diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /779 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '779')
172 files changed, 2764 insertions, 0 deletions
diff --git a/779/CH1/EX1.1/1_1.sce b/779/CH1/EX1.1/1_1.sce new file mode 100755 index 000000000..d72ef26df --- /dev/null +++ b/779/CH1/EX1.1/1_1.sce @@ -0,0 +1,6 @@ +d_r = 13640; // Density of mercury in kg/m3
+g = 9.79; // Acceleration due to gravity in m/s2
+z = 562e-03; // Difference in height in m
+z0 = 761e-03; // Reading of barometer in m
+P = (d_r*g*(z+z0))*(0.987/1e05); // Gas Pressure in bar
+disp("bar",P,"Gas Pressure is ")
diff --git a/779/CH1/EX1.2/1_2.sce b/779/CH1/EX1.2/1_2.sce new file mode 100755 index 000000000..528a58c41 --- /dev/null +++ b/779/CH1/EX1.2/1_2.sce @@ -0,0 +1,13 @@ +d_r = 13.6e03; // Density of mercury in kg/m3
+g = 9.81; // Acceleration due to gravity in m/s2
+z = 710e-03; // Stean flow pressure in m
+z0 = 772e-03; // Reading of barometer in m
+P = 1.4e06; // Gauge pressure of applied steam in Pa
+P0 = d_r*g*z0; // Atmospheric pressure in Pa
+Pi = P+P0 ; // Inlet steam pressure in Pa
+Pc = d_r*g*(z0-z); // Condenser pressure in Pa
+disp("Pa",Pi,"Inlet steam pressure is")
+disp("Pa",Pc,"Condenser pressure is")
+
+
+
diff --git a/779/CH1/EX1.3/1_3.sce b/779/CH1/EX1.3/1_3.sce new file mode 100755 index 000000000..229f104ba --- /dev/null +++ b/779/CH1/EX1.3/1_3.sce @@ -0,0 +1,20 @@ +z = 0.760; // Barometer reading in m
+// Part (a)
+h1 = 40e-02; // Mercury height in vaccume in m
+d_r = 13.6e03; // Density of mercury in kg/m3
+g = 9.80; // Acceleration due to gravity in m/s2
+Patm = z*d_r*g; // Atmospheric pressure in Pas
+Pv = h1*d_r*g; // Pressue in vaccume in Pa
+Pabs = Patm-Pv; // Absolute pressure in Pa
+disp("Pa",Pabs," 40cmHg vaccume is")
+// Part (b)
+h2 = 90e-02; // Mercury height in gauge in m
+Pg = h2*d_r*g; // Gauge Pressure in Pa
+Pabs1 = Patm + Pg ; // Absolute pressure in Pa
+disp("Pa",Pabs1,"90cmHg gauge is")
+// Part(c)
+d_w = 1e03 ; // Density of water in kg/m3
+h3 = 1.2 ; // Gauge Pressure water height in m
+Pga = d_w*h3*g; // Gauge Pressure in Pa
+Pabs3 = Patm + Pga ; // Absolute pressure in Pa
+disp("Pa",Pabs3,"1.2 m H2O gauge is")
diff --git a/779/CH1/EX1.4/1_4.sce b/779/CH1/EX1.4/1_4.sce new file mode 100755 index 000000000..97ff90a34 --- /dev/null +++ b/779/CH1/EX1.4/1_4.sce @@ -0,0 +1,8 @@ +Pr = 1.033e05; // Required Pressure in bar
+function y = pressure(p)
+ y = p^(-0.714);
+endfunction;
+g = 9.81; // Acceleration due to gravity in m/s2
+H = ((2.5e05^0.714)/g)*intg(0,Pr,pressure); // Depth of atmosphere required in m
+disp("Km",H/1000,"The depth of atmosphere required is ")
+
\ No newline at end of file diff --git a/779/CH1/EX1.5/1_5.sce b/779/CH1/EX1.5/1_5.sce new file mode 100755 index 000000000..6ce681232 --- /dev/null +++ b/779/CH1/EX1.5/1_5.sce @@ -0,0 +1,5 @@ +m = 68 ; // Astronaut mass in Kg
+g = 9.806; // Acceleration due to gravity in m/s2
+a = 10*g ; // Lift off acceleration in m/s2
+F = m*a; // Net vertical force in N
+disp("N",F,"Net vertical force experienced by astronaut is")
\ No newline at end of file diff --git a/779/CH10/EX10.1/10_1.sce b/779/CH10/EX10.1/10_1.sce new file mode 100755 index 000000000..56e142b96 --- /dev/null +++ b/779/CH10/EX10.1/10_1.sce @@ -0,0 +1,21 @@ +// Part (a)
+P1 = 100; P2 = 50;
+T1 = 273+300;
+T2 = (P2/P1)*T1;
+R = 0.287; cv = 0.718;
+V1 = 0.8;
+m = (P1*V1)/(R*T1);
+Q = m*cv*(T2-T1);
+disp("If the fluid is in the air")
+disp("K",T2,"The final temperature is ")
+disp("kJ/kg",Q,"The heat transferred is")
+// Part (b)
+t2 = 273+81.33; vf = 0.00103; vg = 3.24;
+v1 = 2.6388; u1 = 2810.4;
+x2 = (v1-vf)/(vg-vf);
+u2 = 340.42+(x2*2143.4);
+m_ = V1/v1;
+Q_ = m_*(u2-u1);
+disp("If the fluid is in the steam")
+disp("K",t2,"The final temperature is ")
+disp("kJ/kg",Q_,"The heat transferred is")
\ No newline at end of file diff --git a/779/CH10/EX10.11/10_11.sce b/779/CH10/EX10.11/10_11.sce new file mode 100755 index 000000000..c8c3bd63b --- /dev/null +++ b/779/CH10/EX10.11/10_11.sce @@ -0,0 +1,17 @@ +m = 0.5;
+P1 = 80e03; T1 = 273+60;
+P2 = 0.4e06;
+R = 0.287;
+V1 = (m*R*T1)/P1 ;
+g = 1.4; // Gamma
+T2 = T1*(P2/P1)^((g-1)/g);
+W12 = (m*R*(T1-T2))/(g-1);
+V2 = V1*((P1/P2)^(1/g));
+W23 = P2*(V1-V2);
+W = W12+W23;
+V3 = V1;
+T3 = T2*(V3/V2);
+cp = 1.005;
+Q = m*cp*(T3-T2);
+disp("kJ",W,"The work transfer for the whole path is")
+disp("kJ",Q,"The heat transfer for the whole path")
\ No newline at end of file diff --git a/779/CH10/EX10.12/10_12.sce b/779/CH10/EX10.12/10_12.sce new file mode 100755 index 000000000..1f61594fc --- /dev/null +++ b/779/CH10/EX10.12/10_12.sce @@ -0,0 +1,18 @@ +P1 = 700e03; T1 = 273+260; T3 = T1;
+V1 = 0.028; V2 = 0.084;
+R = 0.287;
+m = (P1*V1)/(R*T1);
+P2 = P1;
+T2 = T1*((P2*V2)/(P1*V1));
+n = 1.5;
+P3 = P2*((T3/T2)^(n/(n-1)));
+cp = 1.005; cv = 0.718;
+Q12 = m*cp*(T2-T1);
+Q23 = m*cv*(T3-T2) + (m*R*(T2-T3))/(n-1);
+Q31 = m*R*T1*log(P3/P1);
+Q1 = Q12;
+Q2 = -(Q23+Q31);
+e = 1-(Q2/Q1);
+disp("J",Q1,"The heat received in the cycle is")
+disp("J",Q2,"The heat rejected in the cycle")
+disp(e,"The efficiency of the cycle is")
\ No newline at end of file diff --git a/779/CH10/EX10.13/10_13.sce b/779/CH10/EX10.13/10_13.sce new file mode 100755 index 000000000..236351998 --- /dev/null +++ b/779/CH10/EX10.13/10_13.sce @@ -0,0 +1,13 @@ +P1 = 300e03; V1 = 0.07;
+m = 0.25; T1 = 80+273;
+R = (P1*V1)/(1000*m*T1);
+P2 = P1;
+V2 = 0.1;
+T2 = (P2*V2)/(1000*m*R);
+W = -25;
+cv = -W/(m*(T2-T1));
+cp = R+cv;
+S21 = m*cp*log(V2/V1); // S21 = S2-S1
+disp("kJ/kg K",cv,"cv of the gas is")
+disp("kJ/kg K",cp,"cp of the gas is")
+disp("kJ/kg K",S21,"Increase in the entropy of the gas is")
\ No newline at end of file diff --git a/779/CH10/EX10.14/10_14.sce b/779/CH10/EX10.14/10_14.sce new file mode 100755 index 000000000..d1bfb412d --- /dev/null +++ b/779/CH10/EX10.14/10_14.sce @@ -0,0 +1,18 @@ +P1 = 1;
+P2 = 15;
+V1 = 800e-06;
+V2 = V1/8;
+cv = 0.718; g = 1.4;
+n = (log(P2/P1))/(log(V1/V2))
+T1 = 348; R = 0.287;
+m = (P1*100*V1)/(R*T1);
+T2 = T1*((P2*V2)/(P1*V1));
+P3 = 50;
+T3 = T2*(P3/P2);
+S21 = m*(cv*log(T2/T1)+R*log(V2/V1));
+S32 = m*cv*log(T3/T2);
+Q = (m*cv*(g-n)*(T2-T1))/(1-n);
+disp(n,"The index of compression process is")
+disp("kJ/K",S21,"S2-S1 is")
+disp("kJ/K",S32,"S3-S2 is")
+disp("kJ",Q,"The heat exchange is")
\ No newline at end of file diff --git a/779/CH10/EX10.15/10_15.sce b/779/CH10/EX10.15/10_15.sce new file mode 100755 index 000000000..e14fee200 --- /dev/null +++ b/779/CH10/EX10.15/10_15.sce @@ -0,0 +1,50 @@ +mn = 3; // Mass of nitrogen in kg
+mc = 5; // mass of CO2 in kg
+an = 28; // Atomic weight of nitrogen
+ac = 44; // Atomic weight of CO2
+// Part (a)
+xn = (mn/an)/((mn/an)+(mc/ac));
+xc = (mc/ac)/((mn/an)+(mc/ac));
+disp(xn,"Mole fraction of N2 is")
+disp(xc,"Mole fraction of CO2 is")
+// Part (b)
+M = xn*an+xc*ac;
+disp("kg",M,"Equivalant molecular weight of mixture is")
+// Part (c)
+R = 8.314;
+Req = ((mn*R/an)+(mc*R/ac))/(mn+mc);
+disp("kJ/kg K",Req,"The equivalent gas constant of the mixture is")
+// Part (d)
+P = 300; // Pressure in kPa
+T = 20+273;
+Pn = xn*P; // Partial pressure of Nitrogen
+Pc = xc*P; // Partial pressure of CO2
+Vn = (mn*R*T)/(P*an); // Volume of nitrogen
+Vc = (mc*R*T)/(P*ac); // Volume of CO2
+disp("kPa respectively",Pc,"and",Pn,"Partial pressures of nitrogen and CO2 are")
+disp("m3 respectively",Vc,"and",Vn,"Partial volume of nitrogen and CO2 are")
+// Part (e)
+V = (mn+mc)*Req*T/P; // Total volume
+rho = (mn+mc)/V;
+disp("m3",V,"Volume of mixture is")
+disp("kg/m3",rho,"Density of mixture is")
+// Part (f)
+gn = 1.4; // Gamma
+gc = 1.286;
+cvn = R/((gn-1)*an); // cp and cv of N2
+cpn = gn*cvn;
+cvc = R/((gc-1)*ac); // cp and cv of CO2
+cpc = gc*cvc;
+cp = (mn*cpn+mc*cpc)/(mn+mc) ; // of mixture
+cv = (mn*cvn+mc*cvc)/(mn+mc) ;
+disp("kJ/kg K respectively",cv,"and",cp,"cp and cv of mixture are")
+T1 = T; T2 = 40+273;
+U21 = (mn+mc)*cv*(T2-T1);
+H21 = (mn+mc)*cp*(T2-T1);
+S21v = (mn+mc)*cv*log(T2/T1); // If heated at constant volume
+disp("kJ",U21,"Change in internal energy of the system heated at constant volume is")
+disp("kJ",H21,"Change in enthalpy of the system heated at constant volume is")
+disp("kJ/kg K",S21v,"Change in entropy of the system heated at constant volume is")
+S21p = (mn+mc)*cp*log(T2/T1); // If heated at constant Pressure
+disp("kJ",S21p,"Change in entropy of the system heated at constant Pressure is")
+
diff --git a/779/CH10/EX10.16/10_16.sce b/779/CH10/EX10.16/10_16.sce new file mode 100755 index 000000000..2cff5b647 --- /dev/null +++ b/779/CH10/EX10.16/10_16.sce @@ -0,0 +1,10 @@ +mo = 2; mn = 6;
+muo = 32; mun = 28;
+o = mo/muo;
+n = mn/mun;
+xo = o/(n+o);
+xn = n/(n+o);
+R = 8.314;
+Ro = R/muo; Rn = R/mun;
+dS = -mo*Ro*log(xo)-mn*Rn*log(xn);
+disp("kJ/kg K",dS,"Increase in entropy is")
\ No newline at end of file diff --git a/779/CH10/EX10.17/10_17.sce b/779/CH10/EX10.17/10_17.sce new file mode 100755 index 000000000..14d9eada7 --- /dev/null +++ b/779/CH10/EX10.17/10_17.sce @@ -0,0 +1,16 @@ +an = 20.183; // molecular weight of neon
+Pc = 2.73; // Critical pressure
+Tc = 44.5;
+Vc = 0.0416;
+Pr = 2; // Reduced Pressure
+Tr = 1.3;
+Z = 0.7;
+P = Pr*Pc;
+T = Tr*Tc;
+R = 8.314;
+v = (Z*R*T)/(P*1000*an);
+vr = (v*an)/Vc ;
+disp("m3/kg",v,"Specific volume is")
+disp("K",T,"Specific temperature is")
+disp("kPa",P,"Specific pressure is")
+disp(vr,"Reduced volume is")
\ No newline at end of file diff --git a/779/CH10/EX10.2/10_2.sce b/779/CH10/EX10.2/10_2.sce new file mode 100755 index 000000000..5a6777bbd --- /dev/null +++ b/779/CH10/EX10.2/10_2.sce @@ -0,0 +1,22 @@ +// Part (a)
+R = 0.287; T1 = 273+150; v1 = 0.96; v2 = 1.55; Cp = 1.005;
+P = (R*T1)/v1;
+W = P*(v2-v1);
+T2 = (v2/v1)*T1;
+Q = Cp*(T2-T1);
+disp("If the fluid is in the air")
+disp("K",T2,"The final temperature is ")
+disp("kJ",Q,"The heat transferred is")
+disp("kJ",W,"Work done is")
+// Part (b)
+vg = 0.3928;
+P1 = 200e03;
+P2 = P1;
+h1 = 2768.8;
+t2 = 273+400; h2 = 3276.5;
+Q_ = h2-h1;
+W_ = P1*(v2-v1);
+disp("If the fluid is in the steam")
+disp("K",t2,"The final temperature is ")
+disp("kJ",Q_,"The heat transferred is")
+disp("J",W_,"Work done is")
diff --git a/779/CH10/EX10.3/10_3.sce b/779/CH10/EX10.3/10_3.sce new file mode 100755 index 000000000..df4f42ddf --- /dev/null +++ b/779/CH10/EX10.3/10_3.sce @@ -0,0 +1,23 @@ +// Part (a)
+v = 16 ; // v = v1/v2
+P1 = 300e03;
+P2 = P1*v;
+R = 0.287; T1 = 300+273;
+W12 = R*T1*log(1/v);
+disp("If the fluid is in the air")
+disp("Pa",P2,"The final pressure is ")
+disp("kJ",0,"The change in internal energy is")
+disp("kJ",W12,"Work done is")
+// Part (b)
+v1 = 0.7664; u1 = 2728.7;
+v2 = v1/16;
+x2 = (v2-0.00125)/(0.05013);
+s2 = 2.7927+(x2*3.2802);
+u2 = 1080.37+(x2*1522.0);
+du = u2-u1;
+T = 250+273;
+Q12 = T*(s2-s1)
+disp("If the fluid is in the steam")
+disp("K",T,"The final temperature is ")
+disp("kJ/kg",Q12,"The heat transferred is")
+disp("kJ/kg ",du,"The change in internal energy is")
\ No newline at end of file diff --git a/779/CH10/EX10.4/10_4.sce b/779/CH10/EX10.4/10_4.sce new file mode 100755 index 000000000..b8c949672 --- /dev/null +++ b/779/CH10/EX10.4/10_4.sce @@ -0,0 +1,20 @@ +// Part (a)
+P1 = 10; P2 = 1;
+T1 = 273+300;
+g = 1.4;
+T2 = T1*((P2/P1)^((g-1)/g));
+R = 0.287;
+W12 = ((R*T1)/(1-g))*(T2/T1-1);
+v2 = (R*T2)/(100*P2);
+disp("If the fluid is in the air")
+disp("m3/kg",v2,"The specific volume is")
+disp("kJ",W12,"The work done per kg of the fluid is")
+// Part (b)
+u1 = 2793.2; v1 = 0.2579; s1 = 7.1228;
+x2 = (7.1228-1.3025)/6.0568;
+u2 = 417.33+(x2*2088.7);
+v2 = 0.001043+(0.96*1.693);
+W12 = u1-u2;
+disp("If the fluid is in the steam")
+disp("m3/kg",v2,"The specific volume is")
+disp("kJ",W12,"The work done per kg of the fluid is")
\ No newline at end of file diff --git a/779/CH10/EX10.5/10_5.sce b/779/CH10/EX10.5/10_5.sce new file mode 100755 index 000000000..8b1709317 --- /dev/null +++ b/779/CH10/EX10.5/10_5.sce @@ -0,0 +1,24 @@ +// Part (a)
+P1 = 10; P2 = 1;
+T1 = 273+200; n = 1.15; R = 0.287;
+v2 = ((R*T1)/(P1*100))*((P1/P2)^(1/1.15));
+v1 = ((R*T1)/(P1*100));
+T2 = T1*(P2/P1)*(v2/v1);
+cv = 0.716;
+Q = (cv+(R/(1-n)))*(T2-T1);
+disp("If the fluid is in the air")
+disp("m3/kg",v2,"The specific volume is")
+disp("K",T2,"The final temperature is ")
+disp("kJ",Q,"Heat transferred per kg is")
+// Part (b)
+v1 = 0.20596; u1 = 2621.9;
+v2 = v1*(P1/P2)^(1/n);
+x2 = (v2-0.001043)/(1.694-0.001043);
+t2 = 99.62+273;
+u2 = 417.33+(x2*2088.7);
+W = ((P1*100*v1)-(P2*100*v2))/(n-1);
+Q = u2-u1+W;
+disp("If the fluid is in the steam")
+disp("m3/kg",v2,"The specific volume is")
+disp("K",t2,"The final temperature is ")
+disp("kJ",Q,"Heat transferred per kg is")
\ No newline at end of file diff --git a/779/CH10/EX10.6/10_6.sce b/779/CH10/EX10.6/10_6.sce new file mode 100755 index 000000000..41f412451 --- /dev/null +++ b/779/CH10/EX10.6/10_6.sce @@ -0,0 +1,30 @@ +P0 = 1000; +T0 = 3; +V0 = 0.001; +R = 287; +n = (P0*V0)/(R*T0); // Number of moles +// Process ab +Wab = 0; +cv = (3/2)*R; +Ta = T0; Tb = 300; +Qab = n*cv*(Tb-Ta); +Ua = 0; // Given internal energy +Ub = Qab+Ua; +Uab = Ub-Ua; +// Process bc +Qbc = 0; Uc = 0; Ubc = Uc-Ub; +Wbc = -Ubc; +// Process ca +Tc = Ta; +g = 5/3; // gamma +Vcb = (Tb/Tc)^(3/2); // Vc/Vb +Wca = -n*R*Tc*log(Vcb); +Qca = Wca ; +Uca = 0; +// +disp("J",Wab+Wbc+Wca,"Work done in the cycle is") +disp("J",Uab+Ubc+Uca,"Internal energy change in the cycle is") +disp("J",Qab+Qbc+Qca,"Heat transfer in the cycle is") +// Part (b) +e = (Qab+Qca)/Qab; +disp("%",e*100,"Thermal efficiency of the system is") diff --git a/779/CH10/EX10.7/10_7.sce b/779/CH10/EX10.7/10_7.sce new file mode 100755 index 000000000..ab30f0b1a --- /dev/null +++ b/779/CH10/EX10.7/10_7.sce @@ -0,0 +1,23 @@ +Pa = 1.5; Ta = 273+50; ca = 0.5;
+Pb = 0.6; Tb = 20+273; mb = 2.5;
+R = 8.3143;
+Va = (ca*R*Ta)/(Pa*1e03);
+ma = ca*28;
+Rn = R/28;
+Vb = (mb*Rn*Tb)/(Pb*1e03);
+V = Va + Vb ;
+m = ma + mb ;
+Tf = 27+273;
+P = (m*Rn*Tf)/V;
+g = 1.4;
+cv = Rn/(g-1);
+U1 = cv*(ma*Ta+mb*Tb);
+U2 = m*cv*Tf;
+Q = U2-U1;
+disp("KPa",P,"The final equillibrium pressure is")
+disp("kJ",Q,"The amount of heat transferred to the surrounding is")
+T_ = (ma*Ta+mb*Tb)/m ;
+P_ = (m*Rn*T_)/V;
+disp("If the vessele is perfectly inslulated")
+disp("K",T_,"The final temperature is")
+disp("KPa",P_,"The final pressure is")
\ No newline at end of file diff --git a/779/CH10/EX10.8/10_8.sce b/779/CH10/EX10.8/10_8.sce new file mode 100755 index 000000000..9c36d06a4 --- /dev/null +++ b/779/CH10/EX10.8/10_8.sce @@ -0,0 +1,17 @@ +cp = 1.968; cv = 1.507;
+R_ = 8.314;
+V = 0.3; m = 2;
+T1 = 5+273; T2 = 100+273;
+R = cp-cv;
+mu = R_/R;
+Q12 = m*cv*(T2-T1);
+W12 = 0 ;
+U21 = Q12;
+H21= m*cp*(T2-T1);
+S21 = m*cv*log(T2/T1);
+disp("kJ/kg K",R,"kg/kg mol and",mu,"Molecular weight and the gas constant of the gas are")
+disp("kJ",0,"Work done")
+disp("kJ",Q12,"The heat transferred")
+disp("kJ",U21,"The change in internal energy ")
+disp("kJ",S21,"entropy")
+disp("kJ/K",H21,"enthalpy")
\ No newline at end of file diff --git a/779/CH10/EX10.9/10_9.sce b/779/CH10/EX10.9/10_9.sce new file mode 100755 index 000000000..77f3b9b2f --- /dev/null +++ b/779/CH10/EX10.9/10_9.sce @@ -0,0 +1,10 @@ +m = 1.5; +P1 = 5.6; V1 = 0.06; +T2 = 273+240; +a = 0.946; b = 0.662; +k = 0.0001; +// Part (b) +R = a-b; +T1 = (P1*1e03*V1)/(m*R); +W12 = -integrate('m*(b+k*T)','T',T1,T2); +disp("kJ",W12,"The work done in the expansion is")
\ No newline at end of file diff --git a/779/CH11/EX11.3/11_3.sce b/779/CH11/EX11.3/11_3.sce new file mode 100755 index 000000000..9c081ec3d --- /dev/null +++ b/779/CH11/EX11.3/11_3.sce @@ -0,0 +1,5 @@ +Tb = 353;
+T = 303;
+R = 8.3143;
+P = 101.325*exp((88/R)*(1-(Tb/T)));
+disp("kPa",P,"Vapour pressure of benzene is ")
\ No newline at end of file diff --git a/779/CH11/EX11.4/11_4.sce b/779/CH11/EX11.4/11_4.sce new file mode 100755 index 000000000..d66f3ebf0 --- /dev/null +++ b/779/CH11/EX11.4/11_4.sce @@ -0,0 +1,11 @@ +T = (3754-3063)/(23.03-19.49);
+P = exp(23.03-(3754/195.2));
+R = 8.3143;
+Lsub = R*3754;
+Lvap = 3063*R;
+Lfu = Lsub-Lvap;
+disp("K",T,"Temperature of triple point is")
+disp("mm Hg",P,"Pressure of triple point is")
+disp("kJ/kg mol",Lsub,"Latent heat of sublimation is")
+disp("kJ/kg mol",Lvap,"Latent heat of vapourization is")
+disp("kJ/kg mol",Lfu,"Latent heat of fusion is")
\ No newline at end of file diff --git a/779/CH11/EX11.6/11_6.sce b/779/CH11/EX11.6/11_6.sce new file mode 100755 index 000000000..3a4fa20ec --- /dev/null +++ b/779/CH11/EX11.6/11_6.sce @@ -0,0 +1,18 @@ +R = 8.314;
+N1 = 0.5e-03; N2 = 0.75e-03; // Mole number of system 1 and 2 in kg/mol
+T1 = 200; T2 = 300;
+V = 0.02;
+Tf = ((N1*T1)+(N2*T2))/(N1+N2); // Final temperature
+Uf1 = (3/2)*R*N1*Tf;
+Uf2 = (3/2)*R*N2*Tf;
+Pf = (R*Tf*(N1+N2))/V;
+Vf1 = (R*N1*Tf)/Pf;
+Vf2 = V - Vf1;
+disp("System 1")
+disp("m3",Vf1,"Volume is")
+disp("kJ",Uf1,"Energy is")
+disp("System 2")
+disp("m3",Vf2,"Volume is")
+disp("kJ",Uf2,"Energy is")
+disp("K",Tf,"Final temperature is")
+disp("kPa",Pf,"Final Pressure is")
\ No newline at end of file diff --git a/779/CH12/EX12.1/12_1.sce b/779/CH12/EX12.1/12_1.sce new file mode 100755 index 000000000..4b1466c17 --- /dev/null +++ b/779/CH12/EX12.1/12_1.sce @@ -0,0 +1,12 @@ +// Part (a)
+P1 = 1e05;
+P2 = 10e05;
+vf = 0.001043;
+Wrev = vf*(P1-P2);
+disp("kJ/kg",Wrev/1000,"The work required in saturated liquid form is")
+// Part (b)
+h1 = 2675.5; s1 = 7.3594;
+s2 = s1;
+h2 = 3195.5;
+Wrev1 = h1-h2;
+disp("kJ/kg",Wrev1,"The work required in saturated vapour form is")
diff --git a/779/CH12/EX12.10/12_10.sce b/779/CH12/EX12.10/12_10.sce new file mode 100755 index 000000000..a9eae1e7d --- /dev/null +++ b/779/CH12/EX12.10/12_10.sce @@ -0,0 +1,19 @@ +h1 = 3037.3; h2 = 561+(0.96*2163.8); +s2 = 1.6718+(0.96*5.3201); +s3s = s2; +x3s = (s3s-0.6493)/7.5009; +h3s = 191.83+(x3s*2392.8); +h23 = 0.8*(h2-h3s); // h2-h3 +h3 = h2-h23; +h5 = 561.47; h4 = 191.83; +Qh = 3500; // in kJ/s +w = Qh/(h2-h5); +Wt = 1500; +ws = (Wt+w*(h2-h3))/(h1-h3); +ws_ = 3600*ws ; // in kg/h +h6 = ((ws-w)*h4+w*h5)/ws; +h7 = h6; +n_boiler = 0.85; +CV = 44000; // in kJ/kg +wf = (1.1*ws_*(h1-h7))/(n_boiler*CV); +disp("kg/h",wf,"Fuel buring rate is") diff --git a/779/CH12/EX12.11/12_11.sce b/779/CH12/EX12.11/12_11.sce new file mode 100755 index 000000000..167c12c95 --- /dev/null +++ b/779/CH12/EX12.11/12_11.sce @@ -0,0 +1,11 @@ +h1 = 3285; h2s = 3010; h3 = 3280; h4s = 3030; +h4 = h3-0.83*(h3-h4s); +h5s = 2225; +h5 = h4-0.83*(h4-h5s); +h6 = 162.7; h7 = h6; +h8 = 762.81; +h2 = h1-0.785*(h1-h2s); +m = (h8-h7)/(h4-h7); +n_cycle = ((h1-h2)+(h3-h4)+(1-m)*(h4-h5))/((h1-h8)+(h3-h2)) +disp("kg/s",m,"Steam flow at turbine inlet is") +disp("%",n_cycle*100,"cycle efficiency is")
\ No newline at end of file diff --git a/779/CH12/EX12.12/12_12.sce b/779/CH12/EX12.12/12_12.sce new file mode 100755 index 000000000..a229a6678 --- /dev/null +++ b/779/CH12/EX12.12/12_12.sce @@ -0,0 +1,32 @@ +// From table and graph
+h1 = 2792.2;
+h4 = 122.96;
+hb = 254.88;
+hc = 29.98;
+ha = 355.98;
+hd = hc;
+h2 = 1949.27;
+//
+m = (h1-h4)/(hb-hc); // Amount of mercury circulating
+Q1t = m*(ha-hd);
+W1t = m*(ha-hb) + (h1-h2);
+Nov = W1t/Q1t ;
+disp("%",Nov*100,"Overall efficiency of the cycle")
+S = 50000; // Stem flow rate through turbine in kg/h
+wm = S*m;
+disp("kg/h",wm,"Flow through the mercury turbine is")
+Wt = W1t*S/3600;
+disp("kW",Wt,"Useful work done in binary vapour cycle is")
+nm = 0.85; // Internal efficiency of mercury turbine
+ns = 0.87; // Internal efficiency of steam turbine
+WTm = nm*(ha-hb);
+hb_ = ha-WTm; // hb'
+m_ = (h1-h4)/(hb_-hc); // m'
+h1_ = 3037.3; // h'
+Q1t = m_*(ha-hd)+(h1_-h1);
+x2_ = (6.9160-0.4226)/(8.47-0.4226);
+h2_ = 121+(0.806*2432.9);
+WTst = ns*(h1_-h2_);
+WTt = m_*(ha-hb_)+WTst;
+Nov = WTt/Q1t;
+disp("%",Nov*100,"Overall efficiency is")
diff --git a/779/CH12/EX12.2/12_2.sce b/779/CH12/EX12.2/12_2.sce new file mode 100755 index 000000000..01285171c --- /dev/null +++ b/779/CH12/EX12.2/12_2.sce @@ -0,0 +1,26 @@ +h1 = 3159.3; s1 = 6.9917;
+h3 = 173.88; s3 = 0.5926; sfp2 = s3; hfp2 = h3;
+hfgp2 = 2403.1; sgp2 = 8.2287;
+vfp2 = 0.001008; sfgp2 = 7.6361;
+x2s = (s1-sfp2)/(sfgp2);
+h2s = hfp2+(x2s*hfgp2);
+// Part (a)
+P1 = 20e02; P2 = 0.08e02;
+h4s = vfp2*(P1-P2)+h3 ;
+Wp = h4s-h3;
+Wt = h1-h2s;
+Wnet = Wt-Wp;
+Q1 = h1-h4s;
+n_cycle = Wnet/Q1;
+disp("kJ/kg",Wnet,"Net work per kg of steam is")
+disp(n_cycle,"Cycle efficiency is")
+// Part (b)
+n_p = 0.8; n_t = 0.8;
+Wp_ = Wp/n_p;
+Wt_ = Wt*n_t;
+Wnet_ = Wt_-Wp_;
+P = 100*((Wnet-Wnet_)/Wnet) ;
+n_cycle_ = Wnet_/Q1;
+P_ = 100*((n_cycle-n_cycle_)/n_cycle);
+disp("%",P,"Percentage reduction in net work per kg of steam is")
+disp("%",P_,"Percentage reduction in cycle efficiency is")
\ No newline at end of file diff --git a/779/CH12/EX12.3/12_3.sce b/779/CH12/EX12.3/12_3.sce new file mode 100755 index 000000000..43c0d5416 --- /dev/null +++ b/779/CH12/EX12.3/12_3.sce @@ -0,0 +1,18 @@ +P1 = 0.08; // in bar
+sf = 0.5926; x2s = 0.85; sg = 8.2287;
+s2s = sf+(x2s*(sg-sf));
+s1 = s2s;
+P2 = 16.832; // by steam table opposite to s1 in bar
+h1 = 3165.54;
+h2s = 173.88 + (0.85*2403.1);
+h3 = 173.88;
+vfp2 = 0.001;
+h4s = h3 + (vfp2*(P2-P1)*100);
+Q1 = h1-h4s;
+Wt = h1-h2s;
+Wp = h4s-h3;
+n_cycle = 100*((Wt-Wp)/Q1);
+Tm = (h1-h4s)/(s2s-sf);
+disp("bar",P2,"The greatest allowable steam pressure at the turbine inlet is")
+disp("%",n_cycle,"Rankine cycle efficiency is")
+disp("K",Tm,"Mean temperature of heat addition is")
diff --git a/779/CH12/EX12.4/12_4.sce b/779/CH12/EX12.4/12_4.sce new file mode 100755 index 000000000..54fb2568c --- /dev/null +++ b/779/CH12/EX12.4/12_4.sce @@ -0,0 +1,14 @@ +h1 = 3465; h2s = 3065; h3 = 3565;
+h4s = 2300; x4s = 0.88; h5 = 191.83;
+v = 0.001;
+P = 150; // in bar
+Wp = v*P*100;
+h6s = 206.83;
+Q1 = (h1-h6s)+(h3-h2s);
+Wt = (h1-h2s)+(h3-h4s);
+Wnet = Wt-Wp;
+n_cycle = 100*Wnet/Q1;
+sr = 3600/Wnet;
+disp(0.88,"Quality at turbine exhaust is")
+disp("%",n_cycle,"Cycle efficiency is")
+disp("kg/kW h",sr,"steam rate is")
\ No newline at end of file diff --git a/779/CH12/EX12.5/12_5.sce b/779/CH12/EX12.5/12_5.sce new file mode 100755 index 000000000..a07a99085 --- /dev/null +++ b/779/CH12/EX12.5/12_5.sce @@ -0,0 +1,26 @@ +h1 = 3230.9; s1 = 6.9212; s2 = s1; s3 = s1;
+h2 = 2796; sf = 0.6493; sfg = 7.5009;
+x3 = (s3-sf)/sfg;
+h3 = 191.83 + x3*2392.8;
+h4 = 191.83; h5 = h4;
+h6 = 640.23; h7 = h6;
+m = (h6-h5)/(h2-h5);
+Wt = (h1-h2)+(1-m)*(h2-h3);
+Q1 = h1-h6;
+n_cycle = 100*Wt/Q1;
+sr = 3600/Wt;
+s7 = 1.8607; s4 = 0.6493;
+Tm = (h1-h7)/(s1-s7);
+Tm1 = (h1-h4)/(s1-s4); // With out regeneration
+dT = Tm-Tm1;
+Wt_ = h1-h3;
+sr_ = 3600/Wt_;
+dsr = sr-sr_;
+n_cycle_ = 100*(h1-h3)/(h1-h4);
+dn = n_cycle-n_cycle_;
+disp("%",n_cycle,"Efficiency of the cycle is ")
+disp("kg/kW h",sr,"Steam rate of the cycle is")
+disp("degree centigrade",dT,"Increase in temperature due to regeneration is")
+disp("kg/kW h",dsr,"Increase in steam rate due to regeneration is")
+disp("%",dn,"Increase in Efficiency of the cycle due to regeneration is")
+
diff --git a/779/CH12/EX12.6/12_6.sce b/779/CH12/EX12.6/12_6.sce new file mode 100755 index 000000000..e1c292ad8 --- /dev/null +++ b/779/CH12/EX12.6/12_6.sce @@ -0,0 +1,34 @@ +h1 = 3023.5; s1 = 6.7664; s2 = s1; s3 = s1; s4 = s1; +t_sat_20 = 212; +t_sat_1 = 46; +dt = t_sat_20-t_sat_1; +n =3; // number of heaters +t = dt/n; +t1 = t_sat_20-t; +t2 = t1-t; +// 0.1 bar +hf = 191.83; hfg = 2392.8; sf = 0.6493; +sg = 8.1502; +// At 100 degree +hf100 = 419.04; hfg100 = 2257.0; sf100 = 1.3069; sg100 = 7.3549; +// At 150 degree +hf150 = 632.20; hfg150 = 2114.3; sf150 = 1.8418; sg150 = 6.8379; +x2 = (s1-sf150)/4.9961; +h2 = hf150+(x2*hfg150); +x3 = (s1-sf100)/6.0480; +h3 = hf100+(x3*hfg100); +x4 = (s1-sf)/7.5010; +h4 = hf+(x4*hfg); +h5 = hf; h6 = h5; +h7 = hf100; h8 = h7; +h9 = 632.2; h10 = h9; +m1 = (h9-h7)/(h2-h7); +m2 = ((1-m1)*(h7-h6))/(h3-h6); +Wt = 1*(h1-h2)+(1-m1)*(h2-h3)+(1-m1-m2)*(h3-h4); +Q1 = h1-h9; +Wp = 0 ; // Pump work is neglected +n_cycle = 100*(Wt-Wp)/Q1; +sr = 3600/(Wt-Wp); +disp("kJ/kg",Wt,"Net work per kg os stem is") +disp("%",n_cycle,"Cycle efficiency is") +disp("kg/kW h",sr,"Stream rate is") diff --git a/779/CH12/EX12.7/12_7.sce b/779/CH12/EX12.7/12_7.sce new file mode 100755 index 000000000..fa0b0f1ac --- /dev/null +++ b/779/CH12/EX12.7/12_7.sce @@ -0,0 +1,23 @@ +Ti = 2000; +Te = 450; +T0 = 300; +Q1_dot = 100e03; // in kW +cpg = 1.1; +wg = Q1_dot/(cpg*(Ti-Te)); +af1 = wg*cpg*T0*((Ti/T0)-1-log(Ti/T0)); +af2 = wg*cpg*T0*((Te/T0)-1-log(Te/T0)); +afi = af1-af2; +h1 = 2801; h3 = 169; h4 = 172.8; h2 = 1890.2; +s1 = 6.068; s2 = s1; s3 = 0.576; s4 = s3; +Wt = h1-h2; +Wp = h4-h3; +Q1 = h1-h4; +Q2 = h2-h3; +Wnet = Wt-Wp; +ws = Q1_dot/2628; +afu = 38*(h1-h4-T0*(s1-s3)); +I_dot = afi-afu; +Wnet_dot = ws*Wnet; +afc = ws*(h2-h3-T0*(s2-s3)); +n2 = 100*Wnet_dot/af1; +disp("%",n2,"The second law efficiency is")
\ No newline at end of file diff --git a/779/CH12/EX12.8/12_8.sce b/779/CH12/EX12.8/12_8.sce new file mode 100755 index 000000000..717fa67d9 --- /dev/null +++ b/779/CH12/EX12.8/12_8.sce @@ -0,0 +1,55 @@ +// Part (a) +h1 = 2758; h2 = 1817; h3 = 192; h4 = 200; +Wt = h1-h2; Wp = h4-h3; +Q1 = h1-h4; Wnet = Wt-Wp; +n1 = Wnet/Wt; +WR = Wnet/Wp; +Q1_ = 100; +PO = n1*Q1_; +cp = 1000; +wg = (Q1_/(833-450)); +EIR = wg*cpg*((833-300)-300*(log(833/300))); +n2 = PO/EIR ; +disp("Part (a)") +disp("%",n1*100,"n1 is") +disp("%",n2*100,"n2 is") +disp(WR,"Work ratio is") +// Part (b) +h1b = 3398; h2b = 2130; h3b = 192; h4b = 200; +Wtb = 1268; Wpb = 8; Q1b = 3198; +n1b = (Wt-Wp)/Q1; +WRb = (Wt-Wp)/Wt; +EIRb = 59.3; +Wnetb = Q1b*n1b; +n2b = Wnetb/EIRb; +disp("Part (b)") +disp("%",n1b*100,"n1 is") +disp("%",n2b*100,"n2 is") +disp(WRb,"Work ratio is") +// Part (c) +h1c = 3398; h2c = 2761; h3c = 3482; h4c = 2522; h5c = 192; h6c = 200; +Wt1 = 637; Wt2 = 960; Wtc = Wt1+Wt2; Wpc = 8; +Wnetc = 1589; Q1c = 3198+721; +n1c = Wnetc/Q1c; +WRc = Wnetc/Wtc; +POc = Q1_*n1c; +EIRc = 59.3; +n2c = POc/EIRc; +disp("Part (c)") +disp("%",n1c*100,"n1 is") +disp("%",n2c*100,"n2 is") +disp(WRc,"Work ratio is") +// Part (d) +T3 = 318.8; T1 = 568; +n1d = 1-(T3/T1); +Q1d = 2758-1316; +Wnet = Q1d*n1d; +Wpd = 8; Wtd = 641; +WRd = (Wt-Wp)/Wt; +POd = Q1_*0.439; +EIRd = (Q1_/(833-593))*cpg*((833-300)-300*(log(833/300))); +n2d = POd/EIRd; +disp("Part (d)") +disp("%",n1d*100,"n1 is") +disp("%",n2d*100,"n2 is") +disp(WRd,"Work ratio is") diff --git a/779/CH12/EX12.9/12_9.sce b/779/CH12/EX12.9/12_9.sce new file mode 100755 index 000000000..8a1c487d1 --- /dev/null +++ b/779/CH12/EX12.9/12_9.sce @@ -0,0 +1,22 @@ +hfg = 2202.6; +Qh = 5.83; +ws = Qh/hfg; +eg = 0.9; // efficiency of generator +P = 1000; +Wnet = 1000/0.9; +nbrake = 0.8; +h1_2s = Wnet/(ws*nbrake); // h1-h2s +n_internal = 0.85; +h12 = n_internal*h1_2s; +hg = 2706.3; h2 = hg; +h1 = h12+h2; +h2s = h1-h1_2s; +hf = 503.71; +x2s = (h2s-hf)/hfg; +sf = 1.5276; sfg = 5.6020; +s2s = sf+(x2s*sfg); +s1 = s2s; +P1 = 22.5; // in bar from Moiller chart +t1 = 360; +disp("degree",t1,"Temperature of the steam is") +disp("bar",P1,"Pressure of the steam is ")
\ No newline at end of file diff --git a/779/CH13/EX13.1/13_1.sce b/779/CH13/EX13.1/13_1.sce new file mode 100755 index 000000000..04d3a7ef9 --- /dev/null +++ b/779/CH13/EX13.1/13_1.sce @@ -0,0 +1,25 @@ +T1 = 273+35;
+P1 = 100e03; // in kN/m2
+Q1 = 2100;
+R = 0.287;
+v1 = 0.884; v2 = 0.11; v3 = v2;
+rk = 8; g = 1.4; // gamma
+n_cycle = 1-(1/rk^(1.4-1));
+v12 = 8; // v1/v2
+v1 = (R*T1)/P1;
+v2 = v1/8;
+T2 = T1*(v1/v2)^(g-1);
+cv = 0.718;
+T3 = Q1/cv + T2
+P21 = (v1/v2)^g;
+P2 = P21*P1;
+P3 = P2*(T3/T2);
+Wnet = Q1*n_cycle;
+Pm = Wnet/(v1-v2);
+disp("MPa",P3/1e06,"Maximum pressure is")
+disp("K",T3,"Temperature of the cycle is")
+disp("%",n_cycle*100,"Cycle efficiency is")
+disp("MPa",Pm/1e06,"Mean effective pressure is")
+
+
+
diff --git a/779/CH13/EX13.10/13_10.sce b/779/CH13/EX13.10/13_10.sce new file mode 100755 index 000000000..c3e8bf838 --- /dev/null +++ b/779/CH13/EX13.10/13_10.sce @@ -0,0 +1,24 @@ +T1 = 233; V1 = 300; cp = 1.005; g = 1.4;
+T2 = T1+((V1^2)/(2*cp))*1e-03 ;
+P1 = 35;
+P2 = P1*(T2/T1)^(g/(g-1));
+rp = 10; // Pressure ratio
+P3 = rp*P2;
+T3 = T2*(P3/P2)^((g-1)/g);
+T4 = 1373;
+T5 = T4-T3+T2;
+P4 = P3;
+P5 = P4*(T5/T4)^(g/(g-1));
+disp("K",T5,"Temperature at the turbine exit is")
+disp("kPa",P5,"Pressure at the turbine exit is")
+P6 = P1;
+T6 = T5*(P6/P5)^((g-1)/g);
+V6 = (2*cp*1000*(T5-T6))^0.5 ;
+disp("m/s",V6,"Velocity of the gas at the nozzle exit is")
+w = 50;
+Ve = V6; Vi = 300;
+Wp_dot = w*Vi*(Ve-Vi);
+h4 = 1373; h3 = 536.66;
+Q1 = w*cp*(h4-h3); // in kJ/kg
+np = Wp_dot/(Q1*1000);
+disp("%",np*100,"The propulsive efficiency of the cycle is")
\ No newline at end of file diff --git a/779/CH13/EX13.11/13_11.sce b/779/CH13/EX13.11/13_11.sce new file mode 100755 index 000000000..05feed6b2 --- /dev/null +++ b/779/CH13/EX13.11/13_11.sce @@ -0,0 +1,26 @@ +Ta = 288;
+rp = 8; // Pb/Pa
+g = 1.33; g1 = 1.44; cv = 0.718; cpa = 1.005; cpg = 1.11; R = 0.287;
+Tb = Ta*(rp)^((g1-1)/g1);
+Tc = 1073; Tm = 800+273; Tmin = 100+273;
+Td = Tc/(rp^((g-1)/g));
+Wgt = cpg*(Tc-Td)-cpa*(Tb-Ta);
+Q1 = cpg*(Tc-Tb);
+Q1_ = cpg*(Tc-Td);
+h1 = 3775; h2 = 2183; h3 = 138; h4 = h3;
+Q1_st = h1-h3; // Q1'
+Q_fe = cpg*(Tm-Tmin);
+was = Q1_st/Q_fe; // wa/ws
+Wst = h1-h2;
+PO = 190e03; // in kW
+ws = PO/(was*Wgt+Wst);
+wa = was*ws;
+CV = 43300; // in kJ/kg
+waf = CV/(Q1+Q1_);
+FEI = (wa/waf)*CV;
+noA = PO/FEI;
+disp(waf,"Air fuel ratio is")
+disp("%",noA*100,"Overall efficiency of combined plant is")
+
+
+
diff --git a/779/CH13/EX13.2/13_2.sce b/779/CH13/EX13.2/13_2.sce new file mode 100755 index 000000000..4fba6110d --- /dev/null +++ b/779/CH13/EX13.2/13_2.sce @@ -0,0 +1,7 @@ +rk = 14;
+k = 0.06
+rc = k*(14-1)+1;
+g = 1.4;
+n_diesel = 1-((1/g))*(1/rk^(g-1))*((rc^(g-1))/(rc-1));
+disp("%",n_diesel*100,"Air standard efficiency is")
+
diff --git a/779/CH13/EX13.3/13_3.sce b/779/CH13/EX13.3/13_3.sce new file mode 100755 index 000000000..2381ba2f8 --- /dev/null +++ b/779/CH13/EX13.3/13_3.sce @@ -0,0 +1,23 @@ +rk = 16;
+T1 = 273+15;
+P1 = 100; // in kN/m2
+T3 = 1480+273;
+g = 1.4; // gamma
+R = 0.287;
+T2 = 288*(rk^(g-1));
+rc = T3/T2 ;
+cp = 1.005; cv = 0.718;
+Q1 = cp*(T3-T2);
+T4 = T3*((rc/rk)^(g-1));
+Q2 = cv*(T4-T1);
+n = 1-(Q2/Q1); // cycle efficiency
+n_ = 1-((1/g))*(1/rk^(g-1))*((rc^(g-1))/(rc-1)); // cycle efficiency from another formula
+Wnet = Q1*n;
+v1 = (R*T1)/P1 ;
+v2 = v1/rk;
+Pm = Wnet/(v1-v2);
+disp(rc,"cut-off ratio is")
+disp("kJ/kg",Q1,"Heat supplied per kg of air is")
+disp("%",n*100,"Cycle efficiency is")
+disp("KPa",Pm,"Mean effective pressure is")
+
diff --git a/779/CH13/EX13.4/13_4.sce b/779/CH13/EX13.4/13_4.sce new file mode 100755 index 000000000..333e0c5b2 --- /dev/null +++ b/779/CH13/EX13.4/13_4.sce @@ -0,0 +1,23 @@ +T1 = 273+50;
+rk = 16;
+g = 1.4; // gamma
+P3 = 70; cv = 0.718; cp = 1.005; R = 0.287;
+T2 = T1*((rk^(g-1)));
+P1 = 1; // in bar
+P2 = P1*(rk)^g;
+T3 = T2*(P3/P2);
+Q23 = cv*(T3-T2);
+T4 = (Q23/cp)+T3;
+v43 = T4/T3; // v4/v3
+v54 = rk/v43; // v5/v4 = (v1/v2)*(v3/v4)
+T5 = T4*(1/v54)^(g-1);
+P5 = P1*(T5/T1);
+Q1 = cv*(T3-T2)+cp*(T4-T3);
+Q2 = cv*(T5-T1);
+n_cycle = 1-(Q2/Q1);
+v1 = (R*T1)/P1;
+v12 = (15/16)*v1; // v1-v2
+Wnet = Q1*n1;
+Pm = Wnet/(v12);
+disp("%",n*100,"Efficiency of the cycle is")
+disp("bar",Pm,"Mean effective pressure is")
\ No newline at end of file diff --git a/779/CH13/EX13.5/13_5.sce b/779/CH13/EX13.5/13_5.sce new file mode 100755 index 000000000..56f86ee4d --- /dev/null +++ b/779/CH13/EX13.5/13_5.sce @@ -0,0 +1,22 @@ +P1 = 0.1e06;
+T1 = 303;
+T3 = 1173;
+PR = 6; // Pressure ratio
+rp = 6; nt = 0.8; nc = 0.8;
+g = 1.4; cv = 0.718; cp = 1.005; R = 0.287;
+j = (PR)^((g-1)/g);
+T2s = j*T1;
+T4s = T3/j;
+T21 = (T2s-T1)/nc ; // T2-T1
+T34 = nt*(T3-T4s); // T3-T4
+Wt = cp*T34;
+Wc = cp*T21;
+T2 = T21+T1;
+Q1 = cp*(T3-T2);
+n = (Wt-Wc)/Q1;
+T4 = T3-375;
+T6 = 0.75*(T4-T2) + T2 ;
+Q1_ = cp*(T3-T6);
+n_ = (Wt-Wc)/Q1_;
+I = (n_-n)/n ;
+disp("%",I*100,"The percentage efficiency in cycle efficiency due to regeneration is")
diff --git a/779/CH13/EX13.6/13_6.sce b/779/CH13/EX13.6/13_6.sce new file mode 100755 index 000000000..8f603e64c --- /dev/null +++ b/779/CH13/EX13.6/13_6.sce @@ -0,0 +1,9 @@ +cp = 1.005;
+Tmax = 1073; Tmin = 300;
+Wnet_max = cp*(sqrt(Tmax)-sqrt(Tmin))^2;
+n_cycle = 1-sqrt(Tmin/Tmax);
+n_carnot = 1-(Tmin/Tmax);
+r = n_cycle/n_carnot;
+disp("kJ/kg",Wnet_max,"Maximum work done per kg of air is")
+disp("%",n_cycle*100,"cycle efficiency is")
+disp(r,"ratio of brayton and carnot efficiency is")
\ No newline at end of file diff --git a/779/CH13/EX13.7/13_7.sce b/779/CH13/EX13.7/13_7.sce new file mode 100755 index 000000000..1c9ba6081 --- /dev/null +++ b/779/CH13/EX13.7/13_7.sce @@ -0,0 +1,18 @@ +rp = 6;
+g = 1.4; cv = 0.718; cp = 1.005; R = 0.287;
+T1 = 300; T3 = 1100; T0 = 300;
+n_cycle = 1-(1/rp^((g-1)/g));
+j = rp^((g-1)/g);
+T2 = T1*j;
+T4 = T3/j;
+Wc = cp*(T2-T1);
+Wt = cp*(T3-T4);
+WR = (Wt-Wc)/Wt;
+Q1 = 100; // in MW
+PO = n_cycle*Q1;
+m_dot = (Q1*1e06)/(cp*(T3-T2));
+R = m_dot*cp*T0*((T4/T0)-1-log(T4/T0));
+disp("%",n_cycle*100,"The thermal efficiency of the cycle is")
+disp(WR,"Work ratio is")
+disp("MW",PO,"Power output is")
+disp("MW",R/1e06,"Energy flow rate of the exhaust gas stream is")
diff --git a/779/CH13/EX13.8/13_8.sce b/779/CH13/EX13.8/13_8.sce new file mode 100755 index 000000000..03387cc21 --- /dev/null +++ b/779/CH13/EX13.8/13_8.sce @@ -0,0 +1,15 @@ +nc = 0.87; nt = 0.9; T1 = 311;
+rp = 8; // P2/P1
+P1 = 1; P2 = 8; P3 = 0.95*P2; P4 = 1;
+g = 1.4; cv = 0.718; cp = 1.005; R = 0.287;
+// With no cooling
+T2s = T1*((P2/P1)^((g-1)/g));
+T2 = T1 + (T2s-T1)/0.87;
+T4s = T3*(P4/P3)^((g-1)/g);
+n = (((T3-T4s)*nt)-((T2s-T1)/nc))/(T3-T2);
+// With cooling
+n_cycle = n-0.05;
+x = 0.13;
+r = 0.13/1.13;
+disp("%",r*100,"Percentage of air that may be taken from the compressor is")
+
diff --git a/779/CH14/EX14.1/14_1.sce b/779/CH14/EX14.1/14_1.sce new file mode 100755 index 000000000..419a01074 --- /dev/null +++ b/779/CH14/EX14.1/14_1.sce @@ -0,0 +1,6 @@ +T2 = 268; T1 = 308;
+COP = T2/(T1-T2);
+ACOP = COP/3; // Actual COP
+Q2 = 29; // in kW
+W = Q2/ACOP;
+disp("kW",W,"Power required to derive the plane is")
\ No newline at end of file diff --git a/779/CH14/EX14.2/14_2.sce b/779/CH14/EX14.2/14_2.sce new file mode 100755 index 000000000..a7fc63382 --- /dev/null +++ b/779/CH14/EX14.2/14_2.sce @@ -0,0 +1,12 @@ +h1 = 236.04; s1 = 0.9322; s2 = s1;
+P2 = 0.8; // in MPa
+h2 = 272.05; h3 = 93.42; h4 = h3;
+m = 0.06; // mass flow rate
+Q2 = m*(h1-h4);
+Wc = m*(h2-h1);
+Q1 = m*(h2-h4);
+COP = Q2/Wc;
+disp("kW",Q2,"The rate of heat removal is")
+disp("kW",Wc,"Power input to the compressor is")
+disp("kW",Q1,"The heat rejection rate in the condenser is")
+disp(COP,"COP is")
diff --git a/779/CH14/EX14.3/14_3.sce b/779/CH14/EX14.3/14_3.sce new file mode 100755 index 000000000..65103e935 --- /dev/null +++ b/779/CH14/EX14.3/14_3.sce @@ -0,0 +1,29 @@ +h1 = 183.19; h2 = 209.41; h3 = 74.59; h4 = h3;
+T1 = 313; T2 = 263;
+W = 70000/3600; // Plant capacity in kW
+w = W/(h1-h4); // Refrigerant flow rate
+v1 = 0.077;
+VFR = w*v1;
+T = 48; // in degree
+P2 = 9.6066; P1 = 2.1912;
+rp = P2/P1; // Pressure ratio
+Q1 = w*(h2-h3);
+hf = 26.87; hfg = 156.31;
+x4 = (h4-hf)/hfg;
+COP = (h1-h4)/(h2-h1);
+PI = w*(h2-h1);
+COP = T2/(T1-T2);
+COP_v = 4.14;
+r = COP_v/COP;
+disp("kg/s",w,"Refrigerant flow rate is")
+disp("m3/s",VFR,"Volume flow rate is")
+disp("degree",T,"Compressor discharge temperature is")
+disp(rp,"Pressure ratio is")
+disp("kW",Q1,"Heat rejected to the condenser is")
+disp("%",x4*100,"Flash gas percentage is")
+disp(COP,"COP is")
+disp("kW",PI,"Power required to drive the compressor is")
+disp(r,"Ratio of COP of carnot refrigerator is")
+
+
+
diff --git a/779/CH14/EX14.4/14_4.sce b/779/CH14/EX14.4/14_4.sce new file mode 100755 index 000000000..ee7ec92d3 --- /dev/null +++ b/779/CH14/EX14.4/14_4.sce @@ -0,0 +1,24 @@ +h3 = 882; h2 = 1034;
+h6 = 998; h1 = 1008;
+v1 = 0.084;
+h4 = h3-h1+h6; h5 = h4;
+t4 = 25+273;
+disp("kJ/kg",h6-h5,"Refrigeration effect is")
+m = 10;
+w = (m*14000)/((h6-h5)*3600); // in kg/s
+disp("kg/s",w,"Refrigerant flow rate is")
+v1 = 0.084;
+VFR = w*3600*v1; // in kg/h
+ve = 0.8; // volumetric efficiency
+CD = VFR/(ve*60); // in m3/min
+N = 900;
+n = 2;
+D = ((CD*4)/(%pi*1.1*N*n))^(1/3); // L = 1.1D L = length D = diameter
+L = 1.1*D;
+disp("cm",D*100,"Diameter of cylinder is")
+disp("cm",L*100,"Length of cylinder is")
+COP = (h6-h5)/(h2-h1);
+PI = w*(h2-h1);
+disp("kW",PI,"Power required to drive the compresor is")
+disp(COP,"COP is")
+
diff --git a/779/CH14/EX14.5/14_5.sce b/779/CH14/EX14.5/14_5.sce new file mode 100755 index 000000000..a20684c20 --- /dev/null +++ b/779/CH14/EX14.5/14_5.sce @@ -0,0 +1,20 @@ +P2 = 1554.3;
+P1 = 119.5;
+Pi = sqrt(P1*P2);
+h1 = 1404.6; h2 = 1574.3; h3 = 1443.5; h4 = 1628.1;
+h5 = 371.7; h6 = h5; h7 = 181.5;
+w = 30; // capacity of plant
+m2_dot = (3.89*30)/(h1-h7);
+m1_dot = m2_dot*((h2-h7)/(h3-h6));
+Wc_dot = m2_dot*(h2-h1)+m1_dot*(h4-h3);
+COP = w*3.89/Wc_dot;
+// single stage
+h1_ = 1404.6; h2_ = 1805.1;
+h3_ = 371.1; h4_ = h3_;
+m_dot = (3.89*30)/(h1_-h4_);
+Wc = m_dot*(h2_-h1_);
+COP_ = w*3.89/Wc;
+IW = (Wc-Wc_dot)/Wc_dot;
+ICOP = (COP-COP_)/COP_
+disp("%",IW*100,"Increase in work of compression is")
+disp("%",ICOP*100,"Increase in COP for 2 stage compression is")
\ No newline at end of file diff --git a/779/CH14/EX14.6/14_6.sce b/779/CH14/EX14.6/14_6.sce new file mode 100755 index 000000000..14fb2b0d5 --- /dev/null +++ b/779/CH14/EX14.6/14_6.sce @@ -0,0 +1,12 @@ +tsat = 120.2+273; hfg = 2201.9;
+T1 = 120.2+273;
+T2 = 30+273;
+Tr = -10+273;
+COP_max = ((T1-T2)*Tr)/((T2-Tr)*T1);
+ACOP = 0.4*COP_max;
+Qe = (20*14000)/3600; // in KW
+Qg = Qe/ACOP;
+x = 0.9;
+H = x*hfg;
+SFR = Qg/H;
+disp("kg/s",SFR,"Steam flow rate required is")
\ No newline at end of file diff --git a/779/CH14/EX14.7/14_7.sce b/779/CH14/EX14.7/14_7.sce new file mode 100755 index 000000000..c9c59465a --- /dev/null +++ b/779/CH14/EX14.7/14_7.sce @@ -0,0 +1,14 @@ +T1 = 277; T3 = 273+55;
+rp = 3; // Pressure ratio
+g = 1.4; cp = 1.005;
+T2s = T1*(rp^((g-1)/g));
+T2 = T1+(T2s-T1)/0.72
+T4s = T3/(rp^((g-1)/g));
+T34 = 0.78*(T3-T4s); // T3-T4
+T4 = T3-T34;
+COP = (T1-T4)/((T2-T1)-(T3-T4));
+disp(COP,"COP of the refrigerator is")
+P = (3*14000)/(COP*3600)
+disp("kW",P,"Driving power required is")
+m = (3*14000)/(cp*(T1-T4));
+disp("kg/s",m/3600,"Mass flow rate is")
diff --git a/779/CH14/EX14.8/14_8.sce b/779/CH14/EX14.8/14_8.sce new file mode 100755 index 000000000..8f1436c77 --- /dev/null +++ b/779/CH14/EX14.8/14_8.sce @@ -0,0 +1,17 @@ +P1 = 2.4; T1 = 0+273;
+h1 = 188.9; s1 = 0.7177; v1 = 0.0703;
+P2 = 9; T2 = 60+273;
+h2 = 219.37;
+h2s = 213.27;
+h3 = 71.93; h4 = h3;
+v1 = 0.0703;
+A1V1 = 0.6/60;
+m_dot = A1V1/0.0703;
+Wc_dot = m_dot*(h2-h1);
+Q1_dot = m_dot*(h2-h3);
+COP = Q1_dot/Wc_dot;
+nis = (h2s-h1)/(h2-h1);
+disp("kW",Wc_dot,"Power input is")
+disp("kW",Q1_dot,"Heating capacity is")
+disp(COP,"COP is")
+disp("%",nis*100,"The isentropic compressor efficiency is")
\ No newline at end of file diff --git a/779/CH14/EX14.9/14_9.sce b/779/CH14/EX14.9/14_9.sce new file mode 100755 index 000000000..7a4879378 --- /dev/null +++ b/779/CH14/EX14.9/14_9.sce @@ -0,0 +1,15 @@ +T1 = 275; T3 = 310;
+P1 = 1 ; P2 = 4;
+T2s = T1*(P2/P1);
+nc = 0.8;
+T2 = T1 + (T2s-T1)*nc;
+pr = 0.1;
+P3 = P2-0.1;
+P4 = P1+0.08;
+PR = P3/P4;
+disp(PR,"Pressure ratio for the turbine is")
+T4s = T3*(1/PR)^(0.286);
+nt = 0.85;
+T4 = T3-(T3-T4s)*nt;
+COP = (T1-T4)/((T2-T3)-(T1-T4));
+disp(COP,"COP is")
diff --git a/779/CH15/EX15.1/15_1.sce b/779/CH15/EX15.1/15_1.sce new file mode 100755 index 000000000..2d2edc8b7 --- /dev/null +++ b/779/CH15/EX15.1/15_1.sce @@ -0,0 +1,24 @@ +Ps = 0.033363; P = 1.0132;
+W2 = (0.622*Ps)/(P-Ps);
+hfg2 = 2439.9; hf2 = 109.1; cpa = 1.005;
+hg = 2559.9; hw1 = hg;
+T2 = 25+273; T1 = 32+273;
+W1 = (cpa*(T2-T1)+(W2*hfg2))/(hw1-hf2);
+Pw = ((W1/0.622)*P)/(1+(W1/0.622));
+disp("kg vap./kg dry air",W1,"Specific humidity is")
+disp("bar",Pw,"Partial pressure of water vapour is")
+disp("degree",24.1,"Dew point temperature is") // saturation temperature at 0.03 bar
+Psat = 0.048; // at 32 degree
+fi = Pw/Psat;
+disp("%",fi*100,"Relative humidity is")
+mu = (Pw/Ps)*((P-Ps)/(P-Pw));
+disp(mu,"Degree of saturation is")
+Pa = P-Pw;
+Ra = 0.287; Tab = T1;
+rho_a = (Pa*100)/(Ra*Tab);
+disp("kg/m3",rho_a,"Density of dry air is")
+rho_w = W1*rho_a;
+disp("kg/m3",rho_w,"Density of water vapour is")
+ta = 32; tdb = 32; tdp = 24.1;
+h = cpa*ta + W1*(hg+1.88*(tdb-tdp));
+disp("kJ/kg",h,"Enthalpy of the mixture is")
diff --git a/779/CH15/EX15.2/15_2.sce b/779/CH15/EX15.2/15_2.sce new file mode 100755 index 000000000..79a619ce8 --- /dev/null +++ b/779/CH15/EX15.2/15_2.sce @@ -0,0 +1,11 @@ +Ps = 2.339; P = 100;
+W2 = (0.622*Ps)/(P-Ps);
+hfg2 = 2454.1; hf2 = 83.96; cpa = 1.005;
+hw1 = 2556.3;
+T2 = 20; T1 = 30;
+W1 = (cpa*(T2-T1)+(W2*hfg2))/(hw1-hf2);
+Pw1 = ((W1/0.622)*P)/(1+(W1/0.622));
+Ps1 = 4.246;
+fi = (Pw1/Ps1);
+disp("%",fi*100,"Relative humidity is")
+disp("kg vap./kg dry air",W1,"Humidity ratio of inlet mixture is")
\ No newline at end of file diff --git a/779/CH15/EX15.3/15_3.sce b/779/CH15/EX15.3/15_3.sce new file mode 100755 index 000000000..6828b651d --- /dev/null +++ b/779/CH15/EX15.3/15_3.sce @@ -0,0 +1,18 @@ +Psat = 2.339;
+fi3 = 0.50;
+P = 101.3; cp = 1.005;
+Pw3 = fi3*Psat;
+Pa3 = P-Pw3;
+W3 = 0.622*(Pw3/Pa3);
+Psa1_1 = 0.7156;
+Pw1 = 0.7156;
+Pa1 = P-Pw1;
+W1 = 0.622*(Pw1/Pa1); W2 = W1;
+T3 = 293; Ra = 0.287; Pa3 = 100.13;
+va3 = (Ra*T3)/Pa3;
+SW = (W3-W1)/va3;
+t3 = 20; tsat = 9.65; hg = 2518; h4 = 10;
+t2 = ( W3*(hg+1.884*(t3-tsat))-W2*(hg-1.884*tsat) + cp*t3 - (W3-W2)*h4 )/ (cp+W2*1.884)
+disp("kg moisture/m3",SW,"Mass of spray water required is")
+disp("degree",t2,"Temperature to which air must be heated is")
+
diff --git a/779/CH15/EX15.4/15_4.sce b/779/CH15/EX15.4/15_4.sce new file mode 100755 index 000000000..987c14ac6 --- /dev/null +++ b/779/CH15/EX15.4/15_4.sce @@ -0,0 +1,9 @@ +h1 = 82; h2 = 52; h3 = 47; h4 = 40;
+W1 = 0.020; W2 = 0.0115; W3 = W2;
+v1 = 0.887;
+v = 3.33; // amount of free sir circulated
+G = v/v1;
+CC = (G*(h1-h3)*3600)/14000; // in tonns
+R = G*(W1-W3);
+disp("tonnes",CC,"Capacity of the cooling coil in tonnes")
+disp("kg/s",R,"Rate of water vapour removed is")
\ No newline at end of file diff --git a/779/CH15/EX15.5/15_5.sce b/779/CH15/EX15.5/15_5.sce new file mode 100755 index 000000000..b989f2757 --- /dev/null +++ b/779/CH15/EX15.5/15_5.sce @@ -0,0 +1,8 @@ +W1 = 0.0058; W2 = 0.0187;
+h1 = 35; h2 = 90;
+G12 = 1/2; // G12 = G1/G2
+W3 = (W2+G12*W1)/(1+G12);
+h3 = (2/3)*h2 + (1/3)*h1;
+disp("Final condition of air is given by")
+disp("kg vap./kg dry air",W3,"W3 = ")
+disp("kJ/kg dry air",h3,"h3 = ")
\ No newline at end of file diff --git a/779/CH15/EX15.7/15_7.sce b/779/CH15/EX15.7/15_7.sce new file mode 100755 index 000000000..d6726bf76 --- /dev/null +++ b/779/CH15/EX15.7/15_7.sce @@ -0,0 +1,11 @@ +h1 = 57; h2 = h1;
+h3 = 42;
+W1 = 0.0065; W2 = 0.0088; W3 = W2;
+t2 = 34.5; v1 = 0.896;
+n = 1500; // seating capacity of hall
+a = 0.3; // amount of out door air suplied
+G = (n*a)/0.896 ; // Amount of dry air suplied
+CC = (G*(h2-h3)*60)/14000; // in tonns
+R = G*(W2-W1)*60;
+disp("tonnes",CC,"Capacity of the cooling coil in tonnes")
+disp("kg/h",R,"Capacity of humidifier")
diff --git a/779/CH15/EX15.8/15_8.sce b/779/CH15/EX15.8/15_8.sce new file mode 100755 index 000000000..c10c0fc77 --- /dev/null +++ b/779/CH15/EX15.8/15_8.sce @@ -0,0 +1,15 @@ +twb1 = 15.2; twb2 = 26.7; tw3 = 30;
+h1 = 43; h2 = 83.5; hw = 84; mw = 1.15;
+W1 = 0.0088; W2 = 0.0213;
+hw3 = 125.8; hm = 84;
+G = 1;
+hw34 = (G/mw)*((h2-h1)-(W2-W1)*hw); // hw3-hw4
+tw4 = tw3-(hw34/4.19);
+A = tw4-twb1;
+R = tw3-tw4;
+x = G*(W2-W1);
+disp("degree",tw4,"Temperature of water leaving the tower is")
+disp("kg/kg dry sir",x,"Fraction of water evoporated is")
+disp("degree",R,"Range of cooling water is")
+disp("degree",A,"Approach of cooling water is")
+
diff --git a/779/CH15/EX15.9/15_9.sce b/779/CH15/EX15.9/15_9.sce new file mode 100755 index 000000000..22a31fe90 --- /dev/null +++ b/779/CH15/EX15.9/15_9.sce @@ -0,0 +1,23 @@ +Psat1 = 0.01705; hg1 = 2528.9; // at 15 degree
+Psat2 = 0.05628; hg2 = 2565.3; // At 35 degree
+fi1 = 0.55;
+Pw1 = fi1*Psat1;
+fi2 = 1;
+Pw2 = fi2*Psat2;
+P = 1;
+W1 = (0.622*Pw1)/(P-Pw1);
+W2 = (0.622*Pw2)/(P-Pw2);
+MW = W2-W1;
+t2 = 35; t1 = 15;
+m_dot = 2.78;
+cpa = 1.005;
+h43 = 35*4.187; // h4-h3
+h5 = 14*4.187;
+m_dot_w = (-(W2-W1)*h5 - W1*hg1 + W2*hg2 + cpa*(t2-t1))/(h43) ;
+R = m_dot/m_dot_w ;
+MW = (W2-W1)*R;
+RWA = R*(1+W1);
+R = 0.287; T = 288;
+V_dot = (RWA*R*T)/(P*1e02) ; // Pressure is in kilo Pascal
+disp("kg/s",MW,"Make up water flow rate is")
+disp("m3/s",V_dot,"Volume flow rate of air is")
\ No newline at end of file diff --git a/779/CH16/EX16.10/16_10.sce b/779/CH16/EX16.10/16_10.sce new file mode 100755 index 000000000..7e3e6dfa2 --- /dev/null +++ b/779/CH16/EX16.10/16_10.sce @@ -0,0 +1,13 @@ +Hr1 = -249952; // For octane
+Hp1 = Hr1;
+// Below values are calculated using value fron table 16.4
+T2 = 1000;
+Hp2 = -1226577
+T3 = 1200;
+Hp3 = 46537;
+T4 = 1100;
+Hp4 = -595964;
+Hp = [Hp2 Hp3 Hp4]
+T = [T2 T3 T4]
+T1 = interpln([Hp ; T],Hp1); // Interpolation to find temperature at Hp1
+disp("K",T1,"the adeabatic flame temperature is")
\ No newline at end of file diff --git a/779/CH16/EX16.11/16_11.sce b/779/CH16/EX16.11/16_11.sce new file mode 100755 index 000000000..6ee53a760 --- /dev/null +++ b/779/CH16/EX16.11/16_11.sce @@ -0,0 +1,15 @@ +// Refer table 16.4 for values
+T0 = 298;
+Wrev = -23316-3*(-394374)-4*(-228583);
+Wrev_ = Wrev/44; // in kJ/kg
+Hr = -103847;
+T = 980; // Through trial and error
+Sr = 270.019+20*205.142+75.2*191.611;
+Sp = 3*268.194 + 4*231.849 + 15*242.855 + 75.2*227.485;
+IE = Sp-Sr; // Increase in entropy
+I = T0*3699.67/44;
+Si = Wrev_ - I;
+disp("kJ/kg",Wrev_,"Reversible work is")
+disp("kj/kg mol K",Sp-Sr,"Increase in entropy during combustion is")
+disp("kJ/kg",I,"Irreversibility of the process")
+disp("kJ/kg",Si,"Availability of products of combustion is")
diff --git a/779/CH16/EX16.12/16_12.sce b/779/CH16/EX16.12/16_12.sce new file mode 100755 index 000000000..8f4c8fd5b --- /dev/null +++ b/779/CH16/EX16.12/16_12.sce @@ -0,0 +1,35 @@ +T0 = 298.15; P0 = 1; R = 8.3143;
+xn2 = 0.7567; xo2 = 0.2035; xh2o = 0.0312; xco2 = 0.0003;
+// Part (a)
+g_o2 = 0; g_c = 0; g_co2 = -394380;
+A = -g_co2 + R*T0*log(xo2/xco2);
+disp("kJ/k mol",A,"The chemical energy of carbon is")
+// Part (b)
+g_h2 = 0; g_h2o_g = -228590;
+B = g_h2 + g_o2/2 - g_h2o_g + R*T0*log(xo2^0.5/xh2o);
+disp("kJ/k mol",B,"The chemical energy of hydrogen is")
+// Part (c)
+g_ch4 = -50790;
+C = g_ch4 + 2*g_o2 - g_co2 - 2*g_h2o_g + R*T0*log((xo2^2)/(xco2*xh2o));
+disp("kJ/k mol",C,"The chemical energy of methane is")
+// Part (d)
+g_co = -137150;
+D = g_co + g_o2/2 - g_co2 + R*T0*log((xo2^0.5)/xco2);
+disp("kJ/k mol",D,"The chemical energy of Carbonmonoxide is")
+// Part (e)
+g_ch3oh = -166240;
+E = g_ch3oh + 1.5*g_o2 - g_co2 - 2*g_h2o_g + R*T0*log((xo2^1.5)/(xco2*(xh2o^2)))
+disp("kJ/k mol",E,"The chemical energy of methanol is")
+// Part (f)
+F = R*T0*log(1/xn2);
+disp("kJ/k mol",F,"The chemical energy of nitrogen is")
+// Part (g)
+G = R*T0*log(1/xo2);
+disp("kJ/k mol",G,"The chemical energy of Oxygen is")
+// Part (h)
+H = R*T0*log(1/xco2);
+disp("kJ/k mol",H,"The chemical energy of carbondioxide is")
+// Part (i)
+g_h2o_l = -237180;
+I = g_h2o_l - g_h2o_g + R*T0*log(1/xh2o);
+disp("kJ/k mol",I,"The chemical energy of water is")
\ No newline at end of file diff --git a/779/CH16/EX16.13/16_13.sce b/779/CH16/EX16.13/16_13.sce new file mode 100755 index 000000000..12319e56d --- /dev/null +++ b/779/CH16/EX16.13/16_13.sce @@ -0,0 +1,11 @@ +b = 8/(0.114+0.029); // By carbon balance
+C = 18/2; // By hydrogen balance
+a = b*0.114 + (b/2)*0.029 + b*0.016 + C/2 ; // By oxygen balance
+Wcv = 1; // Power developed by engine in kW
+n_fuel = (0.57*1)/(3600*114.22);
+Qcv = Wcv-n_fuel*3845872; // 5.33
+disp("kW",Qcv,"The rate of heat transfer from the engine is")
+// Part (b)
+ach = 5407843; // chemical energy of liquid octane
+n2 = Wcv/(n_fuel*ach);
+disp("%",n2*100,"The second law efficiency is")
diff --git a/779/CH16/EX16.2/16_2.sce b/779/CH16/EX16.2/16_2.sce new file mode 100755 index 000000000..072e2a0c2 --- /dev/null +++ b/779/CH16/EX16.2/16_2.sce @@ -0,0 +1,10 @@ +eps_e = 0.27; P = 1 ;
+K = (4*eps_e^2*P)/(1-eps_e^2);
+P1 = 100/760; // in Pa
+eps_e_1 = sqrt((K/P1)/(4+(K/P1)));
+T1 = 318; T2 = 298;
+R = 8.3143; K1 = 0.664; K2 = 0.141;
+dH = 2.30*R*((T1*T2)/(T1-T2))*(log(K1/K2));
+disp("atm",K,"K is")
+disp(eps_e_1,"epislon is ")
+disp("kJ/kg mol",dH,"The heat of reaction is")
diff --git a/779/CH16/EX16.3/16_3.sce b/779/CH16/EX16.3/16_3.sce new file mode 100755 index 000000000..a33d16858 --- /dev/null +++ b/779/CH16/EX16.3/16_3.sce @@ -0,0 +1,10 @@ +v1 = 1; v2 = v1; v3 = v2; v4 = v2;
+e = 0.56; // Degree of reaction
+P = 1; // Dummy
+T = 1200; R = 8.3143;
+x1 = (1-e)/2; x2 = (1-e)/2;
+x3 = e/2; x4 = e/2;
+K = (((x3^v3)*(x4^v4))/((x1^v1)*(x2^v2)))*P^(v3+v4-v1-v2); // Equillibrium constant
+dG = -R*T*log(K);
+disp(K,"Equillibrium constant is")
+disp("J/gmol",dG,"Gibbs function change is")
\ No newline at end of file diff --git a/779/CH16/EX16.5/16_5.sce b/779/CH16/EX16.5/16_5.sce new file mode 100755 index 000000000..c25db697f --- /dev/null +++ b/779/CH16/EX16.5/16_5.sce @@ -0,0 +1,5 @@ +Veo = 1.777; // Ve/Vo
+e = 1-Veo; // Degree of dissociation
+P = 0.124; // in atm
+K = (4*e^2*P)/(1-e^2);
+disp("atm",K,"The value of equillibrium constant is")
\ No newline at end of file diff --git a/779/CH16/EX16.6/16_6.sce b/779/CH16/EX16.6/16_6.sce new file mode 100755 index 000000000..0d982dd96 --- /dev/null +++ b/779/CH16/EX16.6/16_6.sce @@ -0,0 +1,5 @@ +v1 = 1; v2 = 0; v3 = 1; v4 = 1/2; +dH = 250560; e = 3.2e-03; +R = 8.3143; T = 1900; +Cp = ((dH^2)*(1+e/2)*e*(1+e))/(R*T^2*(v1+v2)*(v3+v4)); +disp("j/gmol K",Cp,"Cp is")
\ No newline at end of file diff --git a/779/CH16/EX16.7/16_7.sce b/779/CH16/EX16.7/16_7.sce new file mode 100755 index 000000000..24722ae87 --- /dev/null +++ b/779/CH16/EX16.7/16_7.sce @@ -0,0 +1,10 @@ +a = 21.89;
+y = 18.5;
+x = 8.9;
+PC = 100*(x*12)/((8.9*12)+(18.5*1));
+PH = 100-PC;
+AFR = ((32*a)+(3.76*a*28))/((12*x)+y);
+EAU = (8.8*32)/((21.89*32)-(8.8*32));
+disp("%",PH,"Hydrogen","%",PC,"carbon","The composition of fuel is")
+disp(AFR,"Air fuel ratio is")
+disp("%",EAU*100,"Percentage of excess air used is")
\ No newline at end of file diff --git a/779/CH16/EX16.8/16_8.sce b/779/CH16/EX16.8/16_8.sce new file mode 100755 index 000000000..1b3762d5d --- /dev/null +++ b/779/CH16/EX16.8/16_8.sce @@ -0,0 +1,8 @@ +hf_co2 = -393522;
+hf_h20 = -285838;
+hf_ch4 = -74874;
+D = hf_co2 + (2*hf_h20);
+QCV = hf_ch4;
+disp("kJ",D,"Heat transfer per kg mol of fuel is")
+
+
diff --git a/779/CH16/EX16.9/16_9.sce b/779/CH16/EX16.9/16_9.sce new file mode 100755 index 000000000..8da79aee3 --- /dev/null +++ b/779/CH16/EX16.9/16_9.sce @@ -0,0 +1,7 @@ +// Below values are taken fron table 16.4
+Hr = -249952+(18.7*560)+(70*540);
+Hp = 8*(-393522+20288)+9*(-241827+16087)+6.25*14171+70*13491;
+Wcv = 150; // Energy out put from engine in kW
+Qcv = -205; // Heat transfer from engine in kW
+n = (Wcv-Qcv)*3600/(Hr-Hp);
+disp("kg/h",n*114,"Fuel consumption rate is")
diff --git a/779/CH17/EX17.1/17_1.sce b/779/CH17/EX17.1/17_1.sce new file mode 100755 index 000000000..4ada5e0ed --- /dev/null +++ b/779/CH17/EX17.1/17_1.sce @@ -0,0 +1,46 @@ +T0 = 37+273; P = 40; g = 1.4;
+function [x] = speed(a,b,f)
+ N = 100;
+ eps = 1e-5;
+ if((f(a)*f(b))>0) then
+ error('no root possible f(a)*f(b)>0');
+ abort;
+ end;
+ if(abs(f(a))<eps) then
+ error('solution at a');
+ abort;
+ end
+ if(abs(f(b))<eps) then
+ error('solution at b');
+ abort;
+ end
+ while(N>0)
+ c = (a+b)/2
+ if(abs(f(c))<eps) then
+ x = c ;
+ x;
+ return;
+ end;
+ if((f(a)*f(c))<0 ) then
+ b = c ;
+ else
+ a = c ;
+ end
+ N = N-1;
+ end
+ error('no convergence');
+ abort;
+endfunction
+
+deff('[y]=p(x)',['y = x^4 + (5*(x^2)) - 3.225 '])
+x = speed(0.5,1,p);
+M = x; // Mach number
+g = 1.4; // gamma
+R = 0.287;
+T = T0/(1+((g-1)/2)*M^2);
+c = sqrt(g*R*T*1000);
+V = c*M;
+P0 = P*((T0/T)^(g/(g-1)));
+disp(M,"Mach number is")
+disp("m/s",V,"Velocity is")
+disp("kPa",P0,"Stagnation pressure is")
\ No newline at end of file diff --git a/779/CH17/EX17.2/17_2.sce b/779/CH17/EX17.2/17_2.sce new file mode 100755 index 000000000..56bf85e83 --- /dev/null +++ b/779/CH17/EX17.2/17_2.sce @@ -0,0 +1,26 @@ +P1 = 0.18e03; // in Kpa
+R = 0.287; T1 = 310; P0 = 0.1e03;
+A1 = 0.11; V1 = 267;
+w = (P1/(R*T1))*A1*V1;
+g = 1.4;
+c1 = sqrt(g*R*T1*1000);
+M1 = V1/c1;
+A1A_ = 1.0570; // A1/A* A* = A_
+P1P01 = 0.68207;
+T1T01 = 0.89644;
+F1F_ = 1.0284;
+A2A1 = 0.44/0.11 ; // A2A1 = A2/A1
+A2A_ = A2A1*A1A_;
+M2 = 0.135; P2P02 = 0.987; T2T02 = 0.996; F2F_ = 3.46;
+P2P1 = P2P02/P1P01;
+T2T1 = T2T02/T1T01;
+F2F1 = F2F_/F1F_;
+P2 = P2P1*P1;
+T2 = T2T1*T1;
+A2 = A2A1*A1;
+F1 = P1*A1*(1+g*M1^2);
+F2 = F2F1*F1;
+Tint = F2-F1;
+Text = P0*(A2-A1);
+NT = Tint - Text ;
+disp("kN",NT,"Net thrust is")
\ No newline at end of file diff --git a/779/CH17/EX17.3/17_3.sce b/779/CH17/EX17.3/17_3.sce new file mode 100755 index 000000000..357d97e1b --- /dev/null +++ b/779/CH17/EX17.3/17_3.sce @@ -0,0 +1,35 @@ +M2 = 2.197; P2P0 = 0.0939; T2T0 = 0.5089;
+P0 = 1000; T0 = 360; g = 1.4; R = 0.287;
+P2 = P2P0*P0;
+T2 = T2T0*T0;
+c2 = sqrt(g*R*T2*1000);
+V2 = c2*M2;
+// for air
+P_P0 = 0.528; T_T0 = 0.833; // T_ == T*
+P_ = P_P0*P0; T_ = T_T0*T0;
+rho_ = P_/(R*T_);
+V_ = sqrt(g*R*T_*1000);
+At = 500e-06; // throat area
+w = At*V_*rho_;
+disp("When divergent section act as a nozzle")
+disp("kg/s",w,"Maximum flow rate of air is")
+disp("K",T2,"Static temperature is")
+disp("kPa",P2,"Static Pressure is")
+disp("m/s",V2,"Velocity at the exit from the nozzle is")
+// Part (b)
+Mb = 0.308;
+P2P0b = 0.936;
+T2T0b = 0.9812;
+P2b = P2P0b*P0;
+T2b = T2T0b*T0;
+c2b = sqrt(g*R*T2b*1000);
+V2b = c2b*Mb;
+disp("When divergent section act as a diffuser")
+disp("kg/s",w,"Maximum flow rate of air is")
+disp("K",T2b,"Static temperature is")
+disp("kPa",P2b,"Static Pressure is")
+disp("m/s",V2b,"Velocity at the exit from the nozzle is")
+
+
+
+
diff --git a/779/CH17/EX17.4/17_4.sce b/779/CH17/EX17.4/17_4.sce new file mode 100755 index 000000000..1f665337f --- /dev/null +++ b/779/CH17/EX17.4/17_4.sce @@ -0,0 +1,11 @@ +Px = 16kPa; Poy = 70kPa;
+Mx = 1.735; Pyx = 3.34; // Pyx = Py/Px
+rho_yx = 2.25;
+Tyx = 1.483; Poyox = 0.84; My = 0.631;
+Tox = 573; Toy = Tox;
+Tx = Tox/(1+((g-1)/2)*Mx^2);
+Ty = Tyx*Tx;
+Pox = Poy/Poyox ;
+// From table
+Mx = 1.735;
+disp(Mx,"Mach number of the tunnel is")
\ No newline at end of file diff --git a/779/CH17/EX17.5/17_5.sce b/779/CH17/EX17.5/17_5.sce new file mode 100755 index 000000000..e0910babd --- /dev/null +++ b/779/CH17/EX17.5/17_5.sce @@ -0,0 +1,22 @@ +Ax = 18.75; A_ = 12.50; // A_= A*
+AA_ = 1.5; // A/A*
+Mx = 1.86; Pxox = 0.159; R = 0.287;
+Pox = 0.21e03; // in kPa
+Px = Pxox*Pox;
+// from the gas table on normal shock
+Mx = 1.86; My = 0.604; Pyx = 3.87; Poyx = 4.95; Poyox = 0.786;
+Py = Pyx*Px;
+Poy = Poyx*Px;
+My = 0.604;
+Ay_ = 1.183;
+A2 = 25; Ay = 18.75;
+A2_ = (A2/Ay)*Ay_;
+// From isentropic table
+M2 = 0.402;
+P2oy = 0.895;
+P2 = P2oy*Poy;
+syx = -R*log(Poy/Pox); // sy-sx
+disp(M2,"Exit mach number is M2")
+disp("kPa",P2,"Exit pressure is")
+disp("kPa",Pox-Poy,"Exit Stagnation pressure is")
+disp("kJ/kg K",syx,"Entropy increase is")
\ No newline at end of file diff --git a/779/CH17/EX17.6/17_6.sce b/779/CH17/EX17.6/17_6.sce new file mode 100755 index 000000000..4fdd2f465 --- /dev/null +++ b/779/CH17/EX17.6/17_6.sce @@ -0,0 +1,11 @@ +g = 1.4;R = 0.287; d = 1.4; // del
+P0 = 1.4; // in bar
+T0 = 280; T1 = T0;
+cp = 1.005; A2 = 0.0013
+P_ = P0/((g+1)/2)^(d/(d-1)) ; // P_ = P*
+P1 = P0; Pb = 1; P2 = Pb;
+T2 = T1*(P2/P1)^((d-1)/d);
+V2 = sqrt(2*cp*(T1-T2)*1000);
+m_dot = (A2*V2*P2*100)/(R*T2);
+disp("kg/s",m_dot,"Mass flow rate is")
+disp("The mass flow rate can be increased by raising the supply pressure")
\ No newline at end of file diff --git a/779/CH17/EX17.7/17_7.sce b/779/CH17/EX17.7/17_7.sce new file mode 100755 index 000000000..76ec4cb97 --- /dev/null +++ b/779/CH17/EX17.7/17_7.sce @@ -0,0 +1,12 @@ +Mx = 1.8; Pyx = 3.6133;
+Px = 0.5; Tx = 280; Ty = 429;
+Py = Pyx*Px; cp = 1.005;
+disp("bar",Py,"Pressure Py is")
+Pxox = 0.17404;
+Pox = Px/Pxox;
+disp("bar",Pox,"Stagnation pressure is")
+Txox = 0.60680;
+Tox = Tx/Txox;
+disp("K",Tox,"Stagnation temperature is")
+sysx = cp*log(Ty/Tx)-R*log(Py/Px);
+disp("kJ/kg K",syx,"The change in specific entropy is")
\ No newline at end of file diff --git a/779/CH18/EX18.1/18_1.sce b/779/CH18/EX18.1/18_1.sce new file mode 100755 index 000000000..6ce2d1fb0 --- /dev/null +++ b/779/CH18/EX18.1/18_1.sce @@ -0,0 +1,20 @@ +T2 = 488; T1 = 298; n = 1.3; R =8314/44;
+rp = (T2/T1)^(n/(n-1));
+disp(rp,"Pressure ratio is")
+b = 0.12; // Bore of compressor
+L = 0.15; // Stroke of compressor
+V1 = (%pi/4)*(b)^2*L ;
+P1 = 120e03; // in kPa
+W = ((n*P1*V1)/(n-1))*(((rp)^((n-1)/n))-1);
+P = (W*1200*0.001)/60 ;
+disp("kW",P,"Indicated power is")
+disp("kW",P/0.8,"Shaft power is")
+V1_dot = V1*(1200/60);
+m_dot = (P1*V1_dot)/(R*T1);
+disp("kg/s",m_dot,"Mass flow rate is")
+rp_1 = rp^2;
+disp(rp_1,"Pressure ratio when second stage is added is")
+V2 = (1/rp)^(1/n)*V1;
+disp("m3",V2,"Volume derived per cycle is V2")
+d = sqrt((V2*4)/(L*%pi));
+disp("mm",d*1000,"Second stage bore would be")
diff --git a/779/CH18/EX18.10/18_10.sce b/779/CH18/EX18.10/18_10.sce new file mode 100755 index 000000000..95e7d7eae --- /dev/null +++ b/779/CH18/EX18.10/18_10.sce @@ -0,0 +1,14 @@ +T1 = 278; P21 = 2.5; // P2/P1
+cp = 1.005; ns = 0.84; V2 = 120;
+T2s = T1*(P21)^((g-1)/g);
+T2 = T1 + (T2s-T1)/ns;
+mg = 0.04*(13+1);
+P = mg*cp*(T2-T1);
+T02 = T2 + V2^2/(2*cp*1000);
+P1 = 0.6;
+P2 = P21*0.6;
+P02 = P2*(T02/T2)^(g/(g-1));
+disp("kW",P,"Power required to drive the compressor is")
+disp("K",T02,"Stagnation temperature is")
+disp("bar",P02,"Stagnation pressure is")
+
diff --git a/779/CH18/EX18.2/18_2.sce b/779/CH18/EX18.2/18_2.sce new file mode 100755 index 000000000..f635e7a25 --- /dev/null +++ b/779/CH18/EX18.2/18_2.sce @@ -0,0 +1,21 @@ +P1 = 101.3e03; P4 = P1; // in Pa
+P2 = 8*P1; P3 = P2;
+T1 = 288; Vs = 2000;
+V3 = 100; Vc = V3;
+V1 = Vs + Vc ;
+n = 1.25; R = 287;
+V4 = ((P3/P4)^(1/n))*V3;
+W = ((n*P1*(V1-V4)*1e-06)/(n-1))*(((P2/P1)^((n-1)/n))-1);
+P = (W*800*0.001)/60 ;
+disp("kW",P,"Indicated poer is")
+disp("%",100*(V1-V4)/Vs,"Volumetric efficiency is")
+m = (P1*(V1-V4)*1e-06)/(R*T1);
+m_dot = m*800;
+disp("kg/min",m_dot,"Mass flow rate is")
+FAD = (V1-V4)*1e-06*800;
+disp("m3/min",FAD,"Free air delivery is")
+Wt = P1*(V1-V4)*1e-06*log(P2/P1);
+n_isothermal = (Wt*800*0.001)/(P*60);
+disp("%",100*n_isothermal,"Isothermal efficiency is")
+Pi = P/0.85;
+disp("kW",Pi,"Input power is")
diff --git a/779/CH18/EX18.3/18_3.sce b/779/CH18/EX18.3/18_3.sce new file mode 100755 index 000000000..e5b11c36e --- /dev/null +++ b/779/CH18/EX18.3/18_3.sce @@ -0,0 +1,8 @@ +P1 = 1; P3 = 9;
+P2 = sqrt(P1*P3);
+T1 = 300; cp = 1.005;
+R = 0.287; n = 1.3;
+W = ((2*n*R*T1)/(n-1))*((P2/P1)^((n-1)/n)-1);
+T2 = T1*(P2/P1)^((n-1)/n);
+H = cp*(T2-T1);
+disp("kJ/kg",H,"Heat rejected to the intercooler is")
\ No newline at end of file diff --git a/779/CH18/EX18.4/18_4.sce b/779/CH18/EX18.4/18_4.sce new file mode 100755 index 000000000..76d6f18d6 --- /dev/null +++ b/779/CH18/EX18.4/18_4.sce @@ -0,0 +1,16 @@ +P1 = 1.013; P4 = 80;
+P2 = sqrt(P1*P4);
+V_dot = 4/60; // in m3/s
+n = 1.25;
+n_mech = 0.75;
+W_dot = ((2*n)/(n-1))*((P1*100*V_dot)/n_mech)*((P2/P1)^((n-1)/n)-1);
+N = 250;
+L = (3*60)/(2*N); // Stroke length of piston in m
+Vlp = 4/N;
+n_vol = 0.8;
+Dlp = sqrt((Vlp*4)/(n_vol*L*%pi));
+Dhp = Dlp*sqrt(P1/P2);
+disp("kW",W_dot,"Minimum power required is")
+disp("cm",L*100,"Stroke of the compressor is")
+disp("cm",Dhp*100,"Bore of high pressure compressure is")
+disp("cm",Dlp*100,"Bore of lo pressure compressure is")
diff --git a/779/CH18/EX18.5/18_5.sce b/779/CH18/EX18.5/18_5.sce new file mode 100755 index 000000000..b8e56f308 --- /dev/null +++ b/779/CH18/EX18.5/18_5.sce @@ -0,0 +1,12 @@ +V12 = 0.4; // V12 = V1/V2
+T1 = 38+273; n = 1.3; P3 = 112; // back pressure
+m = 1.25; R = 0.287;
+T2 = ((V12)^(n-1))*T1;
+P1 = 700; // in kPa
+P2 = P1*(V12)^n;
+V2 = (m*R*T2)/P2;
+v2 = V2/m ;
+A = R*T1 + R*(T1-T2)/(n-1) - P3*v2; // Area of indicator diagram
+IO = A*0.85*m;
+disp("kJ",IO,"Indicated output is")
+
diff --git a/779/CH18/EX18.6/18_6.sce b/779/CH18/EX18.6/18_6.sce new file mode 100755 index 000000000..36a4b9ac1 --- /dev/null +++ b/779/CH18/EX18.6/18_6.sce @@ -0,0 +1,20 @@ +P1 = 1; P41 = 15; // P41 = P4/P1
+P21 = (P41)^(1/3);
+P2 = P21*P1; n = 1.3; R = 0.287;
+P3 = P21*P2;
+P11 = P2; P12 = P1;
+b = 0.45; s = 0.3; // Bore and stroke of cylinder
+Vs = (%pi/4)*b^2*s; // Swept volume of the cylinder
+V11 = 0.05*Vs; // Clearance volume
+V1 = V11+Vs;
+V12 = V11*(P11/P12)^(1/n);
+disp("m3",V1-V12,"Effective swept volume of the LP cylinder is")
+T1 = 291; T3 = T1; T5 = T1;
+P43 = P21; // P4/P3
+T6 = T5*(P43)^((n-1)/n);
+disp("K",T6,"Delivery temperature is")
+P4 = 15; // Delivery pressure
+V6_7 = (P1/P4)*(T6/T1)*(V1-V12); // V6-V7
+disp("m3",V6_7,"Volume of the air delivered")
+W = ((3*n*R*T1)/(n-1))*((P21)^((n-1)/n)-1);
+disp("kJ",W,"Work done per kg of the air is")
diff --git a/779/CH18/EX18.7/18_7.sce b/779/CH18/EX18.7/18_7.sce new file mode 100755 index 000000000..7b56e0451 --- /dev/null +++ b/779/CH18/EX18.7/18_7.sce @@ -0,0 +1,11 @@ +P1 = 1.013;
+P2 = 1.5*P1;
+Vs = 0.03; Va = Vs;
+WD = (P2-P1)*Vs*100;
+Pi = (P1+P2)/2;
+g = 1.4;
+Aa = ((g*P1*100*Vs)/(g-1))*((Pi/P1)^((g-1)/g)-1);
+Vb = Va *(P1/Pi)^(1/g);
+Ab = Vb*(P2-Pi)*100;
+WR = Aa+Ab;
+disp("kJ/rev",WR,"Work required is")
diff --git a/779/CH18/EX18.8/18_8.sce b/779/CH18/EX18.8/18_8.sce new file mode 100755 index 000000000..c16c17b6d --- /dev/null +++ b/779/CH18/EX18.8/18_8.sce @@ -0,0 +1,15 @@ +// For Blower
+m_dot = 1; R = 0.287; T1 = 343;
+P1 = 100; P2 = 2*P1; g = 1.4;
+V_dot = (m_dot*R*T1)/P1;
+PRb = V_dot*(P2-P1);
+disp("kW",PRb,"Power required by the blower is")
+// For van compressor
+P1v = 1; V21 = 0.7 // V2/V1
+P2v = P1v*(1/V12)^g;
+V2_dot = 0.7;
+V1_dot = 0.7*V_dot;
+P3v = 2;
+PRv = ((g*P1v*100*V_dot)/(g-1))*((P2v/P1v)^((g-1)/g)-1) + V1_dot*100*(P3v-P2v);
+disp("kW",PRv,"Power Required by van compressor is")
+
diff --git a/779/CH18/EX18.9/18_9.sce b/779/CH18/EX18.9/18_9.sce new file mode 100755 index 000000000..4ac12f61f --- /dev/null +++ b/779/CH18/EX18.9/18_9.sce @@ -0,0 +1,10 @@ +T1 = 283; P21 = 2.5; // P2/P1
+P32 = 2.1; // P3/P2
+ns = 0.85; ma = 5; cp = 1.005;
+T2s = T1*(P21)^((g-1)/g);
+T2 = T1 + (T2s-T1)/ns;
+T3 = T2-50;
+T4s = T3*(P32)^((g-1)/g);
+T4 = T3 + (T4s-T3)/ns;
+P = ma*cp*((T2-T1)+(T4-T3));
+disp("kW",P,"Total compressor power is")
\ No newline at end of file diff --git a/779/CH2/EX2.1/2_1.sce b/779/CH2/EX2.1/2_1.sce new file mode 100755 index 000000000..f170d895a --- /dev/null +++ b/779/CH2/EX2.1/2_1.sce @@ -0,0 +1,5 @@ +d = 1; l = 1; // Assuming
+A_ACDB = (%pi/4)*(1/3)*((1.05*d)^2)*10.5*l - (%pi/4)*(1/3)*d^2*10*l ; // Area of ABCD
+A_AEFB = (%pi/4)*(1/3)*((1.1*d)^2)*11*l - (%pi/4)*(1/3)*d^2*10*l;
+t = 100*(A_ACDB/A_AEFB);
+disp("degree Celcius",t,"The straight bore thermometer reading would e")
\ No newline at end of file diff --git a/779/CH2/EX2.2/2_2.sce b/779/CH2/EX2.2/2_2.sce new file mode 100755 index 000000000..15d3d8f23 --- /dev/null +++ b/779/CH2/EX2.2/2_2.sce @@ -0,0 +1,7 @@ +t = poly(0,'t');
+e = (0.2*t)-(5e-04*t^2); // e.m.f. as a function of temperature in mV
+e0 = horner(e, 0); // e.m.f. at t = 0 degree
+e100 = horner(e, 100); // e.m.f. at t = 100 degree
+e50 = horner(e, 50); // e.m.f. at t = 50 degreer
+r = (100/e100)*e50; // Reading of thermocouple at t = 50degree
+disp("degree",r,"Reading of thermocouple at t = 50degree is")
\ No newline at end of file diff --git a/779/CH2/EX2.3/2_3.sce b/779/CH2/EX2.3/2_3.sce new file mode 100755 index 000000000..41199e937 --- /dev/null +++ b/779/CH2/EX2.3/2_3.sce @@ -0,0 +1,6 @@ +R0 = 2.8; // Resistence at t=0 degree in ohm +R100 = 3.8; // Resistence at t = 100 degree in ohm +a = (R100/R0 - 1)*0.01; // alpha +R = 5.8; // Indicated ressistace in ohm +t = (R/R0 - 1)/a; // Temperature in degree +disp("degree",t,"The temperature when indicated resistance is 5.8 ohm is ") diff --git a/779/CH3/EX3.1/3_1.sce b/779/CH3/EX3.1/3_1.sce new file mode 100755 index 000000000..4d791e91c --- /dev/null +++ b/779/CH3/EX3.1/3_1.sce @@ -0,0 +1,5 @@ +V1 = 100; // Initial velocity in m/s
+g = 9.81; // Acceleration due to gravity in m/s2
+z1 = 100; // Initial elevation in m
+V = sqrt((2*g*z1)+(V1)^2); // Final velocity in m/s2
+disp("m/s",V,"The velocity of the object just before ir hits the ground is")
\ No newline at end of file diff --git a/779/CH3/EX3.10/3_10.sce b/779/CH3/EX3.10/3_10.sce new file mode 100755 index 000000000..317e00996 --- /dev/null +++ b/779/CH3/EX3.10/3_10.sce @@ -0,0 +1,7 @@ +P1 = 100; P2 = 37.9; P3 = 14.4; +V1 = 0.1; V2 = 0.2; V3 = 0.4; +n1 = (log(P1/P2))/(log(V2/V1)); +n2 = (log(P2/P3))/(log(V3/V2)); +// n1 = n2 +W = ((P1*V1)-(P3*V3))/(n1-1); +disp("kJ",W,"Work done by the system is")
\ No newline at end of file diff --git a/779/CH3/EX3.11/3_11.sce b/779/CH3/EX3.11/3_11.sce new file mode 100755 index 000000000..3f498ca30 --- /dev/null +++ b/779/CH3/EX3.11/3_11.sce @@ -0,0 +1,8 @@ +P1 = 20*1.01325e05; +V1 = 0.04; V2 = 2*V1; +n = 1.45; +P2 = (V1/V2)^n*P1; +W12 = ((P1*V1)-(P2*V2))/(n-1); +W23 = P2*(V2-V1); +Wc = W12-W23; +disp("J",Wc,"Work done in the cycle is")
\ No newline at end of file diff --git a/779/CH3/EX3.2/3_2.sce b/779/CH3/EX3.2/3_2.sce new file mode 100755 index 000000000..80651ba94 --- /dev/null +++ b/779/CH3/EX3.2/3_2.sce @@ -0,0 +1,4 @@ +dV = 0.5; // Change in volume in m3
+P = 101.325e03; // Atmospheric pressure in N/m2
+Wd = P*dV; // Work done in J
+disp("KJ",Wd/1000,"The amount of work done upon the atmosphere by the ballon is")
\ No newline at end of file diff --git a/779/CH3/EX3.3/3_3.sce b/779/CH3/EX3.3/3_3.sce new file mode 100755 index 000000000..bbe3b5a34 --- /dev/null +++ b/779/CH3/EX3.3/3_3.sce @@ -0,0 +1,4 @@ +dV = 0.6; // Change in volume in m3
+P = 101.325e03; // Atmospheric pressure in N/m2
+Wd = P*dV; // Work done in J
+disp("KJ",Wd/1000,"The displacement work done by the air is")
\ No newline at end of file diff --git a/779/CH3/EX3.4/3_4.sce b/779/CH3/EX3.4/3_4.sce new file mode 100755 index 000000000..abe770019 --- /dev/null +++ b/779/CH3/EX3.4/3_4.sce @@ -0,0 +1,10 @@ +T = 1.275e-03; // Torque acting against the fluid in N
+N = 10000; // Number of revolutions
+W1 = 2*%pi*T*N; // Work done by stirring device upon the system
+P = 101.325e03; // Atmospheric pressure in N/m2
+d = 0.6; // Piston diameter in m
+A = (%pi/4)*(d)^2; // Piston area in m
+L = 0.80; // Displacement of diameter in m
+W2 = (P*A*L)/1000; // Work done by the system on the surroundings i KJ
+W = -W1+W2; // Net work tranfer for the system
+disp("KJ",W,"The Net work tranfer for the system is")
diff --git a/779/CH3/EX3.5/3_5.sce b/779/CH3/EX3.5/3_5.sce new file mode 100755 index 000000000..235b61e2a --- /dev/null +++ b/779/CH3/EX3.5/3_5.sce @@ -0,0 +1,11 @@ +ad = 5.5e-04; // Area of indicator diagram
+ld = 0.06; // Length of diagram
+k = 147e06; // Spring constant in MPa/m
+w = 150; // Speed of engine
+L = 1.2 ; // Stroke of piston
+d = 0.8; // Diameter of the cylinder in m
+A = (%pi/4)*(0.8^2); // Area of cylinder
+Pm = (ad/ld)*k; // Effective pressure
+W1 = Pm*L*A*w; // Work done in 1 minute
+W = (12*W1)/60; // The rate of work transfer gas to the piston in MJ/s
+disp("kW",W/1000,"The rate of work transfer gas to the piston is")
\ No newline at end of file diff --git a/779/CH3/EX3.6/3_6.sce b/779/CH3/EX3.6/3_6.sce new file mode 100755 index 000000000..d8b293578 --- /dev/null +++ b/779/CH3/EX3.6/3_6.sce @@ -0,0 +1,17 @@ +Tm = 1535; // Melting point of iron on degree +Ti = 15; // Initial temperature +Tf = 1650; // Final temperature +Lh = 270e03; // Latent heat of iron in J/Kg +ml = 29.93; // Atomic weight of iron in liquid state +m = 56; // Atomoc weight of iron +sh = 0.502e03; // Specific heat of iron in J/Kg +d = 6900; // Density of molten metal in kg/m3 +H = (Tm-Ti)*sh + Lh + (ml/m)*(Tf-Tm)*1000; // Heat required +Mr = 5e03; // Melting rate in Kg/h +Hr = H*Mr ; // Rate of heat suppy +HrA = Hr/(0.7*3600) // Actual rate of heat supply +disp("W",HrA,"Rating of furnace would be") +V = (3*Mr)/d; // Volume required in m3 +d = ((V/2)*(4/%pi))*(1/3); // Diameter of cylinder of furnace in m +l = 2*d; // Length of cylinder of furnace in m +disp("m",l," Length of cylinder of furnace is")
\ No newline at end of file diff --git a/779/CH3/EX3.7/3_7.sce b/779/CH3/EX3.7/3_7.sce new file mode 100755 index 000000000..9df9c7c19 --- /dev/null +++ b/779/CH3/EX3.7/3_7.sce @@ -0,0 +1,14 @@ +SH = 0.9; // Specific heat of alluminium in solid state
+L = 390; // Latent heat
+aw = 27; // Atomic weight
+D = 2400; // Density in molten state
+Tf = 700+273; // Final temperature
+Tm = 660+273; // Melting point of aluminium
+Ti = 15+273; // Intial temperature
+HR = SH*(Tm-Ti)+L+(29.93/27)*(Tf-Tm); // Heat requires
+HS = HR/0.7 ; // Heat supplied
+RM = 217*1000*3600/HS ; // From the data of problem 3.7
+V = 2.18; // Volume
+M = V*D;
+disp("tonnes",M*0.001,"Mass of alluminium that can be melted is")
+disp("kg/h",RM,"Rate at which alluminium can be melted is")
\ No newline at end of file diff --git a/779/CH3/EX3.8/3_8.sce b/779/CH3/EX3.8/3_8.sce new file mode 100755 index 000000000..934c76bf4 --- /dev/null +++ b/779/CH3/EX3.8/3_8.sce @@ -0,0 +1,10 @@ +dd = 60e-06; +mw = 1; +st = 0.07; +dw = 1000; +dp = 15e-03; +N = (mw*6)/(%pi*dd^3*dw); +Af = %pi*dd^2*N; +S_L = 4/(dp*dw); +W = st*(100-S_L); +disp("J",W,"Work done during automization is") diff --git a/779/CH3/EX3.9/3_9.sce b/779/CH3/EX3.9/3_9.sce new file mode 100755 index 000000000..3206a477e --- /dev/null +++ b/779/CH3/EX3.9/3_9.sce @@ -0,0 +1,12 @@ +dc = 40e-02; +L = 30e-02; +P = 1e05; // Pressure in Pascal +I = 0.5; +V = 24; +t = 15*60; // in seconds +Wm = V*I*t; +Ws = 0.9*Wm; +W = P*(%pi/4)*dc^2*L; +disp("J",Wm,"Work input to the motor is") +disp("J",Ws,"Work input to the stirrer is") +disp("J",W,"Work done by the fluid on the atmosphere is") diff --git a/779/CH4/EX4.1/4_1.sce b/779/CH4/EX4.1/4_1.sce new file mode 100755 index 000000000..533a0abe9 --- /dev/null +++ b/779/CH4/EX4.1/4_1.sce @@ -0,0 +1,7 @@ +V1 = 0.3; // Initial volume in m3
+V2 = 0.15; // Final volume in m3
+P = 0.105e06; // Pressure in Pa
+Q = -37.6e03; // Heat tranferred in J
+W = P*(V2-V1); // Work done
+U = Q-W; // Internal energy change
+disp("Joule",U,"Change in the internal energy of the system is")
\ No newline at end of file diff --git a/779/CH4/EX4.2/4_2.sce b/779/CH4/EX4.2/4_2.sce new file mode 100755 index 000000000..086511379 --- /dev/null +++ b/779/CH4/EX4.2/4_2.sce @@ -0,0 +1,21 @@ +Qacb = 84e03;
+Wacb = 32e03;
+Uba = Qacb-Wacb; // Ub-Ua
+// Part (a)
+Wadb = 10.5e03;
+Qadb = Uba+Wadb;
+disp("J",Qadb,"The heat flow into the system along the path adb");
+// Part (b)
+Wb_a = -21e03;
+Uab = - Uba;
+Qb_a = Uab+Wb_a;
+disp("J",Qb_a,"The heat liberated along the path b-a is")
+// Part (c)
+Wdb = 0; // Constant volume
+Wad = 10.4e03;
+Wadb = Wdb-Wad;
+Ud = 42e03;
+Ua = 0;
+Qad = Ud-Ua+Wad;
+Qdb = Qadb-Qad;
+disp("J",Qdb,"and",Qad,"The heat absorbed in the path ad and db are")
diff --git a/779/CH4/EX4.3/4_3.sce b/779/CH4/EX4.3/4_3.sce new file mode 100755 index 000000000..fadcd90c1 --- /dev/null +++ b/779/CH4/EX4.3/4_3.sce @@ -0,0 +1,20 @@ +// Process a-b
+Qab = 0;
+Wab = 2170; // in KJ/min
+Eab = Qab-Wab;
+// Process b-c
+Qbc = 21000;
+Wbc = 0;
+Ebc = Qbc-Wbc;
+// Process c-d
+Qcd = -2100;
+Ecd = -36600;
+Wcd = Qcd-Ecd;
+// Process d-a
+Q = -17000; // Total heat transfer
+Qda = Q-Qab-Qbc-Qcd;
+Eda = -Eab-Ebc-Ecd;
+Wda = Qda-Eda;
+M = [Qab Wab Eab ; Qbc Wbc Ebc; Qcd Wcd Ecd; Qda Wda Eda];
+disp(M,"The completed table is")
+
diff --git a/779/CH4/EX4.4/4_4.sce b/779/CH4/EX4.4/4_4.sce new file mode 100755 index 000000000..97e44cff0 --- /dev/null +++ b/779/CH4/EX4.4/4_4.sce @@ -0,0 +1,17 @@ +// Part (a)
+m = 3;
+V1 = 0.22;
+P1 = 500e03;
+P2 = 100e03;
+V2 = V1*(P1/P2)^(1/1.2);
+dU = 3.56*(P2*V2-P1*V1);
+gama = 1.2;
+W = (P2*V2-P1*V1)/(1-gama);
+Q = dU+W;
+disp("J respectively",dU,W,Q,"Q,W and dU of the quasi static process are")
+// Part (b)
+Qb = 30e03;
+Wb = Qb-dU;
+disp("Joule",Wb,"Work transfer for the process is")
+// Part (c)
+disp("Wb is not equal to integral(p*dv) since the process is not quasi static")
diff --git a/779/CH4/EX4.5/4_5.sce b/779/CH4/EX4.5/4_5.sce new file mode 100755 index 000000000..ae1d1ee99 --- /dev/null +++ b/779/CH4/EX4.5/4_5.sce @@ -0,0 +1,17 @@ +V1 = 0.03;
+P1 = 170e03;
+P2 = 400e03;
+V2 = 0.06;
+U = 3.15*(P2*V2-P1*V1);
+B = [P1 P2]';
+A = [1 V1; 1 V2];
+x = inv(A)*B;
+a = x(1); b = x(2);
+function P = pressure(V)
+ P = a+b*V;
+endfunction;
+W = intg(V1,V2,pressure);
+Q = U+W;
+disp("J",W,"The work done by the system is")
+disp("J",U,"The internal energy change of the system is")
+disp("J",Q,"The heat flow into the system is")
diff --git a/779/CH4/EX4.6/4_6.sce b/779/CH4/EX4.6/4_6.sce new file mode 100755 index 000000000..d9d99cae8 --- /dev/null +++ b/779/CH4/EX4.6/4_6.sce @@ -0,0 +1,17 @@ +// Process 1-2
+Q12 = 235; // in KJ/Kg
+W12 = 0 ;
+U12 = Q12-W12;
+// Process 2-3
+Q23 = 0;
+U23 = -70 ;
+W23 = Q23-U23;
+// Process 3-1
+Q31 = - 200;
+U31 = -U12-U23;
+W31 = Q31-U31;
+//
+W = W12 + W23 + W31;
+Q = Q12 + Q23 + Q31;
+disp("KJ/Kg",Q,"Heat trasfer in the cycle is")
+disp("KJ/Kg",W,"Work done during the the cycle is")
\ No newline at end of file diff --git a/779/CH5/EX5.1/5_1.sce b/779/CH5/EX5.1/5_1.sce new file mode 100755 index 000000000..911ecda20 --- /dev/null +++ b/779/CH5/EX5.1/5_1.sce @@ -0,0 +1,16 @@ +// Part(a)
+V1 = 0.95;
+P1 = 100e03;
+v1 = 7;
+V2 = 0.19;
+P2 = 700e03;
+v2 = 5;
+w = 0.5;
+u21 = 90e03; // u21 = u2-u1
+Q = -58e03; // As heat is added Q = dQ/dt
+W = - w*( u21 + (P2*V2-P1*V1) + ((v2^2-v1^2)/2) ) + Q; // W = dW/dt
+disp("Watt",W,"The rate of work input is")
+// Part (b)
+A = (v2/v1)*(V1/V2); // A = A1/A2
+d = sqrt(A); // d = d1/d2
+disp(d,"The ratio of the inlet pipe diameter and outer pipe diameter is")
\ No newline at end of file diff --git a/779/CH5/EX5.2/5_2.sce b/779/CH5/EX5.2/5_2.sce new file mode 100755 index 000000000..c58be2540 --- /dev/null +++ b/779/CH5/EX5.2/5_2.sce @@ -0,0 +1,13 @@ +V1 = 0.37;
+P1 = 600e03;
+v1 = 16;
+V2 = 0.62;
+P2 = 100e03;
+v2 = 270;
+Z1 = 32;
+Z2 = 0;
+g = 9.81;
+Q = -9e03; // heat loss Q = dQ/dt
+W = 135e03; // Work done W = dW/dt
+U12 = (P2*V2-P1*V1) + ((v2^2-v1^2)/2) + (Z2-Z1)*g + W - Q; // U12 = U1-U2
+disp("Joule",U12,"The internal energy decreases by")
\ No newline at end of file diff --git a/779/CH5/EX5.3/5_3.sce b/779/CH5/EX5.3/5_3.sce new file mode 100755 index 000000000..12c24d67d --- /dev/null +++ b/779/CH5/EX5.3/5_3.sce @@ -0,0 +1,13 @@ +P1 = 4e06;
+t1 = 400;
+h1 = 3213e03;
+V1 = 0.073;
+P2 = 3.5e06;
+t2 = 392;
+h2 = 3202e03;
+V2 = 0.084;
+Q = -8.5e03;
+v1 = sqrt((2*(h1-h2+Q))/(1.15^2-1));
+A1 = (%pi/4)*0.2^2;
+w = (A1*v1)/V1;
+disp("Kg/s",w,"The stean flow rate is")
diff --git a/779/CH5/EX5.4/5_4.sce b/779/CH5/EX5.4/5_4.sce new file mode 100755 index 000000000..c070928d0 --- /dev/null +++ b/779/CH5/EX5.4/5_4.sce @@ -0,0 +1,45 @@ +h1 = 313.93;
+h2 = 2676;
+h3 = 419;
+w1 = 4.2;
+w = poly(0,'w') // w = w2
+P = w1*h1 + w*h2 - h3*(4.2+w)
+function [x] = stress(a,b,f)
+ N = 100;
+ eps = 1e-5;
+ if((f(a)*f(b))>0) then
+ error('no root possible f(a)*f(b)>0');
+ abort;
+ end;
+ if(abs(f(a))<eps) then
+ error('solution at a');
+ abort;
+ end
+ if(abs(f(b))<eps) then
+ error('solution at b');
+ abort;
+ end
+ while(N>0)
+ c = (a+b)/2
+ if(abs(f(c))<eps) then
+ x = c ;
+ x;
+ return;
+ end;
+ if((f(a)*f(c))<0 ) then
+ b = c ;
+ else
+ a = c ;
+ end
+ N = N-1;
+ end
+ error('no convergence');
+ abort;
+endfunction
+
+deff('[y]=p(w)',['y = - 441.294 + 2257*w '])
+w = stress(0.1,0.2,p);
+disp("Kg/h",w*3600,"The amount of heat that should be supplied is")
+
+
+
diff --git a/779/CH5/EX5.5/5_5.sce b/779/CH5/EX5.5/5_5.sce new file mode 100755 index 000000000..dbc9965c4 --- /dev/null +++ b/779/CH5/EX5.5/5_5.sce @@ -0,0 +1,10 @@ +t1 = 15; t2 = 800; t3 = 650; t4 = 500;
+v1 = 30; v2 = 30 ; v3 = 60;
+w = 2;
+cp = 1005;
+Q1_2 = w*cp*(t2-t1);
+disp("KJ/s",Q1_2/1000,"The rate of heat transfer to the air in the heat exchanger is")
+W_T = w*( ((v2^2-v3^2)/2) + cp*(t2-t3));
+disp("KW",W_T/1000,"The power output from the turbine assuming no heat loss")
+v4 = sqrt( (v3^2) + (2*cp*(t3-t4)) );
+disp("m/s",v4,"The velocity at the exit of the nozzle is")
\ No newline at end of file diff --git a/779/CH5/EX5.6/5_6.sce b/779/CH5/EX5.6/5_6.sce new file mode 100755 index 000000000..a9932db8a --- /dev/null +++ b/779/CH5/EX5.6/5_6.sce @@ -0,0 +1,12 @@ +w = 5;
+h1 = 900e03;
+h2 = 400e03;
+v1 = 50; v2 = 150;
+Q = -25*5; // Q = dQ/dt for w = 5kg
+W = w*( (h1-h2) + ((v1^2-v2^2)/2) ) + Q; // W = dW/dt
+disp("kW",W/1000,"The power output of the turbine is")
+R = 285; T1 = 300; P1 = 100e03;
+V = (w*R*T1)/P1; // V = dV/dt
+A1 = V/v1;
+D1 = sqrt((4*A1)/%pi);
+disp("m",D1,"The diameter of the inlet pipe is")
\ No newline at end of file diff --git a/779/CH5/EX5.7/5_7.sce b/779/CH5/EX5.7/5_7.sce new file mode 100755 index 000000000..a0d99db2d --- /dev/null +++ b/779/CH5/EX5.7/5_7.sce @@ -0,0 +1,9 @@ +ha = 260; // Enthalpy of air
+hg = 912; // Enthalpy of gas
+Va = 270; // Velocity of air
+f = 0.0190; // Fuel to air ratio wf/wa
+Ef = 44500; // Chemical energy of fuel in kJ/kg
+Q = 21; // Heat loss from the engine
+Eg = 0.05*f*Ef/(1+f); // As 5% of chemical energy is not released in reaction
+Vg = sqrt(2000*(((ha+(Va^2*0.001)/2+(f*Ef)-Q)/(1+f))-hg-Eg));
+disp("m/s",Vg,"Velocity of exhaust gas is")
\ No newline at end of file diff --git a/779/CH5/EX5.9/5_9.sce b/779/CH5/EX5.9/5_9.sce new file mode 100755 index 000000000..e30c3bcac --- /dev/null +++ b/779/CH5/EX5.9/5_9.sce @@ -0,0 +1,8 @@ +u0 = 0.718*273*1e03;
+t = poly(0,'t');
+u = u0+718*t; // in SI unit
+hp = u + 285*(t+273); // ""
+h = horner(hp,150); // h = hp(150)
+W = 100; // W = dW/dt
+m = W/h;
+disp("kg/h",m*3600,"The rate at which air flows out of the tank")
\ No newline at end of file diff --git a/779/CH6/EX6.1/6_1.sce b/779/CH6/EX6.1/6_1.sce new file mode 100755 index 000000000..25220aea4 --- /dev/null +++ b/779/CH6/EX6.1/6_1.sce @@ -0,0 +1,7 @@ +T1 = 800;
+T2 = 30;
+e_max = 1-((T2+273)/(T1+273));
+Wnet = 1; // in kW
+Q1 = Wnet/e_max;
+Q2 = Q1-Wnet;
+disp("KW",Q2,"Least rate of heat rejection is")
diff --git a/779/CH6/EX6.2/6_2.sce b/779/CH6/EX6.2/6_2.sce new file mode 100755 index 000000000..0dcb06a7c --- /dev/null +++ b/779/CH6/EX6.2/6_2.sce @@ -0,0 +1,8 @@ +T1 = -15+273;
+T2 = 30+273;
+Q2 = 1.75; // in kJ/sec
+Q1 = (T1/T2)*Q2;
+W = Q1-Q2;
+disp("kW",W,"Least Power necessary to pump the heat out is")
+
+// There is a calculation mistake in the book
\ No newline at end of file diff --git a/779/CH6/EX6.4/6_4.sce b/779/CH6/EX6.4/6_4.sce new file mode 100755 index 000000000..81360417b --- /dev/null +++ b/779/CH6/EX6.4/6_4.sce @@ -0,0 +1,7 @@ +Q1 = 200;
+T1 = 373.15;
+T2 = 273.16;
+Q2 = Q1*(T2/T1);
+W = Q1-Q2;
+e = W/Q1;
+disp("respectively",e,"J",W,"J",Q2,"The heat rejected, the work done and the thermal effiency of the engine is")
\ No newline at end of file diff --git a/779/CH6/EX6.5/6_5.sce b/779/CH6/EX6.5/6_5.sce new file mode 100755 index 000000000..c8f2af0cd --- /dev/null +++ b/779/CH6/EX6.5/6_5.sce @@ -0,0 +1,23 @@ +T1 = 873;
+T2 = 313;
+T3 = 253;
+Q1 = 2000e03; // In joule
+W = 360e03; // in joule
+// Part (a)
+e_max = 1-(T2/T1);
+W1 = e_max*Q1;
+COP = T3/(T2-T3);
+W2 = W1-W;
+Q4 = COP*W2;
+Q3 = Q4+W2;
+Q2 = Q1-W1;
+disp("J",Q2+Q3,"The heat rejection to the 40 degree reservior is")
+// Part (b)
+e_max_ = 0.4*e_max;
+W1_ = e_max_*Q1;
+W2_ = W1_-W;
+COP_ = 0.4*COP;
+Q4_ = COP_*W2_;
+Q3_ = Q4_+W2_;
+Q2_ = Q1-W1_;
+disp("J",Q2_+Q3_,"The heat rejection to the 40 degree reservior is")
\ No newline at end of file diff --git a/779/CH6/EX6.7/6_7.sce b/779/CH6/EX6.7/6_7.sce new file mode 100755 index 000000000..a5f03182c --- /dev/null +++ b/779/CH6/EX6.7/6_7.sce @@ -0,0 +1,5 @@ +T1 = 473;
+T2 = 293;
+T3 = 273;
+MF = (T2*(T1-T3))/(T1*(T2-T3));
+disp(MF," The multiplication factor is ")
\ No newline at end of file diff --git a/779/CH6/EX6.8/6_8.sce b/779/CH6/EX6.8/6_8.sce new file mode 100755 index 000000000..b6ae988e4 --- /dev/null +++ b/779/CH6/EX6.8/6_8.sce @@ -0,0 +1,9 @@ +T1 = 363;
+T2 = 293;
+W = 1; // Kj/s
+e_max = 1-(T2/T1);
+Qmin = W/e_max ;
+Qmin_ = Qmin*3600;
+E = 1880; // in kJ/m2 h
+Amin = Qmin_/E ;
+disp("m2",Amin,"Minimum area required for the collector plate")
diff --git a/779/CH6/EX6.9/6_9.sce b/779/CH6/EX6.9/6_9.sce new file mode 100755 index 000000000..67a37420f --- /dev/null +++ b/779/CH6/EX6.9/6_9.sce @@ -0,0 +1,5 @@ +T1 = 1000;
+W = 1000; // in W
+K = 5.67e-08;
+Amin = (256*W)/(27*K*T1^4);
+disp("m2",Amin,"Area of the panel")
\ No newline at end of file diff --git a/779/CH7/EX7.1/7_1.sce b/779/CH7/EX7.1/7_1.sce new file mode 100755 index 000000000..ffd4660f0 --- /dev/null +++ b/779/CH7/EX7.1/7_1.sce @@ -0,0 +1,6 @@ +T1 = 37+273; +T2 = 35+273; +m = 1 ; +cv = 4.187; +S = m*cv*log(T2/T1); // S = S2-S1 +disp("KJ/K",S,"Change in the entropy of the water is")
\ No newline at end of file diff --git a/779/CH7/EX7.10/7_10.sce b/779/CH7/EX7.10/7_10.sce new file mode 100755 index 000000000..3e13e010d --- /dev/null +++ b/779/CH7/EX7.10/7_10.sce @@ -0,0 +1,14 @@ +P1 = 0.5e06;
+V1 = 0.2; V2 = 0.05;
+n = 1.3
+P2 = P1*(V1/V2)^n;
+function y = H(p)
+ y = ((P1*V1^n)/p)^(1/n);
+endfunction
+H = integrate('H','p',P1,P2); // H = H2-H1
+U = H-(P2*V2-P1*V1);
+W12 = -U;
+disp("kJ",H/1000,"Change in enthalpy is")
+disp("kJ",U/1000,"Change in internal energy is")
+disp("kJ",0,"and",0,"The change in entropy and heat transfer are")
+disp("kJ",W12/1000,"The work transfer during the process is ")
\ No newline at end of file diff --git a/779/CH7/EX7.11/7_11.sce b/779/CH7/EX7.11/7_11.sce new file mode 100755 index 000000000..73e72a972 --- /dev/null +++ b/779/CH7/EX7.11/7_11.sce @@ -0,0 +1,8 @@ +Pa = 130e03; Pb = 100e03;
+Ta = 50+273; Tb = 13+273;
+cp = 1.005;
+Ss = integrate('cp/T','T',Ta,Tb)-integrate('0.287/p','p',Pa,Pb);
+Ssy = 0;
+Su = Ss+Ssy;
+disp("kJ/Kg K",Su,"Change in the entropy of the universe is")
+disp("As the change in entropy of the universe in the process A-B is negative so the flow must be from B-A")
\ No newline at end of file diff --git a/779/CH7/EX7.12/7_12.sce b/779/CH7/EX7.12/7_12.sce new file mode 100755 index 000000000..2a08d5b56 --- /dev/null +++ b/779/CH7/EX7.12/7_12.sce @@ -0,0 +1,8 @@ +T1 = 300; T2 = 330; T3 = 270;
+P1 = 4; P2 =1 ; P3 =1 ;
+cp = 1.0005; R = 0.287;
+S21 = cp*log(T2/T1)-R*log(P2/P1); // S21 = S2-S1
+S31 = cp*log(T3/T1)-R*log(P3/P1); // S31 = S3-S1
+Sgen = 1*S21 + 1*S31;
+disp("kW/K",Sgen,"The entropy generated during the process is")
+disp("As the entropy generated is positive so such device is possible")
\ No newline at end of file diff --git a/779/CH7/EX7.13/7_13.sce b/779/CH7/EX7.13/7_13.sce new file mode 100755 index 000000000..2a3a02d14 --- /dev/null +++ b/779/CH7/EX7.13/7_13.sce @@ -0,0 +1,13 @@ +A = 5*7;
+k = 0.71;
+L = 0.32;
+Ti = 21+273;
+To = 6+273;
+Q = k*A*(Ti-To)/L ;
+disp("W",Q,"The rate of heat transfer through the wall is")
+Sgen_wall = Q/To - Q/Ti;
+disp("W/K",Sgen_wall,"The rate of entropy through the wall is")
+Tr = 27+273;
+Ts = 2+273;
+Sgen_total = Q/Ts-Q/Tr;
+disp("W/K",Sgen_total,"The rate of total entropy generation with this heat transfer process is")
diff --git a/779/CH7/EX7.2/7_2.sce b/779/CH7/EX7.2/7_2.sce new file mode 100755 index 000000000..720d2e198 --- /dev/null +++ b/779/CH7/EX7.2/7_2.sce @@ -0,0 +1,18 @@ +// Part (a) +T1 = 273; +T2 = 373; +m = 1 ; +cv = 4.187; +Ss = m*cv*log(T2/T1); // S = S2-S1 +Q = m*cv*(T2-T1); +Sr = -(Q/T2); +S = Ss+Sr; +disp("kJ/K",S,"The entropy change of the universe is") +// Part (b) +T3 = 323; +Sw = m*cv*(log(T3/T1)+log(T2/T3)); +Sr1 = -m*cv*(T3-T1)/T3; +Sr2 = -m*cv*(T2-T3)/T2; +Su = Sw+Sr1+Sr2; +disp("kJ/K",Su,"The entropy change of the universe is") + diff --git a/779/CH7/EX7.3/7_3.sce b/779/CH7/EX7.3/7_3.sce new file mode 100755 index 000000000..aba8d0f15 --- /dev/null +++ b/779/CH7/EX7.3/7_3.sce @@ -0,0 +1,20 @@ +// Part (a)
+m = 1;
+T1 = -5+273;
+T2 = 20+273;
+T0 = 0+273;
+cp = 2.093;
+cv = 4.187;
+lf = 333.3;
+Q = m*cp*(T0-T1)+1*333.3+m*cv*(T2-T0);
+Sa = -Q/T2;
+Ss1 = m*cp*log(T0/T1);
+Ss2 = lf/T0;
+Ss3 = m*cv*log(T2/T0);
+St = Ss1+Ss2+Ss3;
+Su = St+Sa;
+disp("kJ/K",Su,"The entropy change of the universe is")
+// Part (b)
+S = 1.5549; // S = S4-S1
+Wmin = T2*(S)-Q;
+disp("kJ",Wmin,"The minimum risk required is")
\ No newline at end of file diff --git a/779/CH7/EX7.5/7_5.sce b/779/CH7/EX7.5/7_5.sce new file mode 100755 index 000000000..65ec0c54a --- /dev/null +++ b/779/CH7/EX7.5/7_5.sce @@ -0,0 +1,8 @@ +Vo = 8.4;
+Vh = 14;
+n1 = Vo/22.4; n2 = Vh/22.4;
+R = 8.31;
+x1 = n1/(n1+n2);
+x2 = n2/(n1+n2);
+S = -R*(n1*log(x1)+n2*log(x2));
+disp("J/K",S,"Entropy change for the process is")
\ No newline at end of file diff --git a/779/CH7/EX7.8/7_8.sce b/779/CH7/EX7.8/7_8.sce new file mode 100755 index 000000000..365bdfa31 --- /dev/null +++ b/779/CH7/EX7.8/7_8.sce @@ -0,0 +1,40 @@ +T = poly(0,'T'); // T = Tf
+Tf_ = 700-2*T; // Tf_ = Tf'
+// Bisection method to solve for the polynomial
+function [x] = Temperature(a,b,f)
+ N = 100;
+ eps = 1e-5;
+ if((f(a)*f(b))>0) then
+ error('no root possible f(a)*f(b)>0');
+ abort;
+ end;
+ if(abs(f(a))<eps) then
+ error('solution at a');
+ abort;
+ end
+ if(abs(f(b))<eps) then
+ error('solution at b');
+ abort;
+ end
+ while(N>0)
+ c = (a+b)/2
+ if(abs(f(c))<eps) then
+ x = c ;
+ x;
+ return;
+ end;
+ if((f(a)*f(c))<0 ) then
+ b = c ;
+ else
+ a = c ;
+ end
+ N = N-1;
+ end
+ error('no convergence');
+ abort;
+endfunction
+deff('[y]=p(T)',['y = 2*T^3-700*T^2+9000000 '])
+T = Temperature(100,200,p);
+
+Tf_ = horner(Tf_,T);
+disp("K",Tf_,"The final temperature of the body C is")
\ No newline at end of file diff --git a/779/CH7/EX7.9/7_9.sce b/779/CH7/EX7.9/7_9.sce new file mode 100755 index 000000000..40b8e122f --- /dev/null +++ b/779/CH7/EX7.9/7_9.sce @@ -0,0 +1,44 @@ +T1 = 200;
+T2 = 100;
+A = 0.042;
+Q1 = integrate('A*T^2','T',T1,T2);
+S = integrate('A*T^2/T','T',T1,T2);
+W = poly(0,'W');
+Z = (-Q1-W)/T2 + S; // Polynomial to be solved for W
+// Bisection method to solve for the Work
+function [x] = Work(a,b,f)
+ N = 100;
+ eps = 1e-5;
+ if((f(a)*f(b))>0) then
+ error('no root possible f(a)*f(b)>0');
+ abort;
+ end;
+ if(abs(f(a))<eps) then
+ error('solution at a');
+ abort;
+ end
+ if(abs(f(b))<eps) then
+ error('solution at b');
+ abort;
+ end
+ while(N>0)
+ c = (a+b)/2
+ if(abs(f(c))<eps) then
+ x = c ;
+ x;
+ return;
+ end;
+ if((f(a)*f(c))<0 ) then
+ b = c ;
+ else
+ a = c ;
+ end
+ N = N-1;
+ end
+ error('no convergence');
+ abort;
+endfunction
+deff('[y]=p(W)',['y = 350-0.01*W '])
+W = Work(34000,36000,p);
+
+disp("kJ",W/1000,"The maximum work that can be recovered is")
\ No newline at end of file diff --git a/779/CH8/EX8.1/8_1.sce b/779/CH8/EX8.1/8_1.sce new file mode 100755 index 000000000..a7dd6c03b --- /dev/null +++ b/779/CH8/EX8.1/8_1.sce @@ -0,0 +1,6 @@ +T0 = 308;
+T1 = 693;
+T1_ = 523; // T1_ = T1'
+T1_ = 523; // ""
+f = (T0*(T1-T1_))/(T1_*(T1-T0));
+disp(f,"The fraction of energy that becomes unavailable due to irreversible heat transfer is")
\ No newline at end of file diff --git a/779/CH8/EX8.10/8_10.sce b/779/CH8/EX8.10/8_10.sce new file mode 100755 index 000000000..8e66595b5 --- /dev/null +++ b/779/CH8/EX8.10/8_10.sce @@ -0,0 +1,5 @@ +m = 3; R = 0.287;
+T0 = 300; k = 0.10; // k = dP/P1
+Sgen = m*R*k;
+I = Sgen*T0;
+disp("kW",I,"The rate of energy loss because of the pressure drop due to friction")
diff --git a/779/CH8/EX8.11/8_11.sce b/779/CH8/EX8.11/8_11.sce new file mode 100755 index 000000000..0043d360e --- /dev/null +++ b/779/CH8/EX8.11/8_11.sce @@ -0,0 +1,17 @@ +m1 = 2; // m1_dot
+m2 = 1;
+T1 = 90+273;
+T2 = 30+273;
+T0 =300;
+m = m1+m2;
+x = m1/m;
+t = T2/T1; // Tau
+cp = 4.187;
+Sgen = m*cp*log((x+t*(1-x))/(t^(1-x)));
+I = T0*Sgen;
+disp("kW/K",Sgen,"The rate of entropy generation is")
+disp("kW",I,"The rate of energy loss due to mixing is")
+// Alternatively
+T = (m1*T1+m2*T2)/(m1+m2); // euilibrium temperature
+Sgen1 = m1*cp*log(T/T1)+m2*cp*log(T/T2);
+I1 = T0*Sgen1;
diff --git a/779/CH8/EX8.12/8_12.sce b/779/CH8/EX8.12/8_12.sce new file mode 100755 index 000000000..1c8db2fff --- /dev/null +++ b/779/CH8/EX8.12/8_12.sce @@ -0,0 +1,35 @@ +Qr = 500; // Heat release in kW
+Tr = 2000;
+T0 = 300;
+// Part (a)
+Qa = 480; Ta = 1000;
+n1a = (Qa/Qr);
+n2a = n1a*(1-(T0/Ta))/(1-(T0/Tr));
+disp("PART (A)")
+disp("%",n1a*100,"The first law efficiency is")
+disp("%",n2a*100,"The Second law efficiency is")
+// Part (b)
+Qb = 450; Tb = 500;
+n1b = (Qb/Qr);
+n2b = n1b*(1-(T0/Tb))/(1-(T0/Tr));
+disp("PART (B)")
+disp("%",n1b*100,"The first law efficiency is")
+disp("%",n2b*100,"The Second law efficiency is")
+// Part (c)
+Qc = 300; Tc = 320;
+n1c = (Qc/Qr);
+n2c = n1c*(1-(T0/Tc))/(1-(T0/Tr));
+disp("PART (C)")
+disp("%",n1c*100,"The first law efficiency is")
+disp("%",n2c*100,"The Second law efficiency is")
+// Part (d)
+Qd = 450;
+n1d = (Qd/Qr);
+n2a_= n1d*(1-(T0/Ta))/(1-(T0/Tr));
+n2b_= n1d*(1-(T0/Tb))/(1-(T0/Tr));
+n2c_= n1d*(1-(T0/Tc))/(1-(T0/Tr));
+disp("Part (D)")
+disp("%",n1d*100,"The first law efficiency is")
+disp("%",n2a_*100,"The Second law efficiency of part (a) is")
+disp("%",n2b_*100,"The Second law efficiency of part (b) is")
+disp("%",n2c_*100,"The Second law efficiency of part (c) is")
\ No newline at end of file diff --git a/779/CH8/EX8.14/8_14.sce b/779/CH8/EX8.14/8_14.sce new file mode 100755 index 000000000..ac5e19716 --- /dev/null +++ b/779/CH8/EX8.14/8_14.sce @@ -0,0 +1,8 @@ +cp = 1.005; T2 = 433; T1 = 298;
+T0 = 298; R = 0.287; P2 = 8; P1 = 1;
+Q = -100; m = 1;
+W = Q + m*cp*(T1-T2);
+AF = cp*(T2-T1)-T0*((cp*log(T2/T1))-(R*log(P2/P1))) ; // AF = af2-af1
+e = AF/-W; // efficiency
+disp("kW",W,"The power input is")
+disp(e,"The second law efficiency of the compressor is")
diff --git a/779/CH8/EX8.15/8_15.sce b/779/CH8/EX8.15/8_15.sce new file mode 100755 index 000000000..2715ecddc --- /dev/null +++ b/779/CH8/EX8.15/8_15.sce @@ -0,0 +1,7 @@ +// Since vaccume has zero mass
+U = 0; H0 = 0; S = 0;
+// If the vaccume ha reduced to dead state
+U0 = 0; H0 = 0 ; S0 = H0; V0 = 0;
+P0 = 100; V = 1;
+fi = P0*V;
+disp("kJ",fi,"The energy of the complete vaccume is")
\ No newline at end of file diff --git a/779/CH8/EX8.16/8_16.sce b/779/CH8/EX8.16/8_16.sce new file mode 100755 index 000000000..88395ed0d --- /dev/null +++ b/779/CH8/EX8.16/8_16.sce @@ -0,0 +1,11 @@ +m = 1000; T0 = 300; P0 = 1;
+T1 = 300;
+T2 = 273-20; Tf = 273-2.2;
+Cb = 1.7; Ca = 3.2;
+Lh = 235;
+H12 = m*((Cb*(Tf-T2))+Lh+(Ca*(T1-Tf)));
+H21 = -H12;
+S12 = m*((Cb*log(Tf/T2))+(Lh/Tf)+(Ca*log(T1/Tf)));
+S21 = -S12;
+E = H21-T0*S21;
+disp("kJ",E,"Energy produced is")
diff --git a/779/CH8/EX8.17/8_17.sce b/779/CH8/EX8.17/8_17.sce new file mode 100755 index 000000000..b7e73d3f9 --- /dev/null +++ b/779/CH8/EX8.17/8_17.sce @@ -0,0 +1,13 @@ +cv = 0.718; T2 = 500; T1 = 300;
+m = 1; T0 = 300;
+// Case (a)
+Sua = cv*log(T2/T1);
+Ia = T0*Sua;
+disp("kJ/kg",Ia,"The irreversibility in case a is")
+// Case (b)
+Q = m*cv*(T2-T1);
+T = 600;
+Sub = Sua-(Q/T);
+Ib = T0*Sub;
+disp("kJ/kg",Ib,"The irreversibility in case b is")
+
diff --git a/779/CH8/EX8.18/8_18.sce b/779/CH8/EX8.18/8_18.sce new file mode 100755 index 000000000..378d541ec --- /dev/null +++ b/779/CH8/EX8.18/8_18.sce @@ -0,0 +1,9 @@ +h1 = 3230.9; s1 = 6.69212; V1 = 160; T1 = 273+400;
+h2 = 2676.1; s2 = 7.3549; V2 = 100; T2 = 273+100;
+T0 = 298; W = 540; Tb = 500;
+Q = (h1-h2)+((V1^2-V2^2)/2)*1e-03-W;
+I = 151.84-Q*(0.404);
+AF = W + Q*(1-(T0/Tb)) + I; // AF = af1-af2
+n2 = W/AF;
+disp("kJ/kg",I,"Irreversibility per unit mass is")
+disp(n2,"The second law effiency of the turbine is")
diff --git a/779/CH8/EX8.19/8_19.sce b/779/CH8/EX8.19/8_19.sce new file mode 100755 index 000000000..f039e0ea1 --- /dev/null +++ b/779/CH8/EX8.19/8_19.sce @@ -0,0 +1,10 @@ +T0 = 300; T = 1500;
+Q = -8.5; W = 8.5;
+// Case (a)
+I = Q*(1-T0/T) + W;
+R = Q*(1-T0/T);
+disp("kW",I,"and",R,"Rate of availability transfer with heat and the irreversibility rate are")
+// Case (b)
+T1 = 500;
+Ib = - Q*(1-T0/T) + Q*(1-T0/T1);
+disp("kW",Ib,"Rate of availability in case b is")
diff --git a/779/CH8/EX8.2/8_2.sce b/779/CH8/EX8.2/8_2.sce new file mode 100755 index 000000000..9883b46d6 --- /dev/null +++ b/779/CH8/EX8.2/8_2.sce @@ -0,0 +1,12 @@ +lhw = 1858.5; // Latent heat of water
+Tew = 220+273;
+Sw = lhw/Tew;
+Tig = 1100; // Initial temperature of the gas
+Tfg = 550; // Final ""
+k = 1*lhw/(Tig-Tfg); // k = mg_dot*cpg
+Tg2 = 823; Tg1 = 1373
+Sg = integrate('k/T','T',Tg1,Tg2)
+St = Sg+Sw;
+disp("kJ/K",St,"Total change in entropy is ")
+T0 = 303;
+disp("kJ",T0*St,"Increase in unavailable energy is")
\ No newline at end of file diff --git a/779/CH8/EX8.20/8_20.sce b/779/CH8/EX8.20/8_20.sce new file mode 100755 index 000000000..0e5a4bc8b --- /dev/null +++ b/779/CH8/EX8.20/8_20.sce @@ -0,0 +1,24 @@ +P1 = 1; T1 = 273+30;
+P2 = 3.5; T2 = 141+273 ; V = 90;
+T0 = 303;
+// Part (a)
+g = 1.4;
+T2s = T1*((P2/P1)^((g-1)/g));
+disp("As T2s> T2 so the process must be polytropic")
+// Part (b)
+p = log(P2/P1); q = log(T2/T1);
+n = p/(p-q);
+disp(n,"The polytropic index is")
+// Part (c)
+cp = 1.0035; R = 0.287;
+Wa = cp*(T1-T2)-(V2^2/2)*1e-03 ;
+Wt = -R*T0*log(P2/P1)-(V2^2/2)*1e-03;
+Nt = Wt/Wa;
+disp(Nt,"The isothermal effiency is")
+// Part (d)
+f12 = cp*(T1-T2) + T0*((R*log(P2/P1))-(cp*log(T2/T1))) - (V2^2/2)*1e-03 ;
+I = f12-Wa ;
+disp("kW respectively",I,"and",f12,"The minimum work input and irreversibility are")
+// Part (e)
+n2 = (f12/Wa);
+disp(n2,"Second law efficiency is")
diff --git a/779/CH8/EX8.3/8_3.sce b/779/CH8/EX8.3/8_3.sce new file mode 100755 index 000000000..734cecf59 --- /dev/null +++ b/779/CH8/EX8.3/8_3.sce @@ -0,0 +1,10 @@ +Tw = 75+273;
+Ts = 5+273; // Ts = T0
+m = 40;
+cp = 4.2;
+W = integrate('m*cp*(1-(Ts/T))','T',Ts,Tw);
+Q1 = m*cp*(Tw-Ts);
+UE = Q1-W;
+disp("kJ",W,"Total work")
+disp("kJ",Q1,"Heat released")
+disp("kJ",UE,"Internal energy change")
\ No newline at end of file diff --git a/779/CH8/EX8.4/8_4.sce b/779/CH8/EX8.4/8_4.sce new file mode 100755 index 000000000..de019f1f0 --- /dev/null +++ b/779/CH8/EX8.4/8_4.sce @@ -0,0 +1,12 @@ +Ts = 273+15;
+Tw1 = 95+273;
+Tw2 = 35+273;
+m1 = 25; m2 = 35;
+cp = 4.2;
+AE25 = integrate('m1*cp*(1-(Ts/T))','T',Ts,Tw1);
+AE35 = integrate('m2*cp*(1-(Ts/T))','T',Ts,Tw2);
+AEt = AE25 + AE35;
+Tm = (m1*Tw1+m2*Tw2)/(m1+m2); // Temperature after mixing
+AE60 = integrate('(m1+m2)*cp*(1-(Ts/T))','T',Ts,Tm);
+AE = AEt - AE60;
+disp("kJ",AE,"The decrease in the totla energy is")
\ No newline at end of file diff --git a/779/CH8/EX8.5/8_5.sce b/779/CH8/EX8.5/8_5.sce new file mode 100755 index 000000000..6a825a179 --- /dev/null +++ b/779/CH8/EX8.5/8_5.sce @@ -0,0 +1,13 @@ +N1 = 3000;
+w1 = (2*%pi*N1)/60;
+I = 0.54;
+Ei = 0.5*I*w1^2;
+ti = 15+273;
+m = 2;
+dt = Ei/(1000*2*4.187);
+tf = ti+dt;
+AE = integrate('m*4.187*(1-(ti/T))','T',ti,tf);
+UE = Ei/1000 - AE;
+w2 = sqrt(AE*1000*2/I);
+N2 = (w2*60)/(2*%pi);
+disp(N2,"The final RPM of the flywheel would be")
diff --git a/779/CH8/EX8.6/8_6.sce b/779/CH8/EX8.6/8_6.sce new file mode 100755 index 000000000..8ae109e20 --- /dev/null +++ b/779/CH8/EX8.6/8_6.sce @@ -0,0 +1,15 @@ +T1 = 353; T2 = 278;
+V2 = 2; V1 = 1;
+P0 = 100; P1 = 500;
+R = 0.287; cv = 0.718;
+m = 2;
+S = integrate('(m*cv)/T','T',T1,T2) + integrate('(m*R)/V','V',V1,V2); // S = S1-S2
+U = m*cv*(T1-T2);
+Wmax = U-(T2*(-S));
+V1_ = (m*R*T1)/P1;
+CA = Wmax-P0*(V1_); // Change in availability
+I = T2*S;
+disp("kJ",Wmax,"The maximum work is")
+disp("kJ",CA,"Change in availability is")
+disp("kJ",I,"Irreversibility is")
+
diff --git a/779/CH8/EX8.7/8_7.sce b/779/CH8/EX8.7/8_7.sce new file mode 100755 index 000000000..f75328dba --- /dev/null +++ b/779/CH8/EX8.7/8_7.sce @@ -0,0 +1,18 @@ +P1 = 500; P2 = 100;
+T1 = 793; T2 = 573;
+cp = 1.005; T0 = 293; R = 0.287;
+S21 = (R*log(P2/P1))-(cp*log(T2/T1))
+CA = cp*(T1-T2)-T0*S21; // Change in v=availability
+disp("kJ/kg",CA,"The decrease in availability is")
+Wmax = CA;
+disp("kJ/kg",Wmax,"The maximum work is")
+Q = -10;
+W = cp*(T1-T2)+Q ;
+I = Wmax-W;
+disp("kJ/kg",I,"The irreversibility is")
+// Altenatively
+Ssystem = -Q/T0;
+Ssurr = -S21;
+I1 = T0*(Ssystem+Ssurr);
+
+
diff --git a/779/CH8/EX8.8/8_8.sce b/779/CH8/EX8.8/8_8.sce new file mode 100755 index 000000000..ee5bb35e5 --- /dev/null +++ b/779/CH8/EX8.8/8_8.sce @@ -0,0 +1,20 @@ +T0 = 300; +Tg1 = 573; Tg2 = 473; +Ta1 = 313; +cpg = 1.09; cpa = 1.005; +mg = 12.5; ma = 11.15; +f1 = cpg*(Tg1-T0)-T0*cpg*(log(Tg1/T0)); +f2 = cpg*(Tg2-T0)-T0*cpg*(log(Tg2/T0)); +disp("kJ/Kg respectively",f2,"and",f1,"The initial and final availbility of the products are") +// Part (b) +Dfg = f1-f2; +Ta2 = Ta1 + (mg/ma)*(cpg/cpa)*(Tg1-Tg2); +Ifa = cpa*(Ta2-Ta1)-T0*cpa*(log(Ta2/Ta1)); +I = mg*Dfg-ma*Ifa; +disp("kW",I,"The irreversibility of the process is") +// Part (c) +Ta2_ = Ta1*(%e^(-(mg/ma)*(cpg/cpa)*log(Tg2/Tg1))); +Q1 = mg*cpg*(Tg1-Tg2); +Q2 = ma*cpa*(Ta2_-Ta1); +W = Q1-Q2; +disp("kW",W,"Tota power generated by the heat engine") diff --git a/779/CH8/EX8.9/8_9.sce b/779/CH8/EX8.9/8_9.sce new file mode 100755 index 000000000..6d17844e7 --- /dev/null +++ b/779/CH8/EX8.9/8_9.sce @@ -0,0 +1,9 @@ +T2 = 1063;
+T1 = 1073;
+m = 2; cp = 1.1;
+I = m*cp*((T1-T2)-T0*(log(T1/T2)));
+disp("kW",I,"The irrevesibility rate is")
+// At lower temperature
+T1_ = 353; T2_ = 343;
+I_ = m*cp*((T1_-T2_)-T0*(log(T1_/T2_)));
+disp("kW",I_,"The irrevesibility rate at lower temperature is")
\ No newline at end of file diff --git a/779/CH9/EX9.1/9_1.sce b/779/CH9/EX9.1/9_1.sce new file mode 100755 index 000000000..2c84488ea --- /dev/null +++ b/779/CH9/EX9.1/9_1.sce @@ -0,0 +1,11 @@ +// At 1 MPa
+tsat = 179.91;
+vf = 0.001127;
+vg = 0.19444;
+vfg = vg-vf;
+sf = 2.1387;
+sg = 6.5865;
+sfg = sg-sf;
+disp("degree",tsat,"At 1 Mpa saturation temperature is")
+disp("m3/kg",vfg,"Changes in specific volume is")
+disp("kJ/kg K",sfg,"Change in entropy during evaporation is")
\ No newline at end of file diff --git a/779/CH9/EX9.10/9_10.sce b/779/CH9/EX9.10/9_10.sce new file mode 100755 index 000000000..3bc343c98 --- /dev/null +++ b/779/CH9/EX9.10/9_10.sce @@ -0,0 +1,9 @@ +// At 0.1Mpa, 110 degree +h2 = 2696.2; hf = 844.89; hfg = 1947.3; +x2 = (h2-hf)/hfg; +vf = 0.001023; // at T = 70 degree +V = 0.000150; // In m3 +m1 = V/vf; +m2 = 3.24; +x1 = (x2*m2)/(m1+m2); +disp(x1,"The quality of the steam in the pipe line is")
\ No newline at end of file diff --git a/779/CH9/EX9.11/9_11.sce b/779/CH9/EX9.11/9_11.sce new file mode 100755 index 000000000..4c2f1c6cf --- /dev/null +++ b/779/CH9/EX9.11/9_11.sce @@ -0,0 +1,13 @@ +// P = 1MPa
+vf = 0.001127; vg = 0.1944;
+hg = 2778.1; uf = 761.68;
+ug = 2583.6; ufg = 1822;
+// Initial anf final mass
+Vis = 5; Viw = 5;
+Vfs = 6 ; Vfw = 4 ;
+//
+ms = ((Viw/vf)+(Vis/vg)) - ((Vfw/vf)+(Vfs/vg)) ;
+U1 = ((Viw*uf/vf)+(Vis*ug/vg));
+Uf = ((Vfw*uf/vf)+(Vfs*ug/vg));
+Q = Uf-U1+(ms*hg)
+disp("kJ",Q,"The heat transfer during the process is")
\ No newline at end of file diff --git a/779/CH9/EX9.12/9_12.sce b/779/CH9/EX9.12/9_12.sce new file mode 100755 index 000000000..3664bca5f --- /dev/null +++ b/779/CH9/EX9.12/9_12.sce @@ -0,0 +1,20 @@ +m = 0.02; d = 0.28; l = 0.305;
+P1 = 0.6e06; P2 = 0.12e06;
+// At 0.6MPa, t = 200 degree
+v1 = 0.352; h1 = 2850.1;
+V1 = m*v1;
+Vd = (%pi/4)*d^2*l;
+V2 = V1+Vd ;
+n = log(P1/P2)/log(V2/V1);
+W12 = ((P1*V1)-(P2*V2))/(n-1);
+disp(n,"The value of n is");
+disp("J",W12,"The work done by the steam is")
+v2 = V2/m;
+vf = 0.0010476; vfg = 1.4271;
+x2 = (v2-vf)/vfg ;
+// At 0.12MPa
+uf = 439.3; ug = 2512.0;
+u2 = uf + (x2*(ug-uf));
+u1 = h1-(P1*v1*1e-03);
+Q12 = m*(u2-u1)+ (W12/1000);
+disp("kJ",Q12,"The heat transfer is")
diff --git a/779/CH9/EX9.13/9_13.sce b/779/CH9/EX9.13/9_13.sce new file mode 100755 index 000000000..4615efd52 --- /dev/null +++ b/779/CH9/EX9.13/9_13.sce @@ -0,0 +1,32 @@ +x1 = 1; x2 = 0.8;
+// at 0.2MPa
+vg = 0.8857; v1 = vg; hg = 2706.7; h1 = hg;
+m1 = 5 ; V1 = m1*v1;
+// at 0.5MPa
+m2 = 10;
+hf = 640.23; hfg = 2108.5
+vf = 0.001093; vfg = 0.3749;
+v2 = vf+(x2*vfg);
+V2 = m2*v2;
+//
+Vm = V1+V2;
+m = m1+m2;
+vm = Vm/m;
+u1 = h1;
+h2 = hf+(x2*hfg);
+u2 = h2;
+m3 = m;
+h3 = ((m1*u1)+(m2*u2))/m3;
+u3 = h3;
+v3 = vm;
+// From mollier diagram
+x3 = 0.870; p3 = 3.5; s3 = 6.29;
+s1 = 7.1271;
+sf = 1.8607; sfg = 4.9606;
+s2 = sf+(x2*sfg);
+E = m3*s3-((m1*s1)+(m2*s2));
+disp("bar",p3,"Final pressure is")
+disp(x3,"Steam quality is")
+disp("kJ/K",E,"Entropy change during the process is")
+
+
diff --git a/779/CH9/EX9.14/9_14.sce b/779/CH9/EX9.14/9_14.sce new file mode 100755 index 000000000..f0519cbac --- /dev/null +++ b/779/CH9/EX9.14/9_14.sce @@ -0,0 +1,23 @@ +// At 6 MPa, 400 degree
+h1 = 3177.2; s1 = 6.5408;
+// At 20 degree
+h0= 83.96; s0 = 0.2966;
+T0 = 293;
+f1 = (h1-h0)-T0*(s1-s0);
+// By interpolation
+t2 = 273 + 393;
+s2 = 6.63;
+h2 = h1;
+f2 = (h2-h0)-T0*(s2-s0);
+df = f1-f2;
+x3s = (s2-1.5301)/(7.1271-1.5301);
+h3s = 504.7+(x3s*2201.9);
+eis = 0.82;
+h3 = h2-eis*(h1-h3s);
+x3 = (h3-504.7)/2201.7;
+s3 = 1.5301+(x3*5.597);
+f3 = (h3-h0)-T0*(s3-s0);
+disp("kJ/kg",f1,"The availability of the steam before the throttle valve")
+disp("kJ/kg",f2,"The availability of the steam after the throttle valve")
+disp("kJ/kg",f3,"The availability of the steam at the turbine exhaust")
+disp("kJ/kg",h2-h3,"The specific work output from the turbine is")
\ No newline at end of file diff --git a/779/CH9/EX9.15/9_15.sce b/779/CH9/EX9.15/9_15.sce new file mode 100755 index 000000000..9a77fad7d --- /dev/null +++ b/779/CH9/EX9.15/9_15.sce @@ -0,0 +1,28 @@ +// At 25 bar, 350 degree
+h1 = 3125.87; s1 = 6.8481;
+// 30 degree
+h0 = 125.79; s0 = 0.4369;
+// At 3 bar, 200 degree
+h2 = 2865.5; s2 = 7.3115;
+// At 0.2 bar 0.95 dry
+hf = 251.4; hfg = 2358.3;
+sf = 0.8320; sg = 7.0765;
+h3 = hf+0.92*hfg;
+s3 = sf+(0.92*sg);
+// Part (a)
+T0 = 303;
+f1 = (h1-h0)-(T0*(s1-s0));
+f2 = (h2-h0)-(T0*(s2-s0));
+f3 = (h3-h0)-(T0*(s3-s0));
+disp("kJ/kg",f1,"Availability of steam entering at state 1")
+disp("kJ/kg",f2,"Availability of steam leaving at state 2")
+disp("kJ/kg",f3,"Availability of steam leaving at state 3")
+// Part (b)
+m2m1 = 0.25; m3m1 = 0.75;
+Wrev = f1-(m2m1*f2)-(m3m1*f3);
+disp("kJ/kg",Wrev,"Maximum work is")
+// Part (c)
+w1 = 600; w2 = 150; w3 = 450;
+Q = -10*3600; // For 1 hour
+I = T0*(w2*s2+w3*s3-w1*s1)-Q;
+disp("kJ/h",I,"Irreversibility is")
diff --git a/779/CH9/EX9.16/9_16.sce b/779/CH9/EX9.16/9_16.sce new file mode 100755 index 000000000..90320d710 --- /dev/null +++ b/779/CH9/EX9.16/9_16.sce @@ -0,0 +1,30 @@ +// At dead state of 1 bar, 300K
+u0 = 113.1; h0 = 113.2;
+v0 = 0.001005; s0 = 0.0395;
+T0 = 300; P0 = 100;
+K = h0-(T0*s0);
+// Part (a)
+u = 376.9; h = 377;
+v = 0.001035; s = 1.193;
+m = 3;
+fi = m*(h-(T0*s)-K); // As P = P0 = 1 bar
+disp("kJ",fi,"Energy of system in Part (a) is")
+// Part (b)
+u = 3099.8; h = 3446.3; v = 0.08637; s = 7.090; // At P = 4 Mpa, t = 500 degree
+m = 0.2;
+fib = m*(u+P0*v-T0*s-K);
+disp("kJ",fib,"Energy of system in Part (b) is")
+// Part (c)
+m = 0.4;
+x = 0.85; // Quality
+u = 192+x*2245;
+h = 192+x*2392;
+s = 0.649+x*7.499;
+v = 0.001010+x*14.67;
+fic = m*(u+P0*v-T0*s-K);
+disp("kJ",fic,"Energy of system in Part (c) is")
+// Part (d)
+m = 3;
+h = -354.1; s = -1.298; // at 1000kPa, -10 degree
+fid = m*((h-h0)-T0*(s-s0));
+disp("kJ",fid,"Energy of system in Part (d) is")
diff --git a/779/CH9/EX9.17/9_17.sce b/779/CH9/EX9.17/9_17.sce new file mode 100755 index 000000000..02ac708ba --- /dev/null +++ b/779/CH9/EX9.17/9_17.sce @@ -0,0 +1,32 @@ +// Given
+th1 = 90+273;
+tc1 = 25+273;
+tc2 = 50+273;
+mc = 1; T0 = 300;
+th2p = 60+273; // Parallel
+th2c = 35+273; // Counter
+mhp = (tc2-tc1)/(th1-th2p); // Parallel
+mhc = (tc2-tc1)/(th1-th2c); // Counter
+h0 = 113.2; s0 = 0.395; T0 = 300; // At 300 K
+h1 = 376.92; s1 = 1.1925; // At 90 degree
+af1 = mhp*((h1-h0)-T0*(s1-s0));
+// Parallel Flow
+h2 = 251.13; s2 =0.8312; // At 60 degree
+h3 = 104.89; s3 = 0.3674; // At 25 degree
+h4 = 209.33; s4 = 0.7038; // At 50 degree
+REG = mc*((h4-h3)-T0*(s4-s3)); // Rate of energy gain
+REL = mhp*((h1-h2)-T0*(s1-s2)); // Rate of energy loss
+Ia = REL-REG; // Energy destruction
+n2a = REG/REL; // Second law efficiency
+disp("In parallel flow")
+disp("kW",Ia,"The rate of irreversibility is")
+disp("%",n2a*100,"The Second law efficiency is")
+// Counter flow
+h2 = 146.68; s2 = 0.5053; // At 35 degree
+REG_b = REG; // Rate of energy gain by hot water is same in both flows
+REL_b = mhc*((h1-h2)-T0*(s1-s2));
+Ib = REL_b-REG_b; // Energy destruction
+n2b = REG_b/REL_b; // Second law efficiency
+disp("In Counter flow")
+disp("kW",Ib,"The rate of irreversibility is")
+disp("%",n2b*100,"The Second law efficiency is")
\ No newline at end of file diff --git a/779/CH9/EX9.18/9_18.sce b/779/CH9/EX9.18/9_18.sce new file mode 100755 index 000000000..f8bae500e --- /dev/null +++ b/779/CH9/EX9.18/9_18.sce @@ -0,0 +1,15 @@ +m = 50 ; // in kg/h
+Th = 23+273; // Home temperature
+// State 1
+T1 = 150+273;
+h1 = 2746.4;
+s1 = 6.8387;
+// State 2
+h2 = 419.0;
+s2 = 1.3071;
+T0 = 318;
+//
+b1 = h1-(T0*s1);
+b2 = h2-(T0*s2);
+Q_max = m*(b1-b2)/(T0/Th-1);
+disp("kW",Q_max/3600,"The maximum cooling rate is")
\ No newline at end of file diff --git a/779/CH9/EX9.3/9_3.sce b/779/CH9/EX9.3/9_3.sce new file mode 100755 index 000000000..f02476362 --- /dev/null +++ b/779/CH9/EX9.3/9_3.sce @@ -0,0 +1,7 @@ +v = 0.09; vf = 0.001177; vg = 0.09963;
+x = (v-vf)/(vg-vf);
+hf = 908.79; hfg = 1890.7;
+sf = 2.4474; sfg = 3.8935;
+h = hf+(x*hfg);
+s = sf+(x*sfg);
+disp("kJ/kg and kJ/kg K respectively",s,"and",h,"The enthalpy and entropy og the system are")
\ No newline at end of file diff --git a/779/CH9/EX9.4/9_4.sce b/779/CH9/EX9.4/9_4.sce new file mode 100755 index 000000000..67f0fa536 --- /dev/null +++ b/779/CH9/EX9.4/9_4.sce @@ -0,0 +1,14 @@ +// for T = 350 degree
+T1 = 350; v1 = 0.2003; h1 = 3149.5; s1 = 7.1369;
+// for T = 400 degree
+T2 = 400; v2 = 0.2178; h2 = 3257.5; s2 = 7.3026;
+// Interpolation for T = 380;
+T = [T1 T2];
+v = [v1 v2];
+h = [h1 h2];
+s = [s1 s2];
+v3 = interpln([T;v],380);
+h3 = interpln([T;h],380);
+s3 = interpln([T;s],380);
+disp("m3/kg respectively",v3,"kJ/kg",h3,"kJ/kg K",s3,"The entropy, enthalpy and volume of stem at 1.4MPa and 380 degree is")
+
diff --git a/779/CH9/EX9.5/9_5.sce b/779/CH9/EX9.5/9_5.sce new file mode 100755 index 000000000..8bd9b418a --- /dev/null +++ b/779/CH9/EX9.5/9_5.sce @@ -0,0 +1,23 @@ +Psat = 3.973e06;
+vf = 0.0012512; vg = 0.05013;
+hf = 1085.36; hfg = 1716.2;
+sf = 2.7927; sfg = 3.2802;
+mf = 9; V = 0.04;
+Vf = mf*vf;
+Vg = V-Vf;
+mg = Vg/vg;
+m = mf+mg;
+x = mg/m;
+v = vf+x*(vg-vf);
+h = hf+x*hfg;
+s = sf+(x*sfg);
+u = h-Psat*v*1e-03;
+// at T = 250
+uf = 1080.39; ufg = 1522;
+u_ = uf+x*ufg;
+disp("Pa",Psat,"The pressure is")
+disp("kg",m,"The mass is")
+disp("m3/kg",v,"Specific volume is")
+disp("kJ/kg",h,"Enthalpy is")
+disp("kJ/kg K",s,"The entropy is")
+disp("kJ/kg",u,"The interal energy is")
\ No newline at end of file diff --git a/779/CH9/EX9.6/9_6.sce b/779/CH9/EX9.6/9_6.sce new file mode 100755 index 000000000..840a8ecf1 --- /dev/null +++ b/779/CH9/EX9.6/9_6.sce @@ -0,0 +1,21 @@ +// Part (a)
+vg1_ = 0.8919; T1_ = 120;
+vg2_ = 0.77076; T2_ = 125;
+vg_ = [vg1_ vg2_]; T_ = [T1 T2];
+v1 = 0.7964;
+h1 = 2967.6;
+P1 = 0.3e03; // in Kpa
+T1 = interpln([vg_;T_],v1);
+disp("degree",T3,"The steam become saturated at ")
+// Part (b)
+vf = 0.001029; vg = 3.407;
+hf = 334.91; hfg = 2308.8;
+Psat = 47.39; // In kPa
+v2 = v1;
+x2 = (v1-vf)/(vg-vf);
+h2 = hf+x2*hfg;
+P2 = Psat;
+Q12 = (h2-h1)+v1*(P1-P2);
+disp(x2,"The quality factor at t =80 degree is")
+disp("kJ/kg",Q12,"The heat transfered per kg of steam in cooling from 250 degree to 80 degree")
+
diff --git a/779/CH9/EX9.7/9_7.sce b/779/CH9/EX9.7/9_7.sce new file mode 100755 index 000000000..ac431d8fa --- /dev/null +++ b/779/CH9/EX9.7/9_7.sce @@ -0,0 +1,10 @@ +// At T = 40 degree
+Psat = 7.384e06;
+sf = 0.5725; sfg = 7.6845;
+hf = 167.57; hfg = 2406.7;
+//
+s1 = 6.9189; h1 = 3037.6;
+x2 = (s1-sf)/sfg ;
+h2 = hf+(x2*hfg);
+W = h1-h2;
+disp("kJ/Kg",W,"The ideal work output of the turbine is")
\ No newline at end of file diff --git a/779/CH9/EX9.8/9_8.sce b/779/CH9/EX9.8/9_8.sce new file mode 100755 index 000000000..c608b055d --- /dev/null +++ b/779/CH9/EX9.8/9_8.sce @@ -0,0 +1,19 @@ +w3 = 2.3; w1 = 1.0; +w2 = w3-w1; +h1 = 2950.0; +// At 0.8MPa, 0.95 dry +x = 0.95; +hf = 721.11; hfg = 2048; +h2 = hf + (x*hfg); +h3 = ((w1*h1)+(w2*h2))/w3; +// Interpolation +H = [2769.1 2839.3]; +T = [170.43 200]; +t3 = interpln([H;T],2790); +s3 = 6.7087; +s4 = s3; +x4 = (s3-1.7766)/5.1193; +h4 = 604.74+(x4*2133.8); +V4 = sqrt(2000*(h3-h4)); +disp("degree",t3-T(1),"The condition of superheat after mixing") +disp("m/sec",V4,"The velocity of steam leaving the nozzle is")
\ No newline at end of file diff --git a/779/CH9/EX9.9/9_9.sce b/779/CH9/EX9.9/9_9.sce new file mode 100755 index 000000000..c90be93da --- /dev/null +++ b/779/CH9/EX9.9/9_9.sce @@ -0,0 +1,6 @@ +h2 = 2716.2; hf = 844.89; hfg = 1947.3;
+x1 = (h2-hf)/hfg;
+h3 = 2685.5;
+x4 = (h3-hf)/hfg;
+disp(x1,"The quality of steam in pipe line is")
+disp("%",100-(x4*100),"Maximum moisture is")
|