
mode:
Diffstat (limited to '1226/CH3')
-rwxr-xr-x1226/CH3/EX3.1/EX3_1.jpgbin0 -> 106931 bytes
-rwxr-xr-x1226/CH3/EX3.1/EX3_1.sce12
-rwxr-xr-x1226/CH3/EX3.10/EX3_10.jpgbin0 -> 151726 bytes
-rwxr-xr-x1226/CH3/EX3.10/EX3_10.sce24
-rwxr-xr-x1226/CH3/EX3.11/EX3_11.jpgbin0 -> 123202 bytes
-rwxr-xr-x1226/CH3/EX3.11/EX3_11.sce16
-rwxr-xr-x1226/CH3/EX3.12/EX3_12.jpgbin0 -> 117344 bytes
-rwxr-xr-x1226/CH3/EX3.12/EX3_12.sce19
-rwxr-xr-x1226/CH3/EX3.13/EX3_13.jpgbin0 -> 165604 bytes
-rwxr-xr-x1226/CH3/EX3.13/EX3_13.sce40
-rwxr-xr-x1226/CH3/EX3.14/EX3_14.jpgbin0 -> 123625 bytes
-rwxr-xr-x1226/CH3/EX3.14/EX3_14.sce16
-rwxr-xr-x1226/CH3/EX3.15/EX3_15.jpgbin0 -> 87901 bytes
-rwxr-xr-x1226/CH3/EX3.15/EX3_15.sce12
-rwxr-xr-x1226/CH3/EX3.17/EX3_17.jpgbin0 -> 111663 bytes
-rwxr-xr-x1226/CH3/EX3.17/EX3_17.sce9
-rwxr-xr-x1226/CH3/EX3.18/EX3_18.jpgbin0 -> 111438 bytes
-rwxr-xr-x1226/CH3/EX3.18/EX3_18.sce15
-rwxr-xr-x1226/CH3/EX3.19/EX3_19.jpgbin0 -> 113880 bytes
-rwxr-xr-x1226/CH3/EX3.19/EX3_19.sce15
-rwxr-xr-x1226/CH3/EX3.2/EX3_2.jpgbin0 -> 130780 bytes
-rwxr-xr-x1226/CH3/EX3.2/EX3_2.sce24
-rwxr-xr-x1226/CH3/EX3.20/EX3_20.jpgbin0 -> 109591 bytes
-rwxr-xr-x1226/CH3/EX3.20/EX3_20.sce21
-rwxr-xr-x1226/CH3/EX3.21/EX3_21.jpgbin0 -> 162440 bytes
-rwxr-xr-x1226/CH3/EX3.21/EX3_21.sce42
-rwxr-xr-x1226/CH3/EX3.22/EX3_22.jpgbin0 -> 131036 bytes
-rwxr-xr-x1226/CH3/EX3.22/EX3_22.sce30
-rwxr-xr-x1226/CH3/EX3.23/EX3_23.jpgbin0 -> 110720 bytes
-rwxr-xr-x1226/CH3/EX3.23/EX3_23.sce18
-rwxr-xr-x1226/CH3/EX3.24/EX3_24.jpgbin0 -> 111654 bytes
-rwxr-xr-x1226/CH3/EX3.24/EX3_24.sce10
-rwxr-xr-x1226/CH3/EX3.25/EX3_25.jpgbin0 -> 116105 bytes
-rwxr-xr-x1226/CH3/EX3.25/EX3_25.sce34
-rwxr-xr-x1226/CH3/EX3.26/EX3_26.jpgbin0 -> 159281 bytes
-rwxr-xr-x1226/CH3/EX3.26/EX3_26.sce36
-rwxr-xr-x1226/CH3/EX3.27/EX3_27.jpgbin0 -> 207788 bytes
-rwxr-xr-x1226/CH3/EX3.27/EX3_27.sce13
-rwxr-xr-x1226/CH3/EX3.28/EX3_28.jpgbin0 -> 110530 bytes
-rwxr-xr-x1226/CH3/EX3.28/EX3_28.sce35
-rwxr-xr-x1226/CH3/EX3.29/EX3_29.jpgbin0 -> 137574 bytes
-rwxr-xr-x1226/CH3/EX3.29/EX3_29.sce41
-rwxr-xr-x1226/CH3/EX3.3/EX3_3.jpgbin0 -> 120134 bytes
-rwxr-xr-x1226/CH3/EX3.3/EX3_3.sce28
-rwxr-xr-x1226/CH3/EX3.31/EX3_31.jpgbin0 -> 89929 bytes
-rwxr-xr-x1226/CH3/EX3.31/EX3_31.sce20
-rwxr-xr-x1226/CH3/EX3.32/EX3_32.jpgbin0 -> 85829 bytes
-rwxr-xr-x1226/CH3/EX3.32/EX3_32.sce13
-rwxr-xr-x1226/CH3/EX3.33/EX3_33.jpgbin0 -> 88887 bytes
-rwxr-xr-x1226/CH3/EX3.33/EX3_33.sce12
-rwxr-xr-x1226/CH3/EX3.34/EX3_34.jpgbin0 -> 91430 bytes
-rwxr-xr-x1226/CH3/EX3.34/EX3_34.sce13
-rwxr-xr-x1226/CH3/EX3.35/EX3_35.jpgbin0 -> 110310 bytes
-rwxr-xr-x1226/CH3/EX3.35/EX3_35.sce21
-rwxr-xr-x1226/CH3/EX3.36/EX3_36.jpgbin0 -> 84303 bytes
-rwxr-xr-x1226/CH3/EX3.36/EX3_36.sce15
-rwxr-xr-x1226/CH3/EX3.37/EX3_37.jpgbin0 -> 104584 bytes
-rwxr-xr-x1226/CH3/EX3.37/EX3_37.sce14
-rwxr-xr-x1226/CH3/EX3.38/EX3_38.jpgbin0 -> 117100 bytes
-rwxr-xr-x1226/CH3/EX3.38/EX3_38.sce25
-rwxr-xr-x1226/CH3/EX3.39/EX3_39.jpgbin0 -> 95598 bytes
-rwxr-xr-x1226/CH3/EX3.39/EX3_39.sce19
-rwxr-xr-x1226/CH3/EX3.4/EX3_4.jpgbin0 -> 116112 bytes
-rwxr-xr-x1226/CH3/EX3.4/EX3_4.sce10
-rwxr-xr-x1226/CH3/EX3.40/EX3_40.jpgbin0 -> 141870 bytes
-rwxr-xr-x1226/CH3/EX3.40/EX3_40.sce30
-rwxr-xr-x1226/CH3/EX3.5/EX3_5.jpgbin0 -> 114394 bytes
-rwxr-xr-x1226/CH3/EX3.5/EX3_5.sce11
-rwxr-xr-x1226/CH3/EX3.7/EX3_7.jpgbin0 -> 89125 bytes
-rwxr-xr-x1226/CH3/EX3.7/EX3_7.sce7
-rwxr-xr-x1226/CH3/EX3.8/EX3_8.jpgbin0 -> 118215 bytes
-rwxr-xr-x1226/CH3/EX3.8/EX3_8.sce18
-rwxr-xr-x1226/CH3/EX3.9/EX3_9.jpgbin0 -> 156241 bytes
-rwxr-xr-x1226/CH3/EX3.9/EX3_9.sce25
74 files changed, 763 insertions, 0 deletions
diff --git a/1226/CH3/EX3.1/EX3_1.jpg b/1226/CH3/EX3.1/EX3_1.jpg
new file mode 100755
index 000000000..64af51780
--- /dev/null
+++ b/1226/CH3/EX3.1/EX3_1.jpg
Binary files differ
diff --git a/1226/CH3/EX3.1/EX3_1.sce b/1226/CH3/EX3.1/EX3_1.sce
new file mode 100755
index 000000000..db743d9ec
--- /dev/null
+++ b/1226/CH3/EX3.1/EX3_1.sce
@@ -0,0 +1,12 @@
+clc;funcprot(0);//EXAMPLE 3.1
+// Initialisation of Variables
+t1=673;.....................//Max temp in Kelvin
+t3=313;;...................//Min temp in Kelvin
+W=130;.................//Work produced in kJ
+//calculations
+etath=(t1-t3)/t1;................//Engine thermal efficiency
+disp(etath*100,"Engine thermal efficiency in %:")
+ha=W/etath;.................//Heat added in kJ
+disp(ha,"Head added in kJ:")
+dels=(ha-W)/t3;...........//Change in entropy
+disp(dels,"Change in entropy in kJ/K")
diff --git a/1226/CH3/EX3.10/EX3_10.jpg b/1226/CH3/EX3.10/EX3_10.jpg
new file mode 100755
index 000000000..45f1db801
--- /dev/null
+++ b/1226/CH3/EX3.10/EX3_10.jpg
Binary files differ
diff --git a/1226/CH3/EX3.10/EX3_10.sce b/1226/CH3/EX3.10/EX3_10.sce
new file mode 100755
index 000000000..62d43d989
--- /dev/null
+++ b/1226/CH3/EX3.10/EX3_10.sce
@@ -0,0 +1,24 @@
+clc;funcprot(0);//EXAMPLE 3.10
+// Initialisation of Variables
+r=6;..............//Compression ratio
+p1=1;................//Pressure after isochoric expansion in bar
+t1=300;................//Temperature after isochoric expansion in K
+t3=1842;...............//Temperature after isochoric compression in K
+ga=1.4;...............//Ratio of specific heats
+//Calculations
+p2=p1*(r^ga);...............//Pressure after adiabatic compression in bar
+t2=t1*(r^(ga-1));.............//Temperature after adiabatic compression in K
+p3=p2*(t3/t2);..................//pressure after isochoric compression in bar
+t4=t3/(r^(ga-1));..............//Temperature after adiabatic expansion in K
+p4=p3*(1/(r^(ga)));...........//Pressure after adiabatic expansion in bar
+etaotto=1-(1/(r^(ga-1)));............//Efficiency of otto cycle
+p5=p1;
+t5=((p5/p3)^((ga-1)/ga))*t3;................//Atkinson cycle temp after further adiabatic expansion in K
+etatk=1-((ga*(t5-t1))/(t3-t2));...........//Efficiency of atkinson cycle
+disp(t2,"Temperature after adiabatic compression in K:")
+disp(p2,"Pressure after adiabatic compression in bar:")
+disp(t3,"Temperature after isochoric compression in K:")
+disp(p3,"Pressure after isochoric compression in bar:")
+disp(t4,"Temperature after adiabatic expansion in K:")
+disp(p4,"Pressure after adiabatic expansion in bar:")
+disp((etatk-etaotto)*100,"Improvement in efficiency in %:")
diff --git a/1226/CH3/EX3.11/EX3_11.jpg b/1226/CH3/EX3.11/EX3_11.jpg
new file mode 100755
index 000000000..fe2e87a1a
--- /dev/null
+++ b/1226/CH3/EX3.11/EX3_11.jpg
Binary files differ
diff --git a/1226/CH3/EX3.11/EX3_11.sce b/1226/CH3/EX3.11/EX3_11.sce
new file mode 100755
index 000000000..3f89aad85
--- /dev/null
+++ b/1226/CH3/EX3.11/EX3_11.sce
@@ -0,0 +1,16 @@
+clc;funcprot(0);//EXAMPLE 3.11
+// Initialisation of Variables
+p1=1;...................//Initial pressure in bar
+t1=343;..................//Initial temperature in K
+p2=7;....................//Pressure after adiabatic compression
+Qs=465;...............//Heat addition at constant volume in kJ/kg
+cp=1;.....................//Specific heat at constant pressure in kJ/kg
+cv=0.706;..................//Specific heat at constant volume in kJ/kg
+ga=cp/cv;.................//Ratio of specific heats
+//Calculations
+r=(p2/p1)^(1/ga);...............//Compression ratio
+t2=t1*(r^(ga-1));.....................//Temperature at the end of compression in K
+t3=t2+(Qs/cv);.............//Temperature at the end of heat addition in K
+disp(r,"Compression ratio:")
+disp(t2,"Temperature at the end of compression in K")
+disp(t3,"Temperature at the end of heat addition in K")
diff --git a/1226/CH3/EX3.12/EX3_12.jpg b/1226/CH3/EX3.12/EX3_12.jpg
new file mode 100755
index 000000000..dcc32315a
--- /dev/null
+++ b/1226/CH3/EX3.12/EX3_12.jpg
Binary files differ
diff --git a/1226/CH3/EX3.12/EX3_12.sce b/1226/CH3/EX3.12/EX3_12.sce
new file mode 100755
index 000000000..440a9ca19
--- /dev/null
+++ b/1226/CH3/EX3.12/EX3_12.sce
@@ -0,0 +1,19 @@
+clc;funcprot(0);//EXAMPLE 3.12
+// Initialisation of Variables
+ga=1.4;..............//Ratio of specific heats
+p2byp1=15;...............//Ratio pressure at the end of compression to that of pressure at the start
+t1=311;................//Initial temperature in K
+t3=2223;...............//Maximum temperature in K
+R=0.287;...............//Gas constant in kJ/kg K
+//Calculations
+r=p2byp1^(1/ga);...............//Compression ratio
+etath=1-(1/(r^(ga-1)));.............//Thermal efficiency
+t2=t1*(r^(ga-1));............//Temperature at the end of compression in K
+t4=t3/(r^(ga-1));...........//Temperature at the end of isothermal expansion in K
+cv=R/(ga-1);................//Specific heat at constant volume in kJ/kg
+Q=cv*(t3-t2);..............//Heat supplied in kJ/kg of air
+Qr=cv*(t4-t1);.................//Heat rejected in kJ/kg of air
+W=Q-Qr;.................//Work done
+disp(r,"Compression ratio:")
+disp(etath*100,"Thermal efficiency in %:")
+disp(W,"Work done in kJ:")
diff --git a/1226/CH3/EX3.13/EX3_13.jpg b/1226/CH3/EX3.13/EX3_13.jpg
new file mode 100755
index 000000000..945612c00
--- /dev/null
+++ b/1226/CH3/EX3.13/EX3_13.jpg
Binary files differ
diff --git a/1226/CH3/EX3.13/EX3_13.sce b/1226/CH3/EX3.13/EX3_13.sce
new file mode 100755
index 000000000..191eb5b97
--- /dev/null
+++ b/1226/CH3/EX3.13/EX3_13.sce
@@ -0,0 +1,40 @@
+clc;funcprot(0);//EXAMPLE 3.13
+// Initialisation of Variables
+v1=0.45;.............//Initial volume in m^3
+p1=1;...............//Initial pressure in bar
+t1=303;.............//Initial temperature in K
+p2=11;...................//Pressure at the end of compression stroke in bar
+Q=210;...................//heat added at constant volume in kJ
+N=210;.................//No of working cycles per min
+ga=1.4;.............//Ratio of specific heats
+R=287;.................//Gas constant in kJ/kgK
+cv=0.71;.................//Specific heat at constant volume in kJ/kg
+//Calculations
+r=(p2/p1)^(1/ga);...................//Compression ratio
+t2=t1*(r^(ga-1));...................//Temperature at the end of adiabatic compression
+v2=(t2*p1*v1)/(t1*p2);.................//Volume at the end of adiabatic compression in m^3
+m=(p1*v1*10^5)/(R*t1);................//Mass of engine fluid in kg
+t3=(Q/(m*cv))+t2;...................//Temperature at the end of isochoric compression in K
+p3=(t3/t2)*p2;................//Pressure at the end of isochoric compression in bar
+v3=v2;
+t4=t3*(1/r)^(ga-1);...................//Temperature at the end of adiabatic expansion in K
+p4=p3*(1/r)^ga;......................//Pressure at the end of adiabatic expansion in bar
+v4=v1;
+pc=(v2*100)/(v1-v2);..................//Percentage clearence
+etaotto=1-(1/(r^(ga-1)));........................//Efficiency of otto cycle
+Qr=m*cv*(t4-t1);...............................//Heat rejected in kJ/kg
+pm=((Q-Qr)*1000)/((v1-v2)*100000);......//Mean effective pressure in bar
+P=(Q-Qr)*(N/60);........................//Power developed in kW
+printf("Temperature after adiabatic compression: %f K\n\n",t2)
+printf("Pressure after adiabatic compression: %f bar\n\n",p2)
+printf("Volume after adiabatic compression: %f m^3\n\n",v2)
+printf("Temperature after isochoric compression: %f K\n\n",t3)
+printf("Pressure after isochoric compression: %f bar\n\n",p3)
+printf("Volume after isochoric compression: %f m^3\n\n",v3)
+printf("Temperature after adiabatic expansion: %f K\n\n",t4)
+printf("Pressure after adiabatic expansion: %f bar\n\n",p4)
+printf("Volume after adiabatic expansion: %f m^3\n\n",v4)
+printf("Percentage clearance: %f\n\n",pc)
+printf("Efficiency of otto cycle: %f\n\n",etaotto*100)
+printf("Mean effective pressure: %f bar:\n\n",pm)
+printf("Power developed: %f kW\n\n",P)
diff --git a/1226/CH3/EX3.14/EX3_14.jpg b/1226/CH3/EX3.14/EX3_14.jpg
new file mode 100755
index 000000000..741457185
--- /dev/null
+++ b/1226/CH3/EX3.14/EX3_14.jpg
Binary files differ
diff --git a/1226/CH3/EX3.14/EX3_14.sce b/1226/CH3/EX3.14/EX3_14.sce
new file mode 100755
index 000000000..b41dffa24
--- /dev/null
+++ b/1226/CH3/EX3.14/EX3_14.sce
@@ -0,0 +1,16 @@
+clc;funcprot(0);//EXAMPLE 3.14
+// Initialisation of Variables
+t1=310;................//Min temperature in K
+t3=1220;................//Max temperature in K
+ga=1.4;................//Ratio of specific heats for air
+cph=5.22;............//Specific heat at constant volume for helium in kJ/kg
+cvh=3.13;...............//Specific heat at constant pressure for helium in kJ/kg
+//Calculations
+r=(t3/t1)^(1/((ga-1)*2));..............//Compression ratio
+etaotto=1-(1/(r^(ga-1)));................//Air standard efficiency
+gah=cph/cvh;................//Ratio of specific heats for Helium
+rh=(t3/t1)^(1/((gah-1)*2));..............//Compression ratio when Helium is used
+etaottoh=1-(1/(rh^(gah-1)));................//Air standard efficiency when Helium is used
+disp(etaotto*100,"Air standard efficiency of the engine in %:")
+if ((round (etaotto)- round (etaottoh)) == 0) then disp("There is no change in efficiency when Helium is used as working fluid instead of air")
+end
diff --git a/1226/CH3/EX3.15/EX3_15.jpg b/1226/CH3/EX3.15/EX3_15.jpg
new file mode 100755
index 000000000..715b748ce
--- /dev/null
+++ b/1226/CH3/EX3.15/EX3_15.jpg
Binary files differ
diff --git a/1226/CH3/EX3.15/EX3_15.sce b/1226/CH3/EX3.15/EX3_15.sce
new file mode 100755
index 000000000..af248e957
--- /dev/null
+++ b/1226/CH3/EX3.15/EX3_15.sce
@@ -0,0 +1,12 @@
+clc;funcprot(0);//EXAMPLE 3.15
+// Initialisation of Variables
+t1=310;.........//Minimum temperature in K
+t3=1450;............//maximum temperature in K
+m=0.38;...........//Mass of working fluid in kg
+cv=0.71;...........//Specific heat at constant volume in kJ/kg
+//Calculations
+t4=sqrt(t1*t3);............//Temperature at the end of adiabatic expansion in K
+t2=t4;
+W=cv*(t3-t2-t4+t1);..................//Work done in kJ/kg
+P=W*(m/60);.................//Power developed in kW
+disp (P,"Power developed in kW:")
diff --git a/1226/CH3/EX3.17/EX3_17.jpg b/1226/CH3/EX3.17/EX3_17.jpg
new file mode 100755
index 000000000..63f5d74fa
--- /dev/null
+++ b/1226/CH3/EX3.17/EX3_17.jpg
Binary files differ
diff --git a/1226/CH3/EX3.17/EX3_17.sce b/1226/CH3/EX3.17/EX3_17.sce
new file mode 100755
index 000000000..ce02dded3
--- /dev/null
+++ b/1226/CH3/EX3.17/EX3_17.sce
@@ -0,0 +1,9 @@
+clc;funcprot(0);//EXAMPLE 3.17
+// Initialisation of Variables
+r=15;...................//Compression ratio
+ga=1.4;..............//Ratio os fpecific heats for air
+perQ=6;................//Heat addition at constant pressure takes place at 6% of stroke
+//Calculations
+rho=1+((perQ/100)*(r-1));.............//Cut off ratio
+etad=1-((((rho^ga)-1)/(rho-1))*(1/(ga*(r^(ga-1)))));..................//Efficiency of diesel engine
+disp(etad*100,"Efficiency of diesel engine in %:")
diff --git a/1226/CH3/EX3.18/EX3_18.jpg b/1226/CH3/EX3.18/EX3_18.jpg
new file mode 100755
index 000000000..5f3178f07
--- /dev/null
+++ b/1226/CH3/EX3.18/EX3_18.jpg
Binary files differ
diff --git a/1226/CH3/EX3.18/EX3_18.sce b/1226/CH3/EX3.18/EX3_18.sce
new file mode 100755
index 000000000..3e7239c71
--- /dev/null
+++ b/1226/CH3/EX3.18/EX3_18.sce
@@ -0,0 +1,15 @@
+clc;funcprot(0);//EXAMPLE 3.18
+// Initialisation of Variables
+L=0.25;...............//Engine stroke in m
+D=0.15;..................//Engine bore in m
+v2=0.0004;...............//Clearance volume in m^3
+pers=5;...............//Percentage of stroke when fuel injection occurs
+ga=1.4;..............//Ratio of specific heats
+//Calculations
+Vs=(%pi/4)*D*D*L;..............//Swept volume in m^3
+Vt=Vs+v2;....................//Total cylinder volume in m^3
+v3=v2+((pers/100)*Vs);..............//Volume at point of cut off
+rho=v3/v2;............//Cut off ratio
+r=1+(Vs/v2);.............//Compression ratio
+etad=1-((((rho^ga)-1)/(rho-1))*(1/(ga*(r^(ga-1)))));..................//Efficiency of diesel engine
+disp(etad*100,"Efficiency of diesel engine in %:")
diff --git a/1226/CH3/EX3.19/EX3_19.jpg b/1226/CH3/EX3.19/EX3_19.jpg
new file mode 100755
index 000000000..fb72aae1b
--- /dev/null
+++ b/1226/CH3/EX3.19/EX3_19.jpg
Binary files differ
diff --git a/1226/CH3/EX3.19/EX3_19.sce b/1226/CH3/EX3.19/EX3_19.sce
new file mode 100755
index 000000000..b15d7357a
--- /dev/null
+++ b/1226/CH3/EX3.19/EX3_19.sce
@@ -0,0 +1,15 @@
+clc;funcprot(0);//EXAMPLE 3.19
+// Initialisation of Variables
+r=14;....................//Compression ratio
+pers1=5;...............//Percentage of stroke when fuel cut off occurs
+pers2=8;...............//Percentage of stroke when delayed fuel cut off occurs
+v2=1;.....................//Clearance volume in m^3
+ga=1.4;..................//Ratio of specific heats
+//Calculations
+//When the fuel is cut off at 5 %
+rho1=((pers1/100)*(r-1))+1;.............//Cut off ratio
+etad1=1-((((rho1^ga)-1)/(rho1-1))*(1/(ga*(r^(ga-1)))));..................//Efficiency of diesel engine
+//When the fuel is cut off at 8 %
+rho2=((pers2/100)*(r-1))+1;.............// Delayed Cut off ratio
+etad2=1-((((rho2^ga)-1)/(rho2-1))*(1/(ga*(r^(ga-1)))));..................//Efficiency of diesel engine when cut off ratio is deyaled
+disp((etad1-etad2)*100,"Percentage loss in efficiency due to delay in cut off:")
diff --git a/1226/CH3/EX3.2/EX3_2.jpg b/1226/CH3/EX3.2/EX3_2.jpg
new file mode 100755
index 000000000..4f3b62db5
--- /dev/null
+++ b/1226/CH3/EX3.2/EX3_2.jpg
Binary files differ
diff --git a/1226/CH3/EX3.2/EX3_2.sce b/1226/CH3/EX3.2/EX3_2.sce
new file mode 100755
index 000000000..3ad02ed4b
--- /dev/null
+++ b/1226/CH3/EX3.2/EX3_2.sce
@@ -0,0 +1,24 @@
+clc;funcprot(0);//EXAMPLE 3.2
+// Initialisation of Variables
+m=0.5;.....................//Mass of air in kg
+etath=0.5;.................//Thermal efficiency of engine
+hie=40;...................//Heat transferred during isothermal expansion in kJ
+p1=7;....................//Pressure in bar at the beginning of expansion
+v1=0.12;..................//Volume in m^3 at the beginning of expansion
+cv=0.721;...................//Specific heat at constant volume in kJ/kgK
+cp=1.008;..................//Specific heat at constant pressure in kJ/kgK
+R=287;......................//Gas constant in J/kgK
+//Calculations
+t1=(p1*10^5*v1)/(R*m);....................//Max temp in K
+t2=t1*(1-etath);.......................//Min temp in K
+disp(t1,"The maximum temperature in Kelvin:")
+disp(t2,"The minimum temperature in Kelvin:")
+v2=(%e^((hie*1000)/(m*R*t1)))*v1;..................//Volume at the end of isothermal expansion in m^3
+disp(v2,"Volume at the end of isothermal expansion in m^3")
+printf("\n\n")
+printf("Process Heat transfer\n")
+printf("_______________________________________________________________\n")
+printf("Isothermal expansion %d kJ\n",hie)
+printf("Adiabatic reversible expansion %d kJ\n",0)
+printf("Isothermal compression %d kJ\n",-hie)
+printf("Adiabatic reversible compressions %d kJ",0)
diff --git a/1226/CH3/EX3.20/EX3_20.jpg b/1226/CH3/EX3.20/EX3_20.jpg
new file mode 100755
index 000000000..2ec3d881f
--- /dev/null
+++ b/1226/CH3/EX3.20/EX3_20.jpg
Binary files differ
diff --git a/1226/CH3/EX3.20/EX3_20.sce b/1226/CH3/EX3.20/EX3_20.sce
new file mode 100755
index 000000000..9e2676ea4
--- /dev/null
+++ b/1226/CH3/EX3.20/EX3_20.sce
@@ -0,0 +1,21 @@
+clc;funcprot(0);//EXAMPLE 3.20
+// Initialisation of Variables
+pm=7.5;.................//Mean effective pressure in bar
+r=12.5;..................//Compression ratio
+p1=1;....................//Initial pressure in bar
+ga=1.4;.................//Ratio of specific heats
+//Calculations
+k=(pm*(ga-1)*(r-1))/(p1*(r^ga));
+c1=(r^(1-ga))/k;c2=(-ga)/k;c=1+(ga/k)-((r^(1-ga))/k);
+function[f]=F(rho)
+ f=c1*(rho^ga)+c2*rho+c;
+endfunction
+//Initial guess
+rho=2;
+//Derivative
+function[z]=D(rho)
+ z=c1*ga*(rho^(ga-1))+c2;
+endfunction
+y=fsolve(rho,F,D)
+perc=((y-1)/(r-1))*100;..................//Percentage of cutoff
+disp(perc,"Cut off Percentage:")
diff --git a/1226/CH3/EX3.21/EX3_21.jpg b/1226/CH3/EX3.21/EX3_21.jpg
new file mode 100755
index 000000000..b130bf106
--- /dev/null
+++ b/1226/CH3/EX3.21/EX3_21.jpg
Binary files differ
diff --git a/1226/CH3/EX3.21/EX3_21.sce b/1226/CH3/EX3.21/EX3_21.sce
new file mode 100755
index 000000000..03f2fdcce
--- /dev/null
+++ b/1226/CH3/EX3.21/EX3_21.sce
@@ -0,0 +1,42 @@
+clc;funcprot(0);//EXAMPLE 3.21
+// Initialisation of Variables
+D=0.2;.................//Engine bore in m
+L=0.3;.............//Engine stroke in m
+p1=1;................//Initial pressure in bar
+N=380;.................//No of working cycles per min
+t1=300;..............//Initial temperature in K
+co=8;................//Cut off percentage
+r=15;..................//Compression ratio
+R=287;.................//gas constant in J/kg
+ga=1.4;................//Ratio of specific heats
+//Calculations
+Vs=(%pi/4)*D*D*L;.............//Stroke volume in m
+v1=(r/(r-1))*Vs;................//Volume at the end of isochoric compression in m^3
+m=(p1*v1*10^5)/(R*t1);................//Mass of air in cylinder in kg/cycle
+p2=p1*(r^ga);.......................//Pressure at the end of isentropic compression in bar
+t2=t1*(r^(ga-1));....................//Temperature at the end of isentropic compression in K
+v2=Vs/(r-1);..................//Volume at the end of isentropic compressionin m^3
+p3=p2;
+rho=((r-1)*(co/100))+1;................//Cut off ratio
+v3=rho*v2;.......................//Volume at the end of isobaric expansion in m^3
+t3=t2*(v3/v2);..................//Temperature at the end of isobaric expansion in K
+p4=((rho/r)^ga)*p3;..............//Pressure at the end of adiabatic expansion in bar
+t4=((rho/r)^(ga-1))*t3;..............//Temperature at the end of adiabatic expansion in K
+v4=v1;
+printf("Temperature after adiabatic compression: %f K\n\n",t2)
+printf("Pressure after adiabatic compression: %f bar\n\n",p2)
+printf("Volume after adiabatic compression: %f m^3\n\n",v2)
+printf("Temperature after isobaric compression: %f K\n\n",t3)
+printf("Pressure after isobaric compression: %f bar\n\n",p3)
+printf("Volume after isobaric compression: %f m^3\n\n",v3)
+printf("Temperature after adiabatic expansion: %f K\n\n",t4)
+printf("Pressure after adiabatic expansion: %f bar\n\n",p4)
+printf("Volume after adiabatic expansion: %f m^3\n\n",v4)
+etad=1-((((rho^ga)-1)/(rho-1))*(1/(ga*(r^(ga-1)))));..................//Efficiency of diesel engine
+disp(etad*100,"Efficiency of diesel engine in %:")
+pm=p1*(r^ga)*[ga*(rho-1)-((r^(1-ga))*((rho^ga)-1))]*(1/(ga-1))*1/(r-1);.......//Mean effective pressure
+disp(pm,"Mean effective pressure :")
+Wdc=(pm*Vs*10^5)/1000;..................//Work done per cycle in kJ/cycle
+P=(Wdc*N)/60;...........................//Power developed in kW
+disp(P,"Power developed in kW:")
+
diff --git a/1226/CH3/EX3.22/EX3_22.jpg b/1226/CH3/EX3.22/EX3_22.jpg
new file mode 100755
index 000000000..28d5a2618
--- /dev/null
+++ b/1226/CH3/EX3.22/EX3_22.jpg
Binary files differ
diff --git a/1226/CH3/EX3.22/EX3_22.sce b/1226/CH3/EX3.22/EX3_22.sce
new file mode 100755
index 000000000..2563e2d1f
--- /dev/null
+++ b/1226/CH3/EX3.22/EX3_22.sce
@@ -0,0 +1,30 @@
+clc;funcprot(0);//EXAMPLE 3.22
+// Initialisation of Variables
+rc=15.3;....................//Compression ratio
+re=7.5;...................//Expansion ratio
+cp=1.005;.................//Specific heat at constant pressure in kJ/kg K
+cv=0.718;..................//Specific heat at constant volume in kJ/kgK
+ga=1.4;....................//Ratio of specific heats
+p1=1;....................//Initial pressure in bar
+t1=300;..................//Initial temperature in K
+etamech=0.8;..................//Mechanical efficiency
+C=42000;...........................//Calorific value of fuel in kJ/kg
+rita=0.5;.........................//Ratio of indicated thermal efficiency to air standard efficiency
+R=287;..........................//Gas constant in kJ/kgK
+//Calculations
+t2=t1*(rc^(ga-1));.................//Temperature at the end of adiabatic compression in K
+p2=p1*(rc^ga);...................//Pressure at the end of adiabatic compression in bar
+t3=(rc*t2)/re;....................//Temperature at the end of constant pressure process in K
+v2=1;..................//Volume at the end of adiabatic process in m^3
+m=(p2*v2*10^5)/(R*t2);..................//Mass of working fluid in kg
+t4=t3*((1/re)^(ga-1));...................//Temperature at the end of adiabatic expansion in K
+W=[m*(cp*(t3-t2))]-[m*(cv*(t4-t1))];........//Work done in kJ
+pm=W/(rc-1);..............................//Mean effective pressure in kN/m^2
+disp(pm/100,"Mean effective pressure in bar:")
+disp((p2*100)/(pm),"Ratio of maximum pressure to mean effective pressure ")
+etacy=W/(m*cp*(t3-t2));...............//Cycle efficiency
+disp(etacy*100,"Cycle efficiency in %:")
+etaith=rita*etacy;..................//Indicated thermal efficiency
+etabth=etaith*etamech;...............//Brake thermal efficiency
+mf=3600/(etabth*C);................//Fuel consumption per kWh
+disp(mf,"Fuel consumption in kg/kWh:")
diff --git a/1226/CH3/EX3.23/EX3_23.jpg b/1226/CH3/EX3.23/EX3_23.jpg
new file mode 100755
index 000000000..65a50f0bd
--- /dev/null
+++ b/1226/CH3/EX3.23/EX3_23.jpg
Binary files differ
diff --git a/1226/CH3/EX3.23/EX3_23.sce b/1226/CH3/EX3.23/EX3_23.sce
new file mode 100755
index 000000000..726f589a0
--- /dev/null
+++ b/1226/CH3/EX3.23/EX3_23.sce
@@ -0,0 +1,18 @@
+clc;funcprot(0);//EXAMPLE 3.23
+// Initialisation of Variables
+Vs=0.0053;................//Swept volume in m^3
+Vc=0.00035;...............//Clearance volume in m^3
+v3=Vc;
+v2=Vc;
+p3=65;..................//Max pressure in bar
+co=5;...................//Cut off percentage
+p4=p3;ga=1.4;...............//Ratio of specific heats
+t1=353;....................//Temperature at the start of compression in K
+p1=0.9;...................//Pressure at the start of compression in bar
+//Calculations
+r=1+(Vs/Vc);...................//Compression ratio
+rho=(((co/100)*Vs)/Vc)+1;...................//Cut off ratio
+p2=p1*(r^ga);
+Beta=p3/p2;.............................//Explosion ratio
+etadual=1-[(1/(r^(ga-1)))*((Beta*(rho^ga))-1)*(1/((Beta-1)+(Beta*ga*(rho-1))))];............//Efficiency of dual cycle
+disp(etadual*100,"Efficiency of dual cycle:")
diff --git a/1226/CH3/EX3.24/EX3_24.jpg b/1226/CH3/EX3.24/EX3_24.jpg
new file mode 100755
index 000000000..3708b6fe5
--- /dev/null
+++ b/1226/CH3/EX3.24/EX3_24.jpg
Binary files differ
diff --git a/1226/CH3/EX3.24/EX3_24.sce b/1226/CH3/EX3.24/EX3_24.sce
new file mode 100755
index 000000000..82d7eb9ae
--- /dev/null
+++ b/1226/CH3/EX3.24/EX3_24.sce
@@ -0,0 +1,10 @@
+clc;funcprot(0);//EXAMPLE 3.24
+// Initialisation of Variables
+r=14;......................//Compression ratio
+Beta=1.4;................//Explosion ratio
+co=6;..................//Cut off percentage
+ga=1.4;.................//Ratio of specific heats
+//Calculation
+rho=((co/100)*(r-1))+1;...............//Cut off ratio
+etadual=1-[(1/(r^(ga-1)))*((Beta*(rho^ga))-1)*(1/((Beta-1)+(Beta*ga*(rho-1))))];............//Efficiency of dual cycle
+disp(etadual*100,"Efficiency of dual cycle:")
diff --git a/1226/CH3/EX3.25/EX3_25.jpg b/1226/CH3/EX3.25/EX3_25.jpg
new file mode 100755
index 000000000..ca597ea82
--- /dev/null
+++ b/1226/CH3/EX3.25/EX3_25.jpg
Binary files differ
diff --git a/1226/CH3/EX3.25/EX3_25.sce b/1226/CH3/EX3.25/EX3_25.sce
new file mode 100755
index 000000000..7f4430301
--- /dev/null
+++ b/1226/CH3/EX3.25/EX3_25.sce
@@ -0,0 +1,34 @@
+clc;funcprot(0);//EXAMPLE 3.25
+// Initialisation of Variables
+D=0.25;.................//Engine bore in m
+L=0.3;.............//Engine stroke in m
+p1=1;................//Initial pressure in bar
+N=3;...............//No of cycles per second
+p3=60;................//Maximum pressure in bar
+t1=303;..............//Initial temperature in K
+co=4;................//Cut off percentage
+r=9;..................//Compression ratio
+R=287;.................//gas constant in J/kg
+cv=0.71;...............//Specific heat at constant volume in kJ/kgK
+cp=1.0;.................//Specific heat at constant pressure in kJ/kgK
+ga=1.4;...............//Ratio of specific heats
+//Calculations
+p4=p3;
+Vs=(%pi/4)*D*D*L;.............//Stroke volume in m^3
+Vc=Vs/(r-1);..................//Clearance volume in m^3
+rho=((r-1)*(co/100))+1;................//Cut off ratio
+v1=Vc+Vs;.................//Volume after isochoric compression in m^3
+p2=p1*(r^ga);................//Pressure after adiabatic compression in bar
+t2=t1*(r^(ga-1));..............//Temperature after adiabatic expansion in K
+t3=(p3*t2)/p2;..............//Temperature after isochoric compression in K
+t4=t3*rho;.....................//Temperature after isobaric expansion in K
+t5=t4*((rho/r)^(ga-1));.........//Temperature after adiabatic expansion in K
+p5=p4*(rho/r)^ga;...............//Pressure after adiabatic expansion in bar
+Qs=(cv*(t3-t2)+cp*(t4-t3));.....//Heat supplied in kJ/kg
+Qr=cv*(t5-t1);...................//Heat rejected in kJ/kg
+etast=1-(Qr/Qs);.................//Air standard efficiency
+disp(etast*100,"Air standard efficiency in %:")
+m=(p1*v1*10^5)/(R*t1);...............//Mass of air in cycle
+W=m*(Qs-Qr);....................//Work done per cycle in kJ
+P=W*N;............................//Power developed in kW
+disp(P,"Power developed in kW")
diff --git a/1226/CH3/EX3.26/EX3_26.jpg b/1226/CH3/EX3.26/EX3_26.jpg
new file mode 100755
index 000000000..b577b8b29
--- /dev/null
+++ b/1226/CH3/EX3.26/EX3_26.jpg
Binary files differ
diff --git a/1226/CH3/EX3.26/EX3_26.sce b/1226/CH3/EX3.26/EX3_26.sce
new file mode 100755
index 000000000..c1e57f9b5
--- /dev/null
+++ b/1226/CH3/EX3.26/EX3_26.sce
@@ -0,0 +1,36 @@
+clc;funcprot(0);//EXAMPLE 3.26
+// Initialisation of Variables
+p1=1;................//Initial pressure in bar
+t1=363;.............//Initial temperature in K
+r=9;.................//Compression ratio
+p3=68;...............//Max pressure
+p4=p3;
+Qs=1750;..............//Total heat supplied
+ga=1.4;...............//Ratio of specific heats
+R=287;................//Gas constant in kJ/kgK
+cv=0.71;..............//Specific heat at constant volume in kJ/kgK
+cp=1;................//Specific heat at constant pressure in kJ/kgK
+//Calculations
+p2=p1*((r)^ga);............//Pressure at the end of adiabatic compression in bar
+t2=t1*((r)^(ga-1));..........//Temperature at the end of adiabatic compression in K
+t3=t2*(p3/p2);............//Temperature at the end of isochoric compression in K
+Qv=cv*(t3-t2);.............//Heat added at constant volume in kJ/kg
+Qp=Qs-Qv;.....................//Heat added at constant pressure in kJ/kg
+t4=(Qp/cp)+t3;................//Temperature at the end of isobaric expansion in kJ/kg
+rho=t4/t3;.....................//Cut off ratio
+p5=p4*((rho/r)^ga);................//Pressure at the end of adiabatic expansion in kJ/kg
+t5=t4*((rho/r)^(ga-1));...........//Temperature at the end of adiabatic expansion in kJ/kg
+printf("Temperature after adiabatic compression: %f K\n\n",t2)
+printf("Pressure after adiabatic compression: %f bar\n\n",p2)
+printf("Temperature after isochoric compression: %f K\n\n",t3)
+printf("Pressure after isochoric compression: %f bar\n\n",p3)
+printf("Temperature after isobaric expansion: %f K\n\n",t4)
+printf("Pressure after isobaric expansion: %f bar\n\n",p4)
+printf("Temperature after adiabatic expansion: %f K\n\n",t5)
+printf("Pressure after adiabatic expansion: %f bar\n\n",p5)
+Qr=cv*(t5-t1);....................//Heat rejected in kJ
+etast=1-(Qr/Qs);.................//Air standard efficiency
+disp(etast*100,"Air standard efficiency in %:")
+pm=(1/(r-1))*[(68*(rho-1))+(((p4*rho)-(p5*r))/(ga-1))-((p2-r)/(ga-1))];................//Mean effective pressure in bar
+disp(pm,"Mean effective pressure in bar:")
+
diff --git a/1226/CH3/EX3.27/EX3_27.jpg b/1226/CH3/EX3.27/EX3_27.jpg
new file mode 100755
index 000000000..592127e91
--- /dev/null
+++ b/1226/CH3/EX3.27/EX3_27.jpg
Binary files differ
diff --git a/1226/CH3/EX3.27/EX3_27.sce b/1226/CH3/EX3.27/EX3_27.sce
new file mode 100755
index 000000000..c0588df7f
--- /dev/null
+++ b/1226/CH3/EX3.27/EX3_27.sce
@@ -0,0 +1,13 @@
+clc;funcprot(0);//EXAMPLE 3.27
+// Initialisation of Variables
+t1=300;...............//Initial temperature
+rmami=70;....................//Ratio of max pressure and min pressure
+r=15;....................//Compression ratio
+ga=1.4;.................//Ratio of specific heats
+R=287;....................//Gas constant in kJ/kgK
+t2=t1*(r^(ga-1));.................//Temperature at the end of adiabatic compression in K
+t3=t2*(rmami/(r^ga));............//Temperature at the end of isochoric compression in K
+t4=t3+((t3-t2)/ga);..............//Temperature at the end of isobaric process in K
+t5=t4/((1/(t4/(t3*r)))^(ga-1));..........//Temperature at the end of adiabatic expansion in K
+etast=1-[(t5-t1)/((t3-t2)+ga*(t4-t3))];..............//Air standard efficiency
+disp(etast*100,"Air standard efficiency in %:")
diff --git a/1226/CH3/EX3.28/EX3_28.jpg b/1226/CH3/EX3.28/EX3_28.jpg
new file mode 100755
index 000000000..6efce75f1
--- /dev/null
+++ b/1226/CH3/EX3.28/EX3_28.jpg
Binary files differ
diff --git a/1226/CH3/EX3.28/EX3_28.sce b/1226/CH3/EX3.28/EX3_28.sce
new file mode 100755
index 000000000..02aef3913
--- /dev/null
+++ b/1226/CH3/EX3.28/EX3_28.sce
@@ -0,0 +1,35 @@
+clc;funcprot(0);//EXAMPLE 3.28
+// Initialisation of Variables
+t1=373;.............//Initial temperature in K
+p1=1;...............//Initial pressure in bar
+p3=65;..............//Maximum pressure in bar
+R=287;.................//Gas constant in kJ/kg
+p4=p3;
+ga=1.41;.................//Ratio of specific heats
+Vs=0.0085;............//Swept volume in m^3
+afr=21;...............//Air fuel ratio
+r=15;.................//Compression ratio
+C=43890;..............//Calorific value of fuel in kJ/kg
+cp=1;................//Specific heat at constant pressure in kJ/kgK
+cv=0.71;..............//Specific heat at constant volume in kJ/kgK
+//Calculations
+Vc=Vs/(r-1);...............//Clearance volume in m^3
+v2=Vc;v1=Vs+v2;
+v3=Vc;v5=v1;
+p2=p1*(r^ga);.....................//Pressure at the end of adiabatic compression in bar
+t2=t1*(r^(ga-1));................//Temperature at the end of adiabatic compression in K
+t3=(t2*p3)/p2;...................//Temperature at the end of isochoric compression in K
+m=(p1*v1*10^5)/(R*t1);............//Mass of air in the cycle in kg
+Qv=m*cv*(t3-t2);.....................//Heat added during constant volume process in kJ
+fv=Qv/C;.............................//Fuel added during constant volume process in kg
+mf=m/afr;..................//Total amount of fuel added in kg
+mfib=mf-fv;....................//Total amount of fuel added in isobaric process in kg
+Qib=mfib*C;....................//Total amount of heat added in isobaric process in kJ
+t4=(Qib/((m+mf)*cp))+t3;........//Temperature at the end of isobaric process in K
+v4=(v3*t4)/t3;..................//Volume at the end of isobaric process in m^3
+t5=t4/((v5/v4)^(ga-1));.........//Temperature at the end of isochoric expansion in K
+Qrv=(m+mf)*cv*(t5-t1);...............//Heat rejected during constant volume process in kJ
+W=(Qib+Qv)-Qrv;................//Work done in kJ
+etath=W/(Qib+Qv);..................//Thermal efficiency
+disp(etath*100,"Thermal efficiency in %:")
+
diff --git a/1226/CH3/EX3.29/EX3_29.jpg b/1226/CH3/EX3.29/EX3_29.jpg
new file mode 100755
index 000000000..11d782969
--- /dev/null
+++ b/1226/CH3/EX3.29/EX3_29.jpg
Binary files differ
diff --git a/1226/CH3/EX3.29/EX3_29.sce b/1226/CH3/EX3.29/EX3_29.sce
new file mode 100755
index 000000000..0c5b65af9
--- /dev/null
+++ b/1226/CH3/EX3.29/EX3_29.sce
@@ -0,0 +1,41 @@
+clc;funcprot(0);//EXAMPLE 3.29
+// Initialisation of Variables
+D=0.25;.............//Engine bore in m
+L=0.4;..............//Engine stroke in m
+t1=303;.............//Initial temperature in K
+R=287;...............//Gas constant in kJ/kgK
+p1=1;...............//Initial pressure in bar
+N=8;................//No of working cycles per sec
+cv=0.71;.............//Specific heat at constant volume in kJ/kgK
+cp=1;.................//Specific heat at constant pressure in kJ/kgK
+n=1.25;.............//Adiabatic index
+rc=9;...............//Compression ratio
+re=5;...............//Expansion ratio
+rqptqe=2;...........//Ratio of heat liberated at constant pressure to heat liberated at constant volume
+//Calculations
+p2=p1*(rc^n);.......................//Pressure at the end of adiabatic compression in bar
+t2=t1*(rc^(n-1));...................//Temperature at the end of adiabatic compression in K
+rho=rc/re;..........................//Cut off ratio
+t3=(2*cv*t2)/((2*cv)-(cp*(rho-1)));...............//Temperature at the end of isochoric compression in K
+p3=p2*(t3/t2);....................................//Pressure at the end of isochoric compression in bar
+p4=p3;t4=rho*t3;.................................//Temperature and pressure at the end of isobaric process
+p5=p4*(1/(re^n));.................................//Pressure at the end of adiabatic expansion in bar
+t5=t4*(1/(re^(n-1)));.............................//Temperature at the end of adiabatic expansion in K
+pm=(1/(rc-1))*[(p3*(rho-1))+(((p4*rho)-(p5*rc))/(n-1))-((p2-(p1*rc))/(n-1))];...............//Mean effective pressure
+printf("Temperature after adiabatic compression: %f K\n\n",t2)
+printf("Pressure after adiabatic compression: %f bar\n\n",p2)
+printf("Temperature after isochoric compression: %f K\n\n",t3)
+printf("Pressure after isochoric compression: %f bar\n\n",p3)
+printf("Temperature after isobaric expansion: %f K\n\n",t4)
+printf("Pressure after isobaric expansion: %f bar\n\n",p4)
+printf("Temperature after adiabatic expansion: %f K\n\n",t5)
+printf("Pressure after adiabatic expansion: %f bar\n\n",p5)
+disp(pm,"Mean effective pressure in bar:")
+Vs=(%pi/4)*D*D*L;....................//Swept volume in m^3
+W=(pm*(10^5)*Vs)/1000;.................//Work done per cycle in kJ
+m=(p1*(10^5)*(rc/(rc-1))*Vs)/(R*t1);.....................//Mass of air per cycle in kg
+Qs=m*[cv*(t3-t2)+cp*(t4-t3)];.....................//Heat supplied per cycle in kJ
+eta=W/Qs;....................//Engine efficiency
+disp(eta*100,"Engine efficiency in %:")
+P=W*N;.................//Power of the engine in kW
+disp(P,"Power of the engine in kW:")
diff --git a/1226/CH3/EX3.3/EX3_3.jpg b/1226/CH3/EX3.3/EX3_3.jpg
new file mode 100755
index 000000000..ab8c6f32d
--- /dev/null
+++ b/1226/CH3/EX3.3/EX3_3.jpg
Binary files differ
diff --git a/1226/CH3/EX3.3/EX3_3.sce b/1226/CH3/EX3.3/EX3_3.sce
new file mode 100755
index 000000000..559fb319d
--- /dev/null
+++ b/1226/CH3/EX3.3/EX3_3.sce
@@ -0,0 +1,28 @@
+clc;funcprot(0);//EXAMPLE 3.3
+// Initialisation of Variables
+p1=18;..................//Maximum pressure in bar
+t1=410+273;.............//Maximum temperature in Kelvin
+ric=6;.....................//Ratio of isentropic compression
+rie=1.5;.................//Ratio of isothermal expansion
+v1=0.18;..................//Volume of air at the beginning of expansion
+ga=1.4;...................//Degree of freedom of gas
+R=287;.....................//Gas constant in J/kgK
+nc=210;..................//no of working cycles
+//Calculations
+
+t4=t1/(ric^(ga-1));.............//Min temp in K
+t3=t4;
+p4=p1/(ric^ga);..................//Min pressure in bar
+p2=p1/rie;.......................//pressure of gas before isentropic expansion in bar
+p3=p2*((1/6)^ga);.................//Pressure of gas after isentropic expansion in bar
+printf("p1=%f bar \np2=%f bar \np3=%f bar \np4=%f bar \nt1=t2=%f Kelvin \nt3=t4=%f Kelvin \n",p1,p2,p3,p4,t1,t3)
+dels=(p1*10^5*v1*log(rie))/(1000*t1);....................//Change in entropy
+disp(dels,"Change in entropy in kJ/K:")
+qs=t1*dels;.......................//Heat supplied in kJ
+Qr=t4*dels;.......................//Heat rejected in kJ
+eta=(qs-Qr)/qs;............//Efficiency of the cycle
+v3byv1=ric*rie;Vs=(v3byv1-1)*v1;.................//Stroke volume
+pm=((qs-Qr)*10^3)/(Vs*10^5);........//Mean effective pressure of the cycle in bar
+disp(pm,"Mean effective pressure of the cycle in bar:")
+P=(qs-Qr)*(nc/60);.........................//Power of engine
+disp(P,"Mean effective pressure of the cycle in bar:")
diff --git a/1226/CH3/EX3.31/EX3_31.jpg b/1226/CH3/EX3.31/EX3_31.jpg
new file mode 100755
index 000000000..933dd6b79
--- /dev/null
+++ b/1226/CH3/EX3.31/EX3_31.jpg
Binary files differ
diff --git a/1226/CH3/EX3.31/EX3_31.sce b/1226/CH3/EX3.31/EX3_31.sce
new file mode 100755
index 000000000..04dc8d55e
--- /dev/null
+++ b/1226/CH3/EX3.31/EX3_31.sce
@@ -0,0 +1,20 @@
+clc;funcprot(0);//EXAMPLE 3.31
+// Initialisation of Variables
+cp=0.92;..................//Specific heat at constant pressure in kJ/kgK
+cv=0.75;..................//Specific heat at constant volume in kJ/kgK
+p1=1;...................//Pressure at the end of adiabatic expansion in bar
+p2=p1;...................//Pressure at the end of isobaric compression in bar
+p3=4;....................//Pressure at the end of isobaric compression in bar
+p4=16;...................//Final pressure after heat addition in bar
+t2=300;.....................//Temperature at the end of isobaric compression in K
+ga=1.22;................//Ratio of specific heats
+//Calculations
+t3=t2*((p3/p2)^((ga-1)/ga));............//Temperature at the end of isobaric compression in K
+t4=(p4*t3)/p3;........................//Final temperature after heat addition in K
+t1=t4/((p4/p1)^((ga-1)/ga));...................//Temperature at the end of adiabatic compression in K
+Qs=cv*(t4-t3);.........................//Heat supplied in kJ/kg
+Qr=cp*(t1-t2);.........................//Heat rejected in kJ/kg
+W=Qs-Qr;.......................//Work done per kg of gas in kJ
+disp(W,"Work done in kJ/kg:")
+eta=W/Qs;......................//Efficiency of cycle
+disp(eta*100,"Efficiency of cycle in %:")
diff --git a/1226/CH3/EX3.32/EX3_32.jpg b/1226/CH3/EX3.32/EX3_32.jpg
new file mode 100755
index 000000000..e622b41e1
--- /dev/null
+++ b/1226/CH3/EX3.32/EX3_32.jpg
Binary files differ
diff --git a/1226/CH3/EX3.32/EX3_32.sce b/1226/CH3/EX3.32/EX3_32.sce
new file mode 100755
index 000000000..3862c63ea
--- /dev/null
+++ b/1226/CH3/EX3.32/EX3_32.sce
@@ -0,0 +1,13 @@
+clc;funcprot(0);//EXAMPLE 3.32
+// Initialisation of Variables
+p1=101.325;....................//Pressure of intake air in kPa
+t1=300;.......................//Temperature of intake air in kPa
+rp=6;.........................//Pressure ratio in the cycle
+ga=1.4;.........................//Ratio of specific heats
+rtc=2.5;...........................//Ratio of turbine work and compressor work
+//Calculations
+t2=t1*(rp^((ga-1)/ga));..................//Temperature at the end of isentropic expansion in K
+t3=(rtc*(t2-t1))/(1-(1/(rp^((ga-1)/ga))));........//Temperature at the end of isobaric expansion in K
+t4=t3/(rp^((ga-1)/ga));.......................//Temperature at the end of isentropic compression in K
+eta=(t3-t4-t2+t1)/(t3-t2);...................//Cycle efficiency
+disp(eta*100,"Cycle efficiency in %:")
diff --git a/1226/CH3/EX3.33/EX3_33.jpg b/1226/CH3/EX3.33/EX3_33.jpg
new file mode 100755
index 000000000..194c40a6b
--- /dev/null
+++ b/1226/CH3/EX3.33/EX3_33.jpg
Binary files differ
diff --git a/1226/CH3/EX3.33/EX3_33.sce b/1226/CH3/EX3.33/EX3_33.sce
new file mode 100755
index 000000000..6f0b920a4
--- /dev/null
+++ b/1226/CH3/EX3.33/EX3_33.sce
@@ -0,0 +1,12 @@
+clc;funcprot(0);//EXAMPLE 3.33
+// Initialisation of Variables
+p1=1;....................//Intake pressure in bar
+p2=5;....................//Supply pressure in bar
+t3=1000;..................//Supply temperature in Kelvin
+cp=1.0425;................//Specific heat at constant pressure in kJ/kgK
+cv=0.7662;.................//Specific heat at constant volume in kJ/kgK
+ga=cp/cv;..................//Ratio of specific heats
+//Calculations
+t4=t3*((p1/p2)^((ga-1)/ga));
+P=cp*(t3-t4);.....................//Power developed per kg of gas per second in kW
+disp(P,"Power developed per kg of gas per second in kW:")
diff --git a/1226/CH3/EX3.34/EX3_34.jpg b/1226/CH3/EX3.34/EX3_34.jpg
new file mode 100755
index 000000000..cadc3e04b
--- /dev/null
+++ b/1226/CH3/EX3.34/EX3_34.jpg
Binary files differ
diff --git a/1226/CH3/EX3.34/EX3_34.sce b/1226/CH3/EX3.34/EX3_34.sce
new file mode 100755
index 000000000..e5b57ee85
--- /dev/null
+++ b/1226/CH3/EX3.34/EX3_34.sce
@@ -0,0 +1,13 @@
+clc;funcprot(0);//EXAMPLE 3.34
+// Initialisation of Variables
+ma=0.1;...................//Air supplied in kg/s
+p1=1;.....................//Supply pressure in bar
+t4=285;.................//Temperature of air when supplied to cabin in K
+p2=4;...................//Pressure at inlet to turbine in bar
+cp=1.0;..................//Specific heat at constant pressure in kJ/kgK
+ga=1.4;..................//Ratio of specific heats
+//Calculations
+t3=t4*((p2/p1)^((ga-1)/ga));................//Temperature at turbine inlet in K
+disp(t3,"Temperature at turbine inlet in K:")
+P=ma*cp*(t3-t4);...........................//Power developed in kW
+disp(P,"Power developed in kW:")
diff --git a/1226/CH3/EX3.35/EX3_35.jpg b/1226/CH3/EX3.35/EX3_35.jpg
new file mode 100755
index 000000000..2d8ca4792
--- /dev/null
+++ b/1226/CH3/EX3.35/EX3_35.jpg
Binary files differ
diff --git a/1226/CH3/EX3.35/EX3_35.sce b/1226/CH3/EX3.35/EX3_35.sce
new file mode 100755
index 000000000..415e82d7a
--- /dev/null
+++ b/1226/CH3/EX3.35/EX3_35.sce
@@ -0,0 +1,21 @@
+clc;funcprot(0);//EXAMPLE 3.35
+// Initialisation of Variables
+p1=1;......................//Pressure of air entering the compressor in bar
+p2=3.5;.................//Pressure of air while leaving the compressor in bar
+t1=293;..................//Temperature of air at the onlet of the compressor in K
+t3=873;.................//Temperature of air at the turbine inlet in K
+cp=1.005;...............//Specific heat at constant pressure in kJ/kgK
+ga=1.4;...................//Ratio of specific heats
+//Calculations
+rp=p2/p1;....................//Pressure ratio of the cycle
+eta=1-(1/(rp^((ga-1)/ga)));..............//Efficiency of the cycle
+disp(eta*100,"Efficiency of the cycle:")
+t2=t1*((rp^((ga-1)/ga)));................//Temperature of air while leaving the compressor in K
+q1=cp*(t3-t2);................//Heat supplied to the air in kJ/kg
+disp(q1,"Heat supplied to the air in kJ/kg:")
+W=eta*q1;........................//Work available at the shaft in kJ/kg
+disp(W,"Work available at the shaft in kJ/kg:")
+q2=q1-W;................//Heat rejected in the cooler in kJ/kg
+disp(q2,"Heat rejected in the cooler in kJ/kg:")
+t4=t3/(rp^((ga-1)/ga));.......................//Temperature of air leaving the turbine in K
+disp(t4,"Temperature of air leaving the turbine in K:")
diff --git a/1226/CH3/EX3.36/EX3_36.jpg b/1226/CH3/EX3.36/EX3_36.jpg
new file mode 100755
index 000000000..b90ed1230
--- /dev/null
+++ b/1226/CH3/EX3.36/EX3_36.jpg
Binary files differ
diff --git a/1226/CH3/EX3.36/EX3_36.sce b/1226/CH3/EX3.36/EX3_36.sce
new file mode 100755
index 000000000..5494dafd2
--- /dev/null
+++ b/1226/CH3/EX3.36/EX3_36.sce
@@ -0,0 +1,15 @@
+clc;funcprot(0);//EXAMPLE 3.36
+// Initialisation of Variables
+p1=1;...................//Pressure of air entering the compressor in bar
+t1=300;.................//Temperature of air entering the compressor in bar
+rp=6;...................//Pressure ratio
+rtc=2.5;.................//Ratio of turbine work to compressor work
+ga=1.4;............//Ratio of specific heats
+//calculations
+t2=t1*(rp^((ga-1)/ga));..................//Temperature at the end of isentropic expansion in K
+t3=(rtc*(t2-t1))/(1-(1/(rp^((ga-1)/ga))));........//Temperature at the end of isobaric expansion in K
+t4=t3/(rp^((ga-1)/ga));.......................//Temperature at the end of isentropic compression in K
+eta=(t3-t4-t2+t1)/(t3-t2);...................//Cycle efficiency
+disp(t3,"Maximum temperature in K:")
+disp(eta*100,"Cycle efficiency in %:")
+
diff --git a/1226/CH3/EX3.37/EX3_37.jpg b/1226/CH3/EX3.37/EX3_37.jpg
new file mode 100755
index 000000000..b0df1c3eb
--- /dev/null
+++ b/1226/CH3/EX3.37/EX3_37.jpg
Binary files differ
diff --git a/1226/CH3/EX3.37/EX3_37.sce b/1226/CH3/EX3.37/EX3_37.sce
new file mode 100755
index 000000000..12e37f585
--- /dev/null
+++ b/1226/CH3/EX3.37/EX3_37.sce
@@ -0,0 +1,14 @@
+clc;funcprot(0);//EXAMPLE 3.37
+// Initialisation of Variables
+t1=303;........................//Min temperature in K
+t3=1073;........................//Max temperature in K
+C=45000;.....................//Calorific value of fuel in kJ/kg
+cp=1;....................//Specific heat at constant pressure in kJ/kgK
+ga=1.4;........................//Ratio os specific heats
+diftc=100;..................//Difference between work done by turbine and compressor in kW
+//Calculations
+t2=sqrt(t1*t3); t4 = t2;.....//Assumed
+mf=diftc/[C*(1-((t4-t1)/(t3-t2)))];................//Fuel used in kg per second
+disp(mf,"Rate of fuel consumption in kg/s:")
+ma=[diftc-[mf*(t3-t4)]]/[(t3-t4-cp*(t2-t1))];............//Rate of air consumption in kg/s
+disp(ma,"Mass flow rate of air in kg/s:")
diff --git a/1226/CH3/EX3.38/EX3_38.jpg b/1226/CH3/EX3.38/EX3_38.jpg
new file mode 100755
index 000000000..90bb2d68b
--- /dev/null
+++ b/1226/CH3/EX3.38/EX3_38.jpg
Binary files differ
diff --git a/1226/CH3/EX3.38/EX3_38.sce b/1226/CH3/EX3.38/EX3_38.sce
new file mode 100755
index 000000000..88c24902a
--- /dev/null
+++ b/1226/CH3/EX3.38/EX3_38.sce
@@ -0,0 +1,25 @@
+clc;funcprot(0);//EXAMPLE 3.38
+// Initialisation of Variables
+t1=300;.................//Inlet temperature in K
+p1=1;....................//Inlet pressure in bar
+ma=1;....................//Mass of air in kg
+rp=6.25;.............//Pressure ratio
+t3=1073;...........//Maximum temperature in K
+etac=0.8;............//Efficiency of compressor
+etat=0.8;.............//Efficiency of turbine
+ga=1.4;.................//Ratio of specific heats
+cp=1.005;.............//Specific heat at constant pressure in kJ/kgK
+//Calculations
+t2=t1*(rp^((ga-1)/ga));...........//Ideal Temperature of air while leaviing the compressor in K
+t21=((t2-t1)/etac)+t1;............//Actual Temperature of air while leaviing the compressor in K
+Wcomp=ma*cp*(t21-t1);.............//Compressor work in kJ/kg
+t4=t3/(rp^((ga-1)/ga));........//Ideal temperature of air while leaving the turbine in K
+t41=t3-(etat*(t3-t4));..........//Actual temperature of air while leaving the turbine in K
+Wtur=ma*cp*(t3-t41);..............//Turbine work in kJ/kg
+Wnet=Wtur-Wcomp;.................//Net work produced in kJ/kg
+Qs=ma*cp*(t3-t21);.................//Heat supplied in kJ/kg
+disp(Wcomp,"Compressor work in kJ/kg:")
+disp(Wtur,"Turbine work in kJ/kg:")
+disp(Qs,"Heat supplied in kJ/kg:")
+disp((Wnet/Qs)*100,"Cycle efficiency in %:")
+disp(t41,"Actual exhaust temperature of turbine in K")
diff --git a/1226/CH3/EX3.39/EX3_39.jpg b/1226/CH3/EX3.39/EX3_39.jpg
new file mode 100755
index 000000000..b5f8f8cea
--- /dev/null
+++ b/1226/CH3/EX3.39/EX3_39.jpg
Binary files differ
diff --git a/1226/CH3/EX3.39/EX3_39.sce b/1226/CH3/EX3.39/EX3_39.sce
new file mode 100755
index 000000000..a6aa5a4c8
--- /dev/null
+++ b/1226/CH3/EX3.39/EX3_39.sce
@@ -0,0 +1,19 @@
+clc;funcprot(0);//EXAMPLE 3.39
+// Initialisation of Variables
+etat=0.85;..............//Turbine efficiency
+etac=0.8;...............//Compressor efficiency
+t3=1148;................//Max temperature in K
+t1=300;................//Temperature of working fluid when entering the compressor in Kelvin
+cp=1;...................//specific heat at constant pressure in kJ/kgK
+ga=1.4;................//ratio of specific heats
+p1=1;...................//Pressure of working fluid while entering the compressor in bar
+rp=4;...................//Pressure ratio
+C=42000;...............//Calorific value of fuel used in kJ/kgK
+perlcc=10;.............//Percentage loss of calorific value in combustion chamber
+//calculations
+p2=p1*rp;.................//pressure of air while leaving the compressor in bar
+etacc=1-(perlcc/100);............//efficiency of combustion chamber
+t2=t1*(rp^((ga-1)/ga));...........//Ideal Temperature of air while leaviing the compressor in K
+t21=((t2-t1)/etac)+t1;............//Actual Temperature of air while leaviing the compressor in K
+afr=((C*etacc)/(cp*(t3-t21)))-1;...........//Air fuel ratio
+printf("Air fuel ratio is %d:1",round(afr))
diff --git a/1226/CH3/EX3.4/EX3_4.jpg b/1226/CH3/EX3.4/EX3_4.jpg
new file mode 100755
index 000000000..f64ffde2f
--- /dev/null
+++ b/1226/CH3/EX3.4/EX3_4.jpg
Binary files differ
diff --git a/1226/CH3/EX3.4/EX3_4.sce b/1226/CH3/EX3.4/EX3_4.sce
new file mode 100755
index 000000000..121ef04b8
--- /dev/null
+++ b/1226/CH3/EX3.4/EX3_4.sce
@@ -0,0 +1,10 @@
+clc;funcprot(0);//EXAMPLE 3.4
+// Initialisation of Variables
+eta=1/6;...................//Efficiency of the engine
+rts=70;.................//The amount of temp which is reduced in the sink in C
+//Calculation
+t1byt2=1/(1-eta);
+t2=(rts+273)/((2*eta*t1byt2)-t1byt2+1);............//Temperature of the sink in K
+disp(t2-273,"Temperature of the sink in Celsius:")
+t1=t1byt2*t2;...............//Temperature of source in K
+disp(t1-273,"temperature of source in Celsius:")
diff --git a/1226/CH3/EX3.40/EX3_40.jpg b/1226/CH3/EX3.40/EX3_40.jpg
new file mode 100755
index 000000000..4c4d803d9
--- /dev/null
+++ b/1226/CH3/EX3.40/EX3_40.jpg
Binary files differ
diff --git a/1226/CH3/EX3.40/EX3_40.sce b/1226/CH3/EX3.40/EX3_40.sce
new file mode 100755
index 000000000..8afe73bc6
--- /dev/null
+++ b/1226/CH3/EX3.40/EX3_40.sce
@@ -0,0 +1,30 @@
+clc;funcprot(0);//EXAMPLE 3.40
+// Initialisation of Variables
+p1=1;...........//pressure before isothermal compression in bar
+t1=310;.........//temperature before isothermal compression in K
+p3=16;.........//pressure before isothermal expansion in bar
+t3=930;.........//temperature before isothermal expansion in K
+R=287;.............//Gas constant in kJ/kgK
+//Calculations
+v1=(R*t1)/(p1*10^5);...............//Volume before isothermal compression in m^3
+v3=(R*t3)/(p3*10^5);...............//Volume before isothermal expansion in m^3
+v2=v3;v4=v1;.................//2-3 and 1-4 are isochoric processes
+r=v1/v2;...................//Compression ratio
+q12=R*t1*log(r);...............//Work done and heat rejected in process 1-2
+w12=q12;
+disp(q12/1000,"Work done in process 1-2 in kJ/kg:")
+disp(w12/1000,"Heat rejected in process 1-2 in kJ/kg:")
+q23=0;w23=q23;..................//COnstant volume process and hence work done is zero
+disp(q23/1000,"Work done in process 2-3 in kJ/kg:")
+disp(q23/1000,"Heat rejected in process 2-3 in kJ/kg:")
+q34=R*t3*log(r);...............//Work done and heat rejected in process 1-2
+w34=q34;
+disp(q34/1000,"Work done in process 3-4 in kJ/kg:")
+disp(w34/1000,"Heat rejected in process 3-4 in kJ/kg:")
+q41=q34-q12;w41=q41;
+disp(q41/1000,"Work done in process 4-1 in kJ/kg:")
+disp(w41/1000,"Heat rejected in process 4-1 in kJ/kg:")
+etath=w41/q34;.....................//Thermal efficiency
+disp(etath*100,"Thermal efficiency of the cycle in %:")
+
+
diff --git a/1226/CH3/EX3.5/EX3_5.jpg b/1226/CH3/EX3.5/EX3_5.jpg
new file mode 100755
index 000000000..cb42af077
--- /dev/null
+++ b/1226/CH3/EX3.5/EX3_5.jpg
Binary files differ
diff --git a/1226/CH3/EX3.5/EX3_5.sce b/1226/CH3/EX3.5/EX3_5.sce
new file mode 100755
index 000000000..1812770b2
--- /dev/null
+++ b/1226/CH3/EX3.5/EX3_5.sce
@@ -0,0 +1,11 @@
+clc;funcprot(0);//EXAMPLE 3.5
+// Initialisation of Variables
+t1=1990;....................//Temperature of the heat source in K
+t2=850;..................//Temperature of the sink in K
+Q=32.5;...................//Heat supplied in kJ/min
+P=0.4;....................//Power developed by the engine in kW
+//Calculations
+eta=1-(t2/t1);..........//Efficiency of carnot engine
+etath=P/(Q/60);..................//Efficiency of the given engine
+if (etath>eta) then printf("Since the efficiency of the given engine is more than efficiency of carnot engine, the claim is not true.")
+end
diff --git a/1226/CH3/EX3.7/EX3_7.jpg b/1226/CH3/EX3.7/EX3_7.jpg
new file mode 100755
index 000000000..181bd037c
--- /dev/null
+++ b/1226/CH3/EX3.7/EX3_7.jpg
Binary files differ
diff --git a/1226/CH3/EX3.7/EX3_7.sce b/1226/CH3/EX3.7/EX3_7.sce
new file mode 100755
index 000000000..5145aae02
--- /dev/null
+++ b/1226/CH3/EX3.7/EX3_7.sce
@@ -0,0 +1,7 @@
+clc;funcprot(0);//EXAMPLE 3.7
+// Initialisation of Variables
+etaotto=0.6;............//Efficiency of otto engine
+ga=1.5;.................//Ratio of specific heats
+//Calculations
+r=(1/(1-etaotto))^(1/(ga-1));................//Compression ratio
+disp(r,"The compression ratio of the engine is:")
diff --git a/1226/CH3/EX3.8/EX3_8.jpg b/1226/CH3/EX3.8/EX3_8.jpg
new file mode 100755
index 000000000..203e8a71c
--- /dev/null
+++ b/1226/CH3/EX3.8/EX3_8.jpg
Binary files differ
diff --git a/1226/CH3/EX3.8/EX3_8.sce b/1226/CH3/EX3.8/EX3_8.sce
new file mode 100755
index 000000000..539f6b493
--- /dev/null
+++ b/1226/CH3/EX3.8/EX3_8.sce
@@ -0,0 +1,18 @@
+clc;funcprot(0);//EXAMPLE 3.8
+// Initialisation of Variables
+D=0.25;......................//Engine bore in m
+L=0.375;...................//Engine stroke in m
+Vc=0.00263;................//Clearence volume in m^3
+p1=1;..................//Initial pressure in bar
+t1=323;...................//Initial temperature in K
+p3=25;....................//Max pressure in bar
+ga=1.4;....................//Ratio of specific heats
+//Calculations
+Vs=(%pi/4)*D*D*L;................//Swept volume in m^3
+r=round((Vs+Vc)/Vc);..........................//Compression ratio
+etaotto=1-(1/(r^(ga-1)));..................//Air standard efficiency of otto cycle
+disp(etaotto*100,"The air standard efficiency of otto cycle in %:")
+p2=p1*((r)^ga);
+rp=p3/p2;..........................//Pressure ratio
+pm=(p1*r*((r^(ga-1))-1)*(rp-1))/((ga-1)*(r-1));................//Mean effective pressure in bar
+disp(pm,"Mean effective pressure in bar:")
diff --git a/1226/CH3/EX3.9/EX3_9.jpg b/1226/CH3/EX3.9/EX3_9.jpg
new file mode 100755
index 000000000..8e7d5c9c7
--- /dev/null
+++ b/1226/CH3/EX3.9/EX3_9.jpg
Binary files differ
diff --git a/1226/CH3/EX3.9/EX3_9.sce b/1226/CH3/EX3.9/EX3_9.sce
new file mode 100755
index 000000000..cd49625d8
--- /dev/null
+++ b/1226/CH3/EX3.9/EX3_9.sce
@@ -0,0 +1,25 @@
+clc;funcprot(0);//EXAMPLE 3.9
+// Initialisation of Variables
+p1=1;.....................//Pressure in bar
+t1=300;......................//Temperature in K
+Q=1500;.....................//Heat added in kJ/kg
+r=8;.......................//Compression ratio
+Cv=0.72;....................//Specific heat at constant volume
+ga=1.4;......................//Ratio of specific heats
+//Calculations
+t2=t1*(r)^(ga-1);..........//Temperature after adiabatic compression in K
+p2=p1*(r^ga);..............//Pressure after adiabatic compression in bar
+t3=(Q/Cv)+t2;.................//Temperature after isochoric compression in K
+p3=(p2*t3)/t2;................//Pressure after isochoric compression in bar
+t4=t3/(r^(ga-1));.......................//Temperature after adiabatic expansion in K
+p4=p3*(1/(r^(ga)));................//Pressure after adiabatic expansion in bar
+Ws=Cv*(t3-t2-t4+t1);.........//Specific work in kJ/kg
+etath=1-(1/(r^(ga-1)));............//Thermal efficiency
+disp(t2,"Temperature after adiabatic compression in K:")
+disp(p2,"Pressure after adiabatic compression in bar:")
+disp(t3,"Temperature after isochoric compression in K:")
+disp(p3,"Pressure after isochoric compression in bar:")
+disp(t4,"Temperature after adiabatic expansion in K:")
+disp(p4,"Pressure after adiabatic expansion in bar:")
+disp(Ws,"Specific work in kJ/kg :")
+disp(etath*100,"Thermal efficiency in %:")