From 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Tue, 10 Oct 2017 12:27:19 +0530 Subject: initial commit / add all books --- 534/CH10/EX10.1/10_1_Boiling_Water_pan.sce | 35 ++++++++++++++++++++++ 534/CH10/EX10.2/10_2_Horizontal_cylinder.sce | 43 +++++++++++++++++++++++++++ 534/CH10/EX10.3/10_3_Condensation_Chimney.sce | 36 ++++++++++++++++++++++ 534/CH10/EX10.4/10_4_Steam_Condenser.sce | 32 ++++++++++++++++++++ 4 files changed, 146 insertions(+) create mode 100644 534/CH10/EX10.1/10_1_Boiling_Water_pan.sce create mode 100644 534/CH10/EX10.2/10_2_Horizontal_cylinder.sce create mode 100644 534/CH10/EX10.3/10_3_Condensation_Chimney.sce create mode 100644 534/CH10/EX10.4/10_4_Steam_Condenser.sce (limited to '534/CH10') diff --git a/534/CH10/EX10.1/10_1_Boiling_Water_pan.sce b/534/CH10/EX10.1/10_1_Boiling_Water_pan.sce new file mode 100644 index 000000000..93db94d87 --- /dev/null +++ b/534/CH10/EX10.1/10_1_Boiling_Water_pan.sce @@ -0,0 +1,35 @@ +clear; +clc; +printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 10.1 Page 632 \n'); //Example 10.1 +// Power Required by electruc heater to cause boiling +// Rate of water evaporation due to boiling +// Critical Heat flux corresponding to the burnout point + +//Operating Conditions +Ts = 118+273 ;//[K] Surface Temperature +Tsat = 100+273 ;//[K] Saturated Temperature +D = .3 ;//[m] Diameter of pan +g = 9.81 ;//[m^2/s] gravitaional constant +//Table A.6 Saturated water Liquid Properties T = 373 K +rhol = 957.9 ;//[kg/m^3] Density +cp = 4.217*10^3 ;//[J/kg] Specific Heat +u = 279*10^-6 ;//[N.s/m^2] Viscosity +Pr = 1.76 ;// Prandtl Number +hfg = 2257*10^3 ;//[J/kg] Specific Heat +si = 58.9*10^-3 ;//[N/m] +//Table A.6 Saturated water Vapor Properties T = 373 K +rhov = .5956 ;//[kg/m^3] Density + +Te = Ts-Tsat; +//From Table 10.1 +C = .0128; +n = 1; +q = u*hfg*[g*(rhol-rhov)/si]^.5*(cp*Te/(C*hfg*Pr^n))^3; +qs = q*%pi*D^2/4; + +m = qs/hfg; + +qmax = .149*hfg*rhov*[si*g*(rhol-rhov)/rhov^2]^.25; + +printf("\n Boiling Heat transfer rate = %.1f kW \n Rate of water evaporation due to boiling = %i kg/h \n Critical Heat flux corresponding to the burnout point = %.2f MW/m^2",qs/1000,m*3600,qmax/10^6); +//END \ No newline at end of file diff --git a/534/CH10/EX10.2/10_2_Horizontal_cylinder.sce b/534/CH10/EX10.2/10_2_Horizontal_cylinder.sce new file mode 100644 index 000000000..97bf09ef6 --- /dev/null +++ b/534/CH10/EX10.2/10_2_Horizontal_cylinder.sce @@ -0,0 +1,43 @@ +clear; +clc; +printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 10.2 Page 635 \n'); //Example 10.2 +// Power Dissipation per unith length for the cylinder, qs + +//Operating Conditions +Ts = 255+273 ;//[K] Surface Temperature +Tsat = 100+273 ;//[K] Saturated Temperature +D = 6*10^-3 ;//[m] Diameter of pan +e = 1 ;// eimssivity +stfncnstt=5.67*10^(-8) ;// [W/m^2.K^4] - Stefan Boltzmann Constant +g = 9.81 ;//[m^2/s] gravitaional constant +//Table A.6 Saturated water Liquid Properties T = 373 K +rhol = 957.9 ;//[kg/m^3] Density +hfg = 2257*10^3 ;//[J/kg] Specific Heat +//Table A.4 Water Vapor Properties T = 450 K +rhov = .4902 ;//[kg/m^3] Density +cpv = 1.98*10^3 ;//[J/kg.K] Specific Heat +kv = 0.0299 ;//[W/m.K] Conductivity +uv = 15.25*10^-6 ;//[N.s/m^2] Viscosity + +Te = Ts-Tsat; + +hconv = .62*[kv^3*rhov*(rhol-rhov)*g*(hfg+.8*cpv*Te)/(uv*D*Te)]^.25; +hrad = e*stfncnstt*(Ts^4-Tsat^4)/(Ts-Tsat); + +//From eqn 10.9 h^(4/3) = hconv^(4/3) + hrad*h^(1/3) +//Newton Raphson +h=250; //Initial Assumption +while(1>0) +f = h^(4/3) - [hconv^(4/3) + hrad*h^(1/3)]; +fd = (4/3)*h^(1/3) - [(1/3)*hrad*h^(-2/3)]; +hn=h-f/fd; +if((hn^(4/3) - [hconv^(4/3) + hrad*hn^(1/3)])<=.01) + break; +end; +h=hn; +end + +q = h*%pi*D*Te; + +printf("\n Power Dissipation per unith length for the cylinder, qs= %i W/m",q); +//END \ No newline at end of file diff --git a/534/CH10/EX10.3/10_3_Condensation_Chimney.sce b/534/CH10/EX10.3/10_3_Condensation_Chimney.sce new file mode 100644 index 000000000..1153e9ae8 --- /dev/null +++ b/534/CH10/EX10.3/10_3_Condensation_Chimney.sce @@ -0,0 +1,36 @@ +clear; +clc; +printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 10.3 Page 648 \n'); //Example 10.3 +// Heat Transfer and Condensation Rates + +//Operating Conditions +Ts = 50+273 ;//[K] Surface Temperature +Tsat = 100+273 ;//[K] Saturated Temperature +D = .08 ;//[m] Diameter of pan +g = 9.81 ;//[m^2/s] gravitaional constant +L = 1 //[m] Length +//Table A.6 Saturated Vapor Properties p = 1.0133 bars +rhov = .596 ;//[kg/m^3] Density +hfg = 2257*10^3 ;//[J/kg] Specific Heat +//Table A.6 Saturated water Liquid Properties T = 348 K +rhol = 975 ;//[kg/m^3] Density +cpl = 4193 ; //[J/kg.K] Specific Heat +kl = 0.668 ;//[W/m.K] Conductivity +ul = 375*10^-6 ;//[N.s/m^2] Viscosity +uvl = ul/rhol; ;//[N.s.m/Kg] Kinematic viscosity +Ja = cpl*(Tsat-Ts)/hfg; +hfg2 = hfg*(1+.68*Ja); +//Equation 10.43 +Re = [3.70*kl*L*(Tsat-Ts)/(ul*hfg2*(uvl^2/g)^.33334)+4.8]^.82; + +//From equation 10.41 +hL = Re*ul*hfg2/(4*L*(Tsat-Ts)); +q = hL*(%pi*D*L)*(Tsat-Ts); + +m = q/hfg; +//Using Equation 10.26 +del = [4*kl*ul*(Tsat-Ts)*L/(g*rhol*(rhol-rhov)*hfg2)]^.25; + + +printf("\n Heat Transfer Rate = %.1f kW and Condensation Rates= %.4f kg/s \n And as del(L) %.3f mm << (D/2) %.2f m use of vertical cylinder correlation is justified",q/1000,m,del*1000,D/2); +//END \ No newline at end of file diff --git a/534/CH10/EX10.4/10_4_Steam_Condenser.sce b/534/CH10/EX10.4/10_4_Steam_Condenser.sce new file mode 100644 index 000000000..cb6a4ca11 --- /dev/null +++ b/534/CH10/EX10.4/10_4_Steam_Condenser.sce @@ -0,0 +1,32 @@ +clear; +clc; +printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 10.4 Page 652 \n'); //Example 10.4 +// Condensation rate per unit length of tubes + +//Operating Conditions +Ts = 25+273 ;//[K] Surface Temperature +Tsat = 54+273 ;//[K] Saturated Temperature +D = .006 ; //[m] Diameter of pan +g = 9.81 ;//[m^2/s] gravitaional constant +N = 20 // No of tubes + +//Table A.6 Saturated Vapor Properties p = 1.015 bar +rhov = .098 ;//[kg/m^3] Density +hfg = 2373*10^3 ;//[J/kg] Specific Heat +//Table A.6 Saturated water Liquid Properties Tf = 312.5 K +rhol = 992 ;//[kg/m^3] Density +cpl = 4178 ;//[J/kg.K] Specific Heat +kl = 0.631 ; //[W/m.K] Conductivity +ul = 663*10^-6 ; //[N.s/m^2] Viscosity + +Ja = cpl*(Tsat-Ts)/hfg; +hfg2 = hfg*(1+.68*Ja); +//Equation 10.46 +h = .729*[g*rhol*(rhol-rhov)*kl^3*hfg2/(N*ul*(Tsat-Ts)*D)]^.25; +//Equation 10.34 +m1 = h*(%pi*D)*(Tsat-Ts)/hfg2; + +m = N^2*m1; + +printf("\n For the complete array of tubes, the condensation per unit length is %.3f kg/s.m",m); +//END \ No newline at end of file -- cgit