diff options
Diffstat (limited to '1085')
90 files changed, 1146 insertions, 0 deletions
diff --git a/1085/CH10/EX10.1/ex10_1.sce b/1085/CH10/EX10.1/ex10_1.sce new file mode 100755 index 000000000..9593d29b1 --- /dev/null +++ b/1085/CH10/EX10.1/ex10_1.sce @@ -0,0 +1,11 @@ +//Exam:10.1
+clc;
+clear;
+close;
+N=8;//ASTM grain size number
+n=2^(N-1);//Number of grains per inch square at a magnification
+N_1=n*100*100;//Number of grains per inch square without magnification
+N_2=N_1/(25.4)^2;//Number of grains per mm square without magnification
+A_a=1/(N_2);//Average area of each grain(in mm^2)
+D=(A_a)^(1/2);//Average grain diameter(in mm)
+disp(D,'Average grain diameter(in mm)=')
\ No newline at end of file diff --git a/1085/CH11/EX11.1/ex11_1.sce b/1085/CH11/EX11.1/ex11_1.sce new file mode 100755 index 000000000..be07489bf --- /dev/null +++ b/1085/CH11/EX11.1/ex11_1.sce @@ -0,0 +1,22 @@ +//Exam:11.1
+clc;
+clear;
+close;
+h_1=1;
+k_1=1;
+l_1=1;
+//Miller indices of slip plane
+h_2=1;
+k_2=-1;
+l_2=1;
+//Miller indices of stress plane
+h_3=1;
+k_3=1;
+l_3=0;
+//Miller indices of slip direction
+A=(h_1*h_2+k_1*k_2+l_1*l_2)/(((h_1^2+k_1^2+l_1^2)^(1/2))*((h_2^2+k_2^2+l_2^2)^(1/2)));//Value of cos(x) where x =angle between slip plane and stress plane
+B=(h_1*h_3+k_1*k_3+l_1*l_3)/(((h_1^2+k_1^2+l_1^2)^(1/2))*((h_3^2+k_3^2+l_3^2)^(1/2)));//Value of cos(y) where y =angle between slip direction and stress direction
+C=(1-A^2)^(1/2);//Value of sin(x)
+stress=3.5;//Applied Stress in Mpa
+T_cr=stress*A*B*C;//Critical resolved shear stress(in MPa)
+disp(T_cr,'Critical resolved shear stress(in MPa)=');
\ No newline at end of file diff --git a/1085/CH11/EX11.3/ex11_3.sce b/1085/CH11/EX11.3/ex11_3.sce new file mode 100755 index 000000000..e8a3e9b32 --- /dev/null +++ b/1085/CH11/EX11.3/ex11_3.sce @@ -0,0 +1,10 @@ +//Exam:11.3
+clc;
+clear;
+close;
+D=0.002;//Grain diameter(in mm)
+d=D*10^(-3);//Grain diameter(in m)
+K=0.63;//Constant(in MNm^(-3/2))
+sigma_i=80;//in MNm^-2
+sigma_y=sigma_i+K*d^(-1/2);//Yield stress for a polycrystalline alloy
+disp(sigma_y,'Yield stress for a polycrystalline alloy(in MN/m^2)');
\ No newline at end of file diff --git a/1085/CH11/EX11.4/ex11_4.sce b/1085/CH11/EX11.4/ex11_4.sce new file mode 100755 index 000000000..fa805fc6b --- /dev/null +++ b/1085/CH11/EX11.4/ex11_4.sce @@ -0,0 +1,17 @@ +//Exam:11.4
+clc;
+clear;
+close;
+sigma_y1=120;//primary yield strength of polycrystalline material(in MN*m^-2)
+sigma_y2=220;//increased yield strength of polycrystalline material(in MN*m^-2)
+d_1=0.04*10^(-3);//primary grain diameter(in meter)
+d_2=0.01*10^(-3);//grain diameter after decreasing(in meter)
+//sigma_y1=sigma_i+K*(d_1)^(-1/2)
+//sigma_y2=sigma_i+K*(d_2)^(-1/2)
+//putting the values and solving the equation
+K=(220-120)/((d_2^(-1/2))-((d_1^(-1/2))));//constant(in MN*m(-3/2))
+sigma_i=sigma_y1-K*(d_1)^(-1/2);//in MN*m^-2
+d=1/((10^4)*(256/645))^(1/2);//grain diameter for grain size ASTM 9(in mm)
+D=d*10^(-3);//grain diameter for grain size ASTM 9(in meter)
+sigma_y=sigma_i+K*(D)^(-1/2);//Yield stress for a polycrystalline alloy for grain size ASTM 9(in MN*m^-2)
+disp(ceil(sigma_y),'Yield stress for a polycrystalline alloy for grain size ASTM 9(in MN*m^-2)=');
\ No newline at end of file diff --git a/1085/CH12/EX12.1/ex12_1.sce b/1085/CH12/EX12.1/ex12_1.sce new file mode 100755 index 000000000..1dcf09daf --- /dev/null +++ b/1085/CH12/EX12.1/ex12_1.sce @@ -0,0 +1,9 @@ +//Exam:12.1
+clc;
+clear;
+close;
+D=320*10^-3;//in meter
+L=1;//in meter
+A=%pi*D*L;//Surface area in meter^2
+l=ceil (200/A);
+disp(l,'the distance at which magnisium anode capable of giving 2MA (in meters)=');
\ No newline at end of file diff --git a/1085/CH12/EX12.2/ex12_2.sce b/1085/CH12/EX12.2/ex12_2.sce new file mode 100755 index 000000000..5998d615e --- /dev/null +++ b/1085/CH12/EX12.2/ex12_2.sce @@ -0,0 +1,12 @@ +//Exam:12.2
+clc;
+clear;
+close;
+W=0.0243;//1 mole of magnesium weight(in Kg)
+C=2*96490;//used charge (in A-s)
+A=15*10^(-3);//current density (in A/metre2)
+t=10;//time (in years)
+T=10*365*24*3600;//time (in sec)
+//amount of magnesium required =charge required per m2 of hull surface for a design life of 10 years/(used charge for anode)
+Mg_required=W*A*T/C;//magnesium required per square meter of the hull surface for a design life of 10 years
+disp(Mg_required,'magnesium required per square meter of the hull surface for a design life of 10 years(in Kg/m2)=');
\ No newline at end of file diff --git a/1085/CH13/EX13.1/ex13_1.sce b/1085/CH13/EX13.1/ex13_1.sce new file mode 100755 index 000000000..c43db0b53 --- /dev/null +++ b/1085/CH13/EX13.1/ex13_1.sce @@ -0,0 +1,10 @@ +//Exam:13.1
+clc;
+clear;
+close;
+alpha=20*10^(-6);//linear coefficient of thermal expansion per°C
+Sigma=-(172);//compressive stress MPa
+T=20;//Temprature at which rod is stress free(in °C)
+E=100*10^3;//modulus of elasticity (in MPa)
+T_f=T-(Sigma/(alpha*E));//maximum temperature the rod may be heated without exceeding a compressive stress of 172 MPa
+disp(T_f,'maximum temperature(in °C) the rod may be heated without exceeding a compressive stress of 172 MPa=');
\ No newline at end of file diff --git a/1085/CH14/EX14.1/ex14_1.sce b/1085/CH14/EX14.1/ex14_1.sce new file mode 100755 index 000000000..1ece714c5 --- /dev/null +++ b/1085/CH14/EX14.1/ex14_1.sce @@ -0,0 +1,9 @@ +//Exam:14.1
+clc;
+clear;
+close;
+l=100;//length of wire
+p=2.66*10^(-8);//resistivity
+A=3*10^(-6);//cross sectional area
+R=p*l/A;//resistance of an aluminium wire
+disp(R,'resistance of an aluminium wire(in Ohm)=');
\ No newline at end of file diff --git a/1085/CH14/EX14.2/ex14_2.sce b/1085/CH14/EX14.2/ex14_2.sce new file mode 100755 index 000000000..161ffb4c3 --- /dev/null +++ b/1085/CH14/EX14.2/ex14_2.sce @@ -0,0 +1,11 @@ +//Exam:14.2
+clc;
+clear;
+close;
+R_Cu=1.56;//Resistivity of pure copper(in micro-ohm-cm)
+R_CuNi = 4.06;//Resistivity of Cu containing two atomic percent (in micro-ohm-cm)
+R_Ni=(R_CuNi-R_Cu)/2;//Increase in resistivity due to one atomic % Ni
+R_CuAg= 1.7;//resistivity of copper, containing one atomic percent silver (in micro-ohm-cm)
+R_Ag=R_CuAg-R_Cu;//Increase in resistivity due to one atomic % Ag
+R_CuNiAg=R_Cu+R_Ni+3*R_Ag;//Resistivity of copper alloy containing one atomic percent Ni and 3 atomic percent Ag
+disp(R_CuNiAg,'Resistivity of copper alloy containing one atomic percent Ni and 3 atomic percent Ag(in micro-ohm-cm)=')
\ No newline at end of file diff --git a/1085/CH14/EX14.3/ex14_3.sce b/1085/CH14/EX14.3/ex14_3.sce new file mode 100755 index 000000000..36c6214ef --- /dev/null +++ b/1085/CH14/EX14.3/ex14_3.sce @@ -0,0 +1,8 @@ +//Exam:14.3
+clc;
+clear;
+close;
+R_Cu=1.8*10^(-8);//resistivity of pure copper at room temperature
+R_CuNi=7*10^(-8);//resistivity of Cu 4% Ni alloy at room temperature
+R_Ni=(R_CuNi-R_Cu)/4;//resistivity due to Impurity scattering per % of Ni
+disp(R_Ni,'resistivity due to impurity scattering per percent of Ni in the Cu lattice(in ohm-meter)=')
\ No newline at end of file diff --git a/1085/CH14/EX14.4/ex14_4.sce b/1085/CH14/EX14.4/ex14_4.sce new file mode 100755 index 000000000..7b9db3cb3 --- /dev/null +++ b/1085/CH14/EX14.4/ex14_4.sce @@ -0,0 +1,11 @@ +//Exam:14.4
+clc;
+clear;
+close;
+C=10^(-9);//capacitance(in F)
+d=2*10^(-3);//distance of separation in a parallel plate condenser
+E_o=8.854*10^(-12);//dielectric constant
+A=(10*10^(-3))*(10*10^(-3));//area of parallel plate condenser
+//C=E_o*E_r*A/d
+E_r=C*d/(E_o*A);//Relative dielectric constant
+disp(ceil(E_r),'Relative dielectric constant of a barium titanate crystal')
\ No newline at end of file diff --git a/1085/CH14/EX14.5/ex14_5.sce b/1085/CH14/EX14.5/ex14_5.sce new file mode 100755 index 000000000..118048dfe --- /dev/null +++ b/1085/CH14/EX14.5/ex14_5.sce @@ -0,0 +1,19 @@ +//Exam:14.5
+clc;
+clear;
+close;
+q=1.6*10^(-19);//charge (in C)
+d_1=0.06//shift of the titanium ion from the body centre (in Å)
+d_2=0.08//shift of the oxygen anions of the side faces (in Å)
+d_3=0.06//shift of the oxygen anions of the top and bottom face (in Å)
+D_1=d_1*10^(-10);//shift of the titanium ion from the body centre (in m)
+D_2=d_2*10^(-10);//shift of the oxygen anions of the side faces (in m)
+D_3=d_3*10^(-10);//shift of the oxygen anions of the top and bottom face (in m)
+U_1=4*q*D_1;//dipole moment due to two O2– ions on the four side faces(in C-m)
+U_2=2*q*D_2;//dipole moment due to one O2– on top and bottom(in C-m)
+U_3=4*q*D_3;//dipole moment due to one Ti4+ ion at body centre(in C-m)
+U=U_1+U_2+U_3;//Total dipole moment(in C-m)
+V=4.03*((3.98)^2)*10^(-30);//volume(in m3)
+P=U/V;//polarization the total dipole moments per unit volume
+disp(P,'polarization(in C/m^2)=');
+disp(U,'==')
\ No newline at end of file diff --git a/1085/CH14/EX14.6/ex14_6.sce b/1085/CH14/EX14.6/ex14_6.sce new file mode 100755 index 000000000..bd83622ed --- /dev/null +++ b/1085/CH14/EX14.6/ex14_6.sce @@ -0,0 +1,11 @@ +//Exam:14.6
+clc;
+clear;
+close;
+V=((2.87)^3)*10^(-30)//Volume of unit cell of BCC iron (in m^3)
+N=2//Number of atoms in the unit cell
+M=1750*10^3;//saturation magnetization of BCC Iron A/m
+M_Net=V*M*(1/N)//net magnetic moment per atom
+Bohr_magneton=9.273*10^(-24);//Bohr_magneton (magnetic moment) in A/m2
+M_moment=M_Net/Bohr_magneton;//The magnetic moment (in units of U_B)
+disp(M_moment,'The magnetic moment (in units of U_B)=');
\ No newline at end of file diff --git a/1085/CH14/EX14.7/ex14_7.sce b/1085/CH14/EX14.7/ex14_7.sce new file mode 100755 index 000000000..5e0df07ff --- /dev/null +++ b/1085/CH14/EX14.7/ex14_7.sce @@ -0,0 +1,15 @@ +//Exam:14.7
+clc;
+clear;
+close;
+p=8.90*10^6;//density of nickel in gm/m3.
+N_A=6.023*10^23;//Avogadro’s number atoms/mol
+At_w=58.71;//Atomic weight of Ni in gm/mol
+N=p*N_A/At_w;//number of atoms/m3
+U_B=9.273*10^(-24);//Bohr_magneton
+M_s=0.60*U_B*N;//saturation magnetization
+pi=22/7;
+U_o=4*pi*10^(-7);//magnetic constant
+B_s=U_o*M_s;//Saturation flux density
+disp(M_s,'the saturation magnetization=');
+disp(B_s,'Saturation flux density=');
\ No newline at end of file diff --git a/1085/CH14/EX14.8/ex14_8.sce b/1085/CH14/EX14.8/ex14_8.sce new file mode 100755 index 000000000..3c78ec65e --- /dev/null +++ b/1085/CH14/EX14.8/ex14_8.sce @@ -0,0 +1,11 @@ +//Exam:14.8
+clc;
+clear;
+close;
+//Each cubic unit cell of ferrous ferric oxide contains 8 Fe2+ and 16 Fe3+ ions and
+n_b=32;//
+U_B=9.273*10^(-24);//Bohr_magneton
+a=0.839*10^(-9);//the unit cell edge length in m
+V=a^3;//volume(in m3)
+M_s=n_b*U_B/V;//the saturation magnetization
+disp(M_s,'the saturation magnetization=');
\ No newline at end of file diff --git a/1085/CH14/EX14.9/ex14_9.sce b/1085/CH14/EX14.9/ex14_9.sce new file mode 100755 index 000000000..152eed0b0 --- /dev/null +++ b/1085/CH14/EX14.9/ex14_9.sce @@ -0,0 +1,12 @@ +//Exam:14.9
+clc;
+clear;
+close;
+//hysteresis loss (Ph) and the induced emf loss (Pe) are proportional to the frequency
+//Pe is proportional to the square of the induced emf (Pe)
+//Pe + Ph = 750 W (at 25 Hz)
+//4Pe + 2Ph = 2300 W(at 50Hz)
+//solving equation
+P_e=800/2;//induced emf loss
+I_d=4*P_e;//The eddy current loss at the normal voltage and frequency
+disp(I_d,'The eddy current loss at the normal voltage and frequency(in W)=');
\ No newline at end of file diff --git a/1085/CH15/EX15.1/ex15_1.sce b/1085/CH15/EX15.1/ex15_1.sce new file mode 100755 index 000000000..17cac24e9 --- /dev/null +++ b/1085/CH15/EX15.1/ex15_1.sce @@ -0,0 +1,13 @@ +//Exam:15.1
+clc;
+clear;
+close;
+U_n=1350//mobility of electron in cm2/volt-sec
+U_h=480//hole mobility in cm2/volt-sec
+Sigma=1.072*10^10//density of electron hole pair per cc at 300°K for a pure silicon crystal
+e=1.6*10^(-19);//charge on the electron in C
+Sigma_i=Sigma*e*(U_n+U_h);//Conductivity of pure silicon crystal
+p_i=1/(Sigma_i);//Resistivity of silicon crystal in Ohm-cm
+P_i=p_i*10^(-2);//Resistivity of silicon crystal in Ohm-m
+disp(Sigma_i,'Conductivity of pure silicon crystal(in mho/cm)=');
+disp(P_i,'Resistivity of silicon crystal (in Ohm-m)=');
\ No newline at end of file diff --git a/1085/CH15/EX15.2/ex15_2.sce b/1085/CH15/EX15.2/ex15_2.sce new file mode 100755 index 000000000..071cf71bc --- /dev/null +++ b/1085/CH15/EX15.2/ex15_2.sce @@ -0,0 +1,10 @@ +//Exam:15.2
+clc;
+clear;
+close;
+U=1200;//electron mobility in cm2/Volt-sec
+e=1.6*10^(-19);//charge on the electron in C
+n=10^13;//concentration of phosphorus
+sigma=U*e*n;//conductivity of crystal in mho/cm
+p_i=1/sigma;//resistivity of silicon wafer if all donor atom are active
+disp(p_i,'resistivity of silicon wafer if all donor atom are active(in ohm-cm)=');
\ No newline at end of file diff --git a/1085/CH15/EX15.3/ex15_3.sce b/1085/CH15/EX15.3/ex15_3.sce new file mode 100755 index 000000000..767ad5099 --- /dev/null +++ b/1085/CH15/EX15.3/ex15_3.sce @@ -0,0 +1,18 @@ +//Exam:15.3
+clc;
+clear;
+close;
+U_n=3900//mobility of electron in cm2/volt-sec
+U_h=1900//hole mobility in cm2/volt-sec
+n_i=2.5*10^13;//concentration of electron
+u_n=U_n*10^(-4);//mobility of electron in m2/volt-sec
+u_h=U_h*10^(-4);//hole mobility in m2/volt-sec
+e=1.6*10^(-19);//charge on the electron in C
+Sigma_i=n_i*e*(u_n+u_h)*10^6;//Conductivity
+p_i=1/(Sigma_i);//resistivity of intrinsic germanium rod
+l=1*10^(-2);//length of germanium rod in m
+w=1*10^(-3);//width of germanium rod in m
+t=1*10^(-3);//thick of germanium rod in m
+A=w*t;//Area of cross section in m2
+R=p_i*l/A;//Resistance of an intrinsic germanium rod in Ohm
+disp(R/10^3,'Resistance of an intrinsic germanium rod (in K-Ohm)=');
\ No newline at end of file diff --git a/1085/CH15/EX15.4/ex15_4.sce b/1085/CH15/EX15.4/ex15_4.sce new file mode 100755 index 000000000..6daf22570 --- /dev/null +++ b/1085/CH15/EX15.4/ex15_4.sce @@ -0,0 +1,9 @@ +//Exam:15.4
+clc;
+clear;
+close;
+N_a=1.1*10^20;//acceptor density in atoms/m3
+n_i=2.5*10^19;//concentration of majority carrier per m3
+n_p=(n_i^2)/N_a;//intrinsic density
+R=n_p/n_i;//Ratio of n_p and n_i
+disp(R,'n_p/n_i=');
\ No newline at end of file diff --git a/1085/CH16/EX16.1/ex16_1.sce b/1085/CH16/EX16.1/ex16_1.sce new file mode 100755 index 000000000..e1e0ab1ff --- /dev/null +++ b/1085/CH16/EX16.1/ex16_1.sce @@ -0,0 +1,14 @@ +//Exam:16.1
+clc;
+clear;
+close;
+T_c=4.2;//critical temperature of mercury
+k=1.4*10^(-23);//
+E_g=3*k*T_c;//energy gap (in Joule)
+e=1.6*10^(-19);//charge on the electron
+E=E_g/e;//energy gap (in electron volt)
+h=6.6*10^(-34)// in J-s
+c=3*10^8;//in m/s
+wavelength=h*c/E_g;//wavelength of a photon (in m)
+disp(E,'energy gap (in electron volt)=');
+disp(wavelength,'wavelength of a photon (in m)=');
\ No newline at end of file diff --git a/1085/CH18/EX18.1/ex18_1.sce b/1085/CH18/EX18.1/ex18_1.sce new file mode 100755 index 000000000..cfdd1065e --- /dev/null +++ b/1085/CH18/EX18.1/ex18_1.sce @@ -0,0 +1,10 @@ +//Exam:18.1
+clc;
+clear;
+close;
+E_f=69;//modulus of elasticity in GPa
+V_f=40/100;//Volume of glass fibres %
+E_m=3.4;//modulus (in GPa)
+V_m=60/100;//Volume of polyester resin %
+E_cl=E_m*V_m+E_f*V_f;//modulus of elasticity (in Gpa)
+disp(ceil(E_cl),'modulus of elasticity(in Gpa)=');
\ No newline at end of file diff --git a/1085/CH18/EX18.2/ex18_2.sce b/1085/CH18/EX18.2/ex18_2.sce new file mode 100755 index 000000000..c7a4a950f --- /dev/null +++ b/1085/CH18/EX18.2/ex18_2.sce @@ -0,0 +1,10 @@ +//Exam:18.2
+clc;
+clear;
+close;
+E_f=69;//modulus of elasticity in GPa
+V_f=40/100;//Volume of glass fibres %
+E_m=3.4;//modulus (in GPa)
+V_m=60/100;//Volume of polyester resin %
+E_cl=E_m*E_f/(E_m*V_f+E_f*V_m);//modulus of elasticity when the stress is applied perpendicular to the direction of the fibre alignment(in Gpa)
+disp(E_cl,'modulus of elasticity when the stress is applied perpendicular to the direction of the fibre alignment(in Gpa)=');
\ No newline at end of file diff --git a/1085/CH2/EX2.1/ex2_1.sce b/1085/CH2/EX2.1/ex2_1.sce new file mode 100755 index 000000000..c4df99480 --- /dev/null +++ b/1085/CH2/EX2.1/ex2_1.sce @@ -0,0 +1,14 @@ +//Exam:2.1
+clc;
+clear;
+close;
+Eg_k=5;//kinetic energy of alpha particles(in MeV)
+Eg_K=5*(10^6)*1.6*(10^-19);//kinetic energy of alpha particles(in J)
+mv2=2*Eg_K;
+pi=22/7;
+phi=180;//firing angle
+Z=29;//Atomic number
+e=1.6*(10^-19);//electron charge(in C)
+Eo=8.85*10^-12;//permittivity of free space
+d=(Z*e^2/(2*pi*Eo*mv2))*(1+cscd(90))//;
+disp(d,'distance of the closest approach alpha particles from the copper nucleus(in meter)=');
\ No newline at end of file diff --git a/1085/CH2/EX2.13/ex2_13.sce b/1085/CH2/EX2.13/ex2_13.sce new file mode 100755 index 000000000..06d35c8f3 --- /dev/null +++ b/1085/CH2/EX2.13/ex2_13.sce @@ -0,0 +1,10 @@ +//Exam:2.13
+clc;
+clear;
+close;
+At_w=63.54;//atomic weight of copper
+N=6.023*10^23;//avogadro's number
+W_a=At_w/N;//weight of one atom(in gm)
+W_p=W_a/63;//weight of one proton(in gm)
+disp(W_a,'weight of one atom(in gm)=');
+disp(W_p,'weight of one proton(in gm)=');
\ No newline at end of file diff --git a/1085/CH2/EX2.15/ex2_15.sce b/1085/CH2/EX2.15/ex2_15.sce new file mode 100755 index 000000000..dd78e593e --- /dev/null +++ b/1085/CH2/EX2.15/ex2_15.sce @@ -0,0 +1,11 @@ +//Exam:2.15
+clc;
+clear;
+close;
+Atw_Cu=63.54;//atomic weight of copper
+Atw_Si=28.09;//atomic weight of silicon
+// 5 atoms of copper working in Cu_5_Si
+Tw_Cu=5*Atw_Cu;//total weight of copper used in copper silicide
+Tw_Si=Atw_Si;//total weight of silicon used in copper silicide
+Percentage=(Tw_Si/(Tw_Cu+Tw_Si))*100;//percentage of Si in Copper silicide
+disp(Percentage,'percentage of Si in Copper silicide(Cu_5_Si)=')
\ No newline at end of file diff --git a/1085/CH2/EX2.2/ex2_2.sce b/1085/CH2/EX2.2/ex2_2.sce new file mode 100755 index 000000000..fdb305380 --- /dev/null +++ b/1085/CH2/EX2.2/ex2_2.sce @@ -0,0 +1,15 @@ +//Exam:2.2
+clc;
+clear;
+close;
+e=1.6*10^(-19);//electron charge(in C)
+m=9.1*10^(-31);//mass of electron(in Kg)
+E_o=8.854*10^(-12);//permittivity of free space
+h=6.625*10^(-34);//Planck constant
+n=1;//Orbit number
+Z=1;//atomic number
+pi=22/7;
+r_1=(E_o*h^2)/(pi*m*e^2);//first orbit radius of hydrogen atom
+disp(r_1,'first orbit radius of hydrogen atom(in m)=');
+Freq=m*(Z^2)*(e^4)/(4*(E_o^2)*(n^3)*h^3);//
+disp(Freq,'Orbital frequency of electron(in Hz)=');
\ No newline at end of file diff --git a/1085/CH2/EX2.3/ex2_3.sce b/1085/CH2/EX2.3/ex2_3.sce new file mode 100755 index 000000000..88e8a6c00 --- /dev/null +++ b/1085/CH2/EX2.3/ex2_3.sce @@ -0,0 +1,12 @@ +//Exam:2.3
+clc;
+clear;
+close;
+Z_1=1;//atomic number for hydrogen
+n_1=1;//first orbit
+r_1=0.529;//radius of first orbit of electron for hydrogen
+Z_2=2;//atomic number for helium
+n_2=2;//second orbit
+k=r_1*Z_1/n_1;
+r_2=k*((n_2)^2)/Z_2;//radius of first orbit of electron for helium
+disp(r_2,'radius of the second bohr orbit in a singly ionized helium atom(in A)=');
\ No newline at end of file diff --git a/1085/CH2/EX2.4/ex2_4.sce b/1085/CH2/EX2.4/ex2_4.sce new file mode 100755 index 000000000..aa2f47b2f --- /dev/null +++ b/1085/CH2/EX2.4/ex2_4.sce @@ -0,0 +1,16 @@ +//Exam:2.4
+clc;
+clear;
+close;
+n_1=1;//first orbit
+n_2=2;//second orbit
+n_3=3;//third orbit
+//E_1=-13.6*(Z^2)/(1^2);
+//E_2=-13.6*(Z^2)/(2^2);
+//E_3=-13.6*(Z^2)/(3^2);
+//E_3-E_1=-13.6*(Z^2)*(-8/9);
+//E_2-E_1=-13.6*(Z^2)*(-3/4);
+E_1=-13.6/(1^2);//energy of electron in the first bohr orbit of an atom
+E_2=-13.6/(2^2);//energy of electron in the second bohr orbit of an atom
+E_3=-13.6/(3^2);//energy of electron in the third bohr orbit of an atom
+disp((E_3-E_1)/(E_2-E_1),'ratio of energy released =');
\ No newline at end of file diff --git a/1085/CH2/EX2.5/ex2_5.sce b/1085/CH2/EX2.5/ex2_5.sce new file mode 100755 index 000000000..3a2510f33 --- /dev/null +++ b/1085/CH2/EX2.5/ex2_5.sce @@ -0,0 +1,12 @@ +//Exam:2.5
+clc;
+clear;
+close;
+m=9.1*10^(-31);//electron mass (in Kg)
+Z=1;//atomic number
+e=1.6*10^(-19);//electron charge(in C)
+E_o=8.25*10^(-12);//permittivity of free space
+n=1;//first bohr orbit
+h=6.63*10^(-34);//planck constant
+R_ps=m*(e^4)/(4*(E_o^2)*(h^3));//number of revolutions per second
+disp(R_ps,'revolutions per second of an electron in the bohr orbit of hydrogen atom=');
\ No newline at end of file diff --git a/1085/CH2/EX2.6/ex2_6.sce b/1085/CH2/EX2.6/ex2_6.sce new file mode 100755 index 000000000..07ff0f6b8 --- /dev/null +++ b/1085/CH2/EX2.6/ex2_6.sce @@ -0,0 +1,12 @@ +//Exam:2.6
+clc;
+clear;
+close;
+n=1;//first bohr orbit
+Z=1;//atomic number
+m=9.1*10^(-31);//electron mass in Kg.
+e=1.6*10^(-19);//electron charge(in C)
+E_o=8.85*10^(-12);//permittivity of free space
+h=6.63*10^(-34);//planck constant
+v_n=m*(Z^2)*(e^4)/(4*(E_o^2)*(h^3)*(n^3));//orbital frequency of an electron in the first bohr orbit in a hydrogen atom
+disp(v_n,'orbital frequency of an electron in the first bohr orbit in a hydrogen atom(in Hz)=');
\ No newline at end of file diff --git a/1085/CH2/EX2.7/ex2_7.sce b/1085/CH2/EX2.7/ex2_7.sce new file mode 100755 index 000000000..44d1afbf8 --- /dev/null +++ b/1085/CH2/EX2.7/ex2_7.sce @@ -0,0 +1,17 @@ +//Exam:2.7
+clc;
+clear;
+close;
+m=9.11*10^-31;//mass of electron(in Kg)
+Z=1;//atomic number
+n=1;//first bohr orbit
+E_o=8.854*10^-12;//permittivity of free space
+h=6.62*10^-34;//planck constant
+e=1.6*10^-19;//electron charge(in C)
+E_k=(m*(Z^2)*(e^4))/(8*(E_o^2)*(n^2)*(h^2));//Kinetic energy(in joule)
+E=E_k/e;//Kinetic energy(in eV)
+E_t=-13.6*(Z^2/n^2);//Total Energy(in eV)
+E_p=E_t-E;//Potential energy(in eV)
+disp(E_t,'Total energy(in eV)=');
+disp(E,'kinetic energy(in eV)=');
+disp(E_p,'potential energy(in eV)=');
\ No newline at end of file diff --git a/1085/CH2/EX2.8/ex2_8.sce b/1085/CH2/EX2.8/ex2_8.sce new file mode 100755 index 000000000..c26442ed3 --- /dev/null +++ b/1085/CH2/EX2.8/ex2_8.sce @@ -0,0 +1,11 @@ +//Exam:2.8
+clc;
+clear;
+close;
+h=6.626*10^-34;//planck constant
+E_o=8.825*10^-12;//permittivity of free space
+e=1.6*10^-19;//electron charge(in C)
+n=1;//first bohr orbit
+Z=1;//atomic number
+v=Z*(e^2)/(2*E_o*n*h);//velocity of electron in hydrogen atom in bohr first orbit
+disp(v,'velocity of electron in hydrogen atom in bohr first orbit(in meter/sec)=');
\ No newline at end of file diff --git a/1085/CH2/EX2.9/ex2_9.sce b/1085/CH2/EX2.9/ex2_9.sce new file mode 100755 index 000000000..f81e40fd2 --- /dev/null +++ b/1085/CH2/EX2.9/ex2_9.sce @@ -0,0 +1,25 @@ +//Exam:2.9
+clc;
+clear;
+close;
+n_1=1;//electron excited from ground state
+h=6.62*10^-34;//Planck constant
+c=3*10^8;//speed of light
+E_o=8.825*10^-12;//permittivity of free space
+e=1.6*10^-19;//electron charge(in C)
+m=9.11*10^-31;//mass of electron(in Kg)
+E_1=10.2;//energy excites the hydrogen from ground level(in eV)
+K=m*e^4/(8*(E_o^2)*(h^2))//in joule
+K_e=K/e;//in eV
+//E_1=K_e*((1/n_1^2)-(1/n^2))
+//1/(n^2)=1/(n_1^2)-E_1/K_e
+//n^2=1/(1/(n_1^2)-E_1/K_e)
+n=(1/(1/(n_1^2)-E_1/K_e))^(1/2);//principal quntum number when 10.2 eV energy excites electron
+disp(ceil(n),'principal quntum number when 10.2 eV energy excites electron=');
+W_1=h*c/(E_1*e)*10^10;//wavelength of radiation when 10.2 eV energy excites electron
+disp(W_1,'wavelength of radiation when 10.2 eV energy excites electron(in A)=')
+E_2=12.09;//energy excites the hydrogen from ground level(in eV)
+n_2=(1/(1/(n_1^2)-E_2/K_e))^(1/2);//principal quntum number when 12.09 eV energy excites electron
+W_2=h*c/(E_2*e)*10^10;//wavelength of radiation when 12.09 eV energy excites electron
+disp(ceil(n_2),'principal quntum number when 12.09 eV energy excites electron=')
+disp(W_2,'wavelength of radiation when 12.09 eV energy excites electron(in A)=')
\ No newline at end of file diff --git a/1085/CH3/EX3.10/ex3_10.sce b/1085/CH3/EX3.10/ex3_10.sce new file mode 100755 index 000000000..e87e1d4d0 --- /dev/null +++ b/1085/CH3/EX3.10/ex3_10.sce @@ -0,0 +1,13 @@ +//Exam:3.10
+clc;
+clear;
+close;
+//Miller indices of plane
+h_1=1;
+k_1=1;
+l_1=1;
+h_2=1;
+k_2=2;
+l_2=1;
+angle=acosd((h_1*h_2+k_1*k_2+l_1*l_2)/(((h_1^2+k_1^2+l_1^2)^(1/2))*((h_2^2+k_2^2+l_2^2)^(1/2))));
+disp(angle,'angle Between normals to the planes (111) and (121)(in degrees)=');
\ No newline at end of file diff --git a/1085/CH3/EX3.11/ex3_11.sce b/1085/CH3/EX3.11/ex3_11.sce new file mode 100755 index 000000000..0208b5e69 --- /dev/null +++ b/1085/CH3/EX3.11/ex3_11.sce @@ -0,0 +1,20 @@ +//Exam:3.11
+clc;
+clear;
+close;
+r_Na=0.98;//Radius of Na+(in A)
+r_Cl=1.81;//Radius of Cl-(in A)
+a=2*(r_Na+r_Cl);//Lattice parameter (in A)
+pi=22/7;
+V_i=4*(4/3)*pi*((r_Na^3)+(r_Cl^3));//Volume of ions present in unit cell
+V_u=a^3;//Volume of unit cell
+Apf=V_i/V_u;//Atomic packing fraction
+Ef_p=(Apf)*100;//Packing efficiency(in %)
+AM_sodium=22.99;//Atomic mass of sodium(in amu)
+AM_chlorine=35.45;//Atomic mass of chlorine(in amu)
+M_1=4*(AM_sodium+AM_chlorine)*1.66*10^(-27);//Mass of the unit cell
+a_1=a*10^(-10);//Lattice parameter (in meter)
+V_u1=(a_1)^3;
+Density=M_1/V_u1;
+disp(Ef_p,'Packing efficiency of sodium chloride(in %)=');
+disp(Density,'density of sodium chloride(in Kg/m3)=');
\ No newline at end of file diff --git a/1085/CH3/EX3.12/ex3_12.sce b/1085/CH3/EX3.12/ex3_12.sce new file mode 100755 index 000000000..21b9fa125 --- /dev/null +++ b/1085/CH3/EX3.12/ex3_12.sce @@ -0,0 +1,13 @@ +//Exam:3.12
+clc;
+clear;
+close;
+Density=2.7;//(in g/cm^3)
+n=4;
+m=26.98;//atomic weight of Al
+N_a=6.023*10^(23);//avogadro number
+a=((n*m/(Density*N_a))^(1/3));//Lattice parameter(in Cm)
+A=a*10^(8);//Lattice parameter(in A)
+disp(A,'radius(in A)=');
+r=A/(2*1.414);//radius for fcp structure
+disp(2*r,'Diameter(in A)=');
\ No newline at end of file diff --git a/1085/CH3/EX3.13/ex3_13.sce b/1085/CH3/EX3.13/ex3_13.sce new file mode 100755 index 000000000..329368c24 --- /dev/null +++ b/1085/CH3/EX3.13/ex3_13.sce @@ -0,0 +1,18 @@ +//Exam:3.13
+clc;
+clear;
+close;
+r=1.245;//radius of nickel (in A)
+a=4*r/(2)^(1/2);//Lattice constant(in A)
+//Miller indices of plane 200
+h_1=2;
+k_1=0;
+l_1=0;
+//Miller indices of plane 111
+h_2=1;
+k_2=1;
+l_2=1;
+d_200=a/((h_1^2)+(k_1^2)+(l_1^2))^(1/2);
+d_111=a/((h_2^2)+(k_2^2)+(l_2^2))^(1/2);
+disp(d_200,'interplaner distance of (200) plane of nickel crystal(in A)=');
+disp(d_111,'interplaner distance of (111) plane of nickel crystal(in A)=');
\ No newline at end of file diff --git a/1085/CH3/EX3.14/ex3_14.sce b/1085/CH3/EX3.14/ex3_14.sce new file mode 100755 index 000000000..daf52d6fa --- /dev/null +++ b/1085/CH3/EX3.14/ex3_14.sce @@ -0,0 +1,11 @@ +//Exam:3.14
+clc;
+clear;
+close;
+a=3.03*10^(-7);//lattice constant(in mm)
+N_100=1/(a^2);//Number of atoms in the (100) plane of a simple cubic structure
+N_110=0.707/(a^2);//Number of atoms in the (110) plane of a simple cubic structure
+N_111=0.58/(a^2);//Number of atoms in the (111) plane of a simple cubic structure
+disp(N_100,'Number of atoms in the (100) plane of a simple cubic structure(in per mm^2)=');
+disp(N_110,'Number of atoms in the (110) plane of a simple cubic structure(in per mm^2)=');
+disp(N_111,'Number of atoms in the (111) plane of a simple cubic structure(in per mm^2)=');
\ No newline at end of file diff --git a/1085/CH3/EX3.15/ex3_15.sce b/1085/CH3/EX3.15/ex3_15.sce new file mode 100755 index 000000000..85fb6f1c4 --- /dev/null +++ b/1085/CH3/EX3.15/ex3_15.sce @@ -0,0 +1,10 @@ +//Exam:3.15
+clc;
+clear;
+close;
+r=1.245*10^(-7);//Radius of the Ni atom(in mm)
+NA_100=1+(1/4)*4;//Numbers of atom in (100) plane
+a=4*r/(2)^(1/2);//Lattice constant(in mm)
+Area=a^2;
+P_density=NA_100/Area;
+disp(P_density,'the planer density of Ni (in atoms per mm^2)=');
\ No newline at end of file diff --git a/1085/CH3/EX3.16/ex3_16.sce b/1085/CH3/EX3.16/ex3_16.sce new file mode 100755 index 000000000..e0e7d522f --- /dev/null +++ b/1085/CH3/EX3.16/ex3_16.sce @@ -0,0 +1,18 @@ +//Exam:3.16
+clc;
+clear;
+close;
+N_a1=4*(1/4)+1;//Number of atoms contained in (100) plane
+r=1.75*10^(-7);//radius of lead atom (in mm)
+a_1=2*2^(1/2)*r;//edge of unit cell in case of (100) plane
+PD_100=N_a1/(a_1^2);//Planar density of plane (100)
+N_a2=4*(1/4)+2*(1/2);//Number of atoms contained in (110) plane
+a_21=4*r;//top edge of the plane (110)
+a_22=2*2^(1/2)*r;//vertical edge of the plane (110)
+PD_110=N_a2/(a_21*a_22);//Planar density of plane (110)
+N_a3=3*(1/6)+3/2;//Number of atom contained in (111) plane
+Ar_111=4*(3^(1/2))*r^2;//area of (111) plane
+PD_111=N_a3/Ar_111;//Planar density of plane (111)
+disp(PD_100,'Planar density of plane 100(in atoms/mm^2)=');
+disp(PD_110,'Planar density of plane 110(in atoms/mm^2)=');
+disp(PD_111,'Planar density of plane 111(in atoms/mm^2)=');
\ No newline at end of file diff --git a/1085/CH3/EX3.17/ex3_17.sce b/1085/CH3/EX3.17/ex3_17.sce new file mode 100755 index 000000000..db871aa93 --- /dev/null +++ b/1085/CH3/EX3.17/ex3_17.sce @@ -0,0 +1,13 @@ +//Exam:3.17
+clc;
+clear;
+close;
+N_a1=(1/2)+1+(1/2);//Number of diameters of atom along (110) direction
+a=3.61*10^(-7);//lattice constant of copper in mm
+L_d1=2^(1/2)*a;//length of the face diagonal in case of (110) direction
+p_110=N_a1/L_d1;//linear atomic density along (110) of copper crystal lattice(in atoms/mm)
+N_a2=(1/2)+(1/2);//Number of diameters of atom along (111) direction
+L_d2=3^(1/2)*a;//length of the face diagonal in case of (111) direction
+p_111=N_a2/L_d2;//linear atomic density along (110) of copper crystal lattice(in atoms/mm)
+disp(p_110,'linear atomic density along (110) of copper crystal lattice(in atoms/mm)=');
+disp(p_111,'linear atomic density along (111) of copper crystal lattice(in atoms/mm)=');
\ No newline at end of file diff --git a/1085/CH3/EX3.18/ex3_18.sce b/1085/CH3/EX3.18/ex3_18.sce new file mode 100755 index 000000000..2969afd12 --- /dev/null +++ b/1085/CH3/EX3.18/ex3_18.sce @@ -0,0 +1,10 @@ +//Exam:3.18
+clc;
+clear;
+close;
+A=55.8;//atomic weight of Fe
+n=2;//number of atoms per unit cell
+N=6.02*10^(26);//Avogadro's number
+p=7.87*10^3;//density of Fe(in kg/m^3)
+a=((A*n/(N*p))^(1/3))*10^10;//Value of lattice constant
+disp(a,'Value of lattice constant(in A)=');
\ No newline at end of file diff --git a/1085/CH3/EX3.19/ex3_19.sce b/1085/CH3/EX3.19/ex3_19.sce new file mode 100755 index 000000000..ff14babbb --- /dev/null +++ b/1085/CH3/EX3.19/ex3_19.sce @@ -0,0 +1,10 @@ +//Exam:3.19
+clc;
+clear;
+close;
+a=2.9*10^(-10);//lattice parameter(in m)
+A=55.8;//atomic weight of Fe
+N=6.02*10^(26);//Avogadro's number
+p=7.87*10^3;//density of Fe(in kg/m^3
+n=(a^3)*N*p/A;//Numbers of atoms per unit cell
+disp(floor(n),'Numbers of atoms per unit cell=');
\ No newline at end of file diff --git a/1085/CH3/EX3.20/ex3_20.sce b/1085/CH3/EX3.20/ex3_20.sce new file mode 100755 index 000000000..5e723cb82 --- /dev/null +++ b/1085/CH3/EX3.20/ex3_20.sce @@ -0,0 +1,9 @@ +//Exam:3.20
+clc;
+clear;
+close;
+a=2.87*10^(-10);//lattice parameter for bcc iron
+b=a*(3^(1/2))/2;//Magnitude of burgers vector
+u=80*10^9;//shear modulus
+E=(1/2)*u*b^2;//line energy of disslocation
+disp(E,'line energy of disslocation(in J/m)=');
\ No newline at end of file diff --git a/1085/CH3/EX3.22/ex3_22.sce b/1085/CH3/EX3.22/ex3_22.sce new file mode 100755 index 000000000..56ad129a5 --- /dev/null +++ b/1085/CH3/EX3.22/ex3_22.sce @@ -0,0 +1,12 @@ +//Exam:3.22
+clc;
+clear;
+close;
+N=6.023*10^23;//avogadro number
+T=1000;//absolute temperature
+R=8.314;//constant
+H_f=100*1000;//enthalpy of formation of vacancies(in J/mol)
+n=N*exp(-(H_f)/(R*T));//number of vacancies created during heating(in per mol)
+V=5.5*10^(-6);//volume of 1 mole of the crystal in m^3
+n_1=n/V;//number of vacancies created during heating(in per m^3)
+disp(n_1,'number of vacancies created during heating(in per m^3)=');
\ No newline at end of file diff --git a/1085/CH3/EX3.23/ex3_23.sce b/1085/CH3/EX3.23/ex3_23.sce new file mode 100755 index 000000000..40bbf57b3 --- /dev/null +++ b/1085/CH3/EX3.23/ex3_23.sce @@ -0,0 +1,15 @@ +//Exam:3.23
+clc;
+clear;
+close;
+//bond energy per atom of copper=bond energy per bond*numbers of bond per atom*(1/2)
+A=56.4*1000;//
+N=6.023*10^23;//avogadro number
+n_1=12;//numbers of bond per atom
+n_2=3;//bonds broken at the surface
+E=A*n_1/(2*N);//Energy of total bonds
+E_b=E*(n_2/n_1);//Energy of broken bonds on surface
+disp(E_b,'E_b');
+n_a=1.77*10^19;//no. of atoms on {111} planes in copper(in m^-2)
+E_c=n_a*E_b;//Surface energy (enthalpy) of copper
+disp(E_c,'Surface energy (enthalpy) of copper(in J/m^2)=');
\ No newline at end of file diff --git a/1085/CH3/EX3.24/ex3_24.sce b/1085/CH3/EX3.24/ex3_24.sce new file mode 100755 index 000000000..abd8f80dc --- /dev/null +++ b/1085/CH3/EX3.24/ex3_24.sce @@ -0,0 +1,10 @@ +//Exam:3.24
+clc;
+clear;
+close;
+H_f=68*1000;//enthalpy of formation of vacancies(in J/mol)
+T_1=0;//temp (in K)
+T_2=300;//temp (in K)
+R=8.314;//constant
+n=exp(-H_f/(R*T_2));//equilibrium concentration of vacancies in aluminium at 300 K
+disp(n,'equilibrium concentration of vacancies in aluminium at 300 K=');
\ No newline at end of file diff --git a/1085/CH3/EX3.25/ex3_25.sce b/1085/CH3/EX3.25/ex3_25.sce new file mode 100755 index 000000000..6cc273d09 --- /dev/null +++ b/1085/CH3/EX3.25/ex3_25.sce @@ -0,0 +1,9 @@ +//Exam:3.25
+clc;
+clear;
+close;
+Wavelength=1.54*10^(-10);//in meter
+Angle=20.3;//in degree
+n=1;//First order
+d=Wavelength*n/(2*sind(Angle));//the interplanar spacing(in Meter)
+disp(d/(10^-10),'the interplanar spacing between atomic plane(in A)=');
\ No newline at end of file diff --git a/1085/CH3/EX3.26/ex3_26.sce b/1085/CH3/EX3.26/ex3_26.sce new file mode 100755 index 000000000..06d14f281 --- /dev/null +++ b/1085/CH3/EX3.26/ex3_26.sce @@ -0,0 +1,14 @@ +//Exam:3.26
+clc;
+clear;
+close;
+wavelength=0.58;//in Angstrom
+angle=9.5;//in degree
+n=1;//First order
+d_200=wavelength*n/(2*sind(angle));//interplanar spacing(in Angstrom)
+//Miller indices of plane
+h=2;
+k=0;
+l=0;
+a=d_200*(h^2+k^2+l^2)^(1/2);//Size of unit cell(in Angstrom)
+disp(a,'Size of unit cell(in Angstrom)=');
\ No newline at end of file diff --git a/1085/CH3/EX3.27/ex3_27.sce b/1085/CH3/EX3.27/ex3_27.sce new file mode 100755 index 000000000..6017f2a28 --- /dev/null +++ b/1085/CH3/EX3.27/ex3_27.sce @@ -0,0 +1,14 @@ +//Exam:3.27
+clc;
+clear;
+close;
+//Miller indices of plane
+h=1;
+k=1;
+l=1;
+wavelength=0.54;//in angstrom
+a=3.57;//size of a cube
+n=1;
+d_111=a/(h^2+k^2+l^2)^(1/2);//interplanar spacing(in Angstrom)
+angle=asind(n*wavelength/(2*d_111));
+disp(angle,'Bragg angle(in degree)=');
\ No newline at end of file diff --git a/1085/CH3/EX3.28/ex3_28.sce b/1085/CH3/EX3.28/ex3_28.sce new file mode 100755 index 000000000..5d0997091 --- /dev/null +++ b/1085/CH3/EX3.28/ex3_28.sce @@ -0,0 +1,9 @@ +//Exam:3.28
+clc;
+clear;
+close;
+d=1.181;//
+wavelength=1.540;//in angstrom
+angle=90;//in degree
+n=2*d*sind(angle)/(wavelength);//the bragg reflection index
+disp(n,'bragg reflection index for BCC crystal=');
\ No newline at end of file diff --git a/1085/CH3/EX3.29/ex3_29.sce b/1085/CH3/EX3.29/ex3_29.sce new file mode 100755 index 000000000..49bfb4a44 --- /dev/null +++ b/1085/CH3/EX3.29/ex3_29.sce @@ -0,0 +1,10 @@ +//Exam:3.29
+clc;
+clear;
+close;
+n_1=1;//1st order reflection index
+angle_1=10;//1st order reflection angle
+n_3=3;//3rd order reflection index
+//sind(angle_1)/sind(angle_3)=n_1/n_3
+angle_3=asind(n_3*sind(angle_1)/n_1);//
+disp(angle_3,'3rd order reflection angle=')
\ No newline at end of file diff --git a/1085/CH3/EX3.30/ex3_30.sce b/1085/CH3/EX3.30/ex3_30.sce new file mode 100755 index 000000000..f62643ca1 --- /dev/null +++ b/1085/CH3/EX3.30/ex3_30.sce @@ -0,0 +1,13 @@ +//Exam:3.30
+clc;
+clear;
+close;
+angle=20.3;//in degree
+wavelength=1.54;//in angstrom
+n=1;
+a=3.16;//lattice parameter in angstrom
+d=n*wavelength/(2*sind(angle));//interplanar spacing
+M_indices=a^2/(d^2);
+disp(d,'interplanar spacing of reflection plane');
+disp(floor(M_indices),'miller indices of the reflection plane');
+disp((101),(110),(011));
\ No newline at end of file diff --git a/1085/CH3/EX3.31/ex3_31.sce b/1085/CH3/EX3.31/ex3_31.sce new file mode 100755 index 000000000..fea47f91f --- /dev/null +++ b/1085/CH3/EX3.31/ex3_31.sce @@ -0,0 +1,14 @@ +//Exam:3.31
+clc;
+clear;
+close;
+//Miller indices of plane
+n=1;
+h=1;
+k=1;
+l=1;
+angle=30;//in degree
+wavelength=2;//in angstrom
+d=n*wavelength/(2*sind(angle));//interplanar spacing
+a=d*(h^2+k^2+l^2)^(1/2);//interatomic spacing
+disp(a,'interatomic spacing(in angstrom)=');
\ No newline at end of file diff --git a/1085/CH4/EX4.1/ex4_1.sce b/1085/CH4/EX4.1/ex4_1.sce new file mode 100755 index 000000000..8a30363aa --- /dev/null +++ b/1085/CH4/EX4.1/ex4_1.sce @@ -0,0 +1,17 @@ +//Exam:4.1
+clc;
+clear;
+close;
+r_o=2.8//interatomic distance in Å
+R_o=2.8*10^(-10);//interatomic distance in m
+u_o=8;//released energy in eV
+e=1.6*10^(-19);//charge of electron in C
+U_o=8*e//released energy in Joule
+A=(5/4)*U_o*(R_o^2);//proportionality constant for attraction in J-m2
+B=A*(R_o^8)/5;//proportionality constant for repulsion in J-m2
+r_c=(110*B/(6*A))^(1/8);//interatomic distance at which the dissociation occurs in m
+F=-(2/r_c^3)*(A-5*B/(r_c^8));//the force required to dissociate the molecule in N
+disp(A,'proportionality constant for attraction (in J-m2)=');
+disp(B,'proportionality constant for repulsion (in J-m2)=');
+disp(r_c,'interatomic distance at which the dissociation occurs (in m)=');
+disp(F,'the force required to dissociate the molecule (in N)=');
\ No newline at end of file diff --git a/1085/CH4/EX4.2/ex4_2.sce b/1085/CH4/EX4.2/ex4_2.sce new file mode 100755 index 000000000..5592ea92a --- /dev/null +++ b/1085/CH4/EX4.2/ex4_2.sce @@ -0,0 +1,13 @@ +//Exam:4.2
+clc;
+clear;
+close;
+r_o=3.14;//nearest neighbour equilibrium distance in Å
+R_o=3.14*10^(-10);//nearest neighbour equilibrium distance in m
+K=5.747*10^(-11);//compressibility of KCl in m2/N
+M=1.748;//Madelung constant
+pi=22/7;
+E_o=8.854*10^(-12);
+q=1.6*10^(-19);//electron charge
+n=1+18*(R_o^4)*4*pi*E_o/(K*M*q^2);
+disp(n,'repulsive exponent n=');
\ No newline at end of file diff --git a/1085/CH4/EX4.3/ex4_3.sce b/1085/CH4/EX4.3/ex4_3.sce new file mode 100755 index 000000000..445135ca8 --- /dev/null +++ b/1085/CH4/EX4.3/ex4_3.sce @@ -0,0 +1,15 @@ +//Exam:4.3
+clc;
+clear;
+close;
+F_1=3.02*10^(-9);//force of attraction b/w ions of Na+ and Cl-
+Z_1=+1;
+Z_2=-1;
+e=1.6*10^(-19);
+E_o=8.854*10^-12;
+pi=22/7;
+r_Na=0.95;//ionic radius of Na+ ion
+r=(-Z_1*Z_2*e^2/(4*pi*E_o*F_1))^(1/2);//Radius of ion in meter
+R=r/10^(-10);//Radius of ion in Angstrom
+r_Cl=(R-r_Na);//Radius of Cl- ion in Angstrom
+disp(r_Cl,'Ionic Radius of Cl- ion (in Angstrom)=');
\ No newline at end of file diff --git a/1085/CH4/EX4.4/ex4_4.sce b/1085/CH4/EX4.4/ex4_4.sce new file mode 100755 index 000000000..dbdb73d3e --- /dev/null +++ b/1085/CH4/EX4.4/ex4_4.sce @@ -0,0 +1,15 @@ +//Exam:4.4
+clc;
+clear;
+close;
+Z_1=+2;
+Z_2=-2;
+r_Mg=0.65;//radius of Mg++ ion
+r_S=1.84;//radius of S-- ion
+r=r_Mg+r_S;//net radius(in Angstrom)
+R=r*10^(-10);//net radius(in meter)
+e=1.6*10^(-19);
+E_o=8.854*10^-12;
+pi=22/7;
+F=-Z_1*Z_2*e^2/(4*pi*E_o*R^2);//force of attraction between ions(in Newton)
+disp(F,'force of attraction between ions(in Newton)=');
\ No newline at end of file diff --git a/1085/CH4/EX4.5/ex4_5.sce b/1085/CH4/EX4.5/ex4_5.sce new file mode 100755 index 000000000..ecbe389ef --- /dev/null +++ b/1085/CH4/EX4.5/ex4_5.sce @@ -0,0 +1,9 @@ +//Exam:4.5
+clc;
+clear;
+close;
+//Na atom requires +5.14 eV of energy. When this electron is transferred to a vacant position,it gives back –4.02 eV of energy
+E_1=+5.14;//in eV
+E_2=-4.02;//in eV
+NET_energy=E_1+E_2;//in eV
+disp(NET_energy,'Net spent energy in whole process(in eV)=')
\ No newline at end of file diff --git a/1085/CH4/EX4.6/ex4_6.sce b/1085/CH4/EX4.6/ex4_6.sce new file mode 100755 index 000000000..5643fcdc1 --- /dev/null +++ b/1085/CH4/EX4.6/ex4_6.sce @@ -0,0 +1,9 @@ +//Exam:4.6
+clc;
+clear;
+close;
+Enthalpy=6.02;//enthalpy of fusion of ice is 6.02 kJ/mol
+E_h=20.5;//Hydrogen bond energy (in kJ/mol)
+//There are two moles of hydrogen bonds per mole of H2O in ice.
+H_b=Enthalpy/(2*E_h);//the fraction of hydrogen bonds that are broken when ice melts
+disp(H_b,'fraction of hydrogen bonds that are broken when ice melts=')
\ No newline at end of file diff --git a/1085/CH5/EX5.1/ex5_1.sce b/1085/CH5/EX5.1/ex5_1.sce new file mode 100755 index 000000000..63119de3f --- /dev/null +++ b/1085/CH5/EX5.1/ex5_1.sce @@ -0,0 +1,14 @@ +//Exam:5.1
+clc;
+clear;
+close;
+//The probability that a particular quantum state at energy E is filled, is given by
+//f(E) =1/(1+exp(E-E_f)/kT)
+e=1.6*10^(-19);//charge on the electron
+dE=0.5*e;//E-E_f in joule
+//0.01=1/(1+exp(x))
+//1+exp(x)=100
+x=log(99);
+k=1.38*10^(-23);//constant
+T=dE/(x*k);//temperature
+disp(ceil(T),'temperature at which there is one per cent probability that a state with an energy 0.5 eV above the Fermi energy will be occupied by an electron(in K)=');
\ No newline at end of file diff --git a/1085/CH5/EX5.10/ex5_10.sce b/1085/CH5/EX5.10/ex5_10.sce new file mode 100755 index 000000000..6eb9fe064 --- /dev/null +++ b/1085/CH5/EX5.10/ex5_10.sce @@ -0,0 +1,13 @@ +//Exam:5.10
+clc;
+clear;
+close;
+N_a=6.023*10^23;
+V_c=8.9;//volume of 63.54gm of copper(in cc)
+Aw_c=63.54;//Atomic weight of copper(in a.m.u)
+n=(N_a/(Aw_c/V_c))*10^6;//Number of electrons per m^3
+e=1.6*10^-19;
+m=9.1*10^-31;
+t=2*10^-14;//collision time
+conductivity=n*(e^2)*t/m;//conductivity of copper
+disp(conductivity,'conductivity of copper(in ohm^-1/m)=');
\ No newline at end of file diff --git a/1085/CH5/EX5.2/ex5_2.sce b/1085/CH5/EX5.2/ex5_2.sce new file mode 100755 index 000000000..de6fe0092 --- /dev/null +++ b/1085/CH5/EX5.2/ex5_2.sce @@ -0,0 +1,13 @@ +//Exam:5.2
+clc;
+clear;
+close;
+n=10^19;//electrons per m^3
+V=0.017;//applied voltage
+d=0.27*10^-2;//distance with material
+e=1.602*10^-19;//in coulomb
+m=9.1*10^-31;//mass of an electron(in kg)
+conductivity=0.01;//in mho.m^-1)
+E=V/d;//Electric field(in V/m)
+v=(conductivity*E/(n*e))*10^2;//drift velocity of carriers(in meter/sec)
+disp(v,'drift velocity of carriers(in meter/sec)=');
\ No newline at end of file diff --git a/1085/CH5/EX5.3/ex5_3.sce b/1085/CH5/EX5.3/ex5_3.sce new file mode 100755 index 000000000..48aad37e7 --- /dev/null +++ b/1085/CH5/EX5.3/ex5_3.sce @@ -0,0 +1,14 @@ +//Exam:5.3
+clc;
+clear;
+close;
+T=300;//Temperature(in Kelevin)
+t=2*10^-14;//time(in sec)
+V_c=8.9;//volume of 63.54gm of copper(in cc)
+Aw_c=63.54;//Atomic weight of copper(in a.m.u)
+e=1.6*10^(-19);
+m=9.1*10^-31;
+N_a=6.023*10^23;//avogadro's number
+n=(N_a/(Aw_c/V_c))*10^6;//Number of electrons per m^3
+conductivity=(e^2)*n*t/m;//conductivity of copper at 300K(in mho/m)
+disp(conductivity,'conductivity of copper at 300K(in mho/m)=');
\ No newline at end of file diff --git a/1085/CH5/EX5.4/ex5_4.sce b/1085/CH5/EX5.4/ex5_4.sce new file mode 100755 index 000000000..62640fa27 --- /dev/null +++ b/1085/CH5/EX5.4/ex5_4.sce @@ -0,0 +1,9 @@ +//Exam:5.4
+clc;
+clear;
+close;
+t=10^(-14);//mean free time between the collisions(in second)
+e=1.6*10^-19;
+m=9.1*10^-31;
+Mobility=e*t/m;//in m^2/V-s
+disp(Mobility,'mobility of condution electron(in m^2/V-s)=');
\ No newline at end of file diff --git a/1085/CH5/EX5.5/ex5_5.sce b/1085/CH5/EX5.5/ex5_5.sce new file mode 100755 index 000000000..cdb5bef2b --- /dev/null +++ b/1085/CH5/EX5.5/ex5_5.sce @@ -0,0 +1,13 @@ +//Exam:5.5
+clc;
+clear;
+close;
+n=6*10^23;//conduction electron per m^3
+conductivity=6.5*10^7;//in mho/m
+E=1;//electric field intensity (in V/m)
+e=1.6*10^-19;
+m=9.1*10^-31;
+Mobility=conductivity/(n*e);//in m^2/V-s
+v=Mobility*E;//drift velocity(in m/sec)
+disp(Mobility,'mobility of condution electron(in m^2/V-s)=');
+disp(v,'drift velocity(in m/sec)=');
\ No newline at end of file diff --git a/1085/CH5/EX5.6/ex5_6.sce b/1085/CH5/EX5.6/ex5_6.sce new file mode 100755 index 000000000..e08d41c0a --- /dev/null +++ b/1085/CH5/EX5.6/ex5_6.sce @@ -0,0 +1,13 @@ +//Exam:5.6
+clc;
+clear;
+close;
+d=10.5;//density of silver(in gm/cc)
+At_w=107.9;
+e=1.6*10^-19;
+conductivity=6.8*10^5;//in mho/centimeter
+N=6.023*10^23;
+n=N*d/At_w;//number of free electrons
+Mobility=conductivity/(n*e);//mobility of electrons(in cm^2/V-s);
+disp(n,'number of free electrons=');
+disp(Mobility,'mobility of electrons(in cm^2/V-s)=');
\ No newline at end of file diff --git a/1085/CH5/EX5.7/ex5_7.sce b/1085/CH5/EX5.7/ex5_7.sce new file mode 100755 index 000000000..340e06077 --- /dev/null +++ b/1085/CH5/EX5.7/ex5_7.sce @@ -0,0 +1,13 @@ +//Exam:5.7
+clc;
+clear;
+close;
+E_f=3.75;//Fermi energy(in eV)
+e=1.602*10^-19;
+W_f=e*E_f;//fermi energy in joules
+t=10^-14;//mean free time between the collisions(in second)
+m=9.1*10^-31;//mass of electron
+v_f=(2*W_f/m)^(1/2);//maximum velocity of an electron in a metal(in m/s)
+mobility=e*t/m;//mobility of electrons(in m^2/V-s)
+disp(v_f,'maximum velocity of an electron in a metal(in m/s)=');
+disp(mobility,'mobility of electrons(in m^2/V-s)=')
\ No newline at end of file diff --git a/1085/CH5/EX5.8/ex5_8.sce b/1085/CH5/EX5.8/ex5_8.sce new file mode 100755 index 000000000..025fc2993 --- /dev/null +++ b/1085/CH5/EX5.8/ex5_8.sce @@ -0,0 +1,10 @@ +//Exam:5.8
+clc;
+clear;
+close;
+E_f=2.1;//fermi energy(in eV)
+e=1.602*10^-19;
+m=9.1*10^-31;
+W_f=e*E_f;//fermi energy in joules
+v_f=(2*W_f/m)^(1/2);//velocity of an electrons at fermi level(in m/sec)
+disp(v_f,'velocity of an electrons at fermi level(in m/sec)')
\ No newline at end of file diff --git a/1085/CH5/EX5.9/ex5_9.sce b/1085/CH5/EX5.9/ex5_9.sce new file mode 100755 index 000000000..c5f668178 --- /dev/null +++ b/1085/CH5/EX5.9/ex5_9.sce @@ -0,0 +1,12 @@ +//Exam:5.9
+clc;
+clear;
+close;
+t=10^-9;//collision time(in seconds)
+E_f=7;//fermi energy(in eV)
+e=1.6*10^-19;
+m=9.1*10^-31;
+W_f=E_f*e;//fermi energy(in joules)
+v_f=(2*W_f/m)^(1/2);//velocity of an electrons at fermi level(in m/sec)
+P=v_f*t;//Mean free path(in meter)
+disp(P,'Mean free path(in meter)=')
\ No newline at end of file diff --git a/1085/CH6/EX6.1/ex6_1.sce b/1085/CH6/EX6.1/ex6_1.sce new file mode 100755 index 000000000..e0543800b --- /dev/null +++ b/1085/CH6/EX6.1/ex6_1.sce @@ -0,0 +1,14 @@ +//Exam:6.1
+clc;
+clear;
+close;
+h=6.62*10^-34;
+c=3*10^8;
+e=1.6*10^-19;
+Wavelength_1=2300*10^-10;
+W=h*c/Wavelength_1;//Work function
+Wavelength_2=1800*10^-10;
+E_in=h*c/Wavelength_2;
+E=E_in-W;//kinetic energy of the ejected electron(in Joules)
+E_1=E/e;//kinetic energy of the ejected electron(in eV)
+disp(E_1,'kinetic energy of the ejected electron(in eV)=');
\ No newline at end of file diff --git a/1085/CH6/EX6.2/ex6_2.sce b/1085/CH6/EX6.2/ex6_2.sce new file mode 100755 index 000000000..595b77857 --- /dev/null +++ b/1085/CH6/EX6.2/ex6_2.sce @@ -0,0 +1,13 @@ +//Exam:6.2
+clc;
+clear;
+close;
+h=6.625*(10^(-34));//Planck's constant(in m2*kg/s)
+c=3*10^8;//speed of light (in m/s)
+e=1.602*10^-19;//electron charge(in coulomb)
+W=2.3;//work (in eV)
+W_1=W*e;//work (in joules)
+v_o=W_1/h;//threshold frequency(in Hz)
+Wavelength=(h*c/W_1)/10^(-10);//Wavelength in Angstrom
+disp(v_o,'threshold frequency(Hz)=');
+disp(Wavelength,'Wavelength (in Angstrom)=');
\ No newline at end of file diff --git a/1085/CH6/EX6.3/ex6_3.sce b/1085/CH6/EX6.3/ex6_3.sce new file mode 100755 index 000000000..67c268dd0 --- /dev/null +++ b/1085/CH6/EX6.3/ex6_3.sce @@ -0,0 +1,12 @@ +//Exam:6.3
+clc;
+clear;
+close;
+h=6.625*(10^(-34));//Planck's constant(in m2*kg/s)
+c=3*10^8;//speed of light (in m/s)
+e=1.602*10^-19;//electron charge(in coulomb)
+wavelength=6800*10^-10;//wavelength of radiation
+v_o=c/wavelength;//frequency
+W=h*v_o;//Work function
+disp(v_o,'threshold frequency(in Hz)=')
+disp(W,'work function of metal(in joule)=')
\ No newline at end of file diff --git a/1085/CH6/EX6.4/ex6_4.sce b/1085/CH6/EX6.4/ex6_4.sce new file mode 100755 index 000000000..702b265e7 --- /dev/null +++ b/1085/CH6/EX6.4/ex6_4.sce @@ -0,0 +1,11 @@ +//Exam:6.4
+clc;
+clear;
+close;
+h=6.625*(10^(-34));//Planck's constant(in m2*kg/s)
+c=3*10^8;//speed of light (in m/s)
+L_r =150*8/100;//Lamp rating(in joule)
+wavelength=4500*10^-10;//in meter
+W=h*c/wavelength;//work function
+N=L_r/W;//number of photons emitted by lamp per second
+disp(N,'number of photons emitted by lamp per second=')
\ No newline at end of file diff --git a/1085/CH6/EX6.5/ex6_5.sce b/1085/CH6/EX6.5/ex6_5.sce new file mode 100755 index 000000000..9d59afe0a --- /dev/null +++ b/1085/CH6/EX6.5/ex6_5.sce @@ -0,0 +1,12 @@ +//Exam:6.5
+clc;
+clear;
+close;
+h=6.6*(10^(-34));//Planck's constant(in m2*kg/s)
+c=3*10^8;//speed of light (in m/s)
+e=1.6*10^-19;//electron charge(in coulomb)
+W=2.24;//work function(in eV)
+W_1=W*e;//work function(in joule)
+v=(W_1/h)*10^-10;//frequency
+wavelength=c/v;//region of electrons spectrum is less than(in angstrom)
+disp(wavelength,'region of electrons spectrum is less than(in angstrom)')
\ No newline at end of file diff --git a/1085/CH6/EX6.6/ex6_6.sce b/1085/CH6/EX6.6/ex6_6.sce new file mode 100755 index 000000000..d31109bca --- /dev/null +++ b/1085/CH6/EX6.6/ex6_6.sce @@ -0,0 +1,11 @@ +//Exam:6.6
+clc;
+clear;
+close;
+h=6.625*(10^(-34));//Planck's constant(in m2*kg/s)
+c=3*10^8;//speed of light (in m/s)
+P_o=10*10^3;//Power of radio receiver (in Watt)
+v=440*10^3;//Operating frequency
+E=h*v;//Energy of each electron
+N=P_o/E;//Number of photons emitted/sec
+disp(N,'Number of photons emitted/sec by radio receiver=')
\ No newline at end of file diff --git a/1085/CH6/EX6.7/ex6_7.sce b/1085/CH6/EX6.7/ex6_7.sce new file mode 100755 index 000000000..fc6c9dad7 --- /dev/null +++ b/1085/CH6/EX6.7/ex6_7.sce @@ -0,0 +1,15 @@ +//Exam:6.7
+clc;
+clear;
+close;
+W_t=4.52;//Work function for tungesten(in eV)
+W_b=2.5;//Work function for barrium(in eV)
+h=6.62*(10^(-34));//Planck's constant(in m2*kg/s)
+c=3*10^8;//speed of light (in m/s)
+e=1.6*10^-19;//electron charge(in coulomb)
+W_T=W_t*e;//Work function for tungesten(in Joule)
+W_B=W_b*e;//Work function for barrium(in Joule)
+Wavelength_T=(h*c/W_T)*10^10;//wavelength of light which can just eject electron from tungsten
+Wavelength_B=(h*c/W_B)*10^10;//wavelength of light which can just eject electron from barrium
+disp(Wavelength_T,'wavelength of light which can just eject electron from tungsten(in Angstrom)=')
+disp(Wavelength_B,'wavelength of light which can just eject electron from barrium(in Angstrom)=')
\ No newline at end of file diff --git a/1085/CH7/EX7.1/ex7_1.sce b/1085/CH7/EX7.1/ex7_1.sce new file mode 100755 index 000000000..1191e1873 --- /dev/null +++ b/1085/CH7/EX7.1/ex7_1.sce @@ -0,0 +1,12 @@ +//Exam:7.1
+clc;
+clear;
+close;
+D=1.28*10^(-11);//diffusion coefficient of carbon in given steel in m2/s
+c_s=0.9;//Surface concentration of diffusion element in the surface
+c_o=0.2;//Initial uniform concentration of the element in the solid
+c_x=0.4;//Concentration of the diffusingelement at a distance x from thesurface
+x=0.5*10^(-3);//depth from the surface in m
+//(c_s-c_x)/(c_s-c_o)=erf(x/(2*(D*t)^(1/2)))
+t=(x/(2*erfinv((c_s-c_x)/(c_s-c_o))*D^(1/2)))^2;//time required for carburization(in sec)
+disp(t,'time required for carburization(in sec)=');
\ No newline at end of file diff --git a/1085/CH7/EX7.2/ex7_2.sce b/1085/CH7/EX7.2/ex7_2.sce new file mode 100755 index 000000000..9a747b398 --- /dev/null +++ b/1085/CH7/EX7.2/ex7_2.sce @@ -0,0 +1,17 @@ +//Exam:7.2
+clc;
+clear;
+close;
+D=4*10^(-17);//diffusion coefficient of carbon in given steel in m2/s
+c_s=3*10^26;//Surface concentration of boron atoms in the surface
+c_1=0;//Initial uniform concentration of the element in the solid
+c_x=10^23;//Concentration of the diffusing element at a distance x from thesurface
+x=2*10^(-6);//depth from the surface in m
+//(c_s-c_x)/(c_s-c_1)=erf(x/(2*(D*t)^(1/2)))
+a=(erfinv((c_s-c_x)/(c_s-c_1)));
+disp(a,'==')
+t=(x^2/(D*4*(2.55)^2));//time required to get a boron content of 1023 atoms per m3 at a depth of 2 micro meter
+disp(t,'time required to get a boron content of 1023 atoms per m3 at a depth of 2 micro meter(in sec)=');
+disp((c_s-c_x)/(c_s-c_1));
+T=(x/(2*(2.55)*D^(1/2)))^2;
+disp(T,'==')
\ No newline at end of file diff --git a/1085/CH7/EX7.3/ex7_3.sce b/1085/CH7/EX7.3/ex7_3.sce new file mode 100755 index 000000000..27fe9758f --- /dev/null +++ b/1085/CH7/EX7.3/ex7_3.sce @@ -0,0 +1,21 @@ +//Exam:7.3
+clc;
+clear;
+close;
+t_1=736;//Temperature in °C
+t_2=782;//Temperature in °C
+T_1=t_1+273;//Temperature in K
+T_2=t_2+273;//Temperature in K
+D_1=2*10^(-13);//Coefficient of diffusion at T_1 (in m2/s)
+D_2=5*10^(-13);//Coefficient of diffusion at T_2 (in m2/s)
+k=1.38*10^(-23);//in J/K
+//log(d_1)=log(d_o)-E/(k*T_1)
+//log(d_2)=log(d_o)-E/(k*T_2)
+E=(log(D_1)-log(D_2))/((1/(k*T_1))-(1/(k*T_2)));//
+disp(E,'activation energy(in J)=');
+D_o=2*10^(-13)/exp(E/(k*T_1));
+disp(D_o,'constant of the equation(in m2/s)=')
+t_4=500;//Temperature in °C
+T_4=t_4+273;//Temperature in °K
+D_4=D_o*exp(E/(k*T_4));//diffusion coefficient at 500°C
+disp(D_4,'diffusion coefficient at 500°C(in m2/s)=')
\ No newline at end of file diff --git a/1085/CH7/EX7.4/ex7_4.sce b/1085/CH7/EX7.4/ex7_4.sce new file mode 100755 index 000000000..e748f2287 --- /dev/null +++ b/1085/CH7/EX7.4/ex7_4.sce @@ -0,0 +1,10 @@ +//Exam:7.4
+clc;
+clear;
+close;
+D_500=4.8*10^(-14);//Diffusion coefficient for copper in aluminimum at 500*C(in m^2/s)
+D_600=5.3*10^(-13);//Diffusion coefficient for copper in aluminimum at 600*C(in m^2/s)
+t_600=10;//time of diffussion at 600*C(in Hours)
+//D_500*t_500=D_600*t_600
+t_500=D_600*t_600/D_500;//time of diffussion at 500*C
+disp(t_500,'Time at 500*C that will produce the same diffusion as in 600*C(in Hours)=');
\ No newline at end of file diff --git a/1085/CH8/EX8.1/ex8_1.sce b/1085/CH8/EX8.1/ex8_1.sce new file mode 100755 index 000000000..e9472557b --- /dev/null +++ b/1085/CH8/EX8.1/ex8_1.sce @@ -0,0 +1,10 @@ +//Exam:8.1
+clc;
+clear;
+close;
+Y=180*10^9;//Young's modulus of a certain material(in N/m^2)
+E=1.8;//true surface energy (in J/m^2)
+c=(5/2)*10^-6;//Crack (in meter)
+pi=3.14;
+F_strength=(2*Y*E/(pi*c))^(1/2);
+disp(F_strength*10^-6,'fracture strength(in MN/m^2)=');
\ No newline at end of file diff --git a/1085/CH8/EX8.2/ex8_2.sce b/1085/CH8/EX8.2/ex8_2.sce new file mode 100755 index 000000000..96470f450 --- /dev/null +++ b/1085/CH8/EX8.2/ex8_2.sce @@ -0,0 +1,18 @@ +//Exam:8.2
+clc;
+clear;
+close;
+d_o=12.7;//tensile test specimen diameter (in mm)
+d=12;//tensile test specimen diameter after load (in mm)
+P=76*10^3;//load(in N)
+pi=22/7;
+A_o=(pi/4)*(d_o^2);//Initial area of cross section(in mm^2)
+A=(pi/4)*(d^2);//area of cross section after load of 76 kN
+E_stress=P/A_o;//engineering stress
+T_stress=P/A;//true stress
+T_strain=log(A_o/A);//true strain
+E_strain=exp(T_strain)-1;//engineering strain
+disp(E_stress,'engineering stress(in N/mm^2)=');
+disp(T_stress,'true stress(in N/mm^2)=');
+disp(E_strain,'engineering strain=');
+disp(T_strain,'true strain=');
\ No newline at end of file diff --git a/1085/CH8/EX8.3/ex8_3.sce b/1085/CH8/EX8.3/ex8_3.sce new file mode 100755 index 000000000..8952f357b --- /dev/null +++ b/1085/CH8/EX8.3/ex8_3.sce @@ -0,0 +1,10 @@ +//Exam:8.3
+clc;
+clear;
+close;
+Y=210*10^9;//Young's modulus of a certain material(in N/m^2)
+E=10;//true surface energy (in J/m^2)
+c=(100/2)*10^-6;//Crack (in meter)
+pi=3.14;
+F_strength=(2*Y*E/(pi*c))^(1/2);
+disp(F_strength,'fracture strength(in Newton/m^2)=');
\ No newline at end of file diff --git a/1085/CH8/EX8.4/ex8_4.sce b/1085/CH8/EX8.4/ex8_4.sce new file mode 100755 index 000000000..398e3501e --- /dev/null +++ b/1085/CH8/EX8.4/ex8_4.sce @@ -0,0 +1,9 @@ +//Exam:8.4
+clc;
+clear;
+close;
+l_o=305*10^-3;//length of copper piece(in meter)
+E=110*10^9;//surface energy
+stress=276*10^6;//in Pa
+dl=stress*l_o/E;//resultant elongation(in meter)
+disp(dl*10^3,'resultant elongation(in mm)=');
\ No newline at end of file diff --git a/1085/CH8/EX8.5/ex8_5.sce b/1085/CH8/EX8.5/ex8_5.sce new file mode 100755 index 000000000..2bd97a2e3 --- /dev/null +++ b/1085/CH8/EX8.5/ex8_5.sce @@ -0,0 +1,9 @@ +//Exam:8.5
+clc;
+clear;
+close;
+T_stress=415;//True stress (in Megapascal)
+T_strain=0.10;//True strain
+K=1035;//(in Megapascal)
+n=(log(T_stress)-log(K))/log(T_strain);//
+disp(n,'Strain hardening exponent for an alloy=')
\ No newline at end of file diff --git a/1085/CH9/EX9.1/ex9_1.sce b/1085/CH9/EX9.1/ex9_1.sce new file mode 100755 index 000000000..817dcd4a0 --- /dev/null +++ b/1085/CH9/EX9.1/ex9_1.sce @@ -0,0 +1,10 @@ +//Exam:9.1
+clc;
+clear;
+close;
+//Fulcrum is at 0.5% carbon
+//from lever rule
+Pro_f=((0.80-0.5)/(0.80-0.0))*100;// % Proeutectoid ferrite
+Pea_f=100-Pro_f;// % Pearlite ferrite
+disp(Pro_f,'% Proeutectoid ferrite=');
+disp(Pea_f,'% Pearlite ferrite=');
\ No newline at end of file diff --git a/1085/CH9/EX9.2/ex9_2.sce b/1085/CH9/EX9.2/ex9_2.sce new file mode 100755 index 000000000..5de1e4c27 --- /dev/null +++ b/1085/CH9/EX9.2/ex9_2.sce @@ -0,0 +1,19 @@ +//Exam:9.2
+clc;
+clear;
+close;
+N=2;
+C=2;
+//F=C-P+N
+P_1=1;
+P_2=2;
+P_3=3;
+P_4=4;
+F_1=C-P_1+N;
+F_2=C-P_2+N;
+F_3=C-P_3+N;
+F_4=C-P_4+N;
+disp(F_1,'Degrees of freedom for 1 phase=');
+disp(F_2,'Degrees of freedom for 2 phases=');
+disp(F_3,'Degrees of freedom for 3 phases=');
+disp(F_4,'Degrees of freedom for 4 phases=');
\ No newline at end of file diff --git a/1085/CH9/EX9.3/ex9_3.sce b/1085/CH9/EX9.3/ex9_3.sce new file mode 100755 index 000000000..e442c997a --- /dev/null +++ b/1085/CH9/EX9.3/ex9_3.sce @@ -0,0 +1,9 @@ +//Exam:9.3
+clc;
+clear;
+close;
+P=4;//Number of phases exhibit by a material
+F=0;//Minimum degrees of freedom
+//modified form of the phase rule F=C-P+1
+C=F+P-1;//minimum number of components in the system
+disp(C,'the minimum number of components in the system=')
\ No newline at end of file |