diff options
Diffstat (limited to '530/CH7/EX7.4.a/example_7_4a.sce')
-rwxr-xr-x | 530/CH7/EX7.4.a/example_7_4a.sce | 37 |
1 files changed, 37 insertions, 0 deletions
diff --git a/530/CH7/EX7.4.a/example_7_4a.sce b/530/CH7/EX7.4.a/example_7_4a.sce new file mode 100755 index 000000000..c4880ad6c --- /dev/null +++ b/530/CH7/EX7.4.a/example_7_4a.sce @@ -0,0 +1,37 @@ +clear;
+clc;
+
+// A Textbook on HEAT TRANSFER by S P SUKHATME
+// Chapter 7
+// Heat Exchangers
+
+
+// Example 7.4(a)
+// Page 302
+printf("Example 7.4(a), Page 302 \n \n");
+
+// (a)
+printf("(a) \n");
+// Using Mean Temperature Difference approach
+m_hot = 10 ; // [kg/min]
+m_cold = 25 ; // [kg/min]
+hh = 1600 ; // [W/m^2 K], Heat transfer coefficient on hot side
+hc = 1600 ; // [W/m^2 K], Heat transfer coefficient on cold side
+
+Thi = 70 ; // [C]
+Tci = 25 ; // [C]
+The = 50 ; // [C]
+
+// Heat Transfer Rate, q
+q = m_hot/60*4179*(Thi-The); // [W]
+
+// Heat gained by cold water = heat lost by the hot water
+Tce = 25 + q*1/(m_cold/60*4174); // [C]
+
+// Using equation 7.5.13
+Tm = ((Thi-Tci)-(The-Tce))/log((Thi-Tci)/(The-Tce)); // [C]
+printf("Mean Temperature Difference = %f C \n",Tm);
+
+U = 1/(1/hh + 1/hc); // [W/m^2 K]
+A = q/(U*Tm); // Area, [m^2]
+printf("Area of Heat Exchanger = %f m^2 \n",A);
|