summaryrefslogtreecommitdiff
path: root/905/CH6/EX6.4/6_4.sce
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /905/CH6/EX6.4/6_4.sce
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '905/CH6/EX6.4/6_4.sce')
-rwxr-xr-x905/CH6/EX6.4/6_4.sce134
1 files changed, 134 insertions, 0 deletions
diff --git a/905/CH6/EX6.4/6_4.sce b/905/CH6/EX6.4/6_4.sce
new file mode 100755
index 000000000..577962c84
--- /dev/null
+++ b/905/CH6/EX6.4/6_4.sce
@@ -0,0 +1,134 @@
+clear;
+clc;
+
+// Illustration 6.4
+// Page: 342
+
+printf('Illustration 6.4 - Page: 342\n\n');
+
+// solution
+//*****Data*****//
+T = 298; // [K]
+Fa = 200; // [feed, kmole/hr]
+zf = 0.6;
+yd = 0.95; xd = yd;
+xw = 0.05;
+q = 0.5; // [Lf/F]
+//*****//
+
+printf('Illustration 6.4(a) - Page: 342\n\n');
+// Solution (a)
+
+// Solution of simultaneous equation
+function[f]=F(e)
+ f(1) = Fa - e(1)-e(2);
+ f(2) = zf*Fa - yd*e(1) - xw*e(2);
+ funcprot(0);
+endfunction
+
+// Initial guess
+e = [120 70];
+y = fsolve(e,F);
+D = y(1);
+W = y(2);
+printf("Quantity of liquid and vapor products are %f kmole/h and %f kmole/h respectively\n\n",D,W);
+
+
+printf('Illustration 6.4(b) - Page: 342\n\n');
+// Solution(b)
+// VLE data is generated in the same manner as generated in Example 6.1 by applying Raoult's law
+// VLE_data = [T,x,y]
+VLE_data = [379.4 0.1 0.21;375.5 0.2 0.37;371.7 0.3 0.51;368.4 0.4 0.64;365.1 0.5 0.71;362.6 0.6 0.79;359.8 0.7 0.86;357.7 0.8 0.91;355.3 0.9 0.96];
+// From figure 6.14
+// The minimum number of equilibrium stages is stepped off between the equilibrium curve and the 45 degree Iine, starting from the top, giving
+Nmin = 6.7;
+printf("The minimum number of theoretical stages is %f\n\n",Nmin);
+
+printf('Illustration 6.4(c) - Page: 342\n\n');
+// Solution(c)
+// Slope of q-line = Lf/F/(1-(Lf/F))
+s = q/(1-q);
+// For minimum reflux ratio
+// From figure 6.12 y-intercept is
+i = 0.457;
+// Therefore Rmin is
+Rmin = xd/i -1;
+printf("The minimum reflux ratio is %f mole reflux/mole distillate\n\n",Rmin);
+
+printf('Illustration 6.4(d) - Page: 343\n\n');
+// Solution(d)
+R = 1.3*Rmin;
+// The y-intercept of the rectifying-section operating line is
+ia = xd/(R+1);
+// The operating line for the stripping section is drawn to pass through the point x = y = xw = 0.05 on the 45" line and the point of intersection of the q-line // and the rectifying-section operating line.
+// Therefore from figure 6.15
+Nact = 13;
+// But it include boiler
+Nact1 = Nact-1;
+printf("The number of equilibrium stages for the reflux ratio specified is %f\n",Nact1);
+// For the optimal feed-stage location, the transition from one operating line to the other occurs at the first opportunity
+// after passing the operating-line intersection
+// Therefore from figure 6.15 shows that
+printf("The optimal location of the feed stage for the reflux ratio specified is sixth from the top\n\n");
+
+printf('Illustration 6.4(e) - Page: 344\n\n');
+// Solution(e)
+L = R*D; // [kmole/h]
+V = L+D; // [kmole/h]
+// From equation 6.27
+Lst = L+q*Fa; // [kmole/h]
+// From equation 6.28
+Vst = V+(q-1)*Fa; // [kmole/h]
+
+// For 50% vaporization of the feed ( zf = 0.60), from calculations similar to those illustrated in Example 6.1, the separator temperature and the equilibrium // compositions are
+Tf = 365.5; // [K]
+yf = 0.707;
+xf = 0.493;
+
+// Latent heat vaporisation data at temperature T = 298 K
+lambdaA = 33.9; // [kJ/mole]
+lambdaB = 38; // [kJ/mole]
+// Heat capacities of liquids (298-366 K)
+Cla = 0.147; // [kJ/mole.K]
+Clb = 0.174; // [kJ/mole.K]
+// Heat capacities of gases, average in the range 298 to 366 K
+Cpa = 0.094; // [kJ/mole.K]
+Cpb = 0.118; // [kJ/mole.K]
+// Substituting in equation 6.6 gives
+Hf = 0;
+Hlf = (Tf-T)*(xf*Cla+(1-xf)*Clb); // [kJ/mole of liquid feed]
+// From equation 6.7
+Hvf = (Tf-T)*(yf*Cpa+(1-yf)*Cpb) + yf*lambdaA + (1-yf)*lambdaB; // [kJ/mole of vapor feed]
+
+Lf = Fa*q; // [kmole/h]
+Vf = Fa*(1-q); // [kmole/h]
+// From equation 6.3
+Qf = (Hvf*Vf +Hlf*Lf-Fa*Hf)*1000/3600; // [kW]
+
+
+Tlo = 354.3; // [Bubble point temperature, K]
+T1 = 355.8; // [Dew point temperature, K]
+y1 = 0.95; // [composition of saturated vapor at dew point]
+x0 = 0.95; // [composition of saturated liquid at bubble point]
+Hv1 = (T1-T)*(y1*Cpa+(1-y1)*Cpb) + y1*lambdaA + (1-y1)*lambdaB; // [kJ/mole of vapor feed]
+Hlo = (Tlo-T)*(x0*Cla+(1-x0)*Clb); // [kJ/mole of liquid feed]
+
+// An energy balance around condenser
+Qc = V*(Hv1-Hlo)*1000/3600; // [kW]
+
+// A flash-vaporization calculation is done in which the fraction vaporized is known (53.8/75.4 = 0.714) and the concentration
+// of the liquid residue is fixed at xw = 0.05
+// The calculations yield
+Tr = 381.6; // [K]
+x12 = 0.093;
+y13 = 0.111;
+T12 = 379.7; // [Bubble point of the liquid entering in the reboiler, K]
+
+Hl12 = (T12-T)*(x12*Cla+(1-x12)*Clb); // [kJ/mole of liquid feed]
+Hv13 = (Tr-T)*(y13*Cpa+(1-y13)*Cpb) + y13*lambdaA + (1-y13)*lambdaB; // [kJ/mole of vapor feed]
+
+Hlw = (Tr-T)*(xw*Cla+(1-xw)*Clb); // [kJ/mole of liquid feed]
+
+// An energy balance around the reboiler
+Qr = (Vst*Hv13+W*Hlw-Lst*Hl12)*1000/3600; // [kW]
+printf("The thermal load of the condenser, reboiler, and feed preheater are %f kW, %f kW and %f kW respectively\n\n",Qc,Qr,Qf); \ No newline at end of file