summaryrefslogtreecommitdiff
path: root/581/CH1
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /581/CH1
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '581/CH1')
-rwxr-xr-x581/CH1/EX1.1/Example1_1.sci19
-rwxr-xr-x581/CH1/EX1.2/Example1_2.sci26
-rwxr-xr-x581/CH1/EX1.3/Example1_3.sci14
-rwxr-xr-x581/CH1/EX1.4/Example1_4.sci28
-rwxr-xr-x581/CH1/EX1.5/Example1_5.sci14
-rwxr-xr-x581/CH1/EX1.6/Example1_6.sci15
6 files changed, 116 insertions, 0 deletions
diff --git a/581/CH1/EX1.1/Example1_1.sci b/581/CH1/EX1.1/Example1_1.sci
new file mode 100755
index 000000000..ef41d5c14
--- /dev/null
+++ b/581/CH1/EX1.1/Example1_1.sci
@@ -0,0 +1,19 @@
+
+clear;
+clc;
+
+printf("\t Example 1.1\n");
+
+k=35; //Thermal Conductivity, W/m*K
+T1=110;// Temperature of front
+T2=50; // Temperature of back,C
+A=0.4;//area of slab,m^2
+x=0.03; //Thickness of slab,m
+
+q=-k*(T2-T1)/(1000*x); //formula for heat flux
+printf("\t heat flux is: %.0f KW/m^2\n",q);
+
+Q=q*A; //formula for heat transfer rate
+printf("\t heat transfer rate is: %.0f KW\n",Q);
+
+//End \ No newline at end of file
diff --git a/581/CH1/EX1.2/Example1_2.sci b/581/CH1/EX1.2/Example1_2.sci
new file mode 100755
index 000000000..17db26f17
--- /dev/null
+++ b/581/CH1/EX1.2/Example1_2.sci
@@ -0,0 +1,26 @@
+
+clear;
+clc;
+printf("\tExample 1.2\n");
+x=poly([0],'x');
+k1=372; // Thermal Conductivity of slab,W/m*K
+x1=0.003; // Thickness of slab,m
+x2=0.002;// Thickness of steel,m
+k2=17; // Thermal Conductivity of steel,W/m*K
+T1=400; // Temperature on one side,C
+T2=100;//Temperature on other side,C
+
+Tcu=roots(x+2*x*(k1/x1)*(x2/k2)-(400-100));
+
+//q=k1*(Tcu/x1)=k2*(Tss/x2);
+
+Tss = Tcu*(k1/x1)*(x2/k2); // formula for temperature gradient in steel side
+
+Tcul=T1-Tss;
+Tcur=T2+Tss;
+printf("\t temperature on left copper side is : %.0f C\n",Tcul);
+printf("\t Temperature on right copper side is : %.0f C\n",Tcur);
+q=k2*Tss/(1000*x2); // formula for heat conducted
+printf("\t heat conducted through the wall is : %.0f W\n",q);
+printf("\t our initial approximation was accurate within a few percent.");
+//End \ No newline at end of file
diff --git a/581/CH1/EX1.3/Example1_3.sci b/581/CH1/EX1.3/Example1_3.sci
new file mode 100755
index 000000000..16cc2d743
--- /dev/null
+++ b/581/CH1/EX1.3/Example1_3.sci
@@ -0,0 +1,14 @@
+
+clear;
+clc;
+printf("\t example 1.3\n");
+q1=6000; //Heat flux, W*m^-2
+T1=120; // Heater Temperature, C
+T2=70; //final Temperature of Heater
+q2=2000; // final heat flux
+h=q1/(T1-T2);// formula for average heat transfer cofficient
+printf("\t Average Heat transfer coefficient is:%.0f W/(m^2*K)\n",h);
+
+Tnew=T2 + q2/h; //formula for new Heater temperature
+printf("\t new Heater Temperature is:%.2f C\n",Tnew);
+//End \ No newline at end of file
diff --git a/581/CH1/EX1.4/Example1_4.sci b/581/CH1/EX1.4/Example1_4.sci
new file mode 100755
index 000000000..b6b5acfce
--- /dev/null
+++ b/581/CH1/EX1.4/Example1_4.sci
@@ -0,0 +1,28 @@
+
+clear;
+clc;
+printf("\t Example 1.4\n");
+h=250; //Heat Transfer Coefficient, W/(m^2*K)
+k=45; // Thermal Conductivity, W/(m*K)
+c=0.18; //Heat Capacity, kJ/(kg*K)
+a=9300; //density, kg/m^3
+T1=200; //temperature, C
+D=0.001; //diameter of bead,
+t1 =0:0.1:5;
+T=200-180*exp(-t1/((a*c*D*1e3)/(6*h)));
+plot(t1,T);
+xtitle("Thermocouple response to a hot gas flow","time,t1 sec","temperature,T C");
+Bi = h*(0.001/2)/45; //biot no.
+printf("The value of Biot no for this thermocouple is %f",Bi);
+printf("\n Bi is <0.1 and hence the thermocouple could be considered as a lumped heat capacity system and the assumption taken is valid.\n");
+//End
+
+
+
+
+
+
+
+
+
+
diff --git a/581/CH1/EX1.5/Example1_5.sci b/581/CH1/EX1.5/Example1_5.sci
new file mode 100755
index 000000000..0050ffdeb
--- /dev/null
+++ b/581/CH1/EX1.5/Example1_5.sci
@@ -0,0 +1,14 @@
+
+clear;
+clc;
+
+printf("\t Example 1.5\n");
+x=poly([0],'x');
+T1=293; //Temperature of air around thermocouple, K
+T2=373; //Wall temperature, K
+h=75; // Average Heat Transfer Coefficient, W/(m^2*K)
+s=5.67*10^-8; // stefan Boltzman constant, W/(m^2*K^4)
+x=roots(h*(x-T1)+s*(x^4-T2^4));
+y=x(4)-273;
+printf("\t thermocouple Temperature is : %.1f C\n",y);
+//end \ No newline at end of file
diff --git a/581/CH1/EX1.6/Example1_6.sci b/581/CH1/EX1.6/Example1_6.sci
new file mode 100755
index 000000000..48765732c
--- /dev/null
+++ b/581/CH1/EX1.6/Example1_6.sci
@@ -0,0 +1,15 @@
+
+clear;
+clc;
+
+printf("\t example 1.6\n");
+x=poly([0],'x');
+e=0.4; //emissivity
+T1=293; //Temperature of air around Thermocouple, K
+T2=373; // wall Temperature, K
+h=75; // Average Heat Transfer Coefficient, W/(m^2*K)
+s=5.67*10^-8; // stefan Boltzman constant, W/(m^2*K^4)
+x=roots((x-T1)*h+e*s*(x^4-T2^4));
+y=x(4)-273;
+printf("\t Thermocouple Temperature is : %.1f C\n",y);
+//End \ No newline at end of file