diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /905/CH1/EX1.11 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '905/CH1/EX1.11')
-rwxr-xr-x | 905/CH1/EX1.11/1_11.sce | 72 |
1 files changed, 72 insertions, 0 deletions
diff --git a/905/CH1/EX1.11/1_11.sce b/905/CH1/EX1.11/1_11.sce new file mode 100755 index 000000000..863da9d76 --- /dev/null +++ b/905/CH1/EX1.11/1_11.sce @@ -0,0 +1,72 @@ +clear;
+clc;
+
+// Illustration 1.11
+// Page: 33
+
+printf('Illustration 1.11 - Page:33 \n\n');
+// Solution
+
+//*****Data*****//
+// ammonia-1 nitrogen-2 hydrogen-3
+T = 300; // [K]
+P = 1; // [bar]
+y_1 = .40;
+y_2 = .20;
+y_3 = .40;
+//*****//
+
+// Lennard-Jones parameter for ammonia
+sigma_1 = 2.9; // [Angstrom]
+d_1 = 558.3; // [E/K, K]
+M_1 = 17; // [gram/mole]
+
+// Lennard-Jones parameter for nitrogen
+sigma_2 = 3.798; // [Angstrom]
+d_2 = 71.4; // [E/K, K]
+M_2 = 28; // [gram/mole]
+
+// Lennard-Jones parameter for hydrogen
+sigma_3 = 2.827; // [Angstrom]
+d_3 = 59.7; // [E/K, K]
+M_3 = 2; // [gram/mole]
+
+// Binary diffusivitiy of ammonia in nitrogen (D_12)
+
+sigma_12 = (sigma_1+sigma_2)/2; // [Angstrom]
+d_12 = sqrt(d_1*d_2); // [K]
+M_12 = 2/((1/M_1)+(1/M_2)); // [gram/mole]
+
+T_star12 = T/d_12;
+a = 1.06036; b = 0.15610; c = 0.19300; d = 0.47635; e = 1.03587; f = 1.52996; g = 1.76474; h = 3.89411;
+ohm12 = ((a/T_star12^b)+(c/exp(d*T_star12))+(e/exp(f*T_star12))+(g/exp(h*T_star12)));
+
+// Substituting these values into the Wilke-Lee equation yields (equation 1.49)
+D_12 = ((10^-3*(3.03-(.98/sqrt(M_12)))*T^1.5)/(P*(sqrt(M_12))*(sigma_12^2)*ohm12)); // [square cm/s]
+printf("The diffusivitiy of ammonia in nitrogen %e square cm/s\n",D_12);
+
+// Binary diffusivitiy of ammonia in hydrogen (D_13)
+
+sigma_13 = (sigma_1+sigma_3)/2; // [Angstrom]
+d_13 = sqrt(d_1*d_3); // [K]
+M_13 = 2/((1/M_1)+(1/M_3)); // [gram/mole]
+
+T_star13 = T/d_13;
+a = 1.06036; b = 0.15610; c = 0.19300; d = 0.47635; e = 1.03587; f = 1.52996; g = 1.76474; h = 3.89411;
+ohm13 = ((a/T_star13^b)+(c/exp(d*T_star13))+(e/exp(f*T_star13))+(g/exp(h*T_star13)));
+
+// Substituting these values into the Wilke-Lee equation yields (equation 1.49)
+D_13 = ((10^-3*(3.03-(.98/sqrt(M_13)))*T^1.5)/(P*(sqrt(M_13))*(sigma_13^2)*ohm13)); // [square cm/s]
+printf("The diffusivitiy of ammonia in hydrogen %e square cm/s\n",D_13);
+
+// Figure 1.5 shows the flux of ammonia (N_1) toward the catalyst surface, where
+// it is consumed by chemical reaction, and the fluxes of nitrogen (N_2) and hydrogen (N_3)
+// produced by the reaction migrating away from the same surface.
+
+// Therefore N_1 = N_2+N_3
+// From equation 1.59
+// N_2 = -(0.5)*N_1 and N_3 = -(1.5)*N_1
+
+// Substituting in equation (1.58) we obtain
+D_1eff = (1+y_1)/((y_2+0.5*y_1)/D_12 + (y_3+1.5*y_1)/D_13); // [square cm/s]
+printf("The effective diffusivity of ammonia in the gaseous mixture is %e square cm/s",D_1eff);
\ No newline at end of file |