summaryrefslogtreecommitdiff
path: root/1085/CH3
diff options
context:
space:
mode:
Diffstat (limited to '1085/CH3')
-rwxr-xr-x1085/CH3/EX3.10/ex3_10.sce13
-rwxr-xr-x1085/CH3/EX3.11/ex3_11.sce20
-rwxr-xr-x1085/CH3/EX3.12/ex3_12.sce13
-rwxr-xr-x1085/CH3/EX3.13/ex3_13.sce18
-rwxr-xr-x1085/CH3/EX3.14/ex3_14.sce11
-rwxr-xr-x1085/CH3/EX3.15/ex3_15.sce10
-rwxr-xr-x1085/CH3/EX3.16/ex3_16.sce18
-rwxr-xr-x1085/CH3/EX3.17/ex3_17.sce13
-rwxr-xr-x1085/CH3/EX3.18/ex3_18.sce10
-rwxr-xr-x1085/CH3/EX3.19/ex3_19.sce10
-rwxr-xr-x1085/CH3/EX3.20/ex3_20.sce9
-rwxr-xr-x1085/CH3/EX3.22/ex3_22.sce12
-rwxr-xr-x1085/CH3/EX3.23/ex3_23.sce15
-rwxr-xr-x1085/CH3/EX3.24/ex3_24.sce10
-rwxr-xr-x1085/CH3/EX3.25/ex3_25.sce9
-rwxr-xr-x1085/CH3/EX3.26/ex3_26.sce14
-rwxr-xr-x1085/CH3/EX3.27/ex3_27.sce14
-rwxr-xr-x1085/CH3/EX3.28/ex3_28.sce9
-rwxr-xr-x1085/CH3/EX3.29/ex3_29.sce10
-rwxr-xr-x1085/CH3/EX3.30/ex3_30.sce13
-rwxr-xr-x1085/CH3/EX3.31/ex3_31.sce14
21 files changed, 265 insertions, 0 deletions
diff --git a/1085/CH3/EX3.10/ex3_10.sce b/1085/CH3/EX3.10/ex3_10.sce
new file mode 100755
index 000000000..e87e1d4d0
--- /dev/null
+++ b/1085/CH3/EX3.10/ex3_10.sce
@@ -0,0 +1,13 @@
+//Exam:3.10
+clc;
+clear;
+close;
+//Miller indices of plane
+h_1=1;
+k_1=1;
+l_1=1;
+h_2=1;
+k_2=2;
+l_2=1;
+angle=acosd((h_1*h_2+k_1*k_2+l_1*l_2)/(((h_1^2+k_1^2+l_1^2)^(1/2))*((h_2^2+k_2^2+l_2^2)^(1/2))));
+disp(angle,'angle Between normals to the planes (111) and (121)(in degrees)='); \ No newline at end of file
diff --git a/1085/CH3/EX3.11/ex3_11.sce b/1085/CH3/EX3.11/ex3_11.sce
new file mode 100755
index 000000000..0208b5e69
--- /dev/null
+++ b/1085/CH3/EX3.11/ex3_11.sce
@@ -0,0 +1,20 @@
+//Exam:3.11
+clc;
+clear;
+close;
+r_Na=0.98;//Radius of Na+(in A)
+r_Cl=1.81;//Radius of Cl-(in A)
+a=2*(r_Na+r_Cl);//Lattice parameter (in A)
+pi=22/7;
+V_i=4*(4/3)*pi*((r_Na^3)+(r_Cl^3));//Volume of ions present in unit cell
+V_u=a^3;//Volume of unit cell
+Apf=V_i/V_u;//Atomic packing fraction
+Ef_p=(Apf)*100;//Packing efficiency(in %)
+AM_sodium=22.99;//Atomic mass of sodium(in amu)
+AM_chlorine=35.45;//Atomic mass of chlorine(in amu)
+M_1=4*(AM_sodium+AM_chlorine)*1.66*10^(-27);//Mass of the unit cell
+a_1=a*10^(-10);//Lattice parameter (in meter)
+V_u1=(a_1)^3;
+Density=M_1/V_u1;
+disp(Ef_p,'Packing efficiency of sodium chloride(in %)=');
+disp(Density,'density of sodium chloride(in Kg/m3)='); \ No newline at end of file
diff --git a/1085/CH3/EX3.12/ex3_12.sce b/1085/CH3/EX3.12/ex3_12.sce
new file mode 100755
index 000000000..21b9fa125
--- /dev/null
+++ b/1085/CH3/EX3.12/ex3_12.sce
@@ -0,0 +1,13 @@
+//Exam:3.12
+clc;
+clear;
+close;
+Density=2.7;//(in g/cm^3)
+n=4;
+m=26.98;//atomic weight of Al
+N_a=6.023*10^(23);//avogadro number
+a=((n*m/(Density*N_a))^(1/3));//Lattice parameter(in Cm)
+A=a*10^(8);//Lattice parameter(in A)
+disp(A,'radius(in A)=');
+r=A/(2*1.414);//radius for fcp structure
+disp(2*r,'Diameter(in A)='); \ No newline at end of file
diff --git a/1085/CH3/EX3.13/ex3_13.sce b/1085/CH3/EX3.13/ex3_13.sce
new file mode 100755
index 000000000..329368c24
--- /dev/null
+++ b/1085/CH3/EX3.13/ex3_13.sce
@@ -0,0 +1,18 @@
+//Exam:3.13
+clc;
+clear;
+close;
+r=1.245;//radius of nickel (in A)
+a=4*r/(2)^(1/2);//Lattice constant(in A)
+//Miller indices of plane 200
+h_1=2;
+k_1=0;
+l_1=0;
+//Miller indices of plane 111
+h_2=1;
+k_2=1;
+l_2=1;
+d_200=a/((h_1^2)+(k_1^2)+(l_1^2))^(1/2);
+d_111=a/((h_2^2)+(k_2^2)+(l_2^2))^(1/2);
+disp(d_200,'interplaner distance of (200) plane of nickel crystal(in A)=');
+disp(d_111,'interplaner distance of (111) plane of nickel crystal(in A)='); \ No newline at end of file
diff --git a/1085/CH3/EX3.14/ex3_14.sce b/1085/CH3/EX3.14/ex3_14.sce
new file mode 100755
index 000000000..daf52d6fa
--- /dev/null
+++ b/1085/CH3/EX3.14/ex3_14.sce
@@ -0,0 +1,11 @@
+//Exam:3.14
+clc;
+clear;
+close;
+a=3.03*10^(-7);//lattice constant(in mm)
+N_100=1/(a^2);//Number of atoms in the (100) plane of a simple cubic structure
+N_110=0.707/(a^2);//Number of atoms in the (110) plane of a simple cubic structure
+N_111=0.58/(a^2);//Number of atoms in the (111) plane of a simple cubic structure
+disp(N_100,'Number of atoms in the (100) plane of a simple cubic structure(in per mm^2)=');
+disp(N_110,'Number of atoms in the (110) plane of a simple cubic structure(in per mm^2)=');
+disp(N_111,'Number of atoms in the (111) plane of a simple cubic structure(in per mm^2)='); \ No newline at end of file
diff --git a/1085/CH3/EX3.15/ex3_15.sce b/1085/CH3/EX3.15/ex3_15.sce
new file mode 100755
index 000000000..85fb6f1c4
--- /dev/null
+++ b/1085/CH3/EX3.15/ex3_15.sce
@@ -0,0 +1,10 @@
+//Exam:3.15
+clc;
+clear;
+close;
+r=1.245*10^(-7);//Radius of the Ni atom(in mm)
+NA_100=1+(1/4)*4;//Numbers of atom in (100) plane
+a=4*r/(2)^(1/2);//Lattice constant(in mm)
+Area=a^2;
+P_density=NA_100/Area;
+disp(P_density,'the planer density of Ni (in atoms per mm^2)='); \ No newline at end of file
diff --git a/1085/CH3/EX3.16/ex3_16.sce b/1085/CH3/EX3.16/ex3_16.sce
new file mode 100755
index 000000000..e0e7d522f
--- /dev/null
+++ b/1085/CH3/EX3.16/ex3_16.sce
@@ -0,0 +1,18 @@
+//Exam:3.16
+clc;
+clear;
+close;
+N_a1=4*(1/4)+1;//Number of atoms contained in (100) plane
+r=1.75*10^(-7);//radius of lead atom (in mm)
+a_1=2*2^(1/2)*r;//edge of unit cell in case of (100) plane
+PD_100=N_a1/(a_1^2);//Planar density of plane (100)
+N_a2=4*(1/4)+2*(1/2);//Number of atoms contained in (110) plane
+a_21=4*r;//top edge of the plane (110)
+a_22=2*2^(1/2)*r;//vertical edge of the plane (110)
+PD_110=N_a2/(a_21*a_22);//Planar density of plane (110)
+N_a3=3*(1/6)+3/2;//Number of atom contained in (111) plane
+Ar_111=4*(3^(1/2))*r^2;//area of (111) plane
+PD_111=N_a3/Ar_111;//Planar density of plane (111)
+disp(PD_100,'Planar density of plane 100(in atoms/mm^2)=');
+disp(PD_110,'Planar density of plane 110(in atoms/mm^2)=');
+disp(PD_111,'Planar density of plane 111(in atoms/mm^2)='); \ No newline at end of file
diff --git a/1085/CH3/EX3.17/ex3_17.sce b/1085/CH3/EX3.17/ex3_17.sce
new file mode 100755
index 000000000..db871aa93
--- /dev/null
+++ b/1085/CH3/EX3.17/ex3_17.sce
@@ -0,0 +1,13 @@
+//Exam:3.17
+clc;
+clear;
+close;
+N_a1=(1/2)+1+(1/2);//Number of diameters of atom along (110) direction
+a=3.61*10^(-7);//lattice constant of copper in mm
+L_d1=2^(1/2)*a;//length of the face diagonal in case of (110) direction
+p_110=N_a1/L_d1;//linear atomic density along (110) of copper crystal lattice(in atoms/mm)
+N_a2=(1/2)+(1/2);//Number of diameters of atom along (111) direction
+L_d2=3^(1/2)*a;//length of the face diagonal in case of (111) direction
+p_111=N_a2/L_d2;//linear atomic density along (110) of copper crystal lattice(in atoms/mm)
+disp(p_110,'linear atomic density along (110) of copper crystal lattice(in atoms/mm)=');
+disp(p_111,'linear atomic density along (111) of copper crystal lattice(in atoms/mm)='); \ No newline at end of file
diff --git a/1085/CH3/EX3.18/ex3_18.sce b/1085/CH3/EX3.18/ex3_18.sce
new file mode 100755
index 000000000..2969afd12
--- /dev/null
+++ b/1085/CH3/EX3.18/ex3_18.sce
@@ -0,0 +1,10 @@
+//Exam:3.18
+clc;
+clear;
+close;
+A=55.8;//atomic weight of Fe
+n=2;//number of atoms per unit cell
+N=6.02*10^(26);//Avogadro's number
+p=7.87*10^3;//density of Fe(in kg/m^3)
+a=((A*n/(N*p))^(1/3))*10^10;//Value of lattice constant
+disp(a,'Value of lattice constant(in A)='); \ No newline at end of file
diff --git a/1085/CH3/EX3.19/ex3_19.sce b/1085/CH3/EX3.19/ex3_19.sce
new file mode 100755
index 000000000..ff14babbb
--- /dev/null
+++ b/1085/CH3/EX3.19/ex3_19.sce
@@ -0,0 +1,10 @@
+//Exam:3.19
+clc;
+clear;
+close;
+a=2.9*10^(-10);//lattice parameter(in m)
+A=55.8;//atomic weight of Fe
+N=6.02*10^(26);//Avogadro's number
+p=7.87*10^3;//density of Fe(in kg/m^3
+n=(a^3)*N*p/A;//Numbers of atoms per unit cell
+disp(floor(n),'Numbers of atoms per unit cell='); \ No newline at end of file
diff --git a/1085/CH3/EX3.20/ex3_20.sce b/1085/CH3/EX3.20/ex3_20.sce
new file mode 100755
index 000000000..5e723cb82
--- /dev/null
+++ b/1085/CH3/EX3.20/ex3_20.sce
@@ -0,0 +1,9 @@
+//Exam:3.20
+clc;
+clear;
+close;
+a=2.87*10^(-10);//lattice parameter for bcc iron
+b=a*(3^(1/2))/2;//Magnitude of burgers vector
+u=80*10^9;//shear modulus
+E=(1/2)*u*b^2;//line energy of disslocation
+disp(E,'line energy of disslocation(in J/m)='); \ No newline at end of file
diff --git a/1085/CH3/EX3.22/ex3_22.sce b/1085/CH3/EX3.22/ex3_22.sce
new file mode 100755
index 000000000..56ad129a5
--- /dev/null
+++ b/1085/CH3/EX3.22/ex3_22.sce
@@ -0,0 +1,12 @@
+//Exam:3.22
+clc;
+clear;
+close;
+N=6.023*10^23;//avogadro number
+T=1000;//absolute temperature
+R=8.314;//constant
+H_f=100*1000;//enthalpy of formation of vacancies(in J/mol)
+n=N*exp(-(H_f)/(R*T));//number of vacancies created during heating(in per mol)
+V=5.5*10^(-6);//volume of 1 mole of the crystal in m^3
+n_1=n/V;//number of vacancies created during heating(in per m^3)
+disp(n_1,'number of vacancies created during heating(in per m^3)='); \ No newline at end of file
diff --git a/1085/CH3/EX3.23/ex3_23.sce b/1085/CH3/EX3.23/ex3_23.sce
new file mode 100755
index 000000000..40bbf57b3
--- /dev/null
+++ b/1085/CH3/EX3.23/ex3_23.sce
@@ -0,0 +1,15 @@
+//Exam:3.23
+clc;
+clear;
+close;
+//bond energy per atom of copper=bond energy per bond*numbers of bond per atom*(1/2)
+A=56.4*1000;//
+N=6.023*10^23;//avogadro number
+n_1=12;//numbers of bond per atom
+n_2=3;//bonds broken at the surface
+E=A*n_1/(2*N);//Energy of total bonds
+E_b=E*(n_2/n_1);//Energy of broken bonds on surface
+disp(E_b,'E_b');
+n_a=1.77*10^19;//no. of atoms on {111} planes in copper(in m^-2)
+E_c=n_a*E_b;//Surface energy (enthalpy) of copper
+disp(E_c,'Surface energy (enthalpy) of copper(in J/m^2)='); \ No newline at end of file
diff --git a/1085/CH3/EX3.24/ex3_24.sce b/1085/CH3/EX3.24/ex3_24.sce
new file mode 100755
index 000000000..abd8f80dc
--- /dev/null
+++ b/1085/CH3/EX3.24/ex3_24.sce
@@ -0,0 +1,10 @@
+//Exam:3.24
+clc;
+clear;
+close;
+H_f=68*1000;//enthalpy of formation of vacancies(in J/mol)
+T_1=0;//temp (in K)
+T_2=300;//temp (in K)
+R=8.314;//constant
+n=exp(-H_f/(R*T_2));//equilibrium concentration of vacancies in aluminium at 300 K
+disp(n,'equilibrium concentration of vacancies in aluminium at 300 K='); \ No newline at end of file
diff --git a/1085/CH3/EX3.25/ex3_25.sce b/1085/CH3/EX3.25/ex3_25.sce
new file mode 100755
index 000000000..6cc273d09
--- /dev/null
+++ b/1085/CH3/EX3.25/ex3_25.sce
@@ -0,0 +1,9 @@
+//Exam:3.25
+clc;
+clear;
+close;
+Wavelength=1.54*10^(-10);//in meter
+Angle=20.3;//in degree
+n=1;//First order
+d=Wavelength*n/(2*sind(Angle));//the interplanar spacing(in Meter)
+disp(d/(10^-10),'the interplanar spacing between atomic plane(in A)='); \ No newline at end of file
diff --git a/1085/CH3/EX3.26/ex3_26.sce b/1085/CH3/EX3.26/ex3_26.sce
new file mode 100755
index 000000000..06d14f281
--- /dev/null
+++ b/1085/CH3/EX3.26/ex3_26.sce
@@ -0,0 +1,14 @@
+//Exam:3.26
+clc;
+clear;
+close;
+wavelength=0.58;//in Angstrom
+angle=9.5;//in degree
+n=1;//First order
+d_200=wavelength*n/(2*sind(angle));//interplanar spacing(in Angstrom)
+//Miller indices of plane
+h=2;
+k=0;
+l=0;
+a=d_200*(h^2+k^2+l^2)^(1/2);//Size of unit cell(in Angstrom)
+disp(a,'Size of unit cell(in Angstrom)='); \ No newline at end of file
diff --git a/1085/CH3/EX3.27/ex3_27.sce b/1085/CH3/EX3.27/ex3_27.sce
new file mode 100755
index 000000000..6017f2a28
--- /dev/null
+++ b/1085/CH3/EX3.27/ex3_27.sce
@@ -0,0 +1,14 @@
+//Exam:3.27
+clc;
+clear;
+close;
+//Miller indices of plane
+h=1;
+k=1;
+l=1;
+wavelength=0.54;//in angstrom
+a=3.57;//size of a cube
+n=1;
+d_111=a/(h^2+k^2+l^2)^(1/2);//interplanar spacing(in Angstrom)
+angle=asind(n*wavelength/(2*d_111));
+disp(angle,'Bragg angle(in degree)='); \ No newline at end of file
diff --git a/1085/CH3/EX3.28/ex3_28.sce b/1085/CH3/EX3.28/ex3_28.sce
new file mode 100755
index 000000000..5d0997091
--- /dev/null
+++ b/1085/CH3/EX3.28/ex3_28.sce
@@ -0,0 +1,9 @@
+//Exam:3.28
+clc;
+clear;
+close;
+d=1.181;//
+wavelength=1.540;//in angstrom
+angle=90;//in degree
+n=2*d*sind(angle)/(wavelength);//the bragg reflection index
+disp(n,'bragg reflection index for BCC crystal='); \ No newline at end of file
diff --git a/1085/CH3/EX3.29/ex3_29.sce b/1085/CH3/EX3.29/ex3_29.sce
new file mode 100755
index 000000000..49bfb4a44
--- /dev/null
+++ b/1085/CH3/EX3.29/ex3_29.sce
@@ -0,0 +1,10 @@
+//Exam:3.29
+clc;
+clear;
+close;
+n_1=1;//1st order reflection index
+angle_1=10;//1st order reflection angle
+n_3=3;//3rd order reflection index
+//sind(angle_1)/sind(angle_3)=n_1/n_3
+angle_3=asind(n_3*sind(angle_1)/n_1);//
+disp(angle_3,'3rd order reflection angle=') \ No newline at end of file
diff --git a/1085/CH3/EX3.30/ex3_30.sce b/1085/CH3/EX3.30/ex3_30.sce
new file mode 100755
index 000000000..f62643ca1
--- /dev/null
+++ b/1085/CH3/EX3.30/ex3_30.sce
@@ -0,0 +1,13 @@
+//Exam:3.30
+clc;
+clear;
+close;
+angle=20.3;//in degree
+wavelength=1.54;//in angstrom
+n=1;
+a=3.16;//lattice parameter in angstrom
+d=n*wavelength/(2*sind(angle));//interplanar spacing
+M_indices=a^2/(d^2);
+disp(d,'interplanar spacing of reflection plane');
+disp(floor(M_indices),'miller indices of the reflection plane');
+disp((101),(110),(011)); \ No newline at end of file
diff --git a/1085/CH3/EX3.31/ex3_31.sce b/1085/CH3/EX3.31/ex3_31.sce
new file mode 100755
index 000000000..fea47f91f
--- /dev/null
+++ b/1085/CH3/EX3.31/ex3_31.sce
@@ -0,0 +1,14 @@
+//Exam:3.31
+clc;
+clear;
+close;
+//Miller indices of plane
+n=1;
+h=1;
+k=1;
+l=1;
+angle=30;//in degree
+wavelength=2;//in angstrom
+d=n*wavelength/(2*sind(angle));//interplanar spacing
+a=d*(h^2+k^2+l^2)^(1/2);//interatomic spacing
+disp(a,'interatomic spacing(in angstrom)='); \ No newline at end of file