diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /72/CH9 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '72/CH9')
-rwxr-xr-x | 72/CH9/EX9.2.1/9_2_1.sce | 65 | ||||
-rwxr-xr-x | 72/CH9/EX9.3.1/9_3_1.sce | 49 | ||||
-rwxr-xr-x | 72/CH9/EX9.3.2/9_3_2.sce | 62 | ||||
-rwxr-xr-x | 72/CH9/EX9.3.3/9_3_3.sce | 64 | ||||
-rwxr-xr-x | 72/CH9/EX9.3.4/9_3_4.sce | 50 | ||||
-rwxr-xr-x | 72/CH9/EX9.4.1/9_4_1.sce | 46 | ||||
-rwxr-xr-x | 72/CH9/EX9.5.1/9_5_1.sce | 44 | ||||
-rwxr-xr-x | 72/CH9/EX9.7.1/9_7_1.sce | 52 |
8 files changed, 432 insertions, 0 deletions
diff --git a/72/CH9/EX9.2.1/9_2_1.sce b/72/CH9/EX9.2.1/9_2_1.sce new file mode 100755 index 000000000..7c03b6ef2 --- /dev/null +++ b/72/CH9/EX9.2.1/9_2_1.sce @@ -0,0 +1,65 @@ +// CAPTION:Klystron_Amplifier
+//chapter_no.-9, page_no.-377
+//Example_no.9-2-1
+
+clc;
+
+//(a) Calculate_the_input_gap_voltage_to_give_maximum_voltage_V2
+
+disp('For_maximum_V2,_J1(X)_must_be_maximum.This_means_J1(X)=.582_at_X=1.841.The_electron_velocity_just_leaving_the_cathode_is');
+X=1.841;
+J1(X)=.582;
+V0=10^3;
+v0=.593*(10^6)*sqrt(V0);
+disp(v0,'');
+f=(3*(10^9));
+d=1*(10^-3);//Gap_spacing_in_either_cavity
+w=(2*%pi*f);
+Og=(w*d)/v0;
+disp(Og,'The_gap_transit_angle_(in radian)is =');
+disp('The_beam-coupling_coefficient_is');
+Bi=sin(Og/2)/(Og/2);
+Bo=Bi;
+disp(Bi,'');
+disp('The_dc_transit_angle_(in radian)_between_the_cavities_is =');
+L=4*(10^-2);//Spacing_between_the_two_cavities
+O0=(w*L)/v0;
+disp(O0,'');
+disp('The_maximum_input_voltage_V1_(in Volts)_is_then_given_by =');
+V1max=(2*V0*X)/(Bi*O0);
+disp(V1max,'');
+
+
+
+
+//(b) Calculate_the_voltage_gain
+
+R0=40*(10^3);
+Rsh=30*(10^3);//Effective_shunt_impedance_excluding_beam_loading
+
+Av=((Bo^2)*O0*J1(X)*Rsh)/(R0*X);
+disp(Av,'The_voltage_gain_is_found ,neglecting_the_beam_loading_in_the_output_cavity =');
+
+
+
+
+//(c)Calculate_the_efficiency_of the _amplifier
+
+I0=25*(10^-3);
+I2=2*I0*J1(X);
+V2=Bo*I2*Rsh;
+efficiency=(Bo*I2*V2)/(2*I0*V0);
+efficiency=100*efficiency;
+disp(efficiency,'the_efficiency_of the _amplifier,neglecting_beam_loading =');
+
+
+//(d)Calculate_the_beam_loading_conductance
+
+G0=25*(10^-6);
+Og=(Og*180)/%pi;
+GB=(G0/2)*((Bo^2)-(Bo*cos((28.6*%pi)/180)));
+disp(GB,'the_beam_loading_conductance GB (mho)is =');
+
+RB=1/GB;
+disp(RB,'then_the_beam_loading_resistance_RB (rho)is =');
+disp('In_comparasion_with_RL_and_Rsho_or_the_effective_shunt_resistance_Rsh,the_beam_loading_resistance_is_like_an_open_circuit_and_thus_can_be neglected_in_the_preceding_calculations');
diff --git a/72/CH9/EX9.3.1/9_3_1.sce b/72/CH9/EX9.3.1/9_3_1.sce new file mode 100755 index 000000000..cb85de937 --- /dev/null +++ b/72/CH9/EX9.3.1/9_3_1.sce @@ -0,0 +1,49 @@ +//CAPTION: Four-Cavity_Klystron
+//chapter_no.-9, page_no.-385
+//Example_no.9-3-1
+
+clc;
+
+//(a) Calculate_the_dc_electron_velocity
+V0=14.5*(10^3);
+v0=.593*(10^6)*sqrt(V0);
+disp(v0,'the_dc_electron_velocity(in m/s)is =');
+
+
+//(b) Calculate_the_dc_phase_constant
+
+f=(10*(10^9));
+Be=(2*%pi*f)/v0;
+disp(Be,'the_dc_phase_constant(in rads/m)is =');
+
+
+
+//(c)Calculate_the_plasma_frequency
+
+po=1*(10^-6);//dc_electron_charge_density
+wp=((1.759*(10^11)*po)/(8.854*(10^-12)))^(1/2);
+disp(wp,'the_plasma_frequency(in rad/s)is =');
+
+
+//(d) Calculate_the_reduced_plasma_frequency_for_R=0.4
+
+R=0.4;
+wq=R*wp;
+disp(wq,'the_reduced_plasma_frequency_for_R=0.4(in rad/s)is =');
+
+
+
+//(e)Calculate_the_dc_beam_current_density
+
+J0=po*v0;
+disp(J0,'the_dc_beam_current_density(in A/m2)is =');
+
+
+
+//(f) Calculate_the_instantaneous_beam_current_density
+
+
+p=1*(10^-8);
+v=1*(10^5);//velocity_perturbation
+J=(p*v0)-(po*v);
+disp(J,'the_instantaneous_beam_current_density(in A/m2)is =');
diff --git a/72/CH9/EX9.3.2/9_3_2.sce b/72/CH9/EX9.3.2/9_3_2.sce new file mode 100755 index 000000000..4266e2267 --- /dev/null +++ b/72/CH9/EX9.3.2/9_3_2.sce @@ -0,0 +1,62 @@ +//CAPTION:Operation_of_a_Four-Cavity_Klystron
+//chapter_no.-9, page_no.-386
+//Example_no.9-3-2
+
+clc;
+
+//(a) Calculate_the_dc_electron_velocity
+V0=18*(10^3);
+v0=.593*(10^6)*sqrt(V0);
+disp(v0,'the_dc_electron_velocity(in m/s)is =');
+
+
+//(b) Calculate_the_dc_electron_phase_constant
+
+f=(10*(10^9));//Operating_frequency
+w=2*%pi*f
+Be=w/v0;
+disp(Be,'the_dc_electron_phase_constant(in rads/m)is =');
+
+
+
+//(c) Calculate_the_plasma_frequency
+
+po=1*(10^-8);//dc_electron_beam_current_density
+wp=((1.759*(10^11)*po)/(8.854*(10^-12)))^(1/2);
+disp(wp,'the_plasma_frequency(in rad/s)is =');
+
+
+//(d) Calculate_the_reduced_plasma_frequency_for_R=0.5
+
+R=0.5;
+wq=R*wp;
+disp(wq,'the_reduced_plasma_frequency_for_R=0.5(in rad/s)is =');
+
+
+
+//(e) Calculate_the_reduced_plasma_phase_constant
+
+Bq=wq/v0;
+disp(Bq,'the_reduced_plasma_phase_constant(in rad/m)is =');
+
+
+
+
+//(f) Calculate_the_transit_time_across_the_input_gap
+
+d=1*(10^-2);//gap_distance
+t=d/v0;
+t=t*(10^9);
+disp(t,'the_transit_time_across_the_input_gap(in ns)is =');
+
+
+
+
+//(g) Calculate_the_electron_velocity_leaving_the_input_gap
+
+V1=10;
+Bi=1;//beam_coupling_coefficient
+Vt1=v0*(1+(((Bi*V1)/(2*V0))*sin(w*t*(10^-9))));
+disp(Vt1,'the_electron_velocity_leaving_the_input_gap(in m/s)is =');
+
+
diff --git a/72/CH9/EX9.3.3/9_3_3.sce b/72/CH9/EX9.3.3/9_3_3.sce new file mode 100755 index 000000000..8fd28ecb5 --- /dev/null +++ b/72/CH9/EX9.3.3/9_3_3.sce @@ -0,0 +1,64 @@ +// CAPTION:Characteristics_of_Two-Cavity_Klystron
+//chapter_no.-9, page_no.-388
+//Example_no.9-3-3
+clc;
+
+//(a)Calculate_the_plasma_frequency
+po=1*(10^-6);//dc_electron_beam_current_density
+wp=((1.759*(10^11)*po)/(8.854*(10^-12)))^(1/2);
+disp(wp,'the_plasma_frequency(in rad/s)is =');
+
+
+//(b) Calculate_the_reduced_plasma_frequency_for_R=0.5
+
+R=0.5;
+f=(8*(10^9));
+w=2*%pi*f;
+wq=R*wp;
+disp(wq,'the_reduced_plasma_frequency_for_R=0.5(in rad/s)is =');
+
+//(c) Calculate_the_induced_current_in_the_output_cavity
+
+V0=20*(10^3);
+I0=2;//beam_current
+V1=10;//Signal_voltage
+Bo=1;//Beam_coupling_coefficient
+I2=(I0*w*(Bo^2)*V1)/(2*V0*wq);
+disp(I2,'the_induced_current_in_the_output_cavity(in Ampere)is =');
+
+
+
+
+//(d) Calculate_the_induced_voltage_in_the_output_cavity
+
+Rshl=30*(10^3);//total_shunt_resistance_including_load
+V2=I2*Rshl;
+V2=V2/1000;
+disp(V2,'the_induced_voltage_in_the_output_cavity(in KV)is =');
+
+
+//(e) Calculate_the_output_power_delivered_to the_load
+
+
+Rsh=10*(10^3);//shunt_resistance_of the_cavity
+Rshl=30*(10^3);//total_shunt_resistance_including_load
+Pout=(I2^2)*Rshl;
+Pout=Pout/1000;
+disp(Pout,'the_output_power_delivered_to the_load(in KW)is =');
+
+
+
+//(f) Calculate_the_power_gain
+
+
+powergain=(((I0*w)^2)*(Bo^4)*Rsh*Rshl)/(4*((V0*wq)^2));
+powergain=10*log10(powergain);//powergain_in_dB
+disp(powergain,'the_power_gain is =');
+
+
+//(g) Calculate_the_electronic_efficiency
+
+
+n=(Pout*1000)/(I0*V0);
+n=n*100;
+disp(n,'the_electronic_efficiency (in %)is =');
\ No newline at end of file diff --git a/72/CH9/EX9.3.4/9_3_4.sce b/72/CH9/EX9.3.4/9_3_4.sce new file mode 100755 index 000000000..b59d89d87 --- /dev/null +++ b/72/CH9/EX9.3.4/9_3_4.sce @@ -0,0 +1,50 @@ +// CAPTION:Output_Power_of_Four-Cavity_Klystron
+//chapter_no.-9, page_no.-390
+//Example_no.9-3-4
+
+clc;
+
+//(a) Calculate_the_plasma_frequency
+po=5*(10^-5);//dc_electron_beam_current_density
+wp=((1.759*(10^11)*po)/(8.854*(10^-12)))^(1/2);
+disp(wp,'the_plasma_frequency(in rad/s)is =');
+
+
+//(b) Calculate_the_reduced_plasma_frequency_for_R=0.6
+
+R=0.6;
+f=(4*(10^9));
+w=2*%pi*f;
+wq=R*wp;
+disp(wq,'the_reduced_plasma_frequency_for_R=0.6(in rad/s)is =');
+
+//(c) Calculate_the_induced_current_in_the_output_cavity
+
+
+Rsh=10*(10^3);//shunt_resistance_of the_cavity
+Rshl=5*(10^3);//total_shunt_resistance_including_load
+V0=10*(10^3);
+I0=0.7;//beam_current
+V1=2;//Signal_voltage
+Bo=1;//Beam_coupling_coefficient
+I4=(((I0*w)^3)*(Bo^6)*V1*(Rsh^2))/(8*((V0*wq)^3));
+disp(I4,'the_induced_current_in_the_output_cavity(in Ampere)is =');
+
+
+
+
+//(d) Calculate_the_induced_voltage_in_the_output_cavity
+
+
+
+V4=I4*Rshl;
+V4=V4/1000;
+disp(V4,'the_induced_voltage_in_the_output_cavity(in KV)is =');
+
+
+//(e) Calculate_the_output_power_delivered_to the_load
+
+Pout=(I4^2)*Rshl;
+Pout=Pout/1000;
+disp(Pout,'the_output_power_delivered_to the_load(in KW)is =');
+
diff --git a/72/CH9/EX9.4.1/9_4_1.sce b/72/CH9/EX9.4.1/9_4_1.sce new file mode 100755 index 000000000..f815f93bb --- /dev/null +++ b/72/CH9/EX9.4.1/9_4_1.sce @@ -0,0 +1,46 @@ +// CAPTION:Reflex_Klystron
+//chapter_no.-9, page_no.-399
+//Example_no.9-4-1
+
+clc;
+
+//(a) Calculate_the_value_of_the_repeller_voltage
+V0=600;
+n=2;//mode=2
+fr=9*(10^9);
+w=2*%pi*fr;
+L=1*(10^-3);
+em=1.759*(10^11);//em=e/m
+x=((em)*(((2*%pi*n)-(%pi/2))^2))/(8*(w^2)*(L^2));//x=V0/(V0+Vr)^2
+y=V0/x;//y=(V0+Vr)^2
+z=sqrt(y);//z=V0+Vr
+Vr=z-V0;
+disp(Vr,'the_value_of_the_repeller_voltage(volts)is =');
+
+
+
+
+
+//(b)Calculate_the_direct_current_necessary_to_give_a_microwave_gap_voltage_of_200V
+
+disp('Assume_that_Bo=1');
+disp('V2 = I2*Rsh = 2*I0*J1(X)*Rsh ');
+disp('the_direct_current_I0_is_I0 = V2/ 2*J1(X)*Rsh');
+V2=200;
+Rsh=15*(10^3);
+X=1.841
+J1(X)=.582;
+I0 = V2/(2*J1(X)*Rsh);
+I0=I0*1000;
+disp(I0,'the_direct_current_necessary_to_give_a_microwave_gap_voltage_of_200V(mA)is =');
+
+
+
+//(c) Calculate_the_electronic_efficiency
+
+disp('From Eq(9-4-11),Eq(9-4-12) and Eq(9-4-20), the_electronic_efficiency_is');
+
+efficiency=(2*X*J1(X))/((2*%pi*n)-(%pi/2));
+efficiency=efficiency*100;
+disp(efficiency,'the_electronic_efficiency(in %)is =');
+
diff --git a/72/CH9/EX9.5.1/9_5_1.sce b/72/CH9/EX9.5.1/9_5_1.sce new file mode 100755 index 000000000..7ad571261 --- /dev/null +++ b/72/CH9/EX9.5.1/9_5_1.sce @@ -0,0 +1,44 @@ +// CAPTION: Operation_of_Travelling-WAVE_TUBE(TWT)
+//chapter_no.-9, page_no.-416
+//Example_no.9-5-1
+
+clc;
+
+//(a) Calculate_the_gain_parameter
+
+I0=30*(10^-3);//Beam_current
+V0=3*(10^3);//Beam_voltage
+Z0=10;//characteristic_impedance_of_the_helix
+C=(((I0*Z0)/(4*V0))^(1/3));
+disp(C,'From Eq(9-5-56) the gain parameter is =');
+
+
+//(b) Calculate_the_output_power_gain_in_dB
+
+N=50;//Crcular_length
+Ap=-9.54+(47.3*N*C);
+disp(Ap,'the_output_power_gain_(in_dB) is =');
+
+
+
+//(c) Calculate_the_four_propagation_constants
+
+f=10*(10^9);
+V0=3*(10^3);
+w=2*(%pi)*f;
+v0=.593*(10^6)*sqrt(V0);
+Be=w/v0;
+
+r1=(-1*Be*C*(sqrt(3)/2))+%i*Be*(1+(C/2));
+disp(r1,'the_first_propagtaion_constant_is =');
+
+r2=(Be*C*(sqrt(3)/2))+%i*Be*(1+(C/2));
+disp(r2,'the_second_propagtaion_constant_is =');
+r3=%i*Be*(1-C);
+disp(r3,'the_third_propagtaion_constant is =');
+
+r4=-1*%i*Be*(1-((C^3)/4));
+disp(r4,'the_fourth_propagtaion_constant is =');
+
+
+
diff --git a/72/CH9/EX9.7.1/9_7_1.sce b/72/CH9/EX9.7.1/9_7_1.sce new file mode 100755 index 000000000..a0c3af7dc --- /dev/null +++ b/72/CH9/EX9.7.1/9_7_1.sce @@ -0,0 +1,52 @@ +// CAPTION: Gridded_Travelling-Wave_Tube(GTWT)
+//chapter_no.-9, page_no.-427
+//Example_no.9-7-1
+clc;
+
+
+//(a) Calculate_the_number_of_electrons_returned_per_second
+Ir=.85;//returned_current
+q=1.6*(10^-19);//electronic_charge
+Nr=Ir/q;
+disp(Nr,'the_number_of_electrons_returned_(per_second) is =');
+
+
+
+
+
+//(b)Calculate_the_Energy_associated_with_these_returning_electrons_in_20ms
+
+
+V=11*(10^3);//overdepreesion_collector_voltage
+t=20*(10^-3);
+W=V*Nr*t;
+disp(W,'the_Energy_associated_with_these_returning_electrons_in_20ms(in eV) is =');
+
+
+
+//(c) Calculate_the_Power_for_returning_electrons
+
+
+P=V*Ir;
+P=P/1000;
+disp(P,'the_Power_for_returning_electrons(in KW)is =');
+
+
+//(d) Calculate_the_Heat_associated_with_the_returning_electrons
+
+t=20*(10^-3);
+H=.238*P*1000*t;
+disp(H,'the_Heat_associated_with_the_returning_electrons(in calories)is =');
+
+
+//(e) Calculate_the_temperature
+
+mass=250*(10^-3);
+specificheat=.108;
+T=H/(mass*specificheat);
+disp(T,'the_temperature(in degree Celsius)is =');
+
+//(f) Calculate_whether_the_output_iron_pole_piece_is_melted
+
+
+disp('the_output_iron_pole_piece_is_melted');
\ No newline at end of file |