diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /881 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '881')
94 files changed, 2988 insertions, 0 deletions
diff --git a/881/CH1/EX1.1/exa1_1.sce b/881/CH1/EX1.1/exa1_1.sce new file mode 100755 index 000000000..eea8c0740 --- /dev/null +++ b/881/CH1/EX1.1/exa1_1.sce @@ -0,0 +1,20 @@ +clc +//Example 1.1 +//Page no 6 + +//Solution + +disp("Substituting into Eq 1.3 (ref pg no 4) yeilds,"); + +ap=10*log10(200); //absolute power ratio in dB + +disp('dB',ap,"The absolute power ratio is:"); + +//absolute ratio: 200 = 100 X 2" + +disp("Applying the product rule for logarithms, the power gain in dB is:"); + +Ap=10*log10(100)+10*log10(2); //power gain in dB + +//Result +disp('dB',Ap,"The power gain is, ") diff --git a/881/CH1/EX1.10/exa1_10.sce b/881/CH1/EX1.10/exa1_10.sce new file mode 100755 index 000000000..5c940c122 --- /dev/null +++ b/881/CH1/EX1.10/exa1_10.sce @@ -0,0 +1,15 @@ +clc; +//Example 1.10 +//Page no 22 + +//Solution + +disp("The formula T = C+273 is used to convert degree C into Kelvin. "); + +T1=100+273; +T2=0+273; +T3=-10+273; + +disp('K',T1,"(a) "); +disp('K',T2,"(b) "); +disp('K',T3,"(c) "); diff --git a/881/CH1/EX1.11/exa1_11.sce b/881/CH1/EX1.11/exa1_11.sce new file mode 100755 index 000000000..89a7faee8 --- /dev/null +++ b/881/CH1/EX1.11/exa1_11.sce @@ -0,0 +1,27 @@ +clc; +//Example 1.11 +//Page no 24 + +//Solution + +R=100; + +T=17+273; + +N=([1.38*(10^-23)]*[T]*[1*(10^4)]); + +disp('W',N,"N = "); + +disp("Substituting in equation 1-16 (refer pgno 23) give the noise power in dBm: "); + +N1=-174+[10*log10(10000)]; + +disp('dBm',N1,"N = "); + +//(b) + +disp("(b)The rms noise voltage is found by substituting into equation 1-17 (refer pgno 23): "); + +V=sqrt(4*R*N); + +disp('V',V,"Vn = "); diff --git a/881/CH1/EX1.12/exa1_12.sce b/881/CH1/EX1.12/exa1_12.sce new file mode 100755 index 000000000..412ec2e7e --- /dev/null +++ b/881/CH1/EX1.12/exa1_12.sce @@ -0,0 +1,43 @@ +clc; +//Example 1.12 +//Page no 25 + + +//Solution + +V1=8; +V2=0.2; +V3=0.1; + +//(a) + + +h1=2*1; + +disp('kHz',h1,"2nd harmonic = "); + +h2=3*1; + +disp('kHz',h2,"3rd harmonic = "); + +h3=12*1; + +disp('kHz',h3,"12th harmonic = "); + +//(b) + +disp("(b) ") + +p1=(V2/V1)*100; + +disp('%',p1,"%2nd order = "); + +p2=(V3/V1)*100; + +disp('%',p2,"%3nd order = "); + +THD=([sqrt((0.2^2)+(0.1^2)) ]/8)*100; + +disp('%',THD," Total harmonic distortion = "); + + diff --git a/881/CH1/EX1.13/exa1_13.sce b/881/CH1/EX1.13/exa1_13.sce new file mode 100755 index 000000000..affd43f36 --- /dev/null +++ b/881/CH1/EX1.13/exa1_13.sce @@ -0,0 +1,6 @@ +clc; +//Example 1.13 +//Page no 26 + +//Theory + diff --git a/881/CH1/EX1.14/exa1_14.sce b/881/CH1/EX1.14/exa1_14.sce new file mode 100755 index 000000000..bac9edc78 --- /dev/null +++ b/881/CH1/EX1.14/exa1_14.sce @@ -0,0 +1,30 @@ +clc; +//Example 1.14 +//Page no 27 + + +//solution: + +//(a) +disp("Given B=100MHZ, S/N= 30dB = 1000"); + + + +B=(100*(10^6)); +Sn=1000; + +I=3.32*B*log10(Sn+1); + +disp('bps',I,"I = "); + +//(b) + +disp("(b)If the SNR is increased by 4 times, the new") + +SNR=Sn*4; + +disp(SNR,"SNR = "); + +i=3.32*B*log10(SNR+1); + +disp('bps',i,"Therefore, the new information carrying capactiy is ") diff --git a/881/CH1/EX1.15/exa1_15.sce b/881/CH1/EX1.15/exa1_15.sce new file mode 100755 index 000000000..b5562ecfa --- /dev/null +++ b/881/CH1/EX1.15/exa1_15.sce @@ -0,0 +1,16 @@ +clc; +//Example 1.15 +//Page no 28 + + +//solution + +v1=4; + +v2=0.005; + + + +sn=20*log10(v1/v2); + +disp('dB',sn,"S/N = "); diff --git a/881/CH1/EX1.16/exa1_16.sce b/881/CH1/EX1.16/exa1_16.sce new file mode 100755 index 000000000..24351d77b --- /dev/null +++ b/881/CH1/EX1.16/exa1_16.sce @@ -0,0 +1,66 @@ +clc; +//Example 1.16 +//Page no 30 + + +disp("Given: For a non ideal amplifier and the following parameters "); +disp("Input signal power = 2 x 10^-10 W"); +disp("Input noise power = 2 x 10^-18 W"); +disp("Power Gain = 1 x 10^6"); +disp("Internal noise = 6 x 10^-12 W"); + +//Solution + +ip=2*(10^-10); + +in=2*(10^-18); + +G=1*(10^6); + +Nd= 6*(10^-12); + +//(a) + + +sn=(ip/in); + +SN=10*log10(round(sn)); + +disp('dB',round(SN),"S/N = "); + +//(b) + +disp("(b)The output noise power is the sum of the internal noise and the amplified input noise, therefore "); + +No=(G*in)+Nd; + +disp('W',No,"Nout = "); + +disp("The output power is simply the product of the input power and the power gain. "); + +Po=G*ip; + +disp('W',Po,"Pout = "); + +disp("For the output signal and noise power levels calculated and substituting in equation 1-22, the output S/N is "); + +sn1=(Po/No); + +SN1=10*log10(round(sn1)); + +disp('dB',round(SN1),"S/N = "); + +//(C) + +disp("(c)The noise factor is found by substituting the result from step (a) and (b) into equation 1-25 "); + +F=([round(sn)]/[round(sn1)]); + +disp(F,"F = "); + +disp("and the noise figure is calculated from equation 1-26(refer pgno 25) "); + +NF=10*log10(round(F)); + +disp('dB',round(NF),"NF = "); + diff --git a/881/CH1/EX1.17/exa1_17.sce b/881/CH1/EX1.17/exa1_17.sce new file mode 100755 index 000000000..4d647e1f6 --- /dev/null +++ b/881/CH1/EX1.17/exa1_17.sce @@ -0,0 +1,19 @@ +clc; +//Example 1.17 +//Page no 31 + + + +//solution + + + +ft=2+((2-1)/10)+([2-1]/100);//Noise factor + +disp(ft,"Ft = ") + +disp("Thus, the total noise figure is"); + +nft=10*log10(ft); + +disp('dB',nft,"NFt = ") diff --git a/881/CH1/EX1.18/exa1_18.sce b/881/CH1/EX1.18/exa1_18.sce new file mode 100755 index 000000000..3a738dffb --- /dev/null +++ b/881/CH1/EX1.18/exa1_18.sce @@ -0,0 +1,36 @@ +clc; +//Example 1.18 +//Page no 33 + +//solution + +//(a) + +Te=75; + +T=290; + + + +f=1+(Te/T);//Noise factor + +disp(f,"F = "); + +nf=10*log10(f); + +disp('dB',round(nf),"NF = "); + +//(b) + +disp("(b)Noise factor is found by rearranging equation 1-26 "); + +F=10^0.6; + +disp(round(F),"F = "); + +disp("substituting into equation 1-31 gives, ") + +te=T*(round(F)-1); + +disp('K',round(te),"Te = "); + diff --git a/881/CH1/EX1.3/exa1_3.sce b/881/CH1/EX1.3/exa1_3.sce new file mode 100755 index 000000000..fe7a43343 --- /dev/null +++ b/881/CH1/EX1.3/exa1_3.sce @@ -0,0 +1,23 @@ +clc; +//Example 1.3 +//Page no 8 + +//Solution + +//(a) + +dBm1=10*log10([500*(10^-3)]/[1*(10^-3)]); + +disp('dBm',dBm1,"(a) 500 mW in dbm = "); + +//(b) + +dBm2=10*log10([10*(10^-9)]/[1*(10^-3)]); + +disp('dBm',dBm2,"(b) 10 nW in dbm = "); + +//(c) + +dBm3=10*log10([100*(10^-6)]/[1*(10^-3)]); + +disp('dBm',dBm3,"(c) 100 uW in dbm = "); diff --git a/881/CH1/EX1.4/exa1_4.sce b/881/CH1/EX1.4/exa1_4.sce new file mode 100755 index 000000000..1c6c89326 --- /dev/null +++ b/881/CH1/EX1.4/exa1_4.sce @@ -0,0 +1,29 @@ +clc;
+//Example 1.4
+//Page no 8
+
+//Solution
+
+//(a)
+
+p1=(10^-2.7)*(10^-3);
+
+disp('W', p1,"-27dBm in absolute power is, ");
+
+//(b)
+
+p2=(10^1.3)*(10^-3);
+
+disp('W', p2,"13dBm in absolute power is, ");
+
+//(c)
+
+p3=(10^4)*(10^-3);
+
+disp('W', p3,"40dBm in absolute power is, ");
+
+//(d)
+
+p4=(10^-5.3)*(10^-3);
+
+disp('W', p4,"-53dBm in absolute power is, ");
diff --git a/881/CH1/EX1.5/exa1_5.sce b/881/CH1/EX1.5/exa1_5.sce new file mode 100755 index 000000000..242f27182 --- /dev/null +++ b/881/CH1/EX1.5/exa1_5.sce @@ -0,0 +1,60 @@ +clc; +//Example 1.5 +//Page no 9 + + + +pin=0.1*(10^-3); +ap1=100; +ap2=40; +ap3=0.25; + +//Solution + +//(a) + +disp("(a)The input power in dBm "); + +Pin=10*log10(pin/0.001); + +disp('dBm',Pin,"The input power in dBm is, "); + +//(b) + +disp("(b)The output power is simply the input power multiplied by the three power gains: "); + +Pout=(pin)*ap1*ap2*ap3; + +Pout1=10*log10(Pout/0.001); + +disp('dBm',Pout1,'W',Pout,"The output power in watts and dBm is,"); + +//(c) + +disp("(c)The decibel value for the three gains are determined by substituting into equation 1-3 (Pgno 4)"); + +Ap1=10*log10(ap1); + +disp('dB',Ap1,"Ap1 = "); + +Ap2=10*log10(ap2); + +disp('dB',Ap2,"Ap2 = "); + +Ap3=10*log10(ap3); + +disp('dB',Ap3,"Ap3 = "); + +//(d) + +disp("(d)The overall power gain in dB (Apr) can be determined by simply adding the individual dB power gains, "); + +Apr=Ap1+Ap2+Ap3; + +disp('dB',Apr,"Apr = "); + +disp("The output power in dBm is the input power in dBm plus the sum of the gains of the three stages: "); + +Pout2=Pin+Apr; + +disp('dBm',Pout2,"Pout = "); diff --git a/881/CH1/EX1.6/exa1_6.sce b/881/CH1/EX1.6/exa1_6.sce new file mode 100755 index 000000000..2bd3863ba --- /dev/null +++ b/881/CH1/EX1.6/exa1_6.sce @@ -0,0 +1,27 @@ +clc; +//Example 1.6 +//Page no 10 + + + +//Solution + +//(a) + +a=100*5 + +disp(a,"(a)Overall gain of the system is the product of the individual gain, that is "); + +ap=10*log10(a); + +disp('dB',ap,"Thus, the overall gain in dB is,") + +//(b) + +b=[100*(10^-6)]*500; + +disp('W',b,"(b)Output power = Input power to the system X Overall power gain, that is ") + +bp=10*log10(b/[1*(10^-3)]); + +disp('dBm', bp,"Therefore, Output power expressed in dB is, "); diff --git a/881/CH1/EX1.7/exa1_7.sce b/881/CH1/EX1.7/exa1_7.sce new file mode 100755 index 000000000..a8743455f --- /dev/null +++ b/881/CH1/EX1.7/exa1_7.sce @@ -0,0 +1,8 @@ +clc; +//Example 1.7 +//Page no 11 +//Solution + +a=21+2.5; + +disp('dBm',a,"The difference in the two power levels is 1 dB. Therefore, from table 1-5 , the combining term is 2.5 dB and the total power is, "); diff --git a/881/CH1/EX1.8/exa1_8.sce b/881/CH1/EX1.8/exa1_8.sce new file mode 100755 index 000000000..c0c2e8736 --- /dev/null +++ b/881/CH1/EX1.8/exa1_8.sce @@ -0,0 +1,38 @@ +clc;
+//Example 1.8
+//Page no 17
+
+//Solution
+
+//Refer to figure 1-5 on page no 17
+
+//(a)
+
+disp("(a)Medium Frequencies as per ITU-T range between 0.3MHz and 3MHz.");
+
+lm1=([3*(10^8)]/[0.3*(10^6)]);
+
+lm2=([3*(10^8)]/[3*(10^6)]);
+
+disp('m',lm2,'and','m',lm1,"Therefore, wavelengths range for MF are between ");
+
+//(b)
+
+disp("(b)Ultra High Frequencies as per ITU-T range between 300MHz and 3GHz.");
+
+lm3=([3*(10^8)]/[300*(10^6)]);
+
+lm4=([3*(10^8)]/[3*(10^9)]);
+
+disp('m',lm4,'and','m',lm3,"Therefore, wavelengths range for UHF are between ");
+
+//(c)
+
+disp("(c)Very High Frequencies as per ITU-T range between 30MHz and 300Mz.");
+
+lm5=([3*(10^8)]/[30*(10^6)]);
+
+lm6=([3*(10^8)]/[300*(10^6)]);
+
+disp('m',lm6,'and','m',lm5,"Therefore, wavelengths range for VHF are between ");
+
diff --git a/881/CH1/EX1.9/exa1_9.sce b/881/CH1/EX1.9/exa1_9.sce new file mode 100755 index 000000000..315f304f7 --- /dev/null +++ b/881/CH1/EX1.9/exa1_9.sce @@ -0,0 +1,16 @@ +clc; +//Example 1.9 +//Page no 20 + + + +//Solution + +disp("The Shannon limit for capacity is determined by substituting into equation 1-12b"); + +I=(3.32)*(2700)*log10(1+1000); + +disp('bps',I); + + + diff --git a/881/CH10/EX10.1/exa10_1.sce b/881/CH10/EX10.1/exa10_1.sce new file mode 100755 index 000000000..0fba87c94 --- /dev/null +++ b/881/CH10/EX10.1/exa10_1.sce @@ -0,0 +1,31 @@ +clc; +//Example 10.1 +//Page No 395 + + + +//Solution + +i=10*10^-4; +dt=10*10^-9; +dv=10; + +disp("The expression for the current through a capacitor is "); + +disp("i = C dv/dt"); + +disp("Rearranging and solving for c yields, "); + +c=i*dt/dv; + +disp('F',c,"C = "); + +disp("t = RC","The charge time constant for C when Q1 in on is "); + +disp("Therefore, rearranging the above equation and substituting the value of chaging time yields"); + +C=dt/(4.6*20); + +disp('F',C/100,"C = "); + + diff --git a/881/CH10/EX10.3/exa10_3.sce b/881/CH10/EX10.3/exa10_3.sce new file mode 100755 index 000000000..c301f6014 --- /dev/null +++ b/881/CH10/EX10.3/exa10_3.sce @@ -0,0 +1,21 @@ +clc; +//Example 10.3 +//Page No 400 + +disp("Given: For figure, Analog sample voltage of +1.07 V. ;"); + +//solution + + + +a=1.07/1 + +disp(round(a)); + +disp("The quantization error is the difference between the original sample voltage and the quantized level, or"); + +q=1.07-1; + +disp(q,"Qe = "); + +disp("From Table 10-2, the PCM code for 1 is 101"); diff --git a/881/CH10/EX10.4/exa10_4.sce b/881/CH10/EX10.4/exa10_4.sce new file mode 100755 index 000000000..62bf76361 --- /dev/null +++ b/881/CH10/EX10.4/exa10_4.sce @@ -0,0 +1,48 @@ +clc;
+//Example 10.4
+//Page No 403
+
+disp("Given: For minimum line speed with an 8-bit PCM for speech signal ranging upto 1 V. ");
+
+//solution
+
+v=1;
+n=8;
+
+
+disp("Minimum line speed with an 8-bit PCM is 64Kbps.");
+
+//(a)
+
+r=v/(2^n-1);
+
+disp('V',r,"(a)Resolution = ");
+
+q=r;
+
+disp('V',q,"Therefore, Resolution = quantization, q=");
+
+qe=q/2;
+
+disp('V',qe,"Quantization error = ");
+
+//(b)
+
+disp("(b)Dynamic range DR for 0.001 V resolution ");
+
+dr=20*log10(v/0.01);
+
+disp('db',dr,"DR = ");
+
+disp("Minimum number of bits n required to achieve the dynamic range is given by ");
+
+N=((log(100+1))/(log(2)));
+
+disp(N,"n = ");
+
+c=(N/n)*100;
+
+disp('%',c,"Therefore, coding efficiency = ");
+
+
+
diff --git a/881/CH10/EX10.8/exa10_8.sce b/881/CH10/EX10.8/exa10_8.sce new file mode 100755 index 000000000..f7cd02d3a --- /dev/null +++ b/881/CH10/EX10.8/exa10_8.sce @@ -0,0 +1,32 @@ +clc; +//Example 10.8 +//Page No 418 + +//solution + + + +s=8; + +//(a) + +disp("(a)With the 7 bit PCM,"); + +b=7; + +r=s*b; + +disp('kbps',r,"line speed = "); + +//(b) + +disp("(b)With the 8 bit PCM, "); + +b1=8; + +r1=s*b1; + +disp('kbps',r1,"line speed = "); + + + diff --git a/881/CH12/EX12.1/exa12_1.sce b/881/CH12/EX12.1/exa12_1.sce new file mode 100755 index 000000000..f50148991 --- /dev/null +++ b/881/CH12/EX12.1/exa12_1.sce @@ -0,0 +1,15 @@ +clc; +//Example 12.1 +//Page No 505 + +disp("Given: A D/r ratio of 12.22"); + +//solution + +dr=12.22; + +disp("Susbstituting into equation 12-14(refer pgno 505), we obtain "); + +Z0=276*log10(dr); + +disp('Ohm',round(Z0),"Z0 = "); diff --git a/881/CH12/EX12.2/exa12_2.sce b/881/CH12/EX12.2/exa12_2.sce new file mode 100755 index 000000000..df7656fa7 --- /dev/null +++ b/881/CH12/EX12.2/exa12_2.sce @@ -0,0 +1,17 @@ +clc; +//Example 12.2 +//Page No 506 + + +//Solution + +d=0.025; +D=0.15; +e=2.23; + +disp("Substituting into Equation 12-15(refer pgno506) give us, "); + +Z0=-((138/sqrt(e))*(log10(d/D))); + +disp('Ohms',Z0,"Z0 = "); + diff --git a/881/CH12/EX12.3/exa12_3.sce b/881/CH12/EX12.3/exa12_3.sce new file mode 100755 index 000000000..0a89b256a --- /dev/null +++ b/881/CH12/EX12.3/exa12_3.sce @@ -0,0 +1,16 @@ +clc; +//Example 12.3 +//Page No 506 + +disp("Given: An RG-59A coaxial cable, with L=0.118uH/ft and C=21pF/ft"); + +//Solution + +L=0.118*10^-6; +C=21*10^-12; + +disp("Substituting into Equation 12-15(refer pgno506) give us,"); + +Z0=sqrt((L/C)); + +disp('ohm',round(Z0),"Z0 = "); diff --git a/881/CH12/EX12.4/exa12_4.sce b/881/CH12/EX12.4/exa12_4.sce new file mode 100755 index 000000000..fbc688aac --- /dev/null +++ b/881/CH12/EX12.4/exa12_4.sce @@ -0,0 +1,30 @@ +clc; +//Example 12.4 +//Page No 509 + + + +//solution + +C=96.6*10^-12; +L=241.56*10^-9; +ep=2.3; +c=3*10^8; + +disp("From equation 12-16 "); + +Vp=(1/sqrt(C*L)); + +disp('m/s',Vp,"Vp = "); + +disp("From equation 12-24 "); + +Vf=(Vp/c); + +disp(Vf,"Vf = "); + +disp("From equation 12-26 "); + +vf=(1/sqrt(e)); + +disp(vf,"Vf = "); diff --git a/881/CH12/EX12.5/exa12_5.sce b/881/CH12/EX12.5/exa12_5.sce new file mode 100755 index 000000000..523493127 --- /dev/null +++ b/881/CH12/EX12.5/exa12_5.sce @@ -0,0 +1,27 @@ +clc; +//Example 12.5 +//Page No 514 + + +//solution + +Ei=5; +Er=3; + +disp("Substituting into equation 12-33 yield"); + +r=Er/Ei; + +disp(r,"r = "); + +disp("Substituting into equation 12-37 yield"); + +swr=(Ei+Er)/(Ei-Er); + +disp(swr,"SWR = "); + +disp("Substituting into equation 12-45 yield"); + +r1=(swr-1)/(swr+1); + +disp(r1,"r = "); diff --git a/881/CH12/EX12.6/exa12_6.sce b/881/CH12/EX12.6/exa12_6.sce new file mode 100755 index 000000000..8eb042ce3 --- /dev/null +++ b/881/CH12/EX12.6/exa12_6.sce @@ -0,0 +1,27 @@ +clc; +//Example 12.6 +//Page No 524 + + +//solution + +f=150*10^6; +c=3*10^8; +z0=50; +zl=150; + +disp("The Physical length of the transformer depends on the wavelength of the signal. Substituting into equation 12-3 yields, "); + +l=(c/f); + +disp('m',l,'l = '); + +l=l/4; + +disp('m',l,'l = '); + +disp("The characteristic impedance of the 0.5m transformer is determined from the equation 12-47 "); + +Z0=sqrt(z0*zl); + +disp('Ohm',Z0,"Z0 = ") diff --git a/881/CH12/EX12.7/exa12_7.sce b/881/CH12/EX12.7/exa12_7.sce new file mode 100755 index 000000000..9ea2e9296 --- /dev/null +++ b/881/CH12/EX12.7/exa12_7.sce @@ -0,0 +1,15 @@ +clc; +//Example 12.7 +//Page No 526 + + + +//Solution + +c=3*10^8; + +disp("Substituting into equation 12-48"); + +d=((0.8)*c*(1*10^-6))/2; + +disp('m',d,'d = '); diff --git a/881/CH12/EX12.8/exa12_8.sce b/881/CH12/EX12.8/exa12_8.sce new file mode 100755 index 000000000..bb429a815 --- /dev/null +++ b/881/CH12/EX12.8/exa12_8.sce @@ -0,0 +1,17 @@ +clc; +//Example 12.8 +//Page No 527 + + + +//solution + +c=3*10^8; +d=3000; +k=0.9; + +disp("Rearranging Equation 12-48 "); + +t=((2*d)/(k*c)); + +disp('s',t,"t = ") diff --git a/881/CH13/EX13.1/exa13_1.sce b/881/CH13/EX13.1/exa13_1.sce new file mode 100755 index 000000000..4ac2e7e2b --- /dev/null +++ b/881/CH13/EX13.1/exa13_1.sce @@ -0,0 +1,29 @@ +clc; +//Example 13.1 +//Page No 545 + + + +//solution + +n1=1.5; +n2=1.36; +t1=30; + +disp("From Table, ") + +disp(n1,"n1(glass) = "); + +disp(n2,"n2(alcohol) = "); + +disp("Rearranging equation 13-9 and substituting, we get "); + +t=((n1/n2)*sin(%pi/6)); + +disp(t,"t2 = "); + +t3=asin(t); + +t2=t3*(180/%pi); + +disp(t2,"t2 = "); diff --git a/881/CH13/EX13.2/exa13_2.sce b/881/CH13/EX13.2/exa13_2.sce new file mode 100755 index 000000000..0be8784cd --- /dev/null +++ b/881/CH13/EX13.2/exa13_2.sce @@ -0,0 +1,20 @@ +clc; +//Example 13.2 +//Page No 554 + + + +//solution + +n1=1.485; +a=50*10^-6; +N=320; +l=0.850*10^-6; + +disp("Number of modes in a step-index fibre, N is given by equation 13-13, "); + +r=(sqrt(320)*((l)/(%pi*2*a))); + +n2=n1-r; + +disp(n2,"n2 = "); diff --git a/881/CH13/EX13.3/exa13_3.sce b/881/CH13/EX13.3/exa13_3.sce new file mode 100755 index 000000000..3eca1eea4 --- /dev/null +++ b/881/CH13/EX13.3/exa13_3.sce @@ -0,0 +1,20 @@ +clc; +//Example 13.3 +//Page No + + + +//solution + +al=0.25*100; +Pt=1*10^-4; + +disp("Substituting in equation 13-15, "); + +p=Pt*(10^(al/10)); + +disp('uW',p*10,"P = "); + +P=10*log10(p*10^-5/0.001); + +disp('uW',P,"P(dB) = "); diff --git a/881/CH13/EX13.4/exa13_4.sce b/881/CH13/EX13.4/exa13_4.sce new file mode 100755 index 000000000..95919a0d4 --- /dev/null +++ b/881/CH13/EX13.4/exa13_4.sce @@ -0,0 +1,26 @@ +clc; +//Example 13.4 +//Page No 558 + + +//solution + +n1=1.48; +n2=1.46; +L=6000; + +d=((n1-n2)/n1); + +disp(d,"d = "); + +t=((d*L)/(3*10^8)); + +T=0.03996; + +disp('ns',T,"Intermodal delay t = "); + +disp("Therefore, the maximum data rate Fmax is given by, "); + +F=(1/(2*T)); + +disp('MHz',F,"Fmax = "); diff --git a/881/CH13/EX13.5/exa13_5.sce b/881/CH13/EX13.5/exa13_5.sce new file mode 100755 index 000000000..adb459985 --- /dev/null +++ b/881/CH13/EX13.5/exa13_5.sce @@ -0,0 +1,23 @@ +clc; +//Example 13.5 +//Page No 561 + + +//solution + +L=10000; +dt=5*10^-6; + +disp("Substituting into equation 13-18 yields "); + +fb=(1/(dt*L)); + +disp('Mbps',fb,"fb = "); + +disp("Substituting into equation 13-19 yields "); + +Fb=(1/((2*dt)*L)); + +disp('Mbps',Fb,"fb = "); + + diff --git a/881/CH13/EX13.6/exa13_6.sce b/881/CH13/EX13.6/exa13_6.sce new file mode 100755 index 000000000..9f5d35625 --- /dev/null +++ b/881/CH13/EX13.6/exa13_6.sce @@ -0,0 +1,45 @@ +clc; +//Example 13.8 +//Page No 575 + + + +//solution + +P=30*10^-3; +cl=0.5; +conl=2; +ltc=1.9; +ctd=2.1; + + + +disp("The LED output power is converted to dBm using equation 13-6"); + +Po=10*log10(P/0.001); + +disp('dBm',Po,"Po = "); + + + +t=20*cl; + +disp('dB',t,"total cable loss = "); + + + +c=3*conl; + +disp('dB',c,"total connector loss = "); + +//light source to cable and cable to light detector losses + +tl=t+c+ltc+ctd; + +disp('dB',tl,"total loss = "); + +disp("The receive power is determined by substituting into equation 13-22 "); + +Pr=Po-tl; + +disp('dBm',Pr,"Pr = "); diff --git a/881/CH14/EX14.1/exa14_1.sce b/881/CH14/EX14.1/exa14_1.sce new file mode 100755 index 000000000..8383fc6f7 --- /dev/null +++ b/881/CH14/EX14.1/exa14_1.sce @@ -0,0 +1,27 @@ +clc; +//Example 14.1 +//Page No. 584 + + + +//Solution + +Prad=100; +r1=1000; +r2=2000; + +//(a) + +disp("(a)Substituting into equation 14-7 yields, "); + +p1=((Prad)/(4*%pi*(r1^2))); + +disp('uW/m^2',p1*10^6,"P1 = "); + +//(b) + +disp("(b)Substituting into equation 14-7 yields, "); + +p2=((Prad)/(4*%pi*(r2^2))); + +disp('uW/m^2',p2*10^6,"P2 = "); diff --git a/881/CH14/EX14.2/exa14_2.sce b/881/CH14/EX14.2/exa14_2.sce new file mode 100755 index 000000000..2120722a6 --- /dev/null +++ b/881/CH14/EX14.2/exa14_2.sce @@ -0,0 +1,29 @@ +clc; +//Example 14.2 +//Page No 597 + + + +//Solution + +//(a) + +d=48.7; +ht=40; + +disp("(a)As per equation 14-23, "); + +hr=(((d-sqrt(17*ht))^2)/17); + +hr=round(hr); + +disp('m',hr,"hr = "); + +//(b) + +Ht=2*ht; +Hr=2*hr; + +D=((sqrt(17*Ht))+(sqrt(17*Hr))); + +disp('km',D,"(b)Dmax = "); diff --git a/881/CH14/EX14.3/exa14_3.sce b/881/CH14/EX14.3/exa14_3.sce new file mode 100755 index 000000000..4ae94f8bf --- /dev/null +++ b/881/CH14/EX14.3/exa14_3.sce @@ -0,0 +1,15 @@ +clc; +//Example 14.3 +//Page No 603 + +//Solution + +D=40; +f=1.8; +o=0.9999; + +disp("Substituting into equation 14-34, "); + +Fm=([30*log10(D)]+[10*log10([6*4*0.5*f])]-[10*log10(1-o)]-70); + +disp('dB',Fm,"Fm = ") diff --git a/881/CH15/EX15.1/exa15_1.sce b/881/CH15/EX15.1/exa15_1.sce new file mode 100755 index 000000000..3bc11889d --- /dev/null +++ b/881/CH15/EX15.1/exa15_1.sce @@ -0,0 +1,64 @@ +clc; +//Example 15.1 +//Page No 616 + + + +//solution + +Rr=72; +Re=8; +D=20; +Pin=100; + +//(a) + +disp("(a)Antenna efficiency is found by substituting into equation 15-3 "); + +n=(Rr/[Rr+Re])*100; + +disp('%',n,"n = "); + +//(b) + +disp("(b)Antenna gain "); + +A=(n/100)*(D); + +disp('and','dB',A,"A = "); + +A1=10*log10(A); + +disp('dB',A1,"A = "); + +//(c) + +disp("(c)Radiated power"); + +Prad=(n/100)*Pin; + +disp('W',Prad,"Prad = "); + +prad=10*log10(Prad/0.001); + +disp('dBm',prad,"Prad(dBm) = "); + +pRad=10*log10(Prad); + +disp('dBW',pRad,"Prad(dBW) = "); + +//(c) + +disp("(d)EIRP is found by substituting into equations 15-7d,e and f"); + +EIRP=Pin*A; + +disp('W',EIRP,"EIRP = "); + +EIRP1=10*log10(EIRP/0.001); + +disp('dBm',EIRP1,"EIRP(dBm) = "); + +EIRP2=10*log10(EIRP) + +disp('dBW',EIRP2,"EIRP(dBW) = "); diff --git a/881/CH15/EX15.2/exa15_2.sce b/881/CH15/EX15.2/exa15_2.sce new file mode 100755 index 000000000..e6af4a93e --- /dev/null +++ b/881/CH15/EX15.2/exa15_2.sce @@ -0,0 +1,90 @@ +clc; +//Example 15.2 +//Page No 616 + + + +//solution + +Dt1=1; +Dt2=10; +n1=1; +n2=0.5; +At=5; +Lp=50; +Lf=3; +Pout=40; + +//(a) + +disp("(a)The antenna input power in dBm is ") + +Pin=Pout-Lf; + +disp('dBm',Pin,"Pin = "); + +disp("Radiated power in dBm is "); + +N1=10*log10(n1); + +Prad=Pin+N1; + +disp('dBm',Prad,"Prad = "); + +At1=Dt1*n1; + +EIRP1=Prad+(10*log10(At1)); + +disp('dBm',EIRP1,"EIRP = "); + +P1=EIRP1-Lp; + +disp('dBm',P1,"P = "); + +//(b) + +disp("(b)The antenna input power in dBm is ") + +Pin=Pout-Lf; + +disp('dBm',Pin,"Pin = "); + +disp("Radiated power in dBm is "); + +N2=10*log10(n2); + +Prad=Pin+N2; + +disp('dBm',round(Prad),"Prad = "); + +EIRP2=Prad+(10*log10(Dt2)); + +disp('dBm',round(EIRP2),"EIRP = "); + +P2=EIRP2-Lp; + +disp('dBm',round(P2),"P = "); + +//(c) + +disp("(c)The antenna input power in dBm is ") + +Pin=Pout-Lf; + +disp('dBm',Pin,"Pin = "); + +disp("Radiated power in dBm is "); + +N3=10*log10(n2); + +Prad=Pin+N3; + +disp('dBm',round(Prad),"Prad = "); + +EIRP3=Prad+(10*log10(At)); + +disp('dBm',round(EIRP3),"EIRP = "); + +P3=EIRP3-Lp; + +disp('dBm',round(P3),"P = "); diff --git a/881/CH15/EX15.3/exa15_3.sce b/881/CH15/EX15.3/exa15_3.sce new file mode 100755 index 000000000..e1c9ba3cb --- /dev/null +++ b/881/CH15/EX15.3/exa15_3.sce @@ -0,0 +1,19 @@ +clc; +//Example 15.3 +//Page No620 + + +//solution + +P=10; +Ac=0.2; + +disp("Substituting into equation 15-12 yields "); + +Pcap=P*Ac; + +disp('uW',Pcap,"Pcap = "); + +pcap=10*log10(Pcap*10^-6/0.001); + +disp('dBm',round(pcap),"Pcap(dBm)"); diff --git a/881/CH15/EX15.4/exa15_4.sce b/881/CH15/EX15.4/exa15_4.sce new file mode 100755 index 000000000..a407efa8e --- /dev/null +++ b/881/CH15/EX15.4/exa15_4.sce @@ -0,0 +1,39 @@ +clc; +//Example 15.4 +//Page No 643 + + +//solution + +D=2; +c=3*10^8; +f=6; +Pt=10; + +disp("(a)The beam width is found by substituting into equation 15-29 "); + +O=([70*c]/[(f*10^9)*D]); + +disp(O,"T = "); + +disp("(b)The transmit power gain is found by substituting into equation 15-31c, "); + +A=([20*log10(f*10^3)]+[20*log10(2)]-42.2); + +disp('dB',A,"Ap(dB) = "); + +disp("(c)The receive power gain is found by substituting into equation 15-33c, "); + +l=(c/(f*10^9)); + +disp('m/cycle',l,"l = "); + +Ap=10*log10(5.4*[(D/l)^2]); + +disp('dB',Ap,"Ap(dB) = "); + +disp("(d)The EIRP is the product of the radiated power times the transmit antenna gain, "); + +EIRP=Ap+(10*log10(Pt/0.001)); + +disp('dB',EIRP,"EIRP = "); diff --git a/881/CH15/EX15.5/exa15_5.sce b/881/CH15/EX15.5/exa15_5.sce new file mode 100755 index 000000000..546732b06 --- /dev/null +++ b/881/CH15/EX15.5/exa15_5.sce @@ -0,0 +1,37 @@ +clc; +//Example 15.5 +//Page No 651 + + + +//solution + +f=6; +a=0.03; +c=3*10^8; + +disp("(a)The cutoff frequency is determined by substituting into equation 15-41, "); + +fc=(c/(2*a)); + +fc=fc/10^9; + +disp('GHz',fc,"fc = "); + +disp("(b)The cutoff wavelength is determined by substituting into equation 15-42, "); + +lc=2*(a); + +disp('m',lc,"lc = ") + +disp("(c)The phase velocity is found using equation 15-41, "); + +vph=(c/[sqrt(1-({fc/f}^2))]); + +disp('m/s',vph,"vph = "); + +disp("(d)The group velocity is found by rearranging equation 15-36, "); + +vg=([c^2]/vph); + +disp('m/s',vg,"vg = "); diff --git a/881/CH15/EX15.6/exa15_6.sce b/881/CH15/EX15.6/exa15_6.sce new file mode 100755 index 000000000..01d7c65f3 --- /dev/null +++ b/881/CH15/EX15.6/exa15_6.sce @@ -0,0 +1,25 @@ +clc; +//Example 15.6 +//Page No 652 + + +//solution + +a=9; +b=4.5; +f=4; +c=3*10^10; + +disp("(a)Cutoff frequency, "); + +fc=(c/(2*a)); + +fc=fc/10^9; + +disp('GHz',fc,"fc = "); + +disp("(b)Characteristic impedence, "); + +Zte=(377/[sqrt(1-({fc/f}^2))]); + +disp('ohm',Zte,"Zte = "); diff --git a/881/CH17/EX17.1/exa17_1.sce b/881/CH17/EX17.1/exa17_1.sce new file mode 100755 index 000000000..c781a77bc --- /dev/null +++ b/881/CH17/EX17.1/exa17_1.sce @@ -0,0 +1,28 @@ +clc; +//Example 17.1 +//Page No 690 + + + +//solution + +p1=10*10^-3; +p2=0.5*10^-3; + +disp("(a)The power levels, "); + +P1=10*log10(p1/0.001); + +disp('dBm',P1,"P = "); + +P2=10*log10(p2/0.001) + +disp('dBm',round(P2),"P = "); + +disp("(b)The difference "); + +P=10*log10(p1/p2); + +disp('dBm',round(P),"diff = "); + +disp("The 10mW power level is 13dB higher than 0.5W power level. "); diff --git a/881/CH19/EX19.1/exa19_1.sce b/881/CH19/EX19.1/exa19_1.sce new file mode 100755 index 000000000..83c5ea76c --- /dev/null +++ b/881/CH19/EX19.1/exa19_1.sce @@ -0,0 +1,17 @@ +clc; +//Example 19.1 +//Page No 749 + +//solution + +disp("The total number of full-duplex channels is, "); + +F=10*7 + +disp("channel per cluster",F,"F = "); + +disp("The total channel capacity is,") + +C=10*7*10; + +disp("channel total",C,"C = "); diff --git a/881/CH19/EX19.2/exa19_2.sce b/881/CH19/EX19.2/exa19_2.sce new file mode 100755 index 000000000..fc4f6cf73 --- /dev/null +++ b/881/CH19/EX19.2/exa19_2.sce @@ -0,0 +1,53 @@ +clc; +//Example 19.2 +//Page No 752 + + +//solution + +Asys=1520; +Acell=4; +n=1140; +j=2; +i=3; + +//(a) + +disp("(a)Number of cells in a cluster, N "); + +N=(i^2)+(i*j)+(j^2); + +disp(N,"N = "); + +//(b) + +disp("(b)Number of clusters in the systems = area of the system / area of each cluster"); + +ac=N*Acell; + +N1=(Asys/ac); + +disp(N1,"Number of clusters = "); + +//(c) + +disp('Km^2',ac,"(c)Area of each celler cluster = "); + +//(d) + +sc=N1*n; + +disp('channels',sc,"(d)System capacity with frequency reuse = number of cluster X number of channels without frequency reuse, i.e."); + +//(e) + +disp("(e)Number of channels allocated to each cell, "); + +c=(Asys/Acell); + +disp(c,"(i)without frequency reuse = "); + +C=(n/N); + +disp(C,"(ii)With frequency reuse = "); + diff --git a/881/CH19/EX19.3/exa19_3.sce b/881/CH19/EX19.3/exa19_3.sce new file mode 100755 index 000000000..d05b628b2 --- /dev/null +++ b/881/CH19/EX19.3/exa19_3.sce @@ -0,0 +1,29 @@ +clc; +//Example 19.3 +//Page No 755 + + +//solution + +//(a) + +c=10*7; + +disp('channel/area',c,"(a)Channel capacity = "); + +//(b) + +disp("(b)Splitting each macrocell"); + +c1=10*28 + +disp('channel/area',c1,"Channel capacity = "); + +//(c) + +disp("(c)Further splitting minicell into four microcells "); + +c2=10*112 + +disp('channel/area',c2,"Channel capacity = "); + diff --git a/881/CH2/EX2.3/exa2_3.sce b/881/CH2/EX2.3/exa2_3.sce new file mode 100755 index 000000000..31adf4f6e --- /dev/null +++ b/881/CH2/EX2.3/exa2_3.sce @@ -0,0 +1,17 @@ +clc; +//Example 2.3 +//Page no 50 + +disp("For the pulse waveform shown in figure 2.12 (refer pgno 50)"); + +//Solution + +//(a) + +disp("(a)From Equation 2-16 (refer pgno 49), the dc component is "); + +v=([1*{0.4*(10^-3)}/{2*(10^-3)}]); + +disp('V',v,"V0 = "); + + diff --git a/881/CH20/EX20.1/exa20_1.sce b/881/CH20/EX20.1/exa20_1.sce new file mode 100755 index 000000000..c090bc5a5 --- /dev/null +++ b/881/CH20/EX20.1/exa20_1.sce @@ -0,0 +1,32 @@ +clc; +//Example 20.1 +//Page No 768 + +//solution + +N1=3; +N2=991; + +//(a) + +disp("(a)The transmit and receive carrier frequencies"); + +ft=((0.03*N1)+825); + +disp('MHz',ft,"transmit ft = "); + +fr=ft+45; + +disp('MHz',fr,"receive fr = "); + +//(b) + +disp("(b)The transmit and receive carrier frequencies for channel 991 "); + +Ft=((0.03*(N2-1023))+825); + +disp('MHz',Ft,"transmit ft = "); + +Fr=Ft+45; + +disp('MHz',Fr,"receive fr = "); diff --git a/881/CH20/EX20.2/exa20_2.sce b/881/CH20/EX20.2/exa20_2.sce new file mode 100755 index 000000000..6483a92bf --- /dev/null +++ b/881/CH20/EX20.2/exa20_2.sce @@ -0,0 +1,15 @@ +clc; +//Example 20.2 +//Page No 792 + + + +//solution + +Pr=-100; + +disp("Substituing into equation 20-4, "); + +Pt=-76-(Pr); + +disp('dBm',Pt,"Pt = ") diff --git a/881/CH24/EX24.1/exa24_1.sce b/881/CH24/EX24.1/exa24_1.sce new file mode 100755 index 000000000..3ae33f252 --- /dev/null +++ b/881/CH24/EX24.1/exa24_1.sce @@ -0,0 +1,21 @@ +clc; +//Example 24.1 +//Page No 981 + + + +//soution + +f=18*10^9; +D=16*10^3; +c=3*10^8 + +disp("free space path loss based on inverse square law, which yields, "); + +lp=((4*%pi*D*f)/c)^2; + +disp(lp,"Lp = "); + +Lp=10*log10(lp); + +disp('db',Lp,"Lp(dB) = "); diff --git a/881/CH24/EX24.2/exa24_2.sce b/881/CH24/EX24.2/exa24_2.sce new file mode 100755 index 000000000..8c15152a6 --- /dev/null +++ b/881/CH24/EX24.2/exa24_2.sce @@ -0,0 +1,27 @@ +clc;
+//Example 24.2
+//Page No 988
+
+disp("Given: d1=18.6Km, d=14.4Km, Hn=H1=200meters, n=1");
+
+//solution
+
+d1=18.6;
+d=14.4;
+H1=0.2;
+n=1;
+c=3*10^8;
+
+disp("From equation 24-10, the height of the nth fresnel zone Hn is, ");
+
+l=(((H1^2)*d)/(n*d1*(d1-d)));
+
+l=l*10^3;
+
+disp('m',l,"l = ")
+
+f=(c/l);
+
+f=f/10^6;
+
+disp('MHz',f,"f = ");
diff --git a/881/CH24/EX24.3/exa24_3.sce b/881/CH24/EX24.3/exa24_3.sce new file mode 100755 index 000000000..26691996f --- /dev/null +++ b/881/CH24/EX24.3/exa24_3.sce @@ -0,0 +1,27 @@ +clc; +//Example 24.3 +//Page No 988 + +disp("Given: Noise bandwidth is 10MHz"); + +//solution + +f=10*10^6; + +disp("Substituting in equation 24-16 yields, "); + +N=-174+(10*log10(f)); + +disp('dBm',N,"N = "); + +disp("If the minimum C/N requirement for a receiver "); + +Cmin=24+N; + +disp('dBm',Cmin,"N = "); + +disp("For a system gain of 113.35dB, it would require a minimum transmit carrier power(Pt) of ") + +Pt=113.35+Cmin; + +disp('dBm',Pt,"N = "); diff --git a/881/CH24/EX24.4/exa24_4.sce b/881/CH24/EX24.4/exa24_4.sce new file mode 100755 index 000000000..dbfaa4c17 --- /dev/null +++ b/881/CH24/EX24.4/exa24_4.sce @@ -0,0 +1,21 @@ +clc;
+//Example 24.4
+//Page No 990
+
+disp("Given: Refer to figure");
+
+//solution
+
+disp("To achieve a S/N ratio of 32dB out of the FM demodulator, an input C/N of 15dB is required. Solving the receiver input carrier to noise ratios give, ");
+
+Cmin=15+6.5
+
+disp('dB',Cmin,"Cmin/N = ");
+
+cmin=Cmin+(-104);
+
+disp('dBm',cmin,"Cmin = ");
+
+Pt=112+cmin;
+
+disp('dBm',Pt,"Pt = ");
diff --git a/881/CH24/EX24.5/exa24_5.sce b/881/CH24/EX24.5/exa24_5.sce new file mode 100755 index 000000000..cf835511d --- /dev/null +++ b/881/CH24/EX24.5/exa24_5.sce @@ -0,0 +1,42 @@ +clc; +//Example 24.5 +//Page No 990 + +disp("Given: The system is shown in figure."); + +//solution + +cn=23; +NF=4.42; +B=68; + +disp("The minimum C/N at the input to the FM receiver is 23dB, "); + +cmin=cn+NF; + +disp('dB',cmin,"CMin/N = "); + +disp("Substituting into equation 24-16 yields, "); + +N=-174+B; + +disp('dBm',N,"N = "); + +Cmin=cmin+N; + +disp('dBm',Cmin,"Cmin = "); + +disp("Substituting into equation 24-14 yields, "); + +Fm=((30*log10(50))+10*(log10(6*0.25*0.125*8))-(10*log10(1-0.99999))-70); + +disp('dB',Fm,"Fm = "); + +disp("Substituting into equation 24-8 yields, "); + +Lp=92.4+(20*log10(8))+(20*log10(50)); + +disp('dB',Lp,"Lp = "); + +disp(" At=Ar= 37.8 dB"," Lf = 4.875"," Lb = 4 dB","From Table 24-3"); + diff --git a/881/CH25/EX25.2/exa25_2.sce b/881/CH25/EX25.2/exa25_2.sce new file mode 100755 index 000000000..9e494a490 --- /dev/null +++ b/881/CH25/EX25.2/exa25_2.sce @@ -0,0 +1,32 @@ +clc; +//Example 25.2 +//Page No 1018 + + + +//solution + +Pt=1000; +fb=50*10^6; + +Tb=(1/fb); + +disp('s',Tb*10^1,"Tb = "); + +Eb=Pt*Tb; + +disp('J',Eb,"Eb = "); + +disp("Expressed as a log with 1 Joule as the reference, "); + +eb=10*log10(Eb); + +disp('dBJ',eb,"Eb = ") + +disp("It is common to express Pt in dBW and Eb in dBW/bps. Thus, "); + +pt=10*log10(Pt); + +disp('dBW',pt,"Pt = "); + +disp('dBW/bps',round(eb),"Eb = "); diff --git a/881/CH25/EX25.5/exa25_5.sce b/881/CH25/EX25.5/exa25_5.sce new file mode 100755 index 000000000..3bfc318c6 --- /dev/null +++ b/881/CH25/EX25.5/exa25_5.sce @@ -0,0 +1,27 @@ +clc; +//Example 25.5 +//Page No 1022 + + + +//solution: + +B=10*10^6; +N=276*10^-16; +K=1.38*10^-23; + +disp("Substituting into equation 25-12, we have"); + +N0=(N/B); + +disp('W/Hz',N0,"N0 = "); + +n0=10*log10(N0); + +disp('dBW/Hz',n0,"N0 = "); + +disp("Rearranging equation 25-12 and solving we get, "); + +Te=(N0/K); + +disp('K/cycle',Te,"Te = "); diff --git a/881/CH3/EX3.1/exa3_1.sce b/881/CH3/EX3.1/exa3_1.sce new file mode 100755 index 000000000..9fe7c11d6 --- /dev/null +++ b/881/CH3/EX3.1/exa3_1.sce @@ -0,0 +1,36 @@ +clc; +//Example 3.1 +//Page no 75 + + + +//Solution + +fn=10*(10^6); +k=10; +c1=10; +c2=-5; + +//(a) + +disp("(a)Substituting into equation 3-6 and 3-7 (refer pgno 75) give us "); + +df=k*(10*c1); + +disp('Hz',round(df),"dF = "); + +fo=fn+(round(df)); + +disp('MHz',fo/(10^6),"F0 = "); + +//(b) + +disp("(b)Again, substituting into equation 3-6 and 3-7 yields "); + +dF=k*(10*c2); + +disp('Hz',round(dF),"dF = "); + +f1=fn+(round(dF)); + +disp('MHz',f1/(10^6),"F0 = "); diff --git a/881/CH3/EX3.2/exa3_2.sce b/881/CH3/EX3.2/exa3_2.sce new file mode 100755 index 000000000..4107a58ef --- /dev/null +++ b/881/CH3/EX3.2/exa3_2.sce @@ -0,0 +1,55 @@ +clc; +//Example 3.2 +//Page no 96 + + +//Solution + +fn=200*(10^3); +fi=210*(10^3); +Kd=0.2; +Kf=1; +Ka=5; +Ko=20; + +//(a) + +disp("(a)From equation 3-20 and 3-21 (refer pgno 95), we get "); + +Kl=Kd*Kf*Ka*Ko; + +disp('kHz/rad',Kl,"Kl = "); + +Kv=2*(%pi)*(Kl*(10^3)); + +disp('rad/s',Kv,"Kv = "); + +KV=20*log10(Kv); + +disp('dB',round(KV),"Kv(dB) = "); + +//(b) + +dF=fi-fn; + +disp('kHz',(dF/(10^3)),"(b)dF = "); + +//(c) + +disp("(c)Rearranging equation 3-15 (refer pgno 89) gives us "); + +Vo=((dF/(10^3))/Ko); + +disp('V',Vo,"Vout = "); + +Vd=(Vo/(Kf*Ka)); + +disp('V',Vd,"Vd = "); + +//(d) + +disp("(d)Rearranging equation 3-18 (refer pgno 94) gives us "); + +the=(Vd/Kd); + +disp('rad',the,"THe = "); diff --git a/881/CH4/EX4.1/exa4_1.sce b/881/CH4/EX4.1/exa4_1.sce new file mode 100755 index 000000000..cb497c803 --- /dev/null +++ b/881/CH4/EX4.1/exa4_1.sce @@ -0,0 +1,51 @@ +clc; +//Example 4.1 +//Page no 118 + +disp("Given: For and AM DSBFC modulator with a carrier frequency Fc=100kHz and a maximum modulating signal frequency of Fm(max)=5kHz."); + +//solution + +Fc=100*(10^3); +Fm=5*(10^3); +fm=3*(10^3); + +//(a) + +disp("(a)The lower sideband extends from the lowest possible lower side frequency to the carrier frequency or "); + +lsb=(Fc-Fm); + +disp("kHz",(Fc/(10^3)),"kHz to",(lsb/(10^3)),"LSB = "); + +disp("The upper sideband extends from the carrier frequency to the highest possible upper side frequency is "); + +usb=(Fc+Fm); + +disp("kHz",(usb/(10^3)),"kHz to",(Fc/(10^3)),"USB = "); + +//(b) + +disp("(b)The bandwidth is equal to the difference between the maximum upper side frequency and the minimum lower side frequency. "); + +b=2*Fm; + +disp("kHz",(b/(10^3)),"B = "); + +//(c) + +disp("(c)The upper side frequency is the sum of the carrier and modulating frequency."); + +Fu=Fc+fm; + +disp("kHz",(Fu/(10^3)),"Fusf = "); + +disp("The lower side frequency is the difference between the carrier and modulating frequency."); + +Fl=Fc-fm; + +disp("kHz",(Fl/(10^3)),"Flsf = "); + +//(d) + +disp("(d)The output frequency spectrum is shown in figure."); diff --git a/881/CH4/EX4.2/exa4_2.sce b/881/CH4/EX4.2/exa4_2.sce new file mode 100755 index 000000000..95093144a --- /dev/null +++ b/881/CH4/EX4.2/exa4_2.sce @@ -0,0 +1,48 @@ +clc; +//Example 4.2 +//Page no 123 + + +//solution + +Fc=500; //kHz +Fm=10; //kHz +Ec=20; +Em=7.5; + +disp("(a)The upper and lower side frequencies are simply the sum and difference frequencies, respectively "); + +fu=Fc+Fm; +fl=Fc-Fm; + +disp('kHz',fl,'kHz and Flsf = ',fu,"Fusf = "); + +//(b) + +disp("(b)The modulation coefficient is determined from equation 4-1 (refer pgno 120)"); + +m=Em/Ec; + +disp(m,"m = "); + +disp("Percent modulation is determine from equation 4-2 (refer pgno 120)"); + +M=100*m; + +disp('%',M,"M = "); +//(c) + +disp("(c)The peak amplitude of the modulated carrier and the upper and lower side frequencies is "); + +eu=((m*Ec)/2); + +disp('Vp',eu,"Eusf(modulated) = "); + +//(d) + +disp("(d)The maximum and minimum amplitude of the envelope are, "); + +Vm=Ec+Em; +vm=Ec-Em; + +disp('Vp',vm,'Vp and Vmin = ',Vm,"Vmax = "); diff --git a/881/CH4/EX4.3/exa4_3.sce b/881/CH4/EX4.3/exa4_3.sce new file mode 100755 index 000000000..1351260d4 --- /dev/null +++ b/881/CH4/EX4.3/exa4_3.sce @@ -0,0 +1,32 @@ +clc; +//Example 4.3 +//Page no 128 +//solution + +Fc=1; //MHz +Fm=5; //kHz +M=60; //% +m=(M/100); +Pc=6; //KW + + +//(a) + +disp("(a)Total average power delivered to the load "); + +Rl=(Pc*[1+m^2/2]); + +disp('KW',Rl,"Rl = "); + +//(b) + +disp("(b)The modulation signal power "); + +Vs=sqrt(100*(10^3)*Rl); + +disp('KV',(Vs/(10^3)),"Vs(RMS) = "); + +a=Vs*sqrt(2); + +disp('KV',(a/(10^3)),"Therefore, peak value of modulation signal =") + diff --git a/881/CH4/EX4.4/exa4_4.sce b/881/CH4/EX4.4/exa4_4.sce new file mode 100755 index 000000000..fd67501b3 --- /dev/null +++ b/881/CH4/EX4.4/exa4_4.sce @@ -0,0 +1,64 @@ +clc; +//Example 4.4 +//Page no 128 + +Vc=10; //Vp +m=1; +Rl=10; +m1=0.5; + +//(a) + +disp("(a)The carrier power is found by substituting into equation 4-18 (pgno 126): "); + +Pc=((Rl^2)/(2*Rl)); + +disp('W',Pc,"Pc = "); + +disp("The upper and lower sideband power is found by substituting into equation 4-21 (pgno 127):"); + +P=(((m^2)*Pc)/4); + +disp('W',P,"Pusb = Plsb = "); + +//(b) + +disp("(b)The total sideband power is "); + +Ps=(((m^2)*Pc)/2); + +disp('W',Ps,"Psbt = "); + +//(c) + +disp("(c)The total power in the modulated is found by substituting into equation 4-25 (pgno 127)"); + +Pt=(5*[1+(m^2)/2]); + +disp('W',Pt,"Pt = "); + +//(d) + +disp("(d)The carrier power is found by substituting into equation 4-18 "); + +Pc1=Pc; + +disp('W',Pc1,"Pc "); + +disp("The upper and lower sideband power is found by substituting into equation 4-21 (pgno 127):"); + +P1=(((m1^2)*Pc)/4); + +disp('W',P1,"Pusb = Plsb = "); + +disp("The total sideband power is "); + +Ps1=(((m1^2)*Pc)/2); + +disp('W',Ps1,"Psbt = "); + +disp("The total power in the modulated is found by substituting into equation 4-25 (pgno 127)"); + +Pt1=(5*[1+(m1^2)/2]); + +disp('W',Pt1,"Pt = "); diff --git a/881/CH4/EX4.5/exa4_5.sce b/881/CH4/EX4.5/exa4_5.sce new file mode 100755 index 000000000..51d54d67d --- /dev/null +++ b/881/CH4/EX4.5/exa4_5.sce @@ -0,0 +1,37 @@ +clc; +//Example 4.5 +//Page no 131 + +//Solution + +Rl=100; //ohm +Fc=1; //MHz +Fm1=2; //kHz +Fm2=3; //kHz +Fm3=5; //kHz +Ec=100; //V +Em1=10; //V +Em2=20; //V +Em3=30; //V + +m1=(Em1/Ec); + +disp(m1,"m1 = "); + +m2=(Em2/Ec); + +disp(m2,"m1 = "); + +m3=(Em3/Ec); + +disp(m3,"m1 = "); + +m=sqrt((m1^2)+(m2^2)+(m3^2)); + +disp(m,"Overall modulation index m = "); + +disp("Power in both the upper and lower sideband is same, which is given by "); + +Psb=((Ec^2*m^2)/(2*Rl*4)); + +disp('W',Psb,"Psb = "); diff --git a/881/CH4/EX4.6/exa4_6.sce b/881/CH4/EX4.6/exa4_6.sce new file mode 100755 index 000000000..369cecb2c --- /dev/null +++ b/881/CH4/EX4.6/exa4_6.sce @@ -0,0 +1,31 @@ +clc; +//Example 4.6 +//Page no 133 +//Solution + +m=0.8; +Aq=100; +Fc=500; //kHz +Vc=5*(10^-3); //mV +Fm=1000; //Hz + +//(a) + +disp("(a)Substituting into equation 4-34(pgno 132), "); + +Am=Aq*(1+m); + +disp(Am," Amax = "); + +am=Aq*(1-m); + +disp(am,"Amin = "); + +//(b) + +Vom=Am*Vc; + +vom=am*Vc; + +disp('V',Vom,"(b)Vout(max) = "); +disp('V',vom,"Vout(min) = "); diff --git a/881/CH4/EX4.7/exa4_7.sce b/881/CH4/EX4.7/exa4_7.sce new file mode 100755 index 000000000..032db4f7e --- /dev/null +++ b/881/CH4/EX4.7/exa4_7.sce @@ -0,0 +1,34 @@ +clc; +//Example 4.7 +//Page no 140 +//solution + +//(a) + +V=12; //dc +Vm=2; //Vp +Fm=4; //kHz +Vb=4; //dc +R1=100*(10^3); //kohm +C1=0.001*(10^-6); //uF + +//(a) + +disp("(a)The carrier frequency is determine from equation 4-36(refer pgno 137): "); + +fc=(1/(R1*C1)); +Fc=fc/(10^2) + +disp('kHz',Fc,"fc = "); + +//(b) + +disp("(b)The upper and lower side frequency are simply the sum and difference frequencies between the carrier and the modulating signal. "); + +fu=Fc+Fm; + +disp('kHz',fu,"Fusf = "); + +fl=Fc-Fm; + +disp('kHz',fl,"Flsf = "); diff --git a/881/CH5/EX5.1/exa5_1.sce b/881/CH5/EX5.1/exa5_1.sce new file mode 100755 index 000000000..38653f182 --- /dev/null +++ b/881/CH5/EX5.1/exa5_1.sce @@ -0,0 +1,19 @@ +clc; +//Example 5.1 +//Page no 159 + +//solution + +Brf=200; //kHz +Bif=10; //kHz + +//Bandwidth improvement is found by substituting into equati +BI=(Brf/Bif); + +disp(BI,"BI = "); + +disp("and noise figure improvement is found by substituting into equation 5-3 (refer pgno 157)"); + +NF=10*log10(BI); + +disp('dB',NF,"NF = ") diff --git a/881/CH5/EX5.2/exa5_2.sce b/881/CH5/EX5.2/exa5_2.sce new file mode 100755 index 000000000..686931184 --- /dev/null +++ b/881/CH5/EX5.2/exa5_2.sce @@ -0,0 +1,21 @@ +clc; +//Example 5.2 +//Page no 161 + + + +//solution + +Q=54; + +disp("The bandwidth at the low frequency end "); + +B=(540/Q); + +disp('kHz',B,"B = ") + +disp("The bandwidth at the high frequency end "); + +B1=(1600*(10^3)/Q); + +disp('Hz',round(B1),"B = ") diff --git a/881/CH5/EX5.3/exa5_3.sce b/881/CH5/EX5.3/exa5_3.sce new file mode 100755 index 000000000..659ec4980 --- /dev/null +++ b/881/CH5/EX5.3/exa5_3.sce @@ -0,0 +1,29 @@ +clc; +//Example 5.3 +//Page no 165 + + + +//solution + +fio=1355; //kHz +fRF=900; //kHz +fRFu=895; //kHz +fRFl=905; //kHz + + + +fIF=fio-fRF; + +disp('kHz',fIF,"fIF = "); + +disp("The upper and lower intermediate are"); + +fIFu=fio-fRFu; + +disp('kHz',fIFu,"fIF = "); + +fIFl=fio-fRFl; + +disp('kHz',fIFl,"fIF = "); + diff --git a/881/CH5/EX5.5/exa5_5.sce b/881/CH5/EX5.5/exa5_5.sce new file mode 100755 index 000000000..aa581c475 --- /dev/null +++ b/881/CH5/EX5.5/exa5_5.sce @@ -0,0 +1,36 @@ +clc; +//Example 5.5 +//Page no 172 + + + + +//solution + +Fl=1255; //kHz +Fif=455; //kHz +FRF=800; //kHz +Q=120; + +//(a) + +Fim=Fl+Fif; + +disp('kHz',Fim,"(a)Image Frequency Fim = "); + + +//(b) + +p=((Fim/FRF)-(FRF/Fim)); + +IFRR=sqrt(1+(Q^2)*(p^2)); + +disp(IFRR,"(b)IFRR = "); + +//(c) + +IFRR1=5.6; + +IFRRt=IFRR*IFRR1; + +disp(IFRRt,"(c)Combined IFRR of both the circuits = "); diff --git a/881/CH5/EX5.6/exa5_6.sce b/881/CH5/EX5.6/exa5_6.sce new file mode 100755 index 000000000..a46743b16 --- /dev/null +++ b/881/CH5/EX5.6/exa5_6.sce @@ -0,0 +1,54 @@ +clc; +//Example 5.6 +//Page no 172 + + +//Solution + +FRF=27000; //MHz +Fif=455; //kHz +Q=100; + +//(a) + +disp("(a)From equation 5-7(refer pgno 165)"); + +flo=FRF+Fif; + +Flo=(flo/(10^3)); + +disp('MHz',Flo,"Flo = "); + +//(b) + +disp("(b)From equation 5-9 (refer pgno 171) "); + +fim=flo+Fif; + +Fim=(fim/(10^3)); + +disp('MHz',Fim,"Flo = "); + +//(c) + +disp("(c)From equation 5-11 (refer pgno 171)"); + +p=((fim/FRF)-(FRF/fim)); + +IFRR=sqrt(1+(Q^2)*(p^2)); + +disp(IFRR,"IFRR = "); + +//(d) + +fr=600 + +fim1=fr+2*Fif; + +p1=((fim1/fr)-(fr/fim1)); + +disp("(d)Rearranging equation 5-11 "); + +q=sqrt(((IFRR^2)-1)/(p1^2)); + +disp(q,"Q = "); diff --git a/881/CH5/EX5.7/exa5_7.sce b/881/CH5/EX5.7/exa5_7.sce new file mode 100755 index 000000000..e0055af48 --- /dev/null +++ b/881/CH5/EX5.7/exa5_7.sce @@ -0,0 +1,65 @@ +clc; +//Example 5.7 +//Page no 184 + + +//solution + +Fs=100; //MHz +Fif=10.7; //MHz +Q=100; +Q1=40; +Q2=50; + + +//(a) + +disp("(a)"); + +flo=Fif+Fs; + +Fim=Fs+2*Fif; + +disp('MHz',Fim,"Fimage = "); + +p=((Fim/Fs)-(Fs/Fim)); + +disp(p,"p = "); + +IFRR=sqrt(1+(Q^2)*(p^2)); + +disp(IFRR,"IFRR = "); + +//(b) + +disp("(b)"); + +ifrr=20*log10(IFRR); + +disp('dB',ifrr,"IFRR in dB = "); + +//(c) + +disp("(c)"); + +fif=(455/(10^3)); + +fim=Fs+2*fif; + +disp('MHZ',fim,"Fimage = "); + +p1=((fim/Fs)-(Fs/fim)); + +disp(p1,"p = "); + +IFRR1=sqrt(1+(Q^2)*(p1^2)); + +disp(IFRR1,"IFRR = "); + +//(d) + +disp("(d)Critical coupling factor of the primary and secondary circuit if IF transformer,"); + +kc=(sqrt(Q1*Q2))^-1; + +disp(kc,"Kc = "); diff --git a/881/CH5/EX5.8/exa5_8.sce b/881/CH5/EX5.8/exa5_8.sce new file mode 100755 index 000000000..6c3d0e954 --- /dev/null +++ b/881/CH5/EX5.8/exa5_8.sce @@ -0,0 +1,33 @@ +clc; +//Example 5.8 +//Page no 198 + + + + +//solution + +A=-80; //dB +G1=33; //dB +G2=47; //dB +G3=25; //dB + +G=G1+G2+G3; + +disp('dB',G,"The sum of the gains is, "); + +L1=3; //dB +L2=6; //dB +L3=8; //dB + +L=L1+L2+L3; + +disp('dB',L,"The sum of the losses is, "); + +G4=G-L; + +disp('dB',G4,"Thus, net receiver gains is, "); + +B=A+G4; + +disp('dBm',B,"and the audio signal level is, "); diff --git a/881/CH6/EX6.1/exa6_1.sce b/881/CH6/EX6.1/exa6_1.sce new file mode 100755 index 000000000..ed3b1c387 --- /dev/null +++ b/881/CH6/EX6.1/exa6_1.sce @@ -0,0 +1,15 @@ +clc;
+//Example 6.1
+//Page no 224
+
+//solution
+
+f=1000; //kHz
+s=80;
+df=200; //khz
+
+disp("Substituting into Equation 6-3 (refer pgno 223)");
+
+Q=125000;
+
+disp(Q,"Q = ");
diff --git a/881/CH6/EX6.2/exa6_2.sce b/881/CH6/EX6.2/exa6_2.sce new file mode 100755 index 000000000..ed4968794 --- /dev/null +++ b/881/CH6/EX6.2/exa6_2.sce @@ -0,0 +1,51 @@ +clc; +//Example 6.2 +//Page no 230 + + +//solution + +f0=30; //MHz +f1=30.005 //MHz +flo=20; //MHz +fbfo=10; //MHz +d=(0.001/100); //% + +//(a) + + +disp("(a)The IF output from the RF mixer difference between the received signal frequency and the RF local oscillator frequency,"); + +fu=f0-flo; +fl=f1-flo; + +disp('MHz',fl,"MHz to",fu,"Fif = "); + + +fm1=fu-fbfo; +fm2=fl-fbfo; + +disp('kHz',(fm2*(10^3)),"kHz to",fm1,"fm = "); + +//(b) + +disp("(b)A 0.001% drift would cause a decrease in the RF local oscillator frequency of "); + +df=d*flo; + +disp('Hz',(df*(10^6)),"df = "); + + +fl=(flo-df); +fi=f0-fl; +ff=f1-fl; + +disp('MHz',ff,"MHz to",fi,"Fif = "); + + +fm3=fi-fbfo; +fm4=ff-fbfo; + +disp('Hz',(fm4*(10^6)),"Hz to",(fm3*(10^6)),"fm = "); + + diff --git a/881/CH6/EX6.3/exa6_3.sce b/881/CH6/EX6.3/exa6_3.sce new file mode 100755 index 000000000..d72b5b7a8 --- /dev/null +++ b/881/CH6/EX6.3/exa6_3.sce @@ -0,0 +1,41 @@ +clc; +//Example 6.3 +//Page no 231 + + + +//Solution + +fbfo=10; //MHz + +//(a) + +disp("(a)The solution is identical to that provieded in example 6-2 "); + +Fi=30-20; //MHz +Ff=30.005-20; //MHz + +disp('MHz',Ff,"MHz to",Fi,"Fif = "); + +disp("The demodulated information signal spectrum is simply the difference between the intermediate frequency band and the BFO frequency"); + +fm1=Fi-fbfo; +fm2=Ff-fbfo; + +disp('kHz',(fm2*(10^3)),"kHz to",fm1,"fm = "); + +//(b) + +disp("(b) "); + +FI=30.0006-20.0004; //MHz +FF=30.0056-20.0004; //MHZ + +disp('MHz',FF,"MHz to",FI,"Fif = "); + +disp("The BFO frequency will also automatically adjust proportionally to 10.0002MHz, producing a demodulated information signal of "); + +Fm=FI-10.0002; //MHz +Fm1=FF-10.0002; //MHz + +disp('kHz',(Fm1*(10^3)),"kHz to",Fm,"fm = "); diff --git a/881/CH6/EX6.4/exa6_4.sce b/881/CH6/EX6.4/exa6_4.sce new file mode 100755 index 000000000..15740d3cb --- /dev/null +++ b/881/CH6/EX6.4/exa6_4.sce @@ -0,0 +1,36 @@ +clc; +//Example 6.4 +//Page no 238 + + + +//solution + +Frf=100; //kHz +fs1=1.5; //kHz +fs2=3; //kHz +R=50; //Ohm +E=5; //V + +//(a) + +disp("(a)The output frequency specctrum contains the two upper side frequencies: "); + +Fusf1=Frf+fs1; +Fusf2=Frf+fs2; + +disp('kHz',Fusf2,"Fusf2 = ",'kHz',Fusf1,"Fusf1 = "); + +//(b) + +disp("(b)Substituting in equation 6-6 yields, "); + +PEP=([2*(0.707*E)^2]/R); + +disp('W',PEP,"PEP = ") + +disp("Substituting into equation 6-8 yields, "); + +Pavg=(PEP/2); + +disp('W',Pavg,"Pavg = "); diff --git a/881/CH7/EX7.1/exa7_1.sce b/881/CH7/EX7.1/exa7_1.sce new file mode 100755 index 000000000..01053aa14 --- /dev/null +++ b/881/CH7/EX7.1/exa7_1.sce @@ -0,0 +1,33 @@ +clc; +//Example 7.1 +//Page No 253 + + +//Solution + +//(a) + +K1=5; //kHz/V +Ap=2; //V +k1=2.5; //rad/V +fm=2; //kHz + +disp("(a)The peak frequency deviation is simply the product of the deviation sensitivity and the peak amplitude of the modulation signal, "); + +df=K1*Ap; + +disp('kHz',df,"df = "); + +disp("The modulation index is determined by substituting into equation 7-22(r)"); + +m=df/fm; + +disp(m,"m = "); + +//(b) + +disp("The peak phase shift for a phase-modulation wave is the modulation index and is found by substituting into equation 7-15(refer pgno 250)"); + +m1=k1*Ap; + +disp('rad',m1,"m = "); diff --git a/881/CH7/EX7.11/exa7_11.sce b/881/CH7/EX7.11/exa7_11.sce new file mode 100755 index 000000000..601fdc5c1 --- /dev/null +++ b/881/CH7/EX7.11/exa7_11.sce @@ -0,0 +1,35 @@ +clc; +//Example 7.11 +//Page No 283 + + +//solution + +N=20; +ft=88.8; +dF=75; +fm=15; + +//(a) + +fc=ft/N; + +disp('MHz',fc,"(a)fc = "); + +//(b) + +df=dF/20; + +disp('Hz',(df*10^3),"(b)df = "); + +//(c) + +dr=df/fm; + +disp(dr,"(d)DR = "); + +//(d) + +DR=dr*N; + +disp(DR,"(b)DR = "); diff --git a/881/CH7/EX7.2/exa7_2.sce b/881/CH7/EX7.2/exa7_2.sce new file mode 100755 index 000000000..42d675ae5 --- /dev/null +++ b/881/CH7/EX7.2/exa7_2.sce @@ -0,0 +1,23 @@ +clc; +//Example 7.2 +//Page No 253 + + +//Solution + +wc=(6.28*10^6); +wm=(6.283*10^3); + +disp(" Vpm(t)=A sin(wct + mp sin wmt) ","The mathematical expression for a phase-modulated wave is given as, "); + +fc=wc/(2*%pi); + +disp('MHz',round(fc/10^6),"(a)Carrier Frequency fc = "); + +fm=wm/(2*%pi); + +disp('kHz',round(fm/10^3),"(b)Modulating Frequency fm = "); + +disp(10,"(c)Modulating index mp = "); + +disp('rad',10,"(d)Peak phase deviation d0 = "); diff --git a/881/CH7/EX7.3/exa7_3.sce b/881/CH7/EX7.3/exa7_3.sce new file mode 100755 index 000000000..9d3a1c8d0 --- /dev/null +++ b/881/CH7/EX7.3/exa7_3.sce @@ -0,0 +1,25 @@ +clc; +//Example 7.3 +//Page No 257 + +disp("Given: An FM modulator with a modulation index m=1, a modulating signal v,(t)=Vmsin(2pi1000t) and an unmodulated carrier vc(t)=10sin(2pi500kt)."); + +//Solution + +//(a) + +disp("(a)From Table 7.3, a modulation index of 1 yields a reduced carrier component and three sets of significant side frequencies. "); + +//(b) + +disp("(b)The relative amplitudes of the carrier and side frequencies are, "); + +disp(" J0= 0.77x(10) = 7.7 V"); + +disp(" J1= 0.44x(10) = 4.4 V"); + +disp(" J2= 0.11x(10) = 1.1 V"); + +disp(" J3= 0.02x(10) = 0.2 V"); + +disp("(c)The frequency spectrum is shown in figure 7-6."); diff --git a/881/CH7/EX7.4/exa7_4.sce b/881/CH7/EX7.4/exa7_4.sce new file mode 100755 index 000000000..4f354e532 --- /dev/null +++ b/881/CH7/EX7.4/exa7_4.sce @@ -0,0 +1,49 @@ +clc; +//Example 7.4 +//Page No 259 + +disp("Given: An FM modulator with a peak frequency deviation df=10kHz, a modulating signal frequency fm=10kHz, Vc=10V and a 500kHz carrier. "); + +//Solution + +df=10; + +fm=10; + +n=3; + +//(a) + +disp("(a)Substituting into equation 7-22(refer pgno 251) "); + +m=df/fm; + +disp(m,"m = "); + +disp("From Table 7.3") + +B=2*(n*fm); + +disp('kHz',B,"B = "); + +//(b) + +disp("(b)Substittuting into equation 7-34(refer pgno 259), the bandwidth is "); + +b=2*(df+fm); + +disp('kHz',b,"B = "); + +//(c) + +disp("(c)The relative amplitudes of the carrier and side frequencies are, "); + +disp(" J0= 0.77x(10) = 7.7 V"); + +disp(" J1= 0.44x(10) = 4.4 V"); + +disp(" J2= 0.11x(10) = 1.1 V"); + +disp(" J3= 0.02x(10) = 0.2 V"); + +disp("The output frequency spectrum for the Bessel approximation is shown in figure 7-7."); diff --git a/881/CH7/EX7.5/exa7_5.sce b/881/CH7/EX7.5/exa7_5.sce new file mode 100755 index 000000000..4c0dadf82 --- /dev/null +++ b/881/CH7/EX7.5/exa7_5.sce @@ -0,0 +1,39 @@ +clc; +//Example 7.5 +//Page No 260 + + + +//Solution + +df=75; + +fm=15; + +//(a) + +disp("(a)The deviation ratio is found by substituting into equation 7-35(refer pgno), "); + +DR=df/fm; + +disp(DR,"DR = "); + +disp("From Table 7.3); + +B=2*(8*fm); + +disp('kHz',B,"B = "); + +//(b) + +disp("(b)For an 37.5kHz frequency deviation and modulating signal frequency fm=7.5, the modulation index is, "); + +m=37.5/7.5; + +disp(m,"m = "); + +disp("and the bandwidth is, "); + +b=2*(8*7.5); + +disp('kHz',b,"B = "); diff --git a/881/CH7/EX7.6/exa7_6.sce b/881/CH7/EX7.6/exa7_6.sce new file mode 100755 index 000000000..5071fd8ad --- /dev/null +++ b/881/CH7/EX7.6/exa7_6.sce @@ -0,0 +1,70 @@ +clc; +//Example 7.6 +//Page No 261 + + + +//solution + +K=0.75; +fcp=500; +K1=1.5; +fcf=500; +vm=2; +fm=2; +Vm=4; +Fm=1; + +//(a) + +disp("(a) FM Modulator "); + +m=(vm*K1)/fm; + +disp(m,"m = "); + +disp("PM Modulator "); + +m1=vm*K; + +disp(m1,"m = "); + +disp("Since the modulation indexes are same the output spectrum is also the same, which is in figure 7-8(a) "); + +//(b) + +disp("(b) FM Modulator "); + +M=(Vm*K1)/fm; + +disp(M,"m = "); + +disp("PM Modulator "); + +M1=Vm*K; + +disp(M1,"m = "); + +disp("Again, since the modulation indexes are same the output spectrum is also the same, which is in figure 7-8(b) "); + +//(c) + +disp("(a) FM Modulator "); + +m2=(vm*K1)/Fm; + +disp(m2,"m = "); + +disp("PM Modulator "); + +m3=vm*K; + +disp(m3,"m = "); + +disp("Since the modulation indexes are not same the output spectrum are given in figures 7-8(c) and 7-8(d), respectively"); + + + + + + diff --git a/881/CH7/EX7.7/exa7_7.sce b/881/CH7/EX7.7/exa7_7.sce new file mode 100755 index 000000000..135466b9c --- /dev/null +++ b/881/CH7/EX7.7/exa7_7.sce @@ -0,0 +1,30 @@ +clc;
+//Example 7.7
+//Page No 265
+
+disp("Given: Conditions as per example 7-3 and assume a load resistance Rl=50");
+
+//solution
+
+Rl=50;
+Vc=10;
+vc=7.7;
+V1= 4.4;
+V2= 1.1;
+V3= 0.2;
+
+//(a)
+
+disp("(a)Substituting into equation 7-36 yields, ");
+
+Pc=(Vc^2)/(2*Rl);
+
+disp('W',Pc,"Pc = ")
+
+//(b)
+
+disp("(b)Substituting into equation 7-41 yields, ");
+
+Pt=((vc^2)/(2*Rl)+(V1^2)*2/(2*Rl)+(V2^2)*2/(2*Rl)+(V3^2)*2/(2*Rl));
+
+disp('W',Pt,"Pt = ");
diff --git a/881/CH7/EX7.8/exa7_8.sce b/881/CH7/EX7.8/exa7_8.sce new file mode 100755 index 000000000..c0b896382 --- /dev/null +++ b/881/CH7/EX7.8/exa7_8.sce @@ -0,0 +1,51 @@ +clc; +//Example 7.8 +//Page No 268 + + + +//solution + +fc=110; +fn=109.985; +Vn=0.3; +Vc=6; +fd=75*(10^3); + +//(a) + +disp("(a)The frequency of the noise interference is the difference between the carrier frequency and the frequency of the single frequency interfering signal, "); + +n=fc-fn; + +disp('kHz',(n*10^3),"NI = "); + +//(b) + +disp("(b)substituting into equation 7-43 yields, "); + +t=Vn/Vc; + +disp('rad',t,"dt = "); + +disp("substituting into equation 7-47 yields, "); + +df=(Vn*n)/Vc; + +disp('Hz',(df*10^6),"df = "); + +//(c) + +a=Vc/Vn; + +disp(a,"(c)The voltage S/N "); + +disp("The voltage S/N ratio after demodulation is found by substituting into equation 7-49"); + +sn=fd/(df*10^6); + +disp(sn,"S/N = "); + +ip=20*log10(100/20); +; +disp('dB',round(ip),"Thus, there is an signal to noise improvement of ") diff --git a/881/CH8/EX8.1/exa8_1.sce b/881/CH8/EX8.1/exa8_1.sce new file mode 100755 index 000000000..9ecef108f --- /dev/null +++ b/881/CH8/EX8.1/exa8_1.sce @@ -0,0 +1,15 @@ +clc; +//Example 8.1 +//Page no 298 + + +//Solution + +Kd=0.2; //V/kHz +df=20; //kHz + +disp("Substituting into equation 8-2, the peak output voltage is ") + +Vo=Kd*df; + +disp('Vp',Vo,"vout(t) = ") diff --git a/881/CH8/EX8.2/exa8_2.sce b/881/CH8/EX8.2/exa8_2.sce new file mode 100755 index 000000000..b67ab8d07 --- /dev/null +++ b/881/CH8/EX8.2/exa8_2.sce @@ -0,0 +1,34 @@ +clc; +//Example 8.2 +//Page no 309 + + + +//Solution + +B=200*(10^3); //kHz +NF=8; //dB +T=100; //K +m=1; + +a=37-17; //dB + +disp('dB',a," the prediction signal to noise ratio must be atleast, "); + +b=20+8; //dB + +disp('dB',b,"Therefore, for an overall receiver noise figure equal to 8dB, the S/N ratio at the input to the receiver must be atleast, "); + +disp("The receiver input noise power is, "); + +K=(1.38*(10^-23)); + +N=10*log10((K*T*B)/0.001); + +disp('dBm',N,"N(dB) = "); + +disp("Consequently, the minimum receiver signal power for a 28dB S/N ratio is, "); + +S=N+28; + +disp('dBm',S,"S = "); diff --git a/881/CH8/EX8.3/exa8_3.sce b/881/CH8/EX8.3/exa8_3.sce new file mode 100755 index 000000000..dd56446df --- /dev/null +++ b/881/CH8/EX8.3/exa8_3.sce @@ -0,0 +1,24 @@ +clc; +//Example 8.3 +//Page No 309 + + + +//Solution + +SN=29; //dB +NF=4; //dB +FMi=16; //dB + +disp("The predetection signal to noise ratio is "); + +pre=SN-NF; + +disp('dB',pre,"S/N(pre) = "); + +disp("The postdetection signal to noise ratio is "); + +pst=pre+FMi; + +disp('dB',pst,"S/N(post) = "); + diff --git a/881/CH8/EX8.4/exa8_4.sce b/881/CH8/EX8.4/exa8_4.sce new file mode 100755 index 000000000..961c391b3 --- /dev/null +++ b/881/CH8/EX8.4/exa8_4.sce @@ -0,0 +1,20 @@ +clc; +//Example 8.4 +//Page no 310 + + + +//solution + +SN=38; //dB +In=-112; //dBm +FMi=17; //dB +NF=5; //dB + +sn=SN-FMi+NF; + +disp('dB',sn,"The receiver input S/N is "); + +rs=In+sn; + +disp('dBm',rs,"Therefore, the minimum receive signal level is "); diff --git a/881/CH9/EX9.15/exa9_15.sce b/881/CH9/EX9.15/exa9_15.sce new file mode 100755 index 000000000..680b472fc --- /dev/null +++ b/881/CH9/EX9.15/exa9_15.sce @@ -0,0 +1,22 @@ +clc; +//Example 9.15 +//Page No 382 + + +//solution + +ebn0=14.7; +cn=11.7; +fb=10; + +disp("From Figure 9-48,"); + +bfb=ebn0-cn; + +Bfb=exp(log10(bfb)); + +disp('dB',round(Bfb),"B/fb = "); + +B=2*fb; + +disp('MHz',B,'B = '); diff --git a/881/CH9/EX9.2/exa9_2.sce b/881/CH9/EX9.2/exa9_2.sce new file mode 100755 index 000000000..2ad563761 --- /dev/null +++ b/881/CH9/EX9.2/exa9_2.sce @@ -0,0 +1,35 @@ +clc; +//Example 9.2 +//Page no 339 + +//solution + +fm=49; +fs=51; +fb=2; //nyquist rate + + +//(a) +disp("(a)The peak frequency deviation is determine from equation 9-14(refer pgno 338)"); + +df=(fs-fm)/2; + +disp('kHz',df,"df = "); + +//(b) + +disp("(b)The minimum bandwidth is determined from equation 9-15(refer pgno 339)"); + +B=2*(df+fb); + +disp('kHz',B,"B = "); + +//(c) + +disp("(c)For FSK, N=1 and the baud rate is determined from equation 9-11 as "); + +n=1; + +baud=fb*10^3/n; + +disp(baud,"baud = "); diff --git a/881/CH9/EX9.3/exa9_3.sce b/881/CH9/EX9.3/exa9_3.sce new file mode 100755 index 000000000..ffb0cdea8 --- /dev/null +++ b/881/CH9/EX9.3/exa9_3.sce @@ -0,0 +1,24 @@ +clc; +//Example 9.3 +//Page no 340 + + + +//solution + +fm=49; +fs=51; +fb=2; + +disp("The modulation index is determine from equation 9-17(refer pgno 340)"); + +h=(fs-fm)/2; + +disp(h,"h = "); + +disp("From Bessel table, the bandwidth can be determine as follows, "); + +b=2*(3*h); + +disp('hz',b*10^3,"B = "); + |