summaryrefslogtreecommitdiff
path: root/1223/CH3
diff options
context:
space:
mode:
Diffstat (limited to '1223/CH3')
-rwxr-xr-x1223/CH3/EX3.1/Ex3_1.sce13
-rwxr-xr-x1223/CH3/EX3.10/Ex3_10.sce23
-rwxr-xr-x1223/CH3/EX3.13/Ex3_13.sce14
-rwxr-xr-x1223/CH3/EX3.14/Ex3_14.sce36
-rwxr-xr-x1223/CH3/EX3.15/Ex3_15.sce27
-rwxr-xr-x1223/CH3/EX3.16/Ex3_16.sce14
-rwxr-xr-x1223/CH3/EX3.17/Ex3_17.sce48
-rwxr-xr-x1223/CH3/EX3.2/Ex3_2.sce8
-rwxr-xr-x1223/CH3/EX3.3/Ex3_3.sce18
-rwxr-xr-x1223/CH3/EX3.4/Ex3_4.sce19
-rwxr-xr-x1223/CH3/EX3.5/Ex3_5.sce25
-rwxr-xr-x1223/CH3/EX3.6/Ex3_6.sce32
-rwxr-xr-x1223/CH3/EX3.7/Ex3_7.sce27
-rwxr-xr-x1223/CH3/EX3.9/Ex3_9.sce37
14 files changed, 341 insertions, 0 deletions
diff --git a/1223/CH3/EX3.1/Ex3_1.sce b/1223/CH3/EX3.1/Ex3_1.sce
new file mode 100755
index 000000000..658b6fdee
--- /dev/null
+++ b/1223/CH3/EX3.1/Ex3_1.sce
@@ -0,0 +1,13 @@
+clear;
+clc;
+//Example 3.1
+//let beta be "b"
+b=150;//common emitter current gain
+iB=15*10^-3;//(mA) base current
+//assume transistor biased in forward active mode
+iC=b*iB;
+printf('\ncollector current=%.2f mA\n',iC)
+iE=(1+b)*iB;
+printf('\nemitter current=%.2f mA\n',iE)
+a=b/(1+b);
+printf('\ncommon base current gain=%.3f\n',a)
diff --git a/1223/CH3/EX3.10/Ex3_10.sce b/1223/CH3/EX3.10/Ex3_10.sce
new file mode 100755
index 000000000..60fb57b4d
--- /dev/null
+++ b/1223/CH3/EX3.10/Ex3_10.sce
@@ -0,0 +1,23 @@
+clear;
+clc;
+//Example 3.10
+Rb=0.24;
+Vcc=12;
+Vbe=0.7;
+Vce=0.1;
+b=75;
+Rc=5;//Ohm
+//for Vt=0 ,transistor is cut off,Ib=Ic=0,Vo=Vcc=12 V,power dissipation is zero
+Vt=12;//(V)
+Ib=(Vt-Vbe)/Rb;
+printf('\nbase current=%0.3f mA\n',Ib)
+Ic=(Vcc-Vce)/Rc;
+printf('\ncollector current=%0.2f A\n',Ic)
+Ib=0.0471;//A
+x=Ic/Ib
+//since Ic/Ib<b transistor is in saturation
+//Vo==Vcc;
+Vo=0.1;
+printf('\noutput voltage=%0.2f V\n',Vo)
+P=Ic*Vce+Ib*Vbe;
+printf('\npower dissipation=%0.3f W\n',P)
diff --git a/1223/CH3/EX3.13/Ex3_13.sce b/1223/CH3/EX3.13/Ex3_13.sce
new file mode 100755
index 000000000..bfabe4bc1
--- /dev/null
+++ b/1223/CH3/EX3.13/Ex3_13.sce
@@ -0,0 +1,14 @@
+clear;
+clc;
+//Example 3.13
+b=100;
+Vcc=12;
+Vbe=0.7;
+Icq=1;//mA
+Vceq=6;
+Rc=(Vcc-Vceq)/Icq;
+printf('\ncollector resistance=%.3f KOhms\n',Rc)
+Ibq=Icq/b;
+printf('\nbase current=%0.3f mA\n',Ibq)
+Rb=(Vcc-Vbe)/Ibq;
+printf('\nbase resistance=%.3f KOhms\n',Rb)
diff --git a/1223/CH3/EX3.14/Ex3_14.sce b/1223/CH3/EX3.14/Ex3_14.sce
new file mode 100755
index 000000000..2d681a7bf
--- /dev/null
+++ b/1223/CH3/EX3.14/Ex3_14.sce
@@ -0,0 +1,36 @@
+clear;
+clc;
+//Example 3.14
+R1=56;
+R2=12.2;
+Rc=2;
+Re=.4;
+Vcc=10;
+Vbe=0.7;
+b=100;
+//fig.3.53(b)
+Rth=R2*R1/(R1+R2);
+printf('\nThevenin rquivalent resistance=%0.1f KOhm\n',Rth)
+Vth=(R2/(R1+R2))*Vcc;
+printf('\nThevenin equivalent voltage=%0.2f V\n',Vth)
+Ibq=(Vth-Vbe)/(Rth+(1+b)*Re);
+printf('\nbase current=%f mA\n',Ibq)
+Icq=b*Ibq;
+printf('\ncollector current=%.3f mA\n',Icq)
+Ieq=(1+b)*Ibq;
+printf('\nemitter current=%.2f mA\n',Ieq)
+Vceq=Vcc-Icq*Rc-Ieq*Re;
+printf('\ncollector emitter voltage=%.3f V\n',Vceq)
+b=[50,100,150]
+for x=b
+Ibq=(Vth-Vbe)/(Rth+(1+x)*Re);
+disp("Ibeq,Iceq,Ieq,Vceq")
+disp(Ibq)
+Icq=x*Ibq;
+disp(Icq)
+Ieq=(1+x)*Ibq;
+disp(Ieq)
+Vceq=Vcc-Icq*Rc-Ieq*Re;
+disp(Vceq)
+disp("")
+end
diff --git a/1223/CH3/EX3.15/Ex3_15.sce b/1223/CH3/EX3.15/Ex3_15.sce
new file mode 100755
index 000000000..f7c717c85
--- /dev/null
+++ b/1223/CH3/EX3.15/Ex3_15.sce
@@ -0,0 +1,27 @@
+clear;
+clc;
+//Example 3.15
+Vcc=5;
+Rc=1;//KOhm
+Vbe=0.7;
+b=120;
+Vceq=3;
+Re=.510;
+Icq=(Vcc-Vceq)/(Rc+Re);
+printf('\ncollector current=%.3f mA\n',Icq)
+Ibq=Icq/b;
+printf('\nbase current=%0.3f mA\n',Ibq)
+//for bias stable circuit
+Rth=0.1*(1+b)*Re;
+printf('\nThevenin rquivalent resistance=%.1f KOhm\n',Rth)
+//Ibq=(Vth-Vbe)/(Rth+(1+b)*Re)
+Vth=Ibq*(Rth+(1+b)*Re)+Vbe;
+printf('\nThevenin equivalent voltage=%.2f V\n',Vth)
+//Vth=(R2/(R1+R2))*Vcc
+//let x=(R2/(R1+R2))
+x=Vth/Vcc
+//Rth=6050=R1*x
+R1=6.05/x;
+printf('\nR1=%.1f KOhms\n',R1)
+R2=x*R1/(1-x);
+printf('\nR2=%.1f KOhms\',R2)
diff --git a/1223/CH3/EX3.16/Ex3_16.sce b/1223/CH3/EX3.16/Ex3_16.sce
new file mode 100755
index 000000000..f7e48b8b0
--- /dev/null
+++ b/1223/CH3/EX3.16/Ex3_16.sce
@@ -0,0 +1,14 @@
+clear;
+clc;
+//Example 3.16
+R1=10;
+b=50;
+Vbe=0.7;
+V1=-5;
+I1=-(V1+Vbe)/R1;
+printf('\nreference current=%.3f mA\n',I1)
+Iq=I1/(1+2/b);
+printf('\nbias current=%.3f mA\n',Iq)
+//Ib=Ib1=Ib2
+Ib=Iq/b;
+printf('\nbase current=%f mA\n',Ib)
diff --git a/1223/CH3/EX3.17/Ex3_17.sce b/1223/CH3/EX3.17/Ex3_17.sce
new file mode 100755
index 000000000..4fc49d656
--- /dev/null
+++ b/1223/CH3/EX3.17/Ex3_17.sce
@@ -0,0 +1,48 @@
+clear;
+clc;
+//Example 3.17
+Vbe=0.7;
+Vcc=10;
+V2=5;
+b=100;
+R1=100;
+R2=50;
+Re1=2;
+Rth=R2*R1/(R1+R2);
+printf('\nThevenin rquivalent resistance=%.1f KOhm\n',Rth)
+Vth=(R2/(R1+R2))*Vcc-V2;
+printf('\nThevenin equivalent voltage=%.2f V\n',Vth)
+//Vth=Ib1*Rth+Vbe+Ie1*Re1-5 and Ie1=(1+b)*Ib1
+Ib1=(Vth+5-Vbe)/(Rth+(1+b)*Re1);
+printf('\nIb1=%.3f mA\n',Ib1)
+Ic1=b*Ib1;
+printf('\nIc1=%.3f mA\n',Ic1)
+Ie1=(1+b)*Ib1;
+printf('\nIe1=%.3f mA\n',Ie1)
+//summing the currents at the collector of Q1,Ir1+Ib2=Ic1
+//(5-Vc1)/Rc1+Ib2=Ic1
+//also Ib2=Ie2/(1+b)=(5-(Vc1+0.7))/(1+b)*Re2
+Rc1=5;
+Re1=2;
+Re2=2;
+Rc2=1.5;
+Vc1=Rc1*(1+b)*Re2*((5/Rc1)+(4.3/((1+b)*Re2))-Ic1)/(((1+b)*Re2)+Rc1);
+printf('\nVc1=%.2f V\n',Vc1)
+Ir1=(5-Vc1)/Rc1;
+printf('\nIr1=%.3f mA\n',Ir1)
+Ve2=Vc1+Vbe;
+printf('\nVe2=%.2f V\n',Ve2)
+Ie2=(5-Ve2)/Re1;
+printf('\nIe2=%.3f mA\n',Ie2)
+Ic2=Ie2*b/(1+b);
+printf('\nIc2=%.3f mA\n',Ic2)
+Ib2=Ie2/(1+b);
+printf('\nIb2=%f mA\n',Ib2)
+Ve1=Ie1*Re1-5;
+printf('\nVe1=%.2f V\n',Ve1)
+Vc2=Ic2*Rc2-5;
+printf('\nVc2=%.2f V\n',Vc2)
+Vce1=Vc1-Ve1;
+printf('\nVce1=%.2f V\n',Vce1)
+Vec2=Ve2-Vc2;
+printf('\nVec2=%.2f V\n',Vec2)
diff --git a/1223/CH3/EX3.2/Ex3_2.sce b/1223/CH3/EX3.2/Ex3_2.sce
new file mode 100755
index 000000000..311a2898f
--- /dev/null
+++ b/1223/CH3/EX3.2/Ex3_2.sce
@@ -0,0 +1,8 @@
+clear;
+clc;
+//Example 3.2
+b=100;//common emitter current gain
+BVcbo=120;//(V) break down voltage of the B-C junction
+n=3;//empirical constant
+BVceo=BVcbo/(b)^(1/n);
+printf('\nbreakdown voltage=%.2f V\n',BVceo)
diff --git a/1223/CH3/EX3.3/Ex3_3.sce b/1223/CH3/EX3.3/Ex3_3.sce
new file mode 100755
index 000000000..b31d82aac
--- /dev/null
+++ b/1223/CH3/EX3.3/Ex3_3.sce
@@ -0,0 +1,18 @@
+clear;
+clc;
+//Example 3.3
+Vbb=4;//(V)
+Rb=220//(KOhm);
+Rc=2;//(KOhm)
+Vcc=10;//(V)
+Vbe=0.7;//(V)
+b=200;
+//from fig.3.19(b)
+Ib=(Vbb-Vbe)/Rb;
+printf('\nbase current=%.3f mA\n',Ib)
+Ic=b*Ib;
+printf('\ncollector current=%.2f mA\n',Ic)
+Ie=(1+b)*Ib;
+printf('\nemitter current=%.2f mA\n',Ie)
+Vce=Vcc-Ic*Rc;
+printf('\ncollector emitter voltage=%.1f V\n',Vce)
diff --git a/1223/CH3/EX3.4/Ex3_4.sce b/1223/CH3/EX3.4/Ex3_4.sce
new file mode 100755
index 000000000..e48433db3
--- /dev/null
+++ b/1223/CH3/EX3.4/Ex3_4.sce
@@ -0,0 +1,19 @@
+clear;
+clc;
+//Example 3.4
+Vbb=1.5;//(V)
+Rb=580;//(KOhm)
+Veb=0.6;//(V)
+Vcc=5;//(V)
+b=100;
+//writing Kirchhoff voltage law equation around E-B loop
+Ib=(Vcc-Veb-Vbb)/Rb;
+printf('\nbase current=%.3f mA\n',Ib)
+Ic=b*Ib;
+printf('\ncollector current=%.2f mA\n',Ic)
+Ie=(1+b)*Ib;
+printf('\nemitter current=%.3f mA\n',Ie)
+Vec=(1/2)*Vcc;
+printf('\nce voltage=%.2f V\n',Vec)
+Rc=(Vcc-Vec)/Ic;
+printf('\ncollector resistance=%.f KOhm\n',Rc)
diff --git a/1223/CH3/EX3.5/Ex3_5.sce b/1223/CH3/EX3.5/Ex3_5.sce
new file mode 100755
index 000000000..ab107732b
--- /dev/null
+++ b/1223/CH3/EX3.5/Ex3_5.sce
@@ -0,0 +1,25 @@
+clear;
+clc;
+//Example 3.5
+b=100;
+Vbe=0.7;//(V)
+Vce=0.2;//(V)
+Vbb=8;//(v)
+Rb=220;//(KOhm)
+Ib=(Vbb-Vbe)/Rb
+printf('\nbase current=%f mA\n',Ib)
+//transistor in active region
+Ic=b*Ib;
+printf('\ncollector current=%.3f mA\n',Ic)
+Vcc=10;//(V)
+Rc=4;//(KOhm)
+Vce=Vcc-Ic*Rc;
+printf('\ncollector emitter voltage=%.2f V\n',Vce)
+//saturation
+Vce=0.2;//(V)
+Ic=(Vcc-Vce)/Rc;
+printf('\nsaturation collector current=%.2f mA\n',Ic)
+x=Ic/Ib
+//which is <b
+Ie=Ic+Ib;
+printf('\nemitter current=%f mA\n',Ie)
diff --git a/1223/CH3/EX3.6/Ex3_6.sce b/1223/CH3/EX3.6/Ex3_6.sce
new file mode 100755
index 000000000..548fa58fe
--- /dev/null
+++ b/1223/CH3/EX3.6/Ex3_6.sce
@@ -0,0 +1,32 @@
+clear;
+clc;
+//Example 3.6
+Vbe=0.7;
+b=75;
+//Q point values::
+//using KVL eq around the B-E loop
+//Vbb=Ib*Re+Vbe+Ie*Re
+//assuming transistor is in forward biased mode we can write Ie=(1+b)*Ib
+Vbb=6;
+Rb=25;//KOhm
+Re=0.6;//KOhm
+Ib=(Vbb-Vbe)/(Rb+(1+b)*Re);
+printf('\nbase current=%f mA\n',Ib)
+Ic=b*Ib;
+printf('\ncollector current=%0.2f mA\n',Ic)
+Ie=(1+b)*Ib;
+printf('\nemitter current=%0.2f mA\n',Ie)
+Vcc=12;
+Rc=0.4;
+Vce=Vcc-Ic*Rc-Ie*Re;
+printf('\ncollector emitter voltage=%0.2f V\n',Vce)
+//load line::
+//using KVL law around C-E loop
+//Vce=Vcc-(Ic*(Rc+((1+B)/B)*Re));
+Ic=[0,12,5.63]
+Vce=12-Ic*1;
+xset('window',1)
+plot2d(Vce,Ic,style=3)
+title("load line")
+xlabel("Vce")
+ylabel("Ic")
diff --git a/1223/CH3/EX3.7/Ex3_7.sce b/1223/CH3/EX3.7/Ex3_7.sce
new file mode 100755
index 000000000..499af757a
--- /dev/null
+++ b/1223/CH3/EX3.7/Ex3_7.sce
@@ -0,0 +1,27 @@
+clear;
+clc;
+//Example 3.7
+Vbe=0.65;
+Vcc=5;
+Rc=0.5;//KOhm
+b=100;
+V1=-5;
+Re=1;//KOhm
+// Q-point values :: writing KVL eq around B-E loop
+Ie=(-V1-Vbe)/Re;
+printf('\nemitter current=%.2f mA\n',Ie)
+Ib=(Ie/(1+b));
+printf('\nbase current=%f mA\n',Ib)
+Ic=(b/(1+b))*Ie;
+printf('\ncollector current=%0.2f mA\n',Ic)
+Vce=Vcc-Ic*Rc-Ie*Re-V1;
+printf('\ncollector emitter voltage=%f V\n',Vce)
+//load line::
+//Vce=Vcc-V1-(Ic*(Rc+((1+B)/B)*Re));
+Vce=[0,2,,3.5,4,6,8,10]
+Ic=(10-Vce)/1.51;
+xset('window',1)
+plot2d(Vce,Ic,style=3,rect=[0,0,10,8])
+title("load line")
+xlabel("Vce")
+ylabel("Ic")
diff --git a/1223/CH3/EX3.9/Ex3_9.sce b/1223/CH3/EX3.9/Ex3_9.sce
new file mode 100755
index 000000000..a2af6de14
--- /dev/null
+++ b/1223/CH3/EX3.9/Ex3_9.sce
@@ -0,0 +1,37 @@
+clear;
+clc;
+//Example 3.9
+b=100;
+Vbe=0.7;
+V1=-5;
+V2=12;
+Rb=10;
+Re=5;
+Rc=5;
+Rl=5;
+//Q point values:: using KVL eq around B-E loop
+Ib=-(V1+Vbe)/(Rb+(1+b)*Re);
+printf('\nbase current=%f mA\n',Ib)
+Ic=b*Ib;
+printf('\ncollector current=%f mA\n',Ic)
+Ie=(1+b)*Ib;
+printf('\nemitter current=%f mA\n',Ie)
+//at collector node we can write Ic=(V2-Vo)/Rc-Vo/Rl
+Vo=(V2/Rc-Ic)*Rc*Rl/(Rc+Rl);
+printf('\noutput voltage=%0.3f V\n',Vo)
+Vce=Vo-Ie*Re-V1;
+printf('\ncollector emitter voltage=%f V\n',Vce)
+//load line::
+Rth=Rl*Rc/(Rl+Rc);
+printf('\nThevenin rquivalent resistance=%f KOhm\n',Rth)
+Vth=(Rl/(Rl+Rc))*V2;
+printf('\nThevenin equivalent voltage=%f V\n',Vth)
+//fig.3.36(c) KVL law
+//Vce=6-V1-Ic*Rth-Ie*Re;
+Vce=[0,2,4.7,3.5,4,6,8,10]
+Ic=(11-Vce)/7.5;
+xset('window',1)
+plot2d(Vce,Ic,style=3,rect=[0,0,12,2])
+title("load line")
+xlabel("Vce")
+ylabel("Ic")