diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /534/CH11/EX11.6/11_6_Finned_Compact_HeatX.sce | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '534/CH11/EX11.6/11_6_Finned_Compact_HeatX.sce')
-rw-r--r-- | 534/CH11/EX11.6/11_6_Finned_Compact_HeatX.sce | 59 |
1 files changed, 59 insertions, 0 deletions
diff --git a/534/CH11/EX11.6/11_6_Finned_Compact_HeatX.sce b/534/CH11/EX11.6/11_6_Finned_Compact_HeatX.sce new file mode 100644 index 000000000..d6c7ba472 --- /dev/null +++ b/534/CH11/EX11.6/11_6_Finned_Compact_HeatX.sce @@ -0,0 +1,59 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 11.6 Page 702 \n'); //Example 11.6
+// Gas-side overall heat transfer coefficient. Heat exchanger Volume
+
+//Operating Conditions
+hc = 1500 ;//[W/m^2.K] Coefficient of heat transfer for outer surface
+hi = hc;
+Th = 825 ;//[K] Hot Fluid Temperature
+Tci = 290 ;//[K] Cold Fluid intlet Temperature
+Tco = 370 ;//[K] Cold Fluid outlet Temperature
+mc = 1 ;//[kg/s] Cold Fluid flow rate
+mh = 1.25 ;//[kg/s] Hot Fluid flow rate
+Ah = .20 ;//[m^2] Area of tubes
+Di = .0138 ;//[m] diameter of tube
+Do = .0164 ;//[m] Diameter
+//Table A.6 Saturated water Liquid Properties Tf = 330 K
+cpw = 4184 ; //[J/kg.K] Specific Heat
+//Table A.1 Aluminium Properties T = 300 K
+k = 237 ; //[W/m.K] Conductivity
+//Table A.4 Air Properties Tf = 700 K
+cpa = 1075 ; //[J/kg.K] Specific Heat
+u = 33.88*10^-6 ; //[N.s/m^2] Viscosity
+Pr = .695 ; // Prandtl number
+
+//Geometric Considerations
+si = .449;
+Dh = 6.68*10^-3 ;//[m] hydraulic diameter
+G = mh/si/Ah;
+Re = G*Dh/u;
+//From Figure 11.16
+jh = .01;
+hh = jh*G*cpa/Pr^.66667;
+
+AR = Di*2.303*log10(Do/Di)/(2*k*(.143));
+//Figure 11.16
+AcAh = Di/Do*(1-.830);
+//From figure 3.19
+nf = .89;
+noh = 1-(1-.89)*.83;
+
+U = [1/(hc*AcAh) + AR + 1/(noh*hh)]^-1;
+
+Cc = mc*cpw;
+q = Cc*(Tco-Tci);
+Ch = mh*cpa;
+qmax = Ch*(Th-Tci);
+e = q/qmax;
+ratio = Ch/Cc;
+
+printf("\n As effectiveness is %.2f with Ratio Cmin/Cmax = %.2f, It follows from figure 11.14 that NTU = .65",e,ratio);
+NTU = .65;
+A = NTU*Ch/U;
+//From Fig 11.16
+al = 269; //[m^-1] gas side area per unit heat wxchanger volume
+V = A/al;
+
+printf("\n Gas-side overall heat transfer coefficient.r = %i W/m^2.K\n Heat exchanger Volume = %.3f m^3",U,V);
+//END;
\ No newline at end of file |