summaryrefslogtreecommitdiff
path: root/530/CH7
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /530/CH7
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '530/CH7')
-rwxr-xr-x530/CH7/EX7.1/example_7_1.sce20
-rwxr-xr-x530/CH7/EX7.2/example_7_2.sce48
-rwxr-xr-x530/CH7/EX7.3/example_7_3.sce29
-rwxr-xr-x530/CH7/EX7.4.a/example_7_4a.sce37
-rwxr-xr-x530/CH7/EX7.4.b/example_7_4b.sce54
-rwxr-xr-x530/CH7/EX7.5/example_7_5.sce93
6 files changed, 281 insertions, 0 deletions
diff --git a/530/CH7/EX7.1/example_7_1.sce b/530/CH7/EX7.1/example_7_1.sce
new file mode 100755
index 000000000..9deb9d28d
--- /dev/null
+++ b/530/CH7/EX7.1/example_7_1.sce
@@ -0,0 +1,20 @@
+clear;
+clc;
+
+// A Textbook on HEAT TRANSFER by S P SUKHATME
+// Chapter 7
+// Heat Exchangers
+
+
+// Example 7.1
+// Page 285
+printf("Example 7.1, Page 285 \n \n");
+
+h = 2000 ; // [W/m^2 K]
+// From Table 7.1
+U_f = 0.0001 ; // fouling factor, m^2K/W
+h_f = 1/[1/h+U_f];
+printf("Heat transfer coefficient including the effect of foulung = %f W/m^2 K \n",h_f);
+
+p = (h-h_f)/h*100;
+printf("Percentage reduction = %f \n",p); \ No newline at end of file
diff --git a/530/CH7/EX7.2/example_7_2.sce b/530/CH7/EX7.2/example_7_2.sce
new file mode 100755
index 000000000..1bc9bc1b1
--- /dev/null
+++ b/530/CH7/EX7.2/example_7_2.sce
@@ -0,0 +1,48 @@
+clear;
+clc;
+
+// A Textbook on HEAT TRANSFER by S P SUKHATME
+// Chapter 7
+// Heat Exchangers
+
+
+// Example 7.2
+// Page 294
+printf("Example 7.2, Page 294 \n \n");
+
+m = 1000 ; // [kg/h]
+Thi = 50 ; // [C]
+The = 40 ; // [C]
+Tci = 35 ; // [C]
+Tce = 40 ; // [C]
+U = 1000 ; // OHTC, W/m^2 K
+
+// Using Eqn 7.5.25
+q = m/3600*4174*(Thi-The) ; // [W]
+
+delta_T = ((Thi-Tce)-(The-Tci))/log((Thi-Tce)/(The-Tci)); // [C]
+printf("delta T = %f \n\n",delta_T);
+
+// T1 = Th and T2 = Tc
+R = (Thi-The)/(Tce-Tci) ;
+S = (Tce-Tci)/(Thi-Tci) ;
+// From fig 7.15,
+F =0.91 ;
+
+printf("Taking T1 = Th and T2 = Tc \n")
+printf("R = %f, S = %f \n",R,S);
+printf("Hence, F = %f \n \n",F);
+
+// Alternatively, taking T1 = Tc and T2 = Th
+R = (Tci-Tce)/(The-Thi);
+S = (The-Thi)/(Tci-Thi);
+
+// Again from fig 7.15,
+F =0.91 ;
+
+printf("Taking T1 = Tc and T2 = Th \n")
+printf("R = %f, S = %f \n",R,S);
+printf("Hence, F = %f \n",F);
+
+A = q/(U*F*delta_T);
+printf("\nArea = %f m^2",A);
diff --git a/530/CH7/EX7.3/example_7_3.sce b/530/CH7/EX7.3/example_7_3.sce
new file mode 100755
index 000000000..617dd51de
--- /dev/null
+++ b/530/CH7/EX7.3/example_7_3.sce
@@ -0,0 +1,29 @@
+clear;
+clc;
+
+// A Textbook on HEAT TRANSFER by S P SUKHATME
+// Chapter 7
+// Heat Exchangers
+
+
+// Example 7.3
+// Page 295
+printf("Example 7.3, Page 295 \n \n");
+
+// Because of change of phase , Thi = The
+Thi = 100 ; // [C], Saturated steam
+The = 100 ; // [C], Condensed steam
+Tci = 30 ; // [C], Cooling water inlet
+Tce = 70 ; // [C], cooling water outlet
+
+R = (Thi-The)/(Tce-Tci) ;
+S = (Tce-Tci)/(Thi-Tci) ;
+
+// From fig 7.16
+F = 1;
+
+// For counter flow arrangement
+Tm_counter = ((Thi-Tce)-(The-Tci))/log((Thi-Tce)/(The-Tci)); // [C]
+// Therefore
+Tm = F*Tm_counter ;
+printf("Mean Temperaature Difference = %f C",Tm)
diff --git a/530/CH7/EX7.4.a/example_7_4a.sce b/530/CH7/EX7.4.a/example_7_4a.sce
new file mode 100755
index 000000000..c4880ad6c
--- /dev/null
+++ b/530/CH7/EX7.4.a/example_7_4a.sce
@@ -0,0 +1,37 @@
+clear;
+clc;
+
+// A Textbook on HEAT TRANSFER by S P SUKHATME
+// Chapter 7
+// Heat Exchangers
+
+
+// Example 7.4(a)
+// Page 302
+printf("Example 7.4(a), Page 302 \n \n");
+
+// (a)
+printf("(a) \n");
+// Using Mean Temperature Difference approach
+m_hot = 10 ; // [kg/min]
+m_cold = 25 ; // [kg/min]
+hh = 1600 ; // [W/m^2 K], Heat transfer coefficient on hot side
+hc = 1600 ; // [W/m^2 K], Heat transfer coefficient on cold side
+
+Thi = 70 ; // [C]
+Tci = 25 ; // [C]
+The = 50 ; // [C]
+
+// Heat Transfer Rate, q
+q = m_hot/60*4179*(Thi-The); // [W]
+
+// Heat gained by cold water = heat lost by the hot water
+Tce = 25 + q*1/(m_cold/60*4174); // [C]
+
+// Using equation 7.5.13
+Tm = ((Thi-Tci)-(The-Tce))/log((Thi-Tci)/(The-Tce)); // [C]
+printf("Mean Temperature Difference = %f C \n",Tm);
+
+U = 1/(1/hh + 1/hc); // [W/m^2 K]
+A = q/(U*Tm); // Area, [m^2]
+printf("Area of Heat Exchanger = %f m^2 \n",A);
diff --git a/530/CH7/EX7.4.b/example_7_4b.sce b/530/CH7/EX7.4.b/example_7_4b.sce
new file mode 100755
index 000000000..40873abec
--- /dev/null
+++ b/530/CH7/EX7.4.b/example_7_4b.sce
@@ -0,0 +1,54 @@
+clear;
+clc;
+
+// A Textbook on HEAT TRANSFER by S P SUKHATME
+// Chapter 7
+// Heat Exchangers
+
+
+// Example 7.4(b)
+// Page 302
+printf("Example 7.4(b), Page 302 \n \n");
+
+// Using Mean Temperature Difference approach
+m_hot = 10 ; // [kg/min]
+m_cold = 25 ; // [kg/min]
+hh = 1600 ; // [W/m^2 K], Heat transfer coefficient on hot side
+hc = 1600 ; // [W/m^2 K], Heat transfer coefficient on cold side
+
+Thi = 70 ; // [C]
+Tci = 25 ; // [C]
+The = 50 ; // [C]
+
+// Heat Transfer Rate, q
+q = m_hot/60*4179*(Thi-The); // [W]
+
+// Heat gained by cold water = heat lost by the hot water
+Tce = 25 + q*1/(m_cold/60*4174); // [C]
+
+// Using equation 7.5.13
+Tm = ((Thi-Tci)-(The-Tce))/log((Thi-Tci)/(The-Tce)); // [C]
+U = 1/(1/hh + 1/hc); // [W/m^2 K]
+A = q/(U*Tm); // Area, [m^2]
+
+m_hot = 20 ; // [kg/min]
+// Flow rate on hot side i.e. 'hh' is doubled
+hh = 1600*2^0.8 ; // [W/m^2 K]
+U = 1/(1/hh + 1/hc); // [W/m^2 K]
+m_hC_ph = m_hot/60*4179 ; // [W/K]
+m_cC_pc = m_cold/60*4174 ; // [W/K]
+// Therefore
+C = m_hC_ph/m_cC_pc ;
+NTU = U*A/m_hC_ph ;
+printf("NTU = %f \n",NTU);
+
+// From equation 7.6.8
+e = [1 - exp(-(1+C)*NTU)]/(1+C) ;
+
+// Therefore (Thi - The)/(Thi - Tci) = e , we get
+The = Thi - e*(Thi - Tci); // [C]
+
+// Equating the heat lost by water to heat gained by cold water , we get
+Tce = Tci + [m_hC_ph*(Thi-The)]/m_cC_pc;
+printf("Exit temperature of cold and hot stream are %f C and %f C respectively.",Tce,The);
+
diff --git a/530/CH7/EX7.5/example_7_5.sce b/530/CH7/EX7.5/example_7_5.sce
new file mode 100755
index 000000000..a493c9186
--- /dev/null
+++ b/530/CH7/EX7.5/example_7_5.sce
@@ -0,0 +1,93 @@
+clear;
+clc;
+
+// A Textbook on HEAT TRANSFER by S P SUKHATME
+// Chapter 7
+// Heat Exchangers
+
+
+// Example 7.5
+// Page 304
+printf("Example 7.5, Page 304 \n \n");
+
+mc = 2000 ; // [kg/h]
+Tce = 40 ; // [C]
+Tci = 15 ; // [C]
+Thi = 80 ; // [C]
+U = 50 ; // OHTC, [W/m^2 K]
+A = 10 ; // Area, [m^2]
+
+// Using effective NTU method
+// Assuming m_c*C_pc = (m*C_p)s
+NTU = U*A/(mc*1005/3600);
+e = (Tce-Tci)/(Thi-Tci);
+// From fig 7.23, no value of C is found corresponding to the above values, hence assumption was wrong.
+// So, m_h*C_ph must be equal to (m*C_p)s, proceeding by trail and error method
+
+
+printf("m_h(kg/h NTU C e T_he(C) T_he(C) (Heat Balance)");
+
+mh = rand(1:5);
+NTU = rand(1:5);
+The = rand(1:5);
+The2 = rand(1:5);
+
+mh(1) = 200
+NTU(1) = U*A/(mh(1)*1.161);
+//Corresponding Values of C and e from fig 7.23
+C = .416;
+e = .78;
+//From Equation 7.6.2 Page 297
+The(1) = Thi - e*(Thi-Tci)
+//From Heat Balance
+The2(1) = Thi - mc*1005/3600*(Tce-Tci)/(mh(1)*1.161);
+printf("\n\n %i %.3f %.3f %.3f %.2f %.2f",mh(1),NTU(1),C,e,The(1),The2(1));
+
+mh(2) = 250
+NTU(2) = U*A/(mh(2)*1.161);
+//Corresponding Values of C and e from fig 7.23
+C = .520;
+e = .69;
+//From Equation 7.6.2 Page 297
+The(2) = Thi - e*(Thi-Tci)
+//From Heat Balance
+The2(2) = Thi - mc*1005/3600*(Tce-Tci)/(mh(2)*1.161);
+printf("\n\n %i %.3f %.3f %.3f %.2f %.2f",mh(2),NTU(2),C,e,The(2),The2(2));
+
+mh(3) = 300
+NTU(3) = U*A/(mh(3)*1.161);
+//Corresponding Values of C and e from fig 7.23
+C = .624;
+e = .625;
+//From Equation 7.6.2 Page 297
+The(3) = Thi - e*(Thi-Tci)
+//From Heat Balance
+The2(3) = Thi - mc*1005/3600*(Tce-Tci)/(mh(3)*1.161);
+printf("\n\n %i %.3f %.3f %.3f %.2f %.2f",mh(3),NTU(3),C,e,The(3),The2(3));
+
+mh(4) = 350
+NTU(4) = U*A/(mh(4)*1.161);
+//Corresponding Values of C and e from fig 7.23
+C = .728;
+e = .57;
+//From Equation 7.6.2 Page 297
+The(4) = Thi - e*(Thi-Tci)
+//From Heat Balance
+The2(4) = Thi - mc*1005/3600*(Tce-Tci)/(mh(4)*1.161);
+printf("\n\n %i %.3f %.3f %.3f %.2f %.2f",mh(4),NTU(4),C,e,The(4),The2(4));
+
+mh(5) = 400
+NTU(5) = U*A/(mh(5)*1.161);
+//Corresponding Values of C and e from fig 7.23
+C = .832;
+e = .51;
+//From Equation 7.6.2 Page 297
+The(5) = Thi - e*(Thi-Tci)
+//From Heat Balance
+The2(5) = Thi - mc*1005/3600*(Tce-Tci)/(mh(5)*1.161);
+printf("\n\n %i %.3f %.3f %.3f %.2f %.2f",mh(5),NTU(5),C,e,The(5),The2(5));
+
+clf();
+plot(mh,The,mh,The2,[295 295 200],[0 39.2 39.2])
+xtitle('The vs mh','mh (kg/hr)','The (C)');
+printf("\n\n From the plot, value of mh = 295 kg/hr and correspondingly The = 39.2 C") \ No newline at end of file