summaryrefslogtreecommitdiff
path: root/61/CH3
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /61/CH3
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '61/CH3')
-rwxr-xr-x61/CH3/EX3.1/ex3_1.sce5
-rwxr-xr-x61/CH3/EX3.2/ex3_2.sce15
-rwxr-xr-x61/CH3/EX3.3/ex3_3.sce9
-rwxr-xr-x61/CH3/EX3.4/ex3_4.sce6
-rwxr-xr-x61/CH3/EX3.5/ex3_5.sce16
-rwxr-xr-x61/CH3/EX3.6/ex3_6.sce18
-rwxr-xr-x61/CH3/EX3.7/ex3_7.sce23
-rwxr-xr-x61/CH3/EX3.8/ex3_8.jpgbin0 -> 37363 bytes
-rwxr-xr-x61/CH3/EX3.8/ex3_8.sce52
9 files changed, 144 insertions, 0 deletions
diff --git a/61/CH3/EX3.1/ex3_1.sce b/61/CH3/EX3.1/ex3_1.sce
new file mode 100755
index 000000000..dbd78d193
--- /dev/null
+++ b/61/CH3/EX3.1/ex3_1.sce
@@ -0,0 +1,5 @@
+//ex3.1
+del_V_Z=50*10^-3; //in volts, from graph
+del_I_Z=5*10^-3; //in amperes, from rgraph
+Z_Z=del_V_Z/del_I_Z;
+disp(Z_Z,'zener impedance in ohms') \ No newline at end of file
diff --git a/61/CH3/EX3.2/ex3_2.sce b/61/CH3/EX3.2/ex3_2.sce
new file mode 100755
index 000000000..7e827eeee
--- /dev/null
+++ b/61/CH3/EX3.2/ex3_2.sce
@@ -0,0 +1,15 @@
+//ex3.2
+I_ZT=37*10^-3; //IN AMPERES
+V_ZT=6.8; //IN VOLTS
+Z_ZT=3.5; //IN OHMS
+I_Z=50*10^-3; //IN AMPERES
+DEL_I_Z=I_Z-I_ZT;
+DEL_V_Z=DEL_I_Z*Z_ZT;
+V_Z=V_ZT+DEL_V_Z;
+disp(V_Z,'voltage across zener terminals (in volts) when current is 50 mA')
+I_Z=25*10^-3; //IN AMPERES
+DEL_I_Z=I_Z-I_ZT;
+DEL_V_Z=DEL_I_Z*Z_ZT;
+V_Z=V_ZT+DEL_V_Z;
+disp(V_Z,'voltage across zener terminals (in volts) when current is 25 mA')
+
diff --git a/61/CH3/EX3.3/ex3_3.sce b/61/CH3/EX3.3/ex3_3.sce
new file mode 100755
index 000000000..b3394d3ed
--- /dev/null
+++ b/61/CH3/EX3.3/ex3_3.sce
@@ -0,0 +1,9 @@
+//ex3.3
+V_Z=8.2; //8.2 volt zener diode
+TC=0.0005; //Temperature coefficient (per degree celsius)
+T1=60; //Temperatures in celsius
+T2=25;
+DEL_T=T1-T2;
+del_V_Z=V_Z*TC*DEL_T;
+voltage=V_Z+del_V_Z;
+disp(voltage,'zener voltage at 60 degree celsius') \ No newline at end of file
diff --git a/61/CH3/EX3.4/ex3_4.sce b/61/CH3/EX3.4/ex3_4.sce
new file mode 100755
index 000000000..c173ae4e8
--- /dev/null
+++ b/61/CH3/EX3.4/ex3_4.sce
@@ -0,0 +1,6 @@
+//ex3.4
+P_D_max=400*10^-3; //power in watts
+df=3.2*10^-3 //derating factor in watts per celsius
+del_T=(90-50); //in celsius, temperature difference
+P_D_derated=P_D_max-df*del_T;
+disp(P_D_derated,'maximum power dissipated at 90 degree celsius') \ No newline at end of file
diff --git a/61/CH3/EX3.5/ex3_5.sce b/61/CH3/EX3.5/ex3_5.sce
new file mode 100755
index 000000000..2ad6ac387
--- /dev/null
+++ b/61/CH3/EX3.5/ex3_5.sce
@@ -0,0 +1,16 @@
+//ex3.5
+V_Z=5.1;
+I_ZT=49*10^-3;
+I_ZK=1*10^-3;
+Z_Z=7;
+R=100;
+P_D_max=1;
+//At I_ZK, output voltage
+V_out=V_Z-(I_ZT-I_ZK)*Z_Z;
+V_IN_min=I_ZK*R+V_out;
+I_ZM=P_D_max/V_Z;
+//at I_ZM, output voltage
+V_out=V_Z+(I_ZM-I_ZT)*Z_Z;
+V_IN_max=I_ZM*R+V_out;
+disp(V_IN_max,'maximum input voltage in volts that can be regulated by the zener diode')
+disp(V_IN_min,'minimum input voltage in volts that can be regulated by the zener diode') \ No newline at end of file
diff --git a/61/CH3/EX3.6/ex3_6.sce b/61/CH3/EX3.6/ex3_6.sce
new file mode 100755
index 000000000..286a9d6ba
--- /dev/null
+++ b/61/CH3/EX3.6/ex3_6.sce
@@ -0,0 +1,18 @@
+//ex3.6
+V_Z=12;
+V_IN=24;
+I_ZK=1*10^-3;
+I_ZM=50*10^-3;
+Z_Z=0;
+R=470;
+//when I_L=0, I_Z is max and is equal to the total circuit current I_T
+I_T=(V_IN-V_Z)/R;
+I_Z_max=I_T;
+if I_Z_max<I_ZM then
+ I_L_min=0;
+end
+I_L_max=I_T-I_ZK;
+R_L_min=V_Z/I_L_max;
+disp(R_L_min,'minimum value of load resistance in ohms')
+disp(I_L_min,'minimum curent in amperes')
+disp(I_L_max,'maximum curent in amperes') \ No newline at end of file
diff --git a/61/CH3/EX3.7/ex3_7.sce b/61/CH3/EX3.7/ex3_7.sce
new file mode 100755
index 000000000..5fca7cb5c
--- /dev/null
+++ b/61/CH3/EX3.7/ex3_7.sce
@@ -0,0 +1,23 @@
+//ex3.7
+V_IN=24;
+V_Z=15;
+I_ZK=0.25*10^-3;
+I_ZT=17*10^-3;
+Z_ZT=14;
+P_D_max=1;
+//output voltage at I_ZK
+V_out_1=V_Z-(I_ZT-I_ZK)*Z_ZT;
+disp(V_out_1,'output voltage in volts at I_ZK')
+I_ZM=P_D_max/V_Z;
+//output voltage at I_ZM
+V_out_2=V_Z+(I_ZM-I_ZT)*Z_ZT;
+disp(V_out_2,'output voltage in volts a I_ZM')
+R=(V_IN-V_out_2)/I_ZM;
+disp(R,'value of R in ohms for maximum zener current, no load')
+disp('closest practical value is 130 ohms')
+R=130;
+//for minimum load resistance(max load current) zener current is minimum (I_ZK)
+I_T=(V_IN-V_out_1)/R;
+I_L=I_T-I_ZK;
+R_L_min=V_out_1/I_L;
+disp(R_L_min,'minimum load resistance in ohms') \ No newline at end of file
diff --git a/61/CH3/EX3.8/ex3_8.jpg b/61/CH3/EX3.8/ex3_8.jpg
new file mode 100755
index 000000000..05d21f0c6
--- /dev/null
+++ b/61/CH3/EX3.8/ex3_8.jpg
Binary files differ
diff --git a/61/CH3/EX3.8/ex3_8.sce b/61/CH3/EX3.8/ex3_8.sce
new file mode 100755
index 000000000..67b48d3e7
--- /dev/null
+++ b/61/CH3/EX3.8/ex3_8.sce
@@ -0,0 +1,52 @@
+//Ex3.8
+//let input wave be V_in=V_p_in*sin(2*%pi*f*t)
+f=1; //Frequency is 1Hz
+T=1/f;
+V_p_in=10; //Peak input voltage
+V_th=0.7; //forward biased zener
+V_Z1=5.1;
+V_Z2=3.3;
+clf();
+subplot(121)
+//let n be double the number of cycles of output shown in graph
+for n=0:1:4
+ t=T.*n/2:0.0005:T.*(n+1)/2 //time for each half cycle
+ V_in=V_p_in*sin(2*%pi*f.*t);
+ Vout=V_in;
+ if modulo(n,2)==0 then //positive half, conducts till V_in=5.8V
+ a=bool2s(Vout<(V_Z1+V_th));
+ b=bool2s(Vout>(V_Z1+V_th));
+ y=a.*Vout+(V_Z1+V_th)*b; //output follows input till 5.8V then is constant at 5.8V
+ else //negative half, conducts till V_in=-4V
+ a=bool2s(Vout<-(V_Z2+V_th));
+ b=bool2s(Vout>-(V_Z2+V_th));
+ y=-(V_Z2+V_th)*a+b.*Vout; //output follows input till -4V then stays constant at -4V
+ end
+ plot(t,y)
+ end
+xtitle('zener limiting circuit-1')
+disp((V_Z1+V_th),'max voltage in volts')
+disp(-(V_Z2+V_th),'min voltage in volts')
+subplot(122)
+xtitle('zener limiting circuit-2')
+V_p_in=20;
+V_Z1=6.2;
+V_Z2=15;
+//let n be double the number of cycles of output shown in graph
+for n=0:1:4
+ t=T.*n/2:0.0005:T.*(n+1)/2 //time for each half cycle
+ V_in=V_p_in*sin(2*%pi*f.*t);
+ Vout=V_in;
+ if modulo(n,2)==0 then //positive half, conducts till V_in=6.9V
+ a=bool2s(Vout<(V_Z1+V_th));
+ b=bool2s(Vout>(V_Z1+V_th));
+ y=a.*Vout+(V_Z1+V_th)*b; //output follows input till 6.9V then is constant at 6.9V
+ else //negative half, conducts till V_in=-15.7V
+ a=bool2s(Vout<-(V_Z2+V_th));
+ b=bool2s(Vout>-(V_Z2+V_th));
+ y=-(V_Z2+V_th)*a+b.*Vout; //output follows input till -15.7V then stays constant at -15.7V
+ end
+ plot(t,y)
+ end
+ disp((V_Z1+V_th),'max voltage in volts')
+disp(-(V_Z2+V_th),'min voltage in volts') \ No newline at end of file