diff options
Diffstat (limited to '1085/CH14')
-rwxr-xr-x | 1085/CH14/EX14.1/ex14_1.sce | 9 | ||||
-rwxr-xr-x | 1085/CH14/EX14.2/ex14_2.sce | 11 | ||||
-rwxr-xr-x | 1085/CH14/EX14.3/ex14_3.sce | 8 | ||||
-rwxr-xr-x | 1085/CH14/EX14.4/ex14_4.sce | 11 | ||||
-rwxr-xr-x | 1085/CH14/EX14.5/ex14_5.sce | 19 | ||||
-rwxr-xr-x | 1085/CH14/EX14.6/ex14_6.sce | 11 | ||||
-rwxr-xr-x | 1085/CH14/EX14.7/ex14_7.sce | 15 | ||||
-rwxr-xr-x | 1085/CH14/EX14.8/ex14_8.sce | 11 | ||||
-rwxr-xr-x | 1085/CH14/EX14.9/ex14_9.sce | 12 |
9 files changed, 107 insertions, 0 deletions
diff --git a/1085/CH14/EX14.1/ex14_1.sce b/1085/CH14/EX14.1/ex14_1.sce new file mode 100755 index 000000000..1ece714c5 --- /dev/null +++ b/1085/CH14/EX14.1/ex14_1.sce @@ -0,0 +1,9 @@ +//Exam:14.1
+clc;
+clear;
+close;
+l=100;//length of wire
+p=2.66*10^(-8);//resistivity
+A=3*10^(-6);//cross sectional area
+R=p*l/A;//resistance of an aluminium wire
+disp(R,'resistance of an aluminium wire(in Ohm)=');
\ No newline at end of file diff --git a/1085/CH14/EX14.2/ex14_2.sce b/1085/CH14/EX14.2/ex14_2.sce new file mode 100755 index 000000000..161ffb4c3 --- /dev/null +++ b/1085/CH14/EX14.2/ex14_2.sce @@ -0,0 +1,11 @@ +//Exam:14.2
+clc;
+clear;
+close;
+R_Cu=1.56;//Resistivity of pure copper(in micro-ohm-cm)
+R_CuNi = 4.06;//Resistivity of Cu containing two atomic percent (in micro-ohm-cm)
+R_Ni=(R_CuNi-R_Cu)/2;//Increase in resistivity due to one atomic % Ni
+R_CuAg= 1.7;//resistivity of copper, containing one atomic percent silver (in micro-ohm-cm)
+R_Ag=R_CuAg-R_Cu;//Increase in resistivity due to one atomic % Ag
+R_CuNiAg=R_Cu+R_Ni+3*R_Ag;//Resistivity of copper alloy containing one atomic percent Ni and 3 atomic percent Ag
+disp(R_CuNiAg,'Resistivity of copper alloy containing one atomic percent Ni and 3 atomic percent Ag(in micro-ohm-cm)=')
\ No newline at end of file diff --git a/1085/CH14/EX14.3/ex14_3.sce b/1085/CH14/EX14.3/ex14_3.sce new file mode 100755 index 000000000..36c6214ef --- /dev/null +++ b/1085/CH14/EX14.3/ex14_3.sce @@ -0,0 +1,8 @@ +//Exam:14.3
+clc;
+clear;
+close;
+R_Cu=1.8*10^(-8);//resistivity of pure copper at room temperature
+R_CuNi=7*10^(-8);//resistivity of Cu 4% Ni alloy at room temperature
+R_Ni=(R_CuNi-R_Cu)/4;//resistivity due to Impurity scattering per % of Ni
+disp(R_Ni,'resistivity due to impurity scattering per percent of Ni in the Cu lattice(in ohm-meter)=')
\ No newline at end of file diff --git a/1085/CH14/EX14.4/ex14_4.sce b/1085/CH14/EX14.4/ex14_4.sce new file mode 100755 index 000000000..7b9db3cb3 --- /dev/null +++ b/1085/CH14/EX14.4/ex14_4.sce @@ -0,0 +1,11 @@ +//Exam:14.4
+clc;
+clear;
+close;
+C=10^(-9);//capacitance(in F)
+d=2*10^(-3);//distance of separation in a parallel plate condenser
+E_o=8.854*10^(-12);//dielectric constant
+A=(10*10^(-3))*(10*10^(-3));//area of parallel plate condenser
+//C=E_o*E_r*A/d
+E_r=C*d/(E_o*A);//Relative dielectric constant
+disp(ceil(E_r),'Relative dielectric constant of a barium titanate crystal')
\ No newline at end of file diff --git a/1085/CH14/EX14.5/ex14_5.sce b/1085/CH14/EX14.5/ex14_5.sce new file mode 100755 index 000000000..118048dfe --- /dev/null +++ b/1085/CH14/EX14.5/ex14_5.sce @@ -0,0 +1,19 @@ +//Exam:14.5
+clc;
+clear;
+close;
+q=1.6*10^(-19);//charge (in C)
+d_1=0.06//shift of the titanium ion from the body centre (in Å)
+d_2=0.08//shift of the oxygen anions of the side faces (in Å)
+d_3=0.06//shift of the oxygen anions of the top and bottom face (in Å)
+D_1=d_1*10^(-10);//shift of the titanium ion from the body centre (in m)
+D_2=d_2*10^(-10);//shift of the oxygen anions of the side faces (in m)
+D_3=d_3*10^(-10);//shift of the oxygen anions of the top and bottom face (in m)
+U_1=4*q*D_1;//dipole moment due to two O2– ions on the four side faces(in C-m)
+U_2=2*q*D_2;//dipole moment due to one O2– on top and bottom(in C-m)
+U_3=4*q*D_3;//dipole moment due to one Ti4+ ion at body centre(in C-m)
+U=U_1+U_2+U_3;//Total dipole moment(in C-m)
+V=4.03*((3.98)^2)*10^(-30);//volume(in m3)
+P=U/V;//polarization the total dipole moments per unit volume
+disp(P,'polarization(in C/m^2)=');
+disp(U,'==')
\ No newline at end of file diff --git a/1085/CH14/EX14.6/ex14_6.sce b/1085/CH14/EX14.6/ex14_6.sce new file mode 100755 index 000000000..bd83622ed --- /dev/null +++ b/1085/CH14/EX14.6/ex14_6.sce @@ -0,0 +1,11 @@ +//Exam:14.6
+clc;
+clear;
+close;
+V=((2.87)^3)*10^(-30)//Volume of unit cell of BCC iron (in m^3)
+N=2//Number of atoms in the unit cell
+M=1750*10^3;//saturation magnetization of BCC Iron A/m
+M_Net=V*M*(1/N)//net magnetic moment per atom
+Bohr_magneton=9.273*10^(-24);//Bohr_magneton (magnetic moment) in A/m2
+M_moment=M_Net/Bohr_magneton;//The magnetic moment (in units of U_B)
+disp(M_moment,'The magnetic moment (in units of U_B)=');
\ No newline at end of file diff --git a/1085/CH14/EX14.7/ex14_7.sce b/1085/CH14/EX14.7/ex14_7.sce new file mode 100755 index 000000000..5e0df07ff --- /dev/null +++ b/1085/CH14/EX14.7/ex14_7.sce @@ -0,0 +1,15 @@ +//Exam:14.7
+clc;
+clear;
+close;
+p=8.90*10^6;//density of nickel in gm/m3.
+N_A=6.023*10^23;//Avogadro’s number atoms/mol
+At_w=58.71;//Atomic weight of Ni in gm/mol
+N=p*N_A/At_w;//number of atoms/m3
+U_B=9.273*10^(-24);//Bohr_magneton
+M_s=0.60*U_B*N;//saturation magnetization
+pi=22/7;
+U_o=4*pi*10^(-7);//magnetic constant
+B_s=U_o*M_s;//Saturation flux density
+disp(M_s,'the saturation magnetization=');
+disp(B_s,'Saturation flux density=');
\ No newline at end of file diff --git a/1085/CH14/EX14.8/ex14_8.sce b/1085/CH14/EX14.8/ex14_8.sce new file mode 100755 index 000000000..3c78ec65e --- /dev/null +++ b/1085/CH14/EX14.8/ex14_8.sce @@ -0,0 +1,11 @@ +//Exam:14.8
+clc;
+clear;
+close;
+//Each cubic unit cell of ferrous ferric oxide contains 8 Fe2+ and 16 Fe3+ ions and
+n_b=32;//
+U_B=9.273*10^(-24);//Bohr_magneton
+a=0.839*10^(-9);//the unit cell edge length in m
+V=a^3;//volume(in m3)
+M_s=n_b*U_B/V;//the saturation magnetization
+disp(M_s,'the saturation magnetization=');
\ No newline at end of file diff --git a/1085/CH14/EX14.9/ex14_9.sce b/1085/CH14/EX14.9/ex14_9.sce new file mode 100755 index 000000000..152eed0b0 --- /dev/null +++ b/1085/CH14/EX14.9/ex14_9.sce @@ -0,0 +1,12 @@ +//Exam:14.9
+clc;
+clear;
+close;
+//hysteresis loss (Ph) and the induced emf loss (Pe) are proportional to the frequency
+//Pe is proportional to the square of the induced emf (Pe)
+//Pe + Ph = 750 W (at 25 Hz)
+//4Pe + 2Ph = 2300 W(at 50Hz)
+//solving equation
+P_e=800/2;//induced emf loss
+I_d=4*P_e;//The eddy current loss at the normal voltage and frequency
+disp(I_d,'The eddy current loss at the normal voltage and frequency(in W)=');
\ No newline at end of file |