From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 72/CH9/EX9.2.1/9_2_1.sce | 65 ++++++++++++++++++++++++++++++++++++++++++++++++ 72/CH9/EX9.3.1/9_3_1.sce | 49 ++++++++++++++++++++++++++++++++++++ 72/CH9/EX9.3.2/9_3_2.sce | 62 +++++++++++++++++++++++++++++++++++++++++++++ 72/CH9/EX9.3.3/9_3_3.sce | 64 +++++++++++++++++++++++++++++++++++++++++++++++ 72/CH9/EX9.3.4/9_3_4.sce | 50 +++++++++++++++++++++++++++++++++++++ 72/CH9/EX9.4.1/9_4_1.sce | 46 ++++++++++++++++++++++++++++++++++ 72/CH9/EX9.5.1/9_5_1.sce | 44 ++++++++++++++++++++++++++++++++ 72/CH9/EX9.7.1/9_7_1.sce | 52 ++++++++++++++++++++++++++++++++++++++ 8 files changed, 432 insertions(+) create mode 100755 72/CH9/EX9.2.1/9_2_1.sce create mode 100755 72/CH9/EX9.3.1/9_3_1.sce create mode 100755 72/CH9/EX9.3.2/9_3_2.sce create mode 100755 72/CH9/EX9.3.3/9_3_3.sce create mode 100755 72/CH9/EX9.3.4/9_3_4.sce create mode 100755 72/CH9/EX9.4.1/9_4_1.sce create mode 100755 72/CH9/EX9.5.1/9_5_1.sce create mode 100755 72/CH9/EX9.7.1/9_7_1.sce (limited to '72/CH9') diff --git a/72/CH9/EX9.2.1/9_2_1.sce b/72/CH9/EX9.2.1/9_2_1.sce new file mode 100755 index 000000000..7c03b6ef2 --- /dev/null +++ b/72/CH9/EX9.2.1/9_2_1.sce @@ -0,0 +1,65 @@ +// CAPTION:Klystron_Amplifier +//chapter_no.-9, page_no.-377 +//Example_no.9-2-1 + +clc; + +//(a) Calculate_the_input_gap_voltage_to_give_maximum_voltage_V2 + +disp('For_maximum_V2,_J1(X)_must_be_maximum.This_means_J1(X)=.582_at_X=1.841.The_electron_velocity_just_leaving_the_cathode_is'); +X=1.841; +J1(X)=.582; +V0=10^3; +v0=.593*(10^6)*sqrt(V0); +disp(v0,''); +f=(3*(10^9)); +d=1*(10^-3);//Gap_spacing_in_either_cavity +w=(2*%pi*f); +Og=(w*d)/v0; +disp(Og,'The_gap_transit_angle_(in radian)is ='); +disp('The_beam-coupling_coefficient_is'); +Bi=sin(Og/2)/(Og/2); +Bo=Bi; +disp(Bi,''); +disp('The_dc_transit_angle_(in radian)_between_the_cavities_is ='); +L=4*(10^-2);//Spacing_between_the_two_cavities +O0=(w*L)/v0; +disp(O0,''); +disp('The_maximum_input_voltage_V1_(in Volts)_is_then_given_by ='); +V1max=(2*V0*X)/(Bi*O0); +disp(V1max,''); + + + + +//(b) Calculate_the_voltage_gain + +R0=40*(10^3); +Rsh=30*(10^3);//Effective_shunt_impedance_excluding_beam_loading + +Av=((Bo^2)*O0*J1(X)*Rsh)/(R0*X); +disp(Av,'The_voltage_gain_is_found ,neglecting_the_beam_loading_in_the_output_cavity ='); + + + + +//(c)Calculate_the_efficiency_of the _amplifier + +I0=25*(10^-3); +I2=2*I0*J1(X); +V2=Bo*I2*Rsh; +efficiency=(Bo*I2*V2)/(2*I0*V0); +efficiency=100*efficiency; +disp(efficiency,'the_efficiency_of the _amplifier,neglecting_beam_loading ='); + + +//(d)Calculate_the_beam_loading_conductance + +G0=25*(10^-6); +Og=(Og*180)/%pi; +GB=(G0/2)*((Bo^2)-(Bo*cos((28.6*%pi)/180))); +disp(GB,'the_beam_loading_conductance GB (mho)is ='); + +RB=1/GB; +disp(RB,'then_the_beam_loading_resistance_RB (rho)is ='); +disp('In_comparasion_with_RL_and_Rsho_or_the_effective_shunt_resistance_Rsh,the_beam_loading_resistance_is_like_an_open_circuit_and_thus_can_be neglected_in_the_preceding_calculations'); diff --git a/72/CH9/EX9.3.1/9_3_1.sce b/72/CH9/EX9.3.1/9_3_1.sce new file mode 100755 index 000000000..cb85de937 --- /dev/null +++ b/72/CH9/EX9.3.1/9_3_1.sce @@ -0,0 +1,49 @@ +//CAPTION: Four-Cavity_Klystron +//chapter_no.-9, page_no.-385 +//Example_no.9-3-1 + +clc; + +//(a) Calculate_the_dc_electron_velocity +V0=14.5*(10^3); +v0=.593*(10^6)*sqrt(V0); +disp(v0,'the_dc_electron_velocity(in m/s)is ='); + + +//(b) Calculate_the_dc_phase_constant + +f=(10*(10^9)); +Be=(2*%pi*f)/v0; +disp(Be,'the_dc_phase_constant(in rads/m)is ='); + + + +//(c)Calculate_the_plasma_frequency + +po=1*(10^-6);//dc_electron_charge_density +wp=((1.759*(10^11)*po)/(8.854*(10^-12)))^(1/2); +disp(wp,'the_plasma_frequency(in rad/s)is ='); + + +//(d) Calculate_the_reduced_plasma_frequency_for_R=0.4 + +R=0.4; +wq=R*wp; +disp(wq,'the_reduced_plasma_frequency_for_R=0.4(in rad/s)is ='); + + + +//(e)Calculate_the_dc_beam_current_density + +J0=po*v0; +disp(J0,'the_dc_beam_current_density(in A/m2)is ='); + + + +//(f) Calculate_the_instantaneous_beam_current_density + + +p=1*(10^-8); +v=1*(10^5);//velocity_perturbation +J=(p*v0)-(po*v); +disp(J,'the_instantaneous_beam_current_density(in A/m2)is ='); diff --git a/72/CH9/EX9.3.2/9_3_2.sce b/72/CH9/EX9.3.2/9_3_2.sce new file mode 100755 index 000000000..4266e2267 --- /dev/null +++ b/72/CH9/EX9.3.2/9_3_2.sce @@ -0,0 +1,62 @@ +//CAPTION:Operation_of_a_Four-Cavity_Klystron +//chapter_no.-9, page_no.-386 +//Example_no.9-3-2 + +clc; + +//(a) Calculate_the_dc_electron_velocity +V0=18*(10^3); +v0=.593*(10^6)*sqrt(V0); +disp(v0,'the_dc_electron_velocity(in m/s)is ='); + + +//(b) Calculate_the_dc_electron_phase_constant + +f=(10*(10^9));//Operating_frequency +w=2*%pi*f +Be=w/v0; +disp(Be,'the_dc_electron_phase_constant(in rads/m)is ='); + + + +//(c) Calculate_the_plasma_frequency + +po=1*(10^-8);//dc_electron_beam_current_density +wp=((1.759*(10^11)*po)/(8.854*(10^-12)))^(1/2); +disp(wp,'the_plasma_frequency(in rad/s)is ='); + + +//(d) Calculate_the_reduced_plasma_frequency_for_R=0.5 + +R=0.5; +wq=R*wp; +disp(wq,'the_reduced_plasma_frequency_for_R=0.5(in rad/s)is ='); + + + +//(e) Calculate_the_reduced_plasma_phase_constant + +Bq=wq/v0; +disp(Bq,'the_reduced_plasma_phase_constant(in rad/m)is ='); + + + + +//(f) Calculate_the_transit_time_across_the_input_gap + +d=1*(10^-2);//gap_distance +t=d/v0; +t=t*(10^9); +disp(t,'the_transit_time_across_the_input_gap(in ns)is ='); + + + + +//(g) Calculate_the_electron_velocity_leaving_the_input_gap + +V1=10; +Bi=1;//beam_coupling_coefficient +Vt1=v0*(1+(((Bi*V1)/(2*V0))*sin(w*t*(10^-9)))); +disp(Vt1,'the_electron_velocity_leaving_the_input_gap(in m/s)is ='); + + diff --git a/72/CH9/EX9.3.3/9_3_3.sce b/72/CH9/EX9.3.3/9_3_3.sce new file mode 100755 index 000000000..8fd28ecb5 --- /dev/null +++ b/72/CH9/EX9.3.3/9_3_3.sce @@ -0,0 +1,64 @@ +// CAPTION:Characteristics_of_Two-Cavity_Klystron +//chapter_no.-9, page_no.-388 +//Example_no.9-3-3 +clc; + +//(a)Calculate_the_plasma_frequency +po=1*(10^-6);//dc_electron_beam_current_density +wp=((1.759*(10^11)*po)/(8.854*(10^-12)))^(1/2); +disp(wp,'the_plasma_frequency(in rad/s)is ='); + + +//(b) Calculate_the_reduced_plasma_frequency_for_R=0.5 + +R=0.5; +f=(8*(10^9)); +w=2*%pi*f; +wq=R*wp; +disp(wq,'the_reduced_plasma_frequency_for_R=0.5(in rad/s)is ='); + +//(c) Calculate_the_induced_current_in_the_output_cavity + +V0=20*(10^3); +I0=2;//beam_current +V1=10;//Signal_voltage +Bo=1;//Beam_coupling_coefficient +I2=(I0*w*(Bo^2)*V1)/(2*V0*wq); +disp(I2,'the_induced_current_in_the_output_cavity(in Ampere)is ='); + + + + +//(d) Calculate_the_induced_voltage_in_the_output_cavity + +Rshl=30*(10^3);//total_shunt_resistance_including_load +V2=I2*Rshl; +V2=V2/1000; +disp(V2,'the_induced_voltage_in_the_output_cavity(in KV)is ='); + + +//(e) Calculate_the_output_power_delivered_to the_load + + +Rsh=10*(10^3);//shunt_resistance_of the_cavity +Rshl=30*(10^3);//total_shunt_resistance_including_load +Pout=(I2^2)*Rshl; +Pout=Pout/1000; +disp(Pout,'the_output_power_delivered_to the_load(in KW)is ='); + + + +//(f) Calculate_the_power_gain + + +powergain=(((I0*w)^2)*(Bo^4)*Rsh*Rshl)/(4*((V0*wq)^2)); +powergain=10*log10(powergain);//powergain_in_dB +disp(powergain,'the_power_gain is ='); + + +//(g) Calculate_the_electronic_efficiency + + +n=(Pout*1000)/(I0*V0); +n=n*100; +disp(n,'the_electronic_efficiency (in %)is ='); \ No newline at end of file diff --git a/72/CH9/EX9.3.4/9_3_4.sce b/72/CH9/EX9.3.4/9_3_4.sce new file mode 100755 index 000000000..b59d89d87 --- /dev/null +++ b/72/CH9/EX9.3.4/9_3_4.sce @@ -0,0 +1,50 @@ +// CAPTION:Output_Power_of_Four-Cavity_Klystron +//chapter_no.-9, page_no.-390 +//Example_no.9-3-4 + +clc; + +//(a) Calculate_the_plasma_frequency +po=5*(10^-5);//dc_electron_beam_current_density +wp=((1.759*(10^11)*po)/(8.854*(10^-12)))^(1/2); +disp(wp,'the_plasma_frequency(in rad/s)is ='); + + +//(b) Calculate_the_reduced_plasma_frequency_for_R=0.6 + +R=0.6; +f=(4*(10^9)); +w=2*%pi*f; +wq=R*wp; +disp(wq,'the_reduced_plasma_frequency_for_R=0.6(in rad/s)is ='); + +//(c) Calculate_the_induced_current_in_the_output_cavity + + +Rsh=10*(10^3);//shunt_resistance_of the_cavity +Rshl=5*(10^3);//total_shunt_resistance_including_load +V0=10*(10^3); +I0=0.7;//beam_current +V1=2;//Signal_voltage +Bo=1;//Beam_coupling_coefficient +I4=(((I0*w)^3)*(Bo^6)*V1*(Rsh^2))/(8*((V0*wq)^3)); +disp(I4,'the_induced_current_in_the_output_cavity(in Ampere)is ='); + + + + +//(d) Calculate_the_induced_voltage_in_the_output_cavity + + + +V4=I4*Rshl; +V4=V4/1000; +disp(V4,'the_induced_voltage_in_the_output_cavity(in KV)is ='); + + +//(e) Calculate_the_output_power_delivered_to the_load + +Pout=(I4^2)*Rshl; +Pout=Pout/1000; +disp(Pout,'the_output_power_delivered_to the_load(in KW)is ='); + diff --git a/72/CH9/EX9.4.1/9_4_1.sce b/72/CH9/EX9.4.1/9_4_1.sce new file mode 100755 index 000000000..f815f93bb --- /dev/null +++ b/72/CH9/EX9.4.1/9_4_1.sce @@ -0,0 +1,46 @@ +// CAPTION:Reflex_Klystron +//chapter_no.-9, page_no.-399 +//Example_no.9-4-1 + +clc; + +//(a) Calculate_the_value_of_the_repeller_voltage +V0=600; +n=2;//mode=2 +fr=9*(10^9); +w=2*%pi*fr; +L=1*(10^-3); +em=1.759*(10^11);//em=e/m +x=((em)*(((2*%pi*n)-(%pi/2))^2))/(8*(w^2)*(L^2));//x=V0/(V0+Vr)^2 +y=V0/x;//y=(V0+Vr)^2 +z=sqrt(y);//z=V0+Vr +Vr=z-V0; +disp(Vr,'the_value_of_the_repeller_voltage(volts)is ='); + + + + + +//(b)Calculate_the_direct_current_necessary_to_give_a_microwave_gap_voltage_of_200V + +disp('Assume_that_Bo=1'); +disp('V2 = I2*Rsh = 2*I0*J1(X)*Rsh '); +disp('the_direct_current_I0_is_I0 = V2/ 2*J1(X)*Rsh'); +V2=200; +Rsh=15*(10^3); +X=1.841 +J1(X)=.582; +I0 = V2/(2*J1(X)*Rsh); +I0=I0*1000; +disp(I0,'the_direct_current_necessary_to_give_a_microwave_gap_voltage_of_200V(mA)is ='); + + + +//(c) Calculate_the_electronic_efficiency + +disp('From Eq(9-4-11),Eq(9-4-12) and Eq(9-4-20), the_electronic_efficiency_is'); + +efficiency=(2*X*J1(X))/((2*%pi*n)-(%pi/2)); +efficiency=efficiency*100; +disp(efficiency,'the_electronic_efficiency(in %)is ='); + diff --git a/72/CH9/EX9.5.1/9_5_1.sce b/72/CH9/EX9.5.1/9_5_1.sce new file mode 100755 index 000000000..7ad571261 --- /dev/null +++ b/72/CH9/EX9.5.1/9_5_1.sce @@ -0,0 +1,44 @@ +// CAPTION: Operation_of_Travelling-WAVE_TUBE(TWT) +//chapter_no.-9, page_no.-416 +//Example_no.9-5-1 + +clc; + +//(a) Calculate_the_gain_parameter + +I0=30*(10^-3);//Beam_current +V0=3*(10^3);//Beam_voltage +Z0=10;//characteristic_impedance_of_the_helix +C=(((I0*Z0)/(4*V0))^(1/3)); +disp(C,'From Eq(9-5-56) the gain parameter is ='); + + +//(b) Calculate_the_output_power_gain_in_dB + +N=50;//Crcular_length +Ap=-9.54+(47.3*N*C); +disp(Ap,'the_output_power_gain_(in_dB) is ='); + + + +//(c) Calculate_the_four_propagation_constants + +f=10*(10^9); +V0=3*(10^3); +w=2*(%pi)*f; +v0=.593*(10^6)*sqrt(V0); +Be=w/v0; + +r1=(-1*Be*C*(sqrt(3)/2))+%i*Be*(1+(C/2)); +disp(r1,'the_first_propagtaion_constant_is ='); + +r2=(Be*C*(sqrt(3)/2))+%i*Be*(1+(C/2)); +disp(r2,'the_second_propagtaion_constant_is ='); +r3=%i*Be*(1-C); +disp(r3,'the_third_propagtaion_constant is ='); + +r4=-1*%i*Be*(1-((C^3)/4)); +disp(r4,'the_fourth_propagtaion_constant is ='); + + + diff --git a/72/CH9/EX9.7.1/9_7_1.sce b/72/CH9/EX9.7.1/9_7_1.sce new file mode 100755 index 000000000..a0c3af7dc --- /dev/null +++ b/72/CH9/EX9.7.1/9_7_1.sce @@ -0,0 +1,52 @@ +// CAPTION: Gridded_Travelling-Wave_Tube(GTWT) +//chapter_no.-9, page_no.-427 +//Example_no.9-7-1 +clc; + + +//(a) Calculate_the_number_of_electrons_returned_per_second +Ir=.85;//returned_current +q=1.6*(10^-19);//electronic_charge +Nr=Ir/q; +disp(Nr,'the_number_of_electrons_returned_(per_second) is ='); + + + + + +//(b)Calculate_the_Energy_associated_with_these_returning_electrons_in_20ms + + +V=11*(10^3);//overdepreesion_collector_voltage +t=20*(10^-3); +W=V*Nr*t; +disp(W,'the_Energy_associated_with_these_returning_electrons_in_20ms(in eV) is ='); + + + +//(c) Calculate_the_Power_for_returning_electrons + + +P=V*Ir; +P=P/1000; +disp(P,'the_Power_for_returning_electrons(in KW)is ='); + + +//(d) Calculate_the_Heat_associated_with_the_returning_electrons + +t=20*(10^-3); +H=.238*P*1000*t; +disp(H,'the_Heat_associated_with_the_returning_electrons(in calories)is ='); + + +//(e) Calculate_the_temperature + +mass=250*(10^-3); +specificheat=.108; +T=H/(mass*specificheat); +disp(T,'the_temperature(in degree Celsius)is ='); + +//(f) Calculate_whether_the_output_iron_pole_piece_is_melted + + +disp('the_output_iron_pole_piece_is_melted'); \ No newline at end of file -- cgit