diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /534/CH10 | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '534/CH10')
-rw-r--r-- | 534/CH10/EX10.1/10_1_Boiling_Water_pan.sce | 35 | ||||
-rw-r--r-- | 534/CH10/EX10.2/10_2_Horizontal_cylinder.sce | 43 | ||||
-rw-r--r-- | 534/CH10/EX10.3/10_3_Condensation_Chimney.sce | 36 | ||||
-rw-r--r-- | 534/CH10/EX10.4/10_4_Steam_Condenser.sce | 32 |
4 files changed, 146 insertions, 0 deletions
diff --git a/534/CH10/EX10.1/10_1_Boiling_Water_pan.sce b/534/CH10/EX10.1/10_1_Boiling_Water_pan.sce new file mode 100644 index 000000000..93db94d87 --- /dev/null +++ b/534/CH10/EX10.1/10_1_Boiling_Water_pan.sce @@ -0,0 +1,35 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 10.1 Page 632 \n'); //Example 10.1
+// Power Required by electruc heater to cause boiling
+// Rate of water evaporation due to boiling
+// Critical Heat flux corresponding to the burnout point
+
+//Operating Conditions
+Ts = 118+273 ;//[K] Surface Temperature
+Tsat = 100+273 ;//[K] Saturated Temperature
+D = .3 ;//[m] Diameter of pan
+g = 9.81 ;//[m^2/s] gravitaional constant
+//Table A.6 Saturated water Liquid Properties T = 373 K
+rhol = 957.9 ;//[kg/m^3] Density
+cp = 4.217*10^3 ;//[J/kg] Specific Heat
+u = 279*10^-6 ;//[N.s/m^2] Viscosity
+Pr = 1.76 ;// Prandtl Number
+hfg = 2257*10^3 ;//[J/kg] Specific Heat
+si = 58.9*10^-3 ;//[N/m]
+//Table A.6 Saturated water Vapor Properties T = 373 K
+rhov = .5956 ;//[kg/m^3] Density
+
+Te = Ts-Tsat;
+//From Table 10.1
+C = .0128;
+n = 1;
+q = u*hfg*[g*(rhol-rhov)/si]^.5*(cp*Te/(C*hfg*Pr^n))^3;
+qs = q*%pi*D^2/4;
+
+m = qs/hfg;
+
+qmax = .149*hfg*rhov*[si*g*(rhol-rhov)/rhov^2]^.25;
+
+printf("\n Boiling Heat transfer rate = %.1f kW \n Rate of water evaporation due to boiling = %i kg/h \n Critical Heat flux corresponding to the burnout point = %.2f MW/m^2",qs/1000,m*3600,qmax/10^6);
+//END
\ No newline at end of file diff --git a/534/CH10/EX10.2/10_2_Horizontal_cylinder.sce b/534/CH10/EX10.2/10_2_Horizontal_cylinder.sce new file mode 100644 index 000000000..97bf09ef6 --- /dev/null +++ b/534/CH10/EX10.2/10_2_Horizontal_cylinder.sce @@ -0,0 +1,43 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 10.2 Page 635 \n'); //Example 10.2
+// Power Dissipation per unith length for the cylinder, qs
+
+//Operating Conditions
+Ts = 255+273 ;//[K] Surface Temperature
+Tsat = 100+273 ;//[K] Saturated Temperature
+D = 6*10^-3 ;//[m] Diameter of pan
+e = 1 ;// eimssivity
+stfncnstt=5.67*10^(-8) ;// [W/m^2.K^4] - Stefan Boltzmann Constant
+g = 9.81 ;//[m^2/s] gravitaional constant
+//Table A.6 Saturated water Liquid Properties T = 373 K
+rhol = 957.9 ;//[kg/m^3] Density
+hfg = 2257*10^3 ;//[J/kg] Specific Heat
+//Table A.4 Water Vapor Properties T = 450 K
+rhov = .4902 ;//[kg/m^3] Density
+cpv = 1.98*10^3 ;//[J/kg.K] Specific Heat
+kv = 0.0299 ;//[W/m.K] Conductivity
+uv = 15.25*10^-6 ;//[N.s/m^2] Viscosity
+
+Te = Ts-Tsat;
+
+hconv = .62*[kv^3*rhov*(rhol-rhov)*g*(hfg+.8*cpv*Te)/(uv*D*Te)]^.25;
+hrad = e*stfncnstt*(Ts^4-Tsat^4)/(Ts-Tsat);
+
+//From eqn 10.9 h^(4/3) = hconv^(4/3) + hrad*h^(1/3)
+//Newton Raphson
+h=250; //Initial Assumption
+while(1>0)
+f = h^(4/3) - [hconv^(4/3) + hrad*h^(1/3)];
+fd = (4/3)*h^(1/3) - [(1/3)*hrad*h^(-2/3)];
+hn=h-f/fd;
+if((hn^(4/3) - [hconv^(4/3) + hrad*hn^(1/3)])<=.01)
+ break;
+end;
+h=hn;
+end
+
+q = h*%pi*D*Te;
+
+printf("\n Power Dissipation per unith length for the cylinder, qs= %i W/m",q);
+//END
\ No newline at end of file diff --git a/534/CH10/EX10.3/10_3_Condensation_Chimney.sce b/534/CH10/EX10.3/10_3_Condensation_Chimney.sce new file mode 100644 index 000000000..1153e9ae8 --- /dev/null +++ b/534/CH10/EX10.3/10_3_Condensation_Chimney.sce @@ -0,0 +1,36 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 10.3 Page 648 \n'); //Example 10.3
+// Heat Transfer and Condensation Rates
+
+//Operating Conditions
+Ts = 50+273 ;//[K] Surface Temperature
+Tsat = 100+273 ;//[K] Saturated Temperature
+D = .08 ;//[m] Diameter of pan
+g = 9.81 ;//[m^2/s] gravitaional constant
+L = 1 //[m] Length
+//Table A.6 Saturated Vapor Properties p = 1.0133 bars
+rhov = .596 ;//[kg/m^3] Density
+hfg = 2257*10^3 ;//[J/kg] Specific Heat
+//Table A.6 Saturated water Liquid Properties T = 348 K
+rhol = 975 ;//[kg/m^3] Density
+cpl = 4193 ; //[J/kg.K] Specific Heat
+kl = 0.668 ;//[W/m.K] Conductivity
+ul = 375*10^-6 ;//[N.s/m^2] Viscosity
+uvl = ul/rhol; ;//[N.s.m/Kg] Kinematic viscosity
+Ja = cpl*(Tsat-Ts)/hfg;
+hfg2 = hfg*(1+.68*Ja);
+//Equation 10.43
+Re = [3.70*kl*L*(Tsat-Ts)/(ul*hfg2*(uvl^2/g)^.33334)+4.8]^.82;
+
+//From equation 10.41
+hL = Re*ul*hfg2/(4*L*(Tsat-Ts));
+q = hL*(%pi*D*L)*(Tsat-Ts);
+
+m = q/hfg;
+//Using Equation 10.26
+del = [4*kl*ul*(Tsat-Ts)*L/(g*rhol*(rhol-rhov)*hfg2)]^.25;
+
+
+printf("\n Heat Transfer Rate = %.1f kW and Condensation Rates= %.4f kg/s \n And as del(L) %.3f mm << (D/2) %.2f m use of vertical cylinder correlation is justified",q/1000,m,del*1000,D/2);
+//END
\ No newline at end of file diff --git a/534/CH10/EX10.4/10_4_Steam_Condenser.sce b/534/CH10/EX10.4/10_4_Steam_Condenser.sce new file mode 100644 index 000000000..cb6a4ca11 --- /dev/null +++ b/534/CH10/EX10.4/10_4_Steam_Condenser.sce @@ -0,0 +1,32 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 10.4 Page 652 \n'); //Example 10.4
+// Condensation rate per unit length of tubes
+
+//Operating Conditions
+Ts = 25+273 ;//[K] Surface Temperature
+Tsat = 54+273 ;//[K] Saturated Temperature
+D = .006 ; //[m] Diameter of pan
+g = 9.81 ;//[m^2/s] gravitaional constant
+N = 20 // No of tubes
+
+//Table A.6 Saturated Vapor Properties p = 1.015 bar
+rhov = .098 ;//[kg/m^3] Density
+hfg = 2373*10^3 ;//[J/kg] Specific Heat
+//Table A.6 Saturated water Liquid Properties Tf = 312.5 K
+rhol = 992 ;//[kg/m^3] Density
+cpl = 4178 ;//[J/kg.K] Specific Heat
+kl = 0.631 ; //[W/m.K] Conductivity
+ul = 663*10^-6 ; //[N.s/m^2] Viscosity
+
+Ja = cpl*(Tsat-Ts)/hfg;
+hfg2 = hfg*(1+.68*Ja);
+//Equation 10.46
+h = .729*[g*rhol*(rhol-rhov)*kl^3*hfg2/(N*ul*(Tsat-Ts)*D)]^.25;
+//Equation 10.34
+m1 = h*(%pi*D)*(Tsat-Ts)/hfg2;
+
+m = N^2*m1;
+
+printf("\n For the complete array of tubes, the condensation per unit length is %.3f kg/s.m",m);
+//END
\ No newline at end of file |