diff options
Diffstat (limited to '1092/CH1')
-rwxr-xr-x | 1092/CH1/EX1.1/Example1_1.sce | 22 | ||||
-rwxr-xr-x | 1092/CH1/EX1.10/Example1_10.sce | 28 | ||||
-rwxr-xr-x | 1092/CH1/EX1.11/Example1_11.sce | 27 | ||||
-rwxr-xr-x | 1092/CH1/EX1.12/Example1_12.sce | 27 | ||||
-rwxr-xr-x | 1092/CH1/EX1.13/Example1_13.sce | 21 | ||||
-rwxr-xr-x | 1092/CH1/EX1.14/Example1_14.sce | 35 | ||||
-rwxr-xr-x | 1092/CH1/EX1.2/Example1_2.sce | 31 | ||||
-rwxr-xr-x | 1092/CH1/EX1.3/Example1_3.sce | 28 | ||||
-rwxr-xr-x | 1092/CH1/EX1.4/Example1_4.sce | 29 | ||||
-rwxr-xr-x | 1092/CH1/EX1.5/Example1_5.sce | 53 | ||||
-rwxr-xr-x | 1092/CH1/EX1.6/Example1_6.sce | 45 | ||||
-rwxr-xr-x | 1092/CH1/EX1.7/Example1_7.sce | 25 | ||||
-rwxr-xr-x | 1092/CH1/EX1.8/Example1_8.sce | 25 | ||||
-rwxr-xr-x | 1092/CH1/EX1.9/Example1_9.sce | 24 |
14 files changed, 420 insertions, 0 deletions
diff --git a/1092/CH1/EX1.1/Example1_1.sce b/1092/CH1/EX1.1/Example1_1.sce new file mode 100755 index 000000000..a07815d67 --- /dev/null +++ b/1092/CH1/EX1.1/Example1_1.sce @@ -0,0 +1,22 @@ +// Electric Machinery and Transformers
+// Irving L kosow
+// Prentice Hall of India
+// 2nd editiom
+
+// Chapter 1: Electromechanical Fundamentals
+// Example 1-1
+
+clear; clc; close; // Clear the work space and console.
+
+// Given data
+t = 50e-3; // t = time in milli second
+phi = 8 * 10 ^ 6; // phi = uniform magnetic field in maxwells
+
+// Calculations
+E_av = (phi / t) * 10 ^ -8; // E_av = average voltage generated in the conductor
+// in volt
+
+// Display the result
+disp("Example 1-1 Solution : ");
+disp("Average voltage generated in the conductor is : ");
+printf(" E_av = %.2f V", E_av);
diff --git a/1092/CH1/EX1.10/Example1_10.sce b/1092/CH1/EX1.10/Example1_10.sce new file mode 100755 index 000000000..5502597d0 --- /dev/null +++ b/1092/CH1/EX1.10/Example1_10.sce @@ -0,0 +1,28 @@ +// Electric Machinery and Transformers
+// Irving L kosow
+// Prentice Hall of India
+// 2nd editiom
+
+// Chapter 1: Electromechanical Fundamentals
+// Example 1-10
+
+clear; clc; close; // Clear the work space and console.
+
+// Given data
+no_of_coils = 40;
+N = 20; // no of turns in each coil
+omega = 200; // angular velocity of armature in rad/s
+phi = 5 * 10 ^ -3; // flux per pole
+a = 4; // No. of parallel paths
+P = 4; // No. of poles
+
+// Calculations
+Z = no_of_coils * 2 * N; // No. of conductors
+
+E_g = ( phi * Z * omega * P ) / ( 2 * %pi * a ); // Voltage generated by the
+// armature between brushes
+
+// Display the results
+disp("Example 1-10 Solution : ");
+printf("\n Z = % d conductors ", Z);
+printf("\n Eg = % .2f V between the brushes ", E_g);
diff --git a/1092/CH1/EX1.11/Example1_11.sce b/1092/CH1/EX1.11/Example1_11.sce new file mode 100755 index 000000000..2853b6621 --- /dev/null +++ b/1092/CH1/EX1.11/Example1_11.sce @@ -0,0 +1,27 @@ +// Electric Machinery and Transformers
+// Irving L kosow
+// Prentice Hall of India
+// 2nd editiom
+
+// Chapter 1: Electromechanical Fundamentals
+// Example 1-11
+
+clear; clc; close; // Clear the work space and console.
+
+// Given data
+l = 0.5; // length of the conductor
+A = 0.1 * 0.2; // area of the pole face
+phi = 0.5 * 10 ^ -3; // magnetic flux in weber
+I = 10; //Current in the conductor
+
+// Calculations
+B = ( phi ) / ( A ); // Flux density
+
+F = B * I * l; // Magnitude of force
+
+// Display the result
+disp("Example 1-11 Solution : ");
+
+printf("\n a : F = % .3f N", F );
+
+printf("\n b : The force on the conductor is % .3f N in an upward direction as shown in fig 1-13c ", F );
diff --git a/1092/CH1/EX1.12/Example1_12.sce b/1092/CH1/EX1.12/Example1_12.sce new file mode 100755 index 000000000..87398b045 --- /dev/null +++ b/1092/CH1/EX1.12/Example1_12.sce @@ -0,0 +1,27 @@ +// Electric Machinery and Transformers
+// Irving L kosow
+// Prentice Hall of India
+// 2nd editiom
+
+// Chapter 1: Electromechanical Fundamentals
+// Example 1-12
+
+clear; clc; close; // Clear the work space and console.
+
+// Given data
+l = 0.5; // length of the conductor
+A = 0.1 * 0.2; // area of the pole face
+phi = 0.5 * 10 ^ -3; // magnetic flux in weber
+I = 10; //Current in the conductor
+theta = 75; // angle between the conductor and the flux density B
+
+// Calculations
+B = ( phi ) / ( A ); // Flux density
+
+F = B * I * l * sind(theta); // Magnitude of force
+
+// Display the result
+disp("Example 1-12 Solution : ");
+
+printf("\n F =% f N in a vertically upward direction ", F );
+
diff --git a/1092/CH1/EX1.13/Example1_13.sce b/1092/CH1/EX1.13/Example1_13.sce new file mode 100755 index 000000000..e5775f743 --- /dev/null +++ b/1092/CH1/EX1.13/Example1_13.sce @@ -0,0 +1,21 @@ +// Electric Machinery and Transformers
+// Irving L kosow
+// Prentice Hall of India
+// 2nd editiom
+
+// Chapter 1: Electromechanical Fundamentals
+// Example 1-13
+
+clear; clc; close; // Clear the work space and console.
+
+// Given data
+R_a = 0.25; // Armature resistance
+V_a = 125; // dc bus voltage
+I_a = 60; // Armature current
+
+// Calculations
+E_c = V_a - I_a * R_a; // Counter EMF generated in the armature conductors of motor
+
+// Display the result
+disp("Example 1-13 Solution : ");
+printf("\n Ec = % d V ", E_c );
diff --git a/1092/CH1/EX1.14/Example1_14.sce b/1092/CH1/EX1.14/Example1_14.sce new file mode 100755 index 000000000..640b6fffc --- /dev/null +++ b/1092/CH1/EX1.14/Example1_14.sce @@ -0,0 +1,35 @@ +// Electric Machinery and Transformers
+// Irving L kosow
+// Prentice Hall of India
+// 2nd editiom
+
+// Chapter 1: Electromechanical Fundamentals
+// Example 1-13
+
+clear; clc; close; // Clear the work space and console.
+
+// Given data
+V_a = 110; // voltage across armature
+I_a = 60; // Armature current
+R_a = 0.25; // Armature resistance
+P = 6; // No. of poles
+a = 12; // No. of paths
+Z = 720; // No. of armature conductors
+S = 1800; // Speed in rpm
+
+// Calculations
+E_g = V_a + I_a * R_a; // Generated EMF in the armature
+
+phi_lines = ( E_g * ( 60 * a ) ) / ( ( Z * S * P ) * 10 ^ -8 );
+// Flux per pole in lines
+
+phi_Wb = phi_lines * 10 ^ -8; // Flux per pole in webers
+
+// Display the results
+disp("Example 1-14 Solution : ");
+
+printf("\n a : Eg = %d V ", E_g );
+
+printf("\n b : phi = %f lines/pole ", phi_lines );
+
+printf("\n c : phi = %f Wb ", phi_Wb );
diff --git a/1092/CH1/EX1.2/Example1_2.sce b/1092/CH1/EX1.2/Example1_2.sce new file mode 100755 index 000000000..6d3ed6f45 --- /dev/null +++ b/1092/CH1/EX1.2/Example1_2.sce @@ -0,0 +1,31 @@ +// Electric Machinery and Transformers
+// Irving L kosow
+// Prentice Hall of India
+// 2nd editiom
+
+// Chapter 1: Electromechanical Fundamentals
+// Example 1-2
+
+clear; clc; close; // Clear the work space and console.
+
+// Given data
+l = 18; // l = length of the conductor in inches
+B = 50000; // B = uniform magnetic field in lines/sq-inches
+d = 720; // d = distance travelled by conductor in inches
+t = 1; // t =time taken for the conductor to move in second
+
+// Calculations
+v = d/t; // v = velocity in inches/second with which the conductor moves
+
+// part a
+e = B * l * v * 10 ^ -8; // e = instantaneous induced EMF in volt
+// part b
+A = d * l; // Area swept by the conductor while moving
+phi = B * A; // phi = uniform magnetic field
+E = ( phi / t ) * 10 ^ -8; // E = average induced EMF
+
+// Display the result
+disp("Example 1-2 Solution : ");
+
+printf(" \n a : e = %.2f V ", e);
+printf(" \n b : E = %.2f V ", E);
diff --git a/1092/CH1/EX1.3/Example1_3.sce b/1092/CH1/EX1.3/Example1_3.sce new file mode 100755 index 000000000..da791c32c --- /dev/null +++ b/1092/CH1/EX1.3/Example1_3.sce @@ -0,0 +1,28 @@ +// Electric Machinery and Transformers
+// Irving L kosow
+// Prentice Hall of India
+// 2nd editiom
+
+// Chapter 1: Electromechanical Fundamentals
+// Example 1-3
+
+clear; clc; close; // Clear the work space and console.
+
+// Given data
+l = 18; // l = length of the conductor in inches
+B = 50000; // B = uniform magnetic field in lines/sq-inches
+d = 720; // d = distance travelled by conductor in inches
+t = 1; // t =time taken for the conductor to move in second
+theta = 75 // theta = angle between the motion of the conductor and field
+// in radians
+
+// Calculations
+v = d/t; // v = velocity in inches/second with which the conductor moves
+
+E = B * l * v * 10 ^ -8 * sind(theta); // E = Average induced EMF in volt
+
+// Display the result
+disp("Example 1-3 Solution : ");
+
+disp(" Average induced EMF in volt is :")
+printf(" E = %.2f V ", E);
diff --git a/1092/CH1/EX1.4/Example1_4.sce b/1092/CH1/EX1.4/Example1_4.sce new file mode 100755 index 000000000..ec06a7ce8 --- /dev/null +++ b/1092/CH1/EX1.4/Example1_4.sce @@ -0,0 +1,29 @@ +// Electric Machinery and Transformers
+// Irving L kosow
+// Prentice Hall of India
+// 2nd editiom
+
+// Chapter 1: Electromechanical Fundamentals
+// Example 1-4
+
+clear; clc; close; // Clear the work space and console.
+
+// Given data
+v = 1.5; // v = velocity in m/s with which the conductor is moving
+l = 0.4; // l = length of the conductor
+B = 1; // B = uniform field intensity in tesla
+theta_a = 90; // theta_a = angle between the motion of the conductor and field
+theta_b = 35; // theta_b = angle between the motion of the conductor and field
+theta_c = 120; // theta_c = angle between the motion of the conductor and field
+
+// Calculations
+E_a = B * l * v * sind(theta_a); // Voltage induced in the conductor for theta_a
+E_b = B * l * v * sind(theta_b); // Voltage induced in the conductor for theta_b
+E_c = B * l * v * sind(theta_c); // Voltage induced in the conductor for theta_c
+
+// Display the result
+disp("Example 1-1 Solution : ");
+
+printf("\n a: E = %.2f V ", E_a);
+printf("\n b: E = %.3f V ", E_b);
+printf("\n c: E = %.2f V ", E_c);
diff --git a/1092/CH1/EX1.5/Example1_5.sce b/1092/CH1/EX1.5/Example1_5.sce new file mode 100755 index 000000000..b167d0475 --- /dev/null +++ b/1092/CH1/EX1.5/Example1_5.sce @@ -0,0 +1,53 @@ +// Electric Machinery and Transformers
+// Irving L kosow
+// Prentice Hall of India
+// 2nd editiom
+
+// Chapter 1: Electromechanical Fundamentals
+// Example 1-5
+
+clear; clc; close; // Clear the work space and console.
+
+// Given data
+no_of_conductors = 40;
+A = 2; // A = Parallel paths
+path = A;
+flux_per_pole = 6.48 * 10 ^ 8; // flux lines
+S = 30; // S = Speed of the prime mover in rpm
+R_per_path = 0.01; // Resistance per path
+I = 10; // Current carried by each condutcor
+P = 2; // No. of poles
+
+// Calculations
+total_flux = P * flux_per_pole; // Total flux linked in one revolution
+t = ( 1 / 30 ) * ( 60 ); // time for one revolution
+
+e_av_per_conductor = ( total_flux / t ) * 10^-8; // Average voltage generated
+// per conductor
+E_path = ( e_av_per_conductor ) * ( no_of_conductors / path ); // Average
+//voltage generated per path
+
+E_g = E_path; // Generated armature voltage
+
+I_a =( I / path ) * ( 2 * path ); // Armature current delivered to an external
+// load
+
+R_a = ( R_per_path) / path * 20; // Armature resistance
+
+V_t = E_g - I_a * R_a; // Terminal voltage of generator
+
+P = V_t * I_a; // Genrator power rating
+
+// Display the results
+disp("Example 1-5 Solution");
+
+printf(" \n a : E/path = %.2f V/path ", E_path );
+printf(" \n b : Eg = %.2f V ", E_g );
+printf(" \n c : Ia = %.2f A ", I_a );
+printf(" \n d : Ra = %.2f ohm ", R_a );
+printf(" \n e : Vt = %.2f V ", V_t );
+printf(" \n f : P = %.2f W ", P );
+
+
+
+
diff --git a/1092/CH1/EX1.6/Example1_6.sce b/1092/CH1/EX1.6/Example1_6.sce new file mode 100755 index 000000000..183d91088 --- /dev/null +++ b/1092/CH1/EX1.6/Example1_6.sce @@ -0,0 +1,45 @@ +// Electric Machinery and Transformers
+// Irving L kosow
+// Prentice Hall of India
+// 2nd editiom
+
+// Chapter 1: Electromechanical Fundamentals
+// Example 1-6
+
+clear; clc; close; // Clear the work space and console.
+
+// Given data
+no_of_conductors = 40;
+I = 10; // Current carried by each condutcor
+R_per_path = 0.01; // Resistance per path
+flux_per_pole = 6.48 * 10 ^ 8; // flux lines
+P = 2; // No. of poles
+path = 4; // No. of parallel paths
+total_flux = P * flux_per_pole; // Total flux linked in one revolution
+t = 2; // time for one revolution
+e_av_per_conductor = 6.48; // Average voltage generated per conductor
+
+// Calculations
+E_path = ( e_av_per_conductor ) * ( no_of_conductors / path ); // Average
+//voltage generated per path
+
+E_g = E_path; // Generated armature voltage
+
+I_a =( I / path ) * ( 4 * path ); // Armature current delivered to an external
+// load
+
+R_a = ( ( R_per_path) / path ) * 10; // Armature resistance
+
+V_t = E_g - I_a * R_a; // Terminal voltage of generator
+
+P = V_t * I_a; // Genrator power rating
+
+// Display the results
+disp("Example 1-6 Solution");
+
+printf(" \n a : E/path = %.2f V/path ", E_path );
+printf(" \n b : Eg = %.2f V ", E_g );
+printf(" \n c : Ia = %.2f A ", I_a );
+printf(" \n d : Ra = %.3f ohm ", R_a );
+printf(" \n e : Vt = %.2f V ", V_t );
+printf(" \n f : P = %.2f W ", P );
diff --git a/1092/CH1/EX1.7/Example1_7.sce b/1092/CH1/EX1.7/Example1_7.sce new file mode 100755 index 000000000..9686edab9 --- /dev/null +++ b/1092/CH1/EX1.7/Example1_7.sce @@ -0,0 +1,25 @@ +// Electric Machinery and Transformers
+// Irving L kosow
+// Prentice Hall of India
+// 2nd editiom
+
+// Chapter 1: Electromechanical Fundamentals
+// Example 1-7
+
+clear; clc; close; // Clear the work space and console.
+
+// Given data
+N = 1; // no. of turns
+phi = 6.48 * 10 ^ 8; // Magnetic flux in lines
+s = 30 / 60; // No. of revolution of the coil per second( refer section 1-14)
+
+// Calculations
+E_av_per_coil = 4 * phi * N * s * 10 ^ -8; // average voltage per coil
+// for above equation refer section 1-14
+
+E_av_per_coil_side = E_av_per_coil * ( 1 / 2); // average voltage per conductor
+
+// Display the results
+disp("Example 1-7 Solution : ")
+printf(" \n Eav/coil = % .2f V/coil ", E_av_per_coil);
+printf(" \n Eav/coil side = % .2f V/conductor ", E_av_per_coil_side);
diff --git a/1092/CH1/EX1.8/Example1_8.sce b/1092/CH1/EX1.8/Example1_8.sce new file mode 100755 index 000000000..5b12a448e --- /dev/null +++ b/1092/CH1/EX1.8/Example1_8.sce @@ -0,0 +1,25 @@ +// Electric Machinery and Transformers
+// Irving L kosow
+// Prentice Hall of India
+// 2nd editiom
+
+// Chapter 1: Electromechanical Fundamentals
+// Example 1-8
+
+clear; clc; close; // Clear the work space and console.
+
+// Given data
+phi_lines = 6.48 * 10 ^ 8; // magnetic flux in lines
+N = 1; // no. of turns
+
+// Calculations
+phi = phi_lines * 10 ^ -8; // Magnetic flux in weber
+
+omega = ( 30 ) * ( 2 * %pi ) * ( 1 / 60 ); // angular velocity in rad/s
+
+E_av_per_coil = 0.63662 * omega * phi * N; // average voltage per coil
+// for the above formula refer section 1-14 eqn (1-4b)
+
+// Display the result
+disp("Example 1-8 Solution : ");
+printf("\n Eav/coil = % 0.2f V/coil ", E_av_per_coil);
diff --git a/1092/CH1/EX1.9/Example1_9.sce b/1092/CH1/EX1.9/Example1_9.sce new file mode 100755 index 000000000..9f59f2427 --- /dev/null +++ b/1092/CH1/EX1.9/Example1_9.sce @@ -0,0 +1,24 @@ +// Electric Machinery and Transformers
+// Irving L kosow
+// Prentice Hall of India
+// 2nd editiom
+
+// Chapter 1: Electromechanical Fundamentals
+// Example 1-9
+
+clear; clc; close; // Clear the work space and console.
+
+// Given data
+P = 2; // No. of poles
+Z = 40; // no of conductors
+a = 2; // a = Parallel paths
+phi = 6.48 * 10 ^ 8; // magnetic flux
+S = 30; // Speed of the prime mover
+
+// Calculations
+E_g = ( ( phi * Z * S * P ) / ( 60 * a) ) * 10 ^ -8; // average voltage between
+// the brushes
+
+// Display the result
+disp("Example 1-9 Solution : ");
+printf("\n Eg = %.2f V between the brushes ", E_g);
|