diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /479/CH9 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '479/CH9')
-rwxr-xr-x | 479/CH9/EX9.1/Example_9_1.sce | 37 | ||||
-rwxr-xr-x | 479/CH9/EX9.2/Exampe_9_2.sce | 19 | ||||
-rwxr-xr-x | 479/CH9/EX9.3/Example_9_3.sce | 62 | ||||
-rwxr-xr-x | 479/CH9/EX9.4/Example_9_4.sce | 27 |
4 files changed, 145 insertions, 0 deletions
diff --git a/479/CH9/EX9.1/Example_9_1.sce b/479/CH9/EX9.1/Example_9_1.sce new file mode 100755 index 000000000..e17aa8354 --- /dev/null +++ b/479/CH9/EX9.1/Example_9_1.sce @@ -0,0 +1,37 @@ +//Chemical Engineering Thermodynamics
+//Chapter 9
+//Fluid Flow in Pipes and Nozzles
+//Example 9.1
+clear;
+clc;
+
+//Given
+R = 848;//gas constant in m Kgf/Kgmole K
+M = 29;//molecular weight of air
+g = 9.81;
+T1 = 90+273;//initial temperature in K
+y = 1.4;//gamma = Cp/Cv
+W = 800/3600;//Mass rate of air in Kg/sec
+P1 = 3.5;//initial pressure in atm
+d = 2.5;//diameter of the pipe in cm
+
+//To find out the pressure at the final point
+v1 = (R*T1)/(M*P1*1.033*10^4);//specific volume in cubic meter/Kg
+u1 = (W*v1)/(%pi*(d^2*(10^-4))/4);//inital velocity in m/sec
+//Assume final temperature as
+T2 = [300 310];
+//Assume specific heat capacity in J/KgK corresponding to the above temperature as
+Cp = [2987.56 2983.56];
+for i = 1:2
+ us(i) = (g*y*R*T2(i)/M)^(1/2);//sonic velocity attained in m/sec
+ u2(i) = ((u1^2)-((2*g*Cp(i)/M)*(T2(i)-T1)))^(1/2);//From equation 9.18 & 9.19 (page no 170)
+end
+if us(i)-u2(i) <= 1
+ u2 = u2(i);
+ T2 = T2(i);
+else
+end
+v2 = u2*(%pi/4)*(d^2/10^4)*(1/W);
+P2 = (P1*v1*T2)/(T1*v2);
+mprintf('The pressure at the final point is %f atm',P2);
+//end
\ No newline at end of file diff --git a/479/CH9/EX9.2/Exampe_9_2.sce b/479/CH9/EX9.2/Exampe_9_2.sce new file mode 100755 index 000000000..0138db882 --- /dev/null +++ b/479/CH9/EX9.2/Exampe_9_2.sce @@ -0,0 +1,19 @@ +//Chemical Engineering Thermodynamics
+//Chapter 9
+//Fluid Flow in Pipes and Nozzles
+//Example 9.2
+clear;
+clc;
+
+//Given
+A1 = 0.002;//inlet area in sq meter
+A2 = 0.0005;//throat area in sq meter
+P1 = 1.3*10^4;//inlet pressure in Kgf/sq m
+P2 = 0.7*10^4;//throat pressure in Kgf/sq m
+g = 9.81;
+v = 12*10^-4;//specific volume in cubic m /Kg
+
+//To find out the mass rate of alcohol
+u2 = ((v*2*g*(P1-P2))/(1-((A2/A1)^2)))^(1/2);//throat velocity in m/sec
+W = (u2*A2)/v;
+mprintf('The mass rate of alcohol is %f Kg/sec',W);
\ No newline at end of file diff --git a/479/CH9/EX9.3/Example_9_3.sce b/479/CH9/EX9.3/Example_9_3.sce new file mode 100755 index 000000000..031486d28 --- /dev/null +++ b/479/CH9/EX9.3/Example_9_3.sce @@ -0,0 +1,62 @@ +//Chemical Engineering Thermodynamics
+//Chapter 9
+//Fluid Flow in Pipes and Nozzles
+//Example 9.3
+clear;
+clc;
+
+//Given
+P1 = 50;//initial pressure in Kgf/sq m
+T1 = 45+273;//initial temperature in K
+g = 9.81;
+y = 1.35;//gamma
+R = 848;//gas constant in m Kgf/Kgmole K
+M = 29;//molecular weight of air
+d = 1;//pipe diameter in cm
+
+//(i)To plot velocity,specific volume,mass velocity against P2/P1
+//(ii)To calculate the critical pressure,critical mass velocity and mass rate of flow
+//(i)Plotting of graph
+V1 = (R*T1)/(M*P1*1.033*10^4);//initial volume of the gas in cubic m/Kg
+//P3 = P2/P1 (say)
+//Assume P3 values as
+P3 = [1.0 0.8 0.6 0.4 0.2 0.1 0];
+G = [0 0 0 0 0 0 0];
+for i = 1:7
+ u2(i) = (((2*g*y*R*T1)/((y-1)*M))*(1-(P3(i)^((y-1)/y))))^(1/2);//final velocity in m/sec
+end
+for i = 1:6
+ v2(i) = V1/(P3(i)^(1/y));//final specific volume in cubic meter/Kg
+end
+for i = 1:6
+ G(i) = u2(i)/v2(i);//Mass velocity in Kg/sq m sec
+end
+
+clf;
+xset('window',4);
+plot(P3,u2,"o-");
+xtitle("Velocity vs P2/P1","P2/P1","Velocity");
+xset('window',5);
+plot(P3,G,"+-");
+xtitle("Mass velocity vs P2/P1","P2/P1","Mass velocity");
+xset('window',6);
+P_3 = [1.0 0.8 0.6 0.4 0.2 0.1];
+plot(P_3,v2,"*-");
+xtitle("Sp. volume vs P2/P1","P2/P1","Specific volume");
+
+//(ii)Calculation of critical pressure,critical mass velocity and mass rate of flow
+//From equation 9.37(page no 181)
+P2 = P1*(2/(y+1))^(y/(y-1));
+mprintf('The critical pressure is %f atm',P2);
+//From equation a (page no 183)
+u2 = (((2*g*y*R*T1)/((y-1)*M))*(1-((P2/P1)^((y-1)/y))))^(1/2);
+mprintf('\n The critical velocity is %f m/sec',u2);
+//From equation b (page no 183)
+v2 = ((R*T1)/(M*P1*1.033*10^4))/((P2/P1)^(1/y));
+mprintf('\n The critical specific volume is %f cubic meter/Kg',v2);
+//From relation c (page no 183)
+G = u2/v2;
+mprintf('\n The critical mass velocity is %f Kg/sq meter sec',G);
+W = G*(%pi/4)*(d/(100))^2;
+mprintf('\n Mass rate of flow through nozzle is %f Kg/sec',W);
+//end
\ No newline at end of file diff --git a/479/CH9/EX9.4/Example_9_4.sce b/479/CH9/EX9.4/Example_9_4.sce new file mode 100755 index 000000000..ad48dd080 --- /dev/null +++ b/479/CH9/EX9.4/Example_9_4.sce @@ -0,0 +1,27 @@ +//Chemical Engineering Thermodynamics
+//Chapter 9
+//Fluid Flow in Pipes and Nozzles
+//Example 9.4
+clear;
+clc;
+
+//Given
+A1 = 0.1;//Inlet area in sq meter
+u1 = 60;//inlet velocity in m/sec
+v1 = 0.185;//inlet specific volume in cubic meter/Kg
+H1 = 715;//inlet enthalpy in Kcal/Kg
+H2 = 660;//exit enthalpy in Kcal/Kg
+v2 = 0.495;//exit specific volume in cubic meter/Kg
+g = 9.81
+
+//To calculate the area at exit of nozzle and hence decide the type of the nozzle
+//From the first law
+u2 = ((u1^2)-(2*g*(H2-H1)*427))^(1/2);
+W = (u1*A1)/v1;//Mass rate of gas in Kg/sec
+A2 = (W*v2)/u2;//Area at exit of nozzle
+if(A2 < A1)
+ mprintf('The nozzle is convergent');
+else
+ mprintf('The nozzle is divergent');
+end
+//end
\ No newline at end of file |