diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /530/CH3 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '530/CH3')
-rwxr-xr-x | 530/CH3/EX3.1/example_3_1.sce | 24 | ||||
-rwxr-xr-x | 530/CH3/EX3.10/example_3_10.sce | 24 | ||||
-rwxr-xr-x | 530/CH3/EX3.11/example_3_11.sci | 40 | ||||
-rwxr-xr-x | 530/CH3/EX3.12/example_3_12.sce | 20 | ||||
-rwxr-xr-x | 530/CH3/EX3.13/example_3_13.sce | 33 | ||||
-rwxr-xr-x | 530/CH3/EX3.14/example_3_14.sce | 33 | ||||
-rwxr-xr-x | 530/CH3/EX3.15/example_3_15.sce | 47 | ||||
-rwxr-xr-x | 530/CH3/EX3.2/example_3_2.sce | 43 | ||||
-rwxr-xr-x | 530/CH3/EX3.3/example_3_3.sce | 30 | ||||
-rwxr-xr-x | 530/CH3/EX3.4.a/example_3_4a.sce | 24 | ||||
-rwxr-xr-x | 530/CH3/EX3.4.b/example_3_4b.sce | 29 | ||||
-rwxr-xr-x | 530/CH3/EX3.5/example_3_5.sce | 25 | ||||
-rwxr-xr-x | 530/CH3/EX3.6/example_3_6.sce | 33 | ||||
-rwxr-xr-x | 530/CH3/EX3.7/example_3_7.sce | 24 | ||||
-rwxr-xr-x | 530/CH3/EX3.8/example_3_8.sce | 33 | ||||
-rwxr-xr-x | 530/CH3/EX3.9/example_3_9.sce | 24 |
16 files changed, 486 insertions, 0 deletions
diff --git a/530/CH3/EX3.1/example_3_1.sce b/530/CH3/EX3.1/example_3_1.sce new file mode 100755 index 000000000..dacbeeb32 --- /dev/null +++ b/530/CH3/EX3.1/example_3_1.sce @@ -0,0 +1,24 @@ +clear;
+clc;
+
+// A Textbook on HEAT TRANSFER by S P SUKHATME
+// Chapter 3
+// Thermal Radiation
+
+// Example 3.1
+// Page 114
+printf("Example 3.1, Page 114 \n\n");
+
+T = 5779 ; // [Temperature,in Kelvin]
+// From Wein's law, eqn 3.2.8
+lambda_m = 0.00290/T ; // [m]
+// Substituting this value in plank's law, we get
+e = 2*(%pi)*0.596*(10^-16)/(((0.5018*10^-6)^5)*(exp(0.014387/0.00290)-1)) ; //[W/m^2 m]
+
+e_bl_max= e / 10^6 ;
+
+printf("Value of emissivity on sun surface is %f W/m^2 um \n",e_bl_max); //[W/m^2 um]
+
+e_earth = e_bl_max*((0.695*10^6)/(1.496*10^8))^2 ;
+
+printf("The value of emmissivity on earths surface is %f W/m^2 um", e_earth)
\ No newline at end of file diff --git a/530/CH3/EX3.10/example_3_10.sce b/530/CH3/EX3.10/example_3_10.sce new file mode 100755 index 000000000..011b264cf --- /dev/null +++ b/530/CH3/EX3.10/example_3_10.sce @@ -0,0 +1,24 @@ +clear;
+clc;
+
+// A Textbook on HEAT TRANSFER by S P SUKHATME
+// Chapter 3
+// Thermal Radiation
+
+// Example 3.10
+// Page 138
+printf("Example 3.10, Page 138 \n\n")
+
+sigma = 5.670*10^-8 ;
+T1 = 473 ; // [K]
+T2 = 373 ; // [K]
+A1 = 1*2 ; // area, [m^2]
+X = 0.25;
+Y = 0.5 ;
+// From eqn 3.7.4
+F12 = (2/(%pi*X*Y))*[log((((1+X^2)*(1+Y^2))/(1+X^2+Y^2))^(1/2)) + Y*((1+X^2)^(1/2))*atan(Y/((1+X^2)^(1/2))) + X*((1+Y^2)^(1/2))*atan(X/((1+Y^2)^(1/2))) - Y*atan(Y) - X*atan(X) ];
+
+
+q1 = sigma*A1*(T1^4-T2^4)*[(1-F12^2)/(2-2*F12)];
+
+printf("Net radiative heat transfer from the surface = %f W \n",q1);
\ No newline at end of file diff --git a/530/CH3/EX3.11/example_3_11.sci b/530/CH3/EX3.11/example_3_11.sci new file mode 100755 index 000000000..ba9f102c8 --- /dev/null +++ b/530/CH3/EX3.11/example_3_11.sci @@ -0,0 +1,40 @@ +clear all;
+clc;
+
+// A Textbook on HEAT TRANSFER by S P SUKHATME
+// Chapter 3
+// Thermal Radiation
+
+// Example 3.11
+// Page 141
+printf("Example 3.11, Page 141 \n\n")
+
+// All modes of heat transfer are involved
+// let steady state heat flux flowing through the composite slab be (q/a)
+h1 = 20; //[W/m^2 K]
+w1 = 0.2; //[m]
+k1 = 1; //[W/m K]
+e1 = 0.5; //emmisivity at surfce 1
+e2 = 0.4; //emmisivity at surfce 2
+w2 = 0.3; //[m]
+k2 = 0.5; //[W/m K]
+h2 = 10; //[W/m^2 K]
+T1 = 473; //[Kelvin]
+T2 = 273+40; //[Kelvin]
+stefan_cnst = 5.67e-08; //[W/m^2 K^4]
+
+// For resistances 1 and 2
+function[f]=temperature(T)
+ f(1) = (T1-T(1))/(1/h1 + w1/k1) - (T(2) - T2)/(w2/k2 + 1/h2);
+ f(2) = stefan_cnst*(T(1)^4 - T(2)^4)/(1/e1 + 1/e2 -1) - (T(2) - T2)/(w2/k2 + 1/h2);
+ funcprot(0);
+endfunction
+
+T = [10 10]; // assumed initial values for fsolve function
+y = fsolve(T,temperature);
+
+printf("\n Steady state heat flux q/A = %.1f W/m^2",(T1-y(1))/(1/h1 + w1/k1));
+
+
+
+
diff --git a/530/CH3/EX3.12/example_3_12.sce b/530/CH3/EX3.12/example_3_12.sce new file mode 100755 index 000000000..e051d8c66 --- /dev/null +++ b/530/CH3/EX3.12/example_3_12.sce @@ -0,0 +1,20 @@ +clear;
+clc;
+
+// A Textbook on HEAT TRANSFER by S P SUKHATME
+// Chapter 3
+// Thermal Radiation
+
+// Example 3.12
+// Page 145
+printf("Example 3.12, Page 145 \n\n")
+
+D = 0.02 ; // [m]
+T1 = 1000+273 ; // [K]
+T2 = 27+273 ; // [K]
+s = 5.670*10^-8 ; // stefans constant
+// Assuming the opening is closed by an imaginary surface at temperature T1
+// Using equation 3.10.3 , we get
+q = s*1*%pi*((D/2)^2)*(T1^4-T2^4); // [W]
+
+printf("Rate at which heat is lost by radiation = %f W",q);
\ No newline at end of file diff --git a/530/CH3/EX3.13/example_3_13.sce b/530/CH3/EX3.13/example_3_13.sce new file mode 100755 index 000000000..24e6809fb --- /dev/null +++ b/530/CH3/EX3.13/example_3_13.sce @@ -0,0 +1,33 @@ +clear;
+clc;
+
+// A Textbook on HEAT TRANSFER by S P SUKHATME
+// Chapter 3
+// Thermal Radiation
+
+// Example 3.13
+// Page 146
+printf("Example 3.13, Page 146 \n\n")
+
+D = 0.32 ; // [m]
+D_s = 0.36 ; // [m]
+e = 0.02 ; // emissivity
+l = 201 ; // [kJ/kg]
+rho = 800 ; // [kg/m^3]
+s = 5.670*10^-8 ;
+
+T2 = 303 ; // [K]
+T1 = 77 ; // [K]
+
+// From equation 3.10.1
+q1 = s*4*%pi*((D/2)^2)*(T1^4-T2^4)/[1/e+((D/D_s)^2)*(1/e-1)]; // [W]
+
+evap = abs(q1)*3600*24/(l*1000); // [kg/day]
+mass = 4/3*%pi*((D/2)^3)*rho;
+boiloff = evap/mass*100 ; // percent
+
+T_drop = (abs(q1))/(4*%pi*((D/2)^2))*(1/100); // [C]
+
+printf("Rate at which nitrogen evaporates = %f kg/day \n",evap)
+printf("Boil-off rate = %f percent \n",boiloff);
+printf("Temperature drop between liquid Nitrogen and inner surface = %f C",T_drop);
\ No newline at end of file diff --git a/530/CH3/EX3.14/example_3_14.sce b/530/CH3/EX3.14/example_3_14.sce new file mode 100755 index 000000000..96ed5ccdf --- /dev/null +++ b/530/CH3/EX3.14/example_3_14.sce @@ -0,0 +1,33 @@ +clear;
+clc;
+
+// A Textbook on HEAT TRANSFER by S P SUKHATME
+// Chapter 3
+// Thermal Radiation
+
+// Example 3.14
+// Page 147
+printf("Example 3.14, Page 147 \n\n")
+
+D = 1 ; // [m]
+r = 6250 ; // [km]
+D_surf = 300 ; // [km]
+s = 5.670*10^-8;
+e = 0.3 ;
+Tc = -18+273 ; // [K]
+T_surf = 27+273 ; // [K]
+
+// Rate of emissino of radiant energy from the two faces of satellite disc
+r_emission = 2*e*%pi*((D/2)^2)*s*Tc^4; // [W]
+
+// A2*F21 = A1*F12
+sina = (r/(r+D_surf));
+F12 = sina^2;
+
+// Rate at which the satellite receives and absorbs energy coming from earth
+r_receive = e*s*(%pi*((D/2)^2))*F12*T_surf^4; // [W]
+
+r_loss = r_emission - r_receive; // [W]
+
+printf("Net Rate at which energy is leaving the satellite = %f W",r_loss);
+
diff --git a/530/CH3/EX3.15/example_3_15.sce b/530/CH3/EX3.15/example_3_15.sce new file mode 100755 index 000000000..38e7311ab --- /dev/null +++ b/530/CH3/EX3.15/example_3_15.sce @@ -0,0 +1,47 @@ +clear;
+clc;
+
+// A Textbook on HEAT TRANSFER by S P SUKHATME
+// Chapter 3
+// Thermal Radiation
+
+// Example 3.15
+// Page 151
+printf("Example 3.15, Page 151 \n\n")
+
+// From example 3.10
+F12 = 0.0363;
+F11 = 0;
+F13 = 1-F11-F12;
+// Similarly
+F21 = 0.0363;
+F22 = 0;
+F23 = 0.9637;
+
+// Now, F31 = A1/A3*F13
+F31 = 2/24*F13;
+// Therefore
+F32 = F31;
+F33 = 1-F31-F32;
+
+// Substituting into equation 3.11.6, 3.11.7, 3.11.8, we have f(1),f(2),f(3)
+
+function[f]=flux(B)
+ f(1)= B(1) - 0.4*0.0363*B(2) - 0.4*0.9637*B(3) - 0.6*(473^4)*(5.670*10^-8);
+ f(2)= -0.4*0.0363*B(1) + B(2) - 0.4*0.9637*B(3) - 0.6*(5.670*10^-8)*(373^4);
+ f(3)= 0.0803*B(1) + 0.0803*B(2) - 0.1606*B(3);
+ funcprot(0);
+endfunction
+
+B = [0 0 0];
+y = fsolve(B,flux);
+printf("\n B1 = %.1f W/m^2",y(1));
+printf("\n B2 = %.1f W/m^2",y(2));
+printf("\n B3 = %.1f W/m^2 \n",y(3));
+
+// Therefore
+H1 = 0.0363*y(2) + 0.9637*y(3) ; // [W/m^2]
+// and
+q1 = 2*(y(1) - H1) ; // [W]
+
+printf("Net radiative heat transfer = %f W",q1);
diff --git a/530/CH3/EX3.2/example_3_2.sce b/530/CH3/EX3.2/example_3_2.sce new file mode 100755 index 000000000..95f099ec6 --- /dev/null +++ b/530/CH3/EX3.2/example_3_2.sce @@ -0,0 +1,43 @@ +clear;
+clc;
+
+// A Textbook on HEAT TRANSFER by S P SUKHATME
+// Chapter 3
+// Thermal Radiation
+
+// Example 3.2
+// Page 115
+printf("Example 3.2, Page 115 \n\n")
+
+//Heat emission
+Stefan_constt = 5.67*10^(-8); //(W/m^2.K^4)
+T = 1500; //temperature is in kelvins
+eb = (Stefan_constt)*(T^(4)); //energy radiated by blackbody
+//emission in 0.3um to 1um
+e = 0.9; //emissivity
+lamda1 = 1; //wavelength is in um
+lamda2 = 0.3; //wavelength is in um
+D0_1=0.5*(0.01972+0.00779); //From table 3.1 page- 114
+D0_2=0; //From table 3.1 page- 114
+q = e*(D0_1-D0_2)*Stefan_constt*T^(4);//in W/m^2
+printf("\n wavelength*temp = %d um K",1*1500);
+printf("\n wavelength*temp at 0.3um = %d um K",0.3*1500);
+printf("\n\n Required heat flux, q = %d W/m^2",q);
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/530/CH3/EX3.3/example_3_3.sce b/530/CH3/EX3.3/example_3_3.sce new file mode 100755 index 000000000..4d494575f --- /dev/null +++ b/530/CH3/EX3.3/example_3_3.sce @@ -0,0 +1,30 @@ +clear;
+clc;
+
+// A Textbook on HEAT TRANSFER by S P SUKHATME
+// Chapter 3
+// Thermal Radiation
+
+// Example 3.3
+// Page 119
+printf("Example 3.3, Page 119 \n\n")
+
+
+a0_2=1; //absorptivity
+a2_4=1; //absorptivity
+a4_6=0.5; //absorptivity
+a6_8=0.5; //absorptivity
+a8_=0; //absorptivity
+H0_2=0; //Irradiation in W/m^2 um
+H2_4=750; //Irradiation in W/m^2 um
+H4_6=750; //Irradiation in W/m^2 um
+H6_8=750; //Irradiation in W/m^2 um
+H8_=750; //Irradiation in W/m^2 um
+Absorbed_radiant_flux=1*0*(2-0)+1*750*(4-2)+0.5*750*(8-4)+0;
+H = 750*(8-2); //Incident flux
+a = Absorbed_radiant_flux/H;
+p = 1-a; //Since the surface is opaque
+printf("\n Absorbed radiant flux = %d W/m^2",Absorbed_radiant_flux);
+printf("\n Incident flux = %d W/m^2",H);
+printf("\n Absorptivity = %.3f",a);
+printf("\n Since the surface is opaque reflectivity = %.3f",p);
diff --git a/530/CH3/EX3.4.a/example_3_4a.sce b/530/CH3/EX3.4.a/example_3_4a.sce new file mode 100755 index 000000000..7a7a90857 --- /dev/null +++ b/530/CH3/EX3.4.a/example_3_4a.sce @@ -0,0 +1,24 @@ +clear;
+clc;
+
+// A Textbook on HEAT TRANSFER by S P SUKHATME
+// Chapter 3
+// Thermal Radiation
+
+// Example 3.4(a)
+// Page 123
+printf("Example 3.4(a), Page 123 \n\n")
+
+
+e = 0.08; //emissivity
+T = 800; //temperature, [K]
+
+Stefan_constt = 5.67*10^(-8); //[W/m^2.K^4]
+// From Stefan Boltzmann law, equation 3.2.10
+q = e*Stefan_constt*T^4; //[W/m^2]
+printf("\n Energy emitted = %.1f W/m^2",q);
+
+// (a)
+// Therefore
+in = (q/(%pi));
+printf("\n Energy emitted normal to the surface = %.1f W/m^2 sr",in);
diff --git a/530/CH3/EX3.4.b/example_3_4b.sce b/530/CH3/EX3.4.b/example_3_4b.sce new file mode 100755 index 000000000..cba9e4da2 --- /dev/null +++ b/530/CH3/EX3.4.b/example_3_4b.sce @@ -0,0 +1,29 @@ +clear;
+clc;
+
+// A Textbook on HEAT TRANSFER by S P SUKHATME
+// Chapter 3
+// Thermal Radiation
+
+// Example 3.4(b)
+// Page 123
+printf("Example 3.4(b), Page 123 \n\n")
+
+
+e = 0.08; //emissivity
+T = 800; //temperature, [K]
+
+Stefan_constt = 5.67*10^(-8); //[W/m^2.K^4]
+// From Stefan Boltzmann law, equation 3.2.10
+q = e*Stefan_constt*T^4; //[W/m^2]
+in = (q/(%pi));
+
+// (b)
+// Radiant flux emitted in the cone 0 <= pzi <= 50 degree, 0 <= theta <= 2*pi
+q_cone=2*(%pi)*in*(-cos(100*(%pi/180))+cos(0))/4;
+
+printf("\n Radiant flux emitted in the cone =%.1f W/m^2",q_cone);
+
+Ratio = q_cone/q;
+printf("\n Ratio = %.3f",Ratio);
+
diff --git a/530/CH3/EX3.5/example_3_5.sce b/530/CH3/EX3.5/example_3_5.sce new file mode 100755 index 000000000..8d40922d7 --- /dev/null +++ b/530/CH3/EX3.5/example_3_5.sce @@ -0,0 +1,25 @@ +clear;
+clc;
+
+// A Textbook on HEAT TRANSFER by S P SUKHATME
+// Chapter 3
+// Thermal Radiation
+
+// Example 3.5
+// Page 124
+printf("Example 3.5, Page 124 \n\n")
+
+l1 = 0.5 ; // wavelength, [um]
+l2 = 1.5 ; // wavelength, [um]
+l3 = 2.5 ; // wavelength, [um]
+l4 = 3.5 ; // wavelength, [um]
+H1 = 2500 ; // [W/m^2 um]
+H2 = 4000 ; // [W/m^2 um]
+H3 = 2500 ; // [W/m^2 um]
+
+// Since the irridiation is diffuse, the spectral intensity is given by eqn 3.4.14 and 3.4.8
+// Integrating i_lambda over the directions of the specified solid angle and using fig 3.12
+
+
+flux = 3/4*[H1*(l2-l1)+H2*(l3-l2)+H3*(l4-l3)];
+printf("Rate at which radiation is incident on the surface = %f W/m^2",flux);
diff --git a/530/CH3/EX3.6/example_3_6.sce b/530/CH3/EX3.6/example_3_6.sce new file mode 100755 index 000000000..1c235469e --- /dev/null +++ b/530/CH3/EX3.6/example_3_6.sce @@ -0,0 +1,33 @@ +clear;
+clc;
+
+// A Textbook on HEAT TRANSFER by S P SUKHATME
+// Chapter 3
+// Thermal Radiation
+
+// Example 3.6
+// Page 132
+printf("Example 3.6, Page 132 \n\n")
+
+// This is a theoretical problem with no numerical data
+printf("This is a theoretical problem with no numerical data \n");
+
+// Considering an elementary ring dA2 of width dr at an arbitary radius r, we have
+// r = h*tanB1
+// dA2 = 2*%pi*r*dr
+// dA2 = 2*%pi*(h^2)*tan(B1)*sec^2(B1)*dB1
+// B2 = B1, since surfaces ate parallel, and
+// L = h/cos(B1)
+// Substituting in eqn 3.6.7
+// F12 = sin^2(a)
+
+
+printf("Considering an elementary ring dA2 of width dr at an arbitary radius r, we have \n");
+printf("r = h*tanB1 \n");
+printf("dA2 = 2*pi*r*dr \n");
+printf("dA2 = 2*pi*(h^2)*tan(B1)*sec^2(B1)*dB1 \n");
+printf("B2 = B1, since surfaces ate parallel, and \n");
+printf("L = h/cos(B1) \n");
+printf("Substituting in eqn 3.6.7 \n");
+printf("F12 = sin^2(a) \n");
+
diff --git a/530/CH3/EX3.7/example_3_7.sce b/530/CH3/EX3.7/example_3_7.sce new file mode 100755 index 000000000..f69b48086 --- /dev/null +++ b/530/CH3/EX3.7/example_3_7.sce @@ -0,0 +1,24 @@ +clear;
+clc;
+
+// A Textbook on HEAT TRANSFER by S P SUKHATME
+// Chapter 3
+// Thermal Radiation
+
+// Example 3.7
+// Page 134
+printf("Example 3.7, Page 134 \n\n")
+
+// This is a theoretical problem with no numerical data
+printf("This is a theoretical problem with no numerical data \n");
+
+
+// Considering an elementary circular ring on the surface of the sphere's surface at any arbitary anglr B,
+// we have B1 = B, B2 = 0, L = R and dA_2 = 2*%pi*(R^2)*(sin(B))dB
+// Therefore, from equation 3.6.7
+// F12 = sin^2(a)
+
+printf("Considering an elementary circular ring on the surface of the sphere surface at any arbitary anglr B \n");
+printf("we have B1 = B, B2 = 0, L = R and dA_2 = 2*pi*(R^2)*(sin(B))dB \n");
+printf("Therefore, from equation 3.6.7 \n");
+printf("F12 = sin^2(a)");
\ No newline at end of file diff --git a/530/CH3/EX3.8/example_3_8.sce b/530/CH3/EX3.8/example_3_8.sce new file mode 100755 index 000000000..08c154f7e --- /dev/null +++ b/530/CH3/EX3.8/example_3_8.sce @@ -0,0 +1,33 @@ +clear;
+clc;
+
+// A Textbook on HEAT TRANSFER by S P SUKHATME
+// Chapter 3
+// Thermal Radiation
+
+// Example 3.8
+// Page 135
+printf("Example 3.8, Page 135 \n\n")
+
+// From eqn 3.7.5 or fig 3.19
+F65 = 0.22;
+F64 = 0.16;
+F35 = 0.32;
+F34 = 0.27;
+A1 = 3; // [m^2]
+A3 = 3; // [m^2]
+A6 = 6; // [m^2]
+
+// Using additive and reciprocal relations
+// We have F12 = F16 - F13
+
+F61 = F65 - F64 ;
+F31 = F35 - F34 ;
+
+F16 = A6/A1*F61 ;
+F13 = A3/A1*F31 ;
+
+F12 = F16 - F13;
+
+printf("F_1-2 = %f",F12);
+
diff --git a/530/CH3/EX3.9/example_3_9.sce b/530/CH3/EX3.9/example_3_9.sce new file mode 100755 index 000000000..f4173c7b6 --- /dev/null +++ b/530/CH3/EX3.9/example_3_9.sce @@ -0,0 +1,24 @@ +clear;
+clc;
+
+// A Textbook on HEAT TRANSFER by S P SUKHATME
+// Chapter 3
+// Thermal Radiation
+
+// Example 3.9
+// Page 136
+printf("Example 3.9, Page 136 \n\n")
+
+// This is a theoretical problem, does not involve any numerical computation
+printf("This is a theoretical problem, does not involve any numerical computation \n");
+// Denoting area of conical surface by A1
+// Considering an imaginary flat surface A2 closing the conical cavity
+
+F22 = 0 ; // Flat surface
+
+// from eqn 3.7.2 , we have F11 + F12 = 1 and F22 + F21 = 1
+F21 = 1 - F22 ;
+
+// F12 = A2/A1*F21 ;
+// F11 = 1 - F12 ;
+// F11 = 1 - sin(a)
|