diff options
Diffstat (limited to '530/CH3/EX3.11/example_3_11.sci')
-rwxr-xr-x | 530/CH3/EX3.11/example_3_11.sci | 40 |
1 files changed, 40 insertions, 0 deletions
diff --git a/530/CH3/EX3.11/example_3_11.sci b/530/CH3/EX3.11/example_3_11.sci new file mode 100755 index 000000000..ba9f102c8 --- /dev/null +++ b/530/CH3/EX3.11/example_3_11.sci @@ -0,0 +1,40 @@ +clear all;
+clc;
+
+// A Textbook on HEAT TRANSFER by S P SUKHATME
+// Chapter 3
+// Thermal Radiation
+
+// Example 3.11
+// Page 141
+printf("Example 3.11, Page 141 \n\n")
+
+// All modes of heat transfer are involved
+// let steady state heat flux flowing through the composite slab be (q/a)
+h1 = 20; //[W/m^2 K]
+w1 = 0.2; //[m]
+k1 = 1; //[W/m K]
+e1 = 0.5; //emmisivity at surfce 1
+e2 = 0.4; //emmisivity at surfce 2
+w2 = 0.3; //[m]
+k2 = 0.5; //[W/m K]
+h2 = 10; //[W/m^2 K]
+T1 = 473; //[Kelvin]
+T2 = 273+40; //[Kelvin]
+stefan_cnst = 5.67e-08; //[W/m^2 K^4]
+
+// For resistances 1 and 2
+function[f]=temperature(T)
+ f(1) = (T1-T(1))/(1/h1 + w1/k1) - (T(2) - T2)/(w2/k2 + 1/h2);
+ f(2) = stefan_cnst*(T(1)^4 - T(2)^4)/(1/e1 + 1/e2 -1) - (T(2) - T2)/(w2/k2 + 1/h2);
+ funcprot(0);
+endfunction
+
+T = [10 10]; // assumed initial values for fsolve function
+y = fsolve(T,temperature);
+
+printf("\n Steady state heat flux q/A = %.1f W/m^2",(T1-y(1))/(1/h1 + w1/k1));
+
+
+
+
|