From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 905/CH6/EX6.4/6_4.sce | 134 ++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 134 insertions(+) create mode 100755 905/CH6/EX6.4/6_4.sce (limited to '905/CH6/EX6.4/6_4.sce') diff --git a/905/CH6/EX6.4/6_4.sce b/905/CH6/EX6.4/6_4.sce new file mode 100755 index 000000000..577962c84 --- /dev/null +++ b/905/CH6/EX6.4/6_4.sce @@ -0,0 +1,134 @@ +clear; +clc; + +// Illustration 6.4 +// Page: 342 + +printf('Illustration 6.4 - Page: 342\n\n'); + +// solution +//*****Data*****// +T = 298; // [K] +Fa = 200; // [feed, kmole/hr] +zf = 0.6; +yd = 0.95; xd = yd; +xw = 0.05; +q = 0.5; // [Lf/F] +//*****// + +printf('Illustration 6.4(a) - Page: 342\n\n'); +// Solution (a) + +// Solution of simultaneous equation +function[f]=F(e) + f(1) = Fa - e(1)-e(2); + f(2) = zf*Fa - yd*e(1) - xw*e(2); + funcprot(0); +endfunction + +// Initial guess +e = [120 70]; +y = fsolve(e,F); +D = y(1); +W = y(2); +printf("Quantity of liquid and vapor products are %f kmole/h and %f kmole/h respectively\n\n",D,W); + + +printf('Illustration 6.4(b) - Page: 342\n\n'); +// Solution(b) +// VLE data is generated in the same manner as generated in Example 6.1 by applying Raoult's law +// VLE_data = [T,x,y] +VLE_data = [379.4 0.1 0.21;375.5 0.2 0.37;371.7 0.3 0.51;368.4 0.4 0.64;365.1 0.5 0.71;362.6 0.6 0.79;359.8 0.7 0.86;357.7 0.8 0.91;355.3 0.9 0.96]; +// From figure 6.14 +// The minimum number of equilibrium stages is stepped off between the equilibrium curve and the 45 degree Iine, starting from the top, giving +Nmin = 6.7; +printf("The minimum number of theoretical stages is %f\n\n",Nmin); + +printf('Illustration 6.4(c) - Page: 342\n\n'); +// Solution(c) +// Slope of q-line = Lf/F/(1-(Lf/F)) +s = q/(1-q); +// For minimum reflux ratio +// From figure 6.12 y-intercept is +i = 0.457; +// Therefore Rmin is +Rmin = xd/i -1; +printf("The minimum reflux ratio is %f mole reflux/mole distillate\n\n",Rmin); + +printf('Illustration 6.4(d) - Page: 343\n\n'); +// Solution(d) +R = 1.3*Rmin; +// The y-intercept of the rectifying-section operating line is +ia = xd/(R+1); +// The operating line for the stripping section is drawn to pass through the point x = y = xw = 0.05 on the 45" line and the point of intersection of the q-line // and the rectifying-section operating line. +// Therefore from figure 6.15 +Nact = 13; +// But it include boiler +Nact1 = Nact-1; +printf("The number of equilibrium stages for the reflux ratio specified is %f\n",Nact1); +// For the optimal feed-stage location, the transition from one operating line to the other occurs at the first opportunity +// after passing the operating-line intersection +// Therefore from figure 6.15 shows that +printf("The optimal location of the feed stage for the reflux ratio specified is sixth from the top\n\n"); + +printf('Illustration 6.4(e) - Page: 344\n\n'); +// Solution(e) +L = R*D; // [kmole/h] +V = L+D; // [kmole/h] +// From equation 6.27 +Lst = L+q*Fa; // [kmole/h] +// From equation 6.28 +Vst = V+(q-1)*Fa; // [kmole/h] + +// For 50% vaporization of the feed ( zf = 0.60), from calculations similar to those illustrated in Example 6.1, the separator temperature and the equilibrium // compositions are +Tf = 365.5; // [K] +yf = 0.707; +xf = 0.493; + +// Latent heat vaporisation data at temperature T = 298 K +lambdaA = 33.9; // [kJ/mole] +lambdaB = 38; // [kJ/mole] +// Heat capacities of liquids (298-366 K) +Cla = 0.147; // [kJ/mole.K] +Clb = 0.174; // [kJ/mole.K] +// Heat capacities of gases, average in the range 298 to 366 K +Cpa = 0.094; // [kJ/mole.K] +Cpb = 0.118; // [kJ/mole.K] +// Substituting in equation 6.6 gives +Hf = 0; +Hlf = (Tf-T)*(xf*Cla+(1-xf)*Clb); // [kJ/mole of liquid feed] +// From equation 6.7 +Hvf = (Tf-T)*(yf*Cpa+(1-yf)*Cpb) + yf*lambdaA + (1-yf)*lambdaB; // [kJ/mole of vapor feed] + +Lf = Fa*q; // [kmole/h] +Vf = Fa*(1-q); // [kmole/h] +// From equation 6.3 +Qf = (Hvf*Vf +Hlf*Lf-Fa*Hf)*1000/3600; // [kW] + + +Tlo = 354.3; // [Bubble point temperature, K] +T1 = 355.8; // [Dew point temperature, K] +y1 = 0.95; // [composition of saturated vapor at dew point] +x0 = 0.95; // [composition of saturated liquid at bubble point] +Hv1 = (T1-T)*(y1*Cpa+(1-y1)*Cpb) + y1*lambdaA + (1-y1)*lambdaB; // [kJ/mole of vapor feed] +Hlo = (Tlo-T)*(x0*Cla+(1-x0)*Clb); // [kJ/mole of liquid feed] + +// An energy balance around condenser +Qc = V*(Hv1-Hlo)*1000/3600; // [kW] + +// A flash-vaporization calculation is done in which the fraction vaporized is known (53.8/75.4 = 0.714) and the concentration +// of the liquid residue is fixed at xw = 0.05 +// The calculations yield +Tr = 381.6; // [K] +x12 = 0.093; +y13 = 0.111; +T12 = 379.7; // [Bubble point of the liquid entering in the reboiler, K] + +Hl12 = (T12-T)*(x12*Cla+(1-x12)*Clb); // [kJ/mole of liquid feed] +Hv13 = (Tr-T)*(y13*Cpa+(1-y13)*Cpb) + y13*lambdaA + (1-y13)*lambdaB; // [kJ/mole of vapor feed] + +Hlw = (Tr-T)*(xw*Cla+(1-xw)*Clb); // [kJ/mole of liquid feed] + +// An energy balance around the reboiler +Qr = (Vst*Hv13+W*Hlw-Lst*Hl12)*1000/3600; // [kW] +printf("The thermal load of the condenser, reboiler, and feed preheater are %f kW, %f kW and %f kW respectively\n\n",Qc,Qr,Qf); \ No newline at end of file -- cgit