From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 581/CH1/EX1.1/Example1_1.sci | 19 +++++++++++++++++++ 581/CH1/EX1.2/Example1_2.sci | 26 ++++++++++++++++++++++++++ 581/CH1/EX1.3/Example1_3.sci | 14 ++++++++++++++ 581/CH1/EX1.4/Example1_4.sci | 28 ++++++++++++++++++++++++++++ 581/CH1/EX1.5/Example1_5.sci | 14 ++++++++++++++ 581/CH1/EX1.6/Example1_6.sci | 15 +++++++++++++++ 6 files changed, 116 insertions(+) create mode 100755 581/CH1/EX1.1/Example1_1.sci create mode 100755 581/CH1/EX1.2/Example1_2.sci create mode 100755 581/CH1/EX1.3/Example1_3.sci create mode 100755 581/CH1/EX1.4/Example1_4.sci create mode 100755 581/CH1/EX1.5/Example1_5.sci create mode 100755 581/CH1/EX1.6/Example1_6.sci (limited to '581/CH1') diff --git a/581/CH1/EX1.1/Example1_1.sci b/581/CH1/EX1.1/Example1_1.sci new file mode 100755 index 000000000..ef41d5c14 --- /dev/null +++ b/581/CH1/EX1.1/Example1_1.sci @@ -0,0 +1,19 @@ + +clear; +clc; + +printf("\t Example 1.1\n"); + +k=35; //Thermal Conductivity, W/m*K +T1=110;// Temperature of front +T2=50; // Temperature of back,C +A=0.4;//area of slab,m^2 +x=0.03; //Thickness of slab,m + +q=-k*(T2-T1)/(1000*x); //formula for heat flux +printf("\t heat flux is: %.0f KW/m^2\n",q); + +Q=q*A; //formula for heat transfer rate +printf("\t heat transfer rate is: %.0f KW\n",Q); + +//End \ No newline at end of file diff --git a/581/CH1/EX1.2/Example1_2.sci b/581/CH1/EX1.2/Example1_2.sci new file mode 100755 index 000000000..17db26f17 --- /dev/null +++ b/581/CH1/EX1.2/Example1_2.sci @@ -0,0 +1,26 @@ + +clear; +clc; +printf("\tExample 1.2\n"); +x=poly([0],'x'); +k1=372; // Thermal Conductivity of slab,W/m*K +x1=0.003; // Thickness of slab,m +x2=0.002;// Thickness of steel,m +k2=17; // Thermal Conductivity of steel,W/m*K +T1=400; // Temperature on one side,C +T2=100;//Temperature on other side,C + +Tcu=roots(x+2*x*(k1/x1)*(x2/k2)-(400-100)); + +//q=k1*(Tcu/x1)=k2*(Tss/x2); + +Tss = Tcu*(k1/x1)*(x2/k2); // formula for temperature gradient in steel side + +Tcul=T1-Tss; +Tcur=T2+Tss; +printf("\t temperature on left copper side is : %.0f C\n",Tcul); +printf("\t Temperature on right copper side is : %.0f C\n",Tcur); +q=k2*Tss/(1000*x2); // formula for heat conducted +printf("\t heat conducted through the wall is : %.0f W\n",q); +printf("\t our initial approximation was accurate within a few percent."); +//End \ No newline at end of file diff --git a/581/CH1/EX1.3/Example1_3.sci b/581/CH1/EX1.3/Example1_3.sci new file mode 100755 index 000000000..16cc2d743 --- /dev/null +++ b/581/CH1/EX1.3/Example1_3.sci @@ -0,0 +1,14 @@ + +clear; +clc; +printf("\t example 1.3\n"); +q1=6000; //Heat flux, W*m^-2 +T1=120; // Heater Temperature, C +T2=70; //final Temperature of Heater +q2=2000; // final heat flux +h=q1/(T1-T2);// formula for average heat transfer cofficient +printf("\t Average Heat transfer coefficient is:%.0f W/(m^2*K)\n",h); + +Tnew=T2 + q2/h; //formula for new Heater temperature +printf("\t new Heater Temperature is:%.2f C\n",Tnew); +//End \ No newline at end of file diff --git a/581/CH1/EX1.4/Example1_4.sci b/581/CH1/EX1.4/Example1_4.sci new file mode 100755 index 000000000..b6b5acfce --- /dev/null +++ b/581/CH1/EX1.4/Example1_4.sci @@ -0,0 +1,28 @@ + +clear; +clc; +printf("\t Example 1.4\n"); +h=250; //Heat Transfer Coefficient, W/(m^2*K) +k=45; // Thermal Conductivity, W/(m*K) +c=0.18; //Heat Capacity, kJ/(kg*K) +a=9300; //density, kg/m^3 +T1=200; //temperature, C +D=0.001; //diameter of bead, +t1 =0:0.1:5; +T=200-180*exp(-t1/((a*c*D*1e3)/(6*h))); +plot(t1,T); +xtitle("Thermocouple response to a hot gas flow","time,t1 sec","temperature,T C"); +Bi = h*(0.001/2)/45; //biot no. +printf("The value of Biot no for this thermocouple is %f",Bi); +printf("\n Bi is <0.1 and hence the thermocouple could be considered as a lumped heat capacity system and the assumption taken is valid.\n"); +//End + + + + + + + + + + diff --git a/581/CH1/EX1.5/Example1_5.sci b/581/CH1/EX1.5/Example1_5.sci new file mode 100755 index 000000000..0050ffdeb --- /dev/null +++ b/581/CH1/EX1.5/Example1_5.sci @@ -0,0 +1,14 @@ + +clear; +clc; + +printf("\t Example 1.5\n"); +x=poly([0],'x'); +T1=293; //Temperature of air around thermocouple, K +T2=373; //Wall temperature, K +h=75; // Average Heat Transfer Coefficient, W/(m^2*K) +s=5.67*10^-8; // stefan Boltzman constant, W/(m^2*K^4) +x=roots(h*(x-T1)+s*(x^4-T2^4)); +y=x(4)-273; +printf("\t thermocouple Temperature is : %.1f C\n",y); +//end \ No newline at end of file diff --git a/581/CH1/EX1.6/Example1_6.sci b/581/CH1/EX1.6/Example1_6.sci new file mode 100755 index 000000000..48765732c --- /dev/null +++ b/581/CH1/EX1.6/Example1_6.sci @@ -0,0 +1,15 @@ + +clear; +clc; + +printf("\t example 1.6\n"); +x=poly([0],'x'); +e=0.4; //emissivity +T1=293; //Temperature of air around Thermocouple, K +T2=373; // wall Temperature, K +h=75; // Average Heat Transfer Coefficient, W/(m^2*K) +s=5.67*10^-8; // stefan Boltzman constant, W/(m^2*K^4) +x=roots((x-T1)*h+e*s*(x^4-T2^4)); +y=x(4)-273; +printf("\t Thermocouple Temperature is : %.1f C\n",y); +//End \ No newline at end of file -- cgit