From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 479/CH9/EX9.1/Example_9_1.sce | 37 ++++++++++++++++++++++++++ 479/CH9/EX9.2/Exampe_9_2.sce | 19 +++++++++++++ 479/CH9/EX9.3/Example_9_3.sce | 62 +++++++++++++++++++++++++++++++++++++++++++ 479/CH9/EX9.4/Example_9_4.sce | 27 +++++++++++++++++++ 4 files changed, 145 insertions(+) create mode 100755 479/CH9/EX9.1/Example_9_1.sce create mode 100755 479/CH9/EX9.2/Exampe_9_2.sce create mode 100755 479/CH9/EX9.3/Example_9_3.sce create mode 100755 479/CH9/EX9.4/Example_9_4.sce (limited to '479/CH9') diff --git a/479/CH9/EX9.1/Example_9_1.sce b/479/CH9/EX9.1/Example_9_1.sce new file mode 100755 index 000000000..e17aa8354 --- /dev/null +++ b/479/CH9/EX9.1/Example_9_1.sce @@ -0,0 +1,37 @@ +//Chemical Engineering Thermodynamics +//Chapter 9 +//Fluid Flow in Pipes and Nozzles +//Example 9.1 +clear; +clc; + +//Given +R = 848;//gas constant in m Kgf/Kgmole K +M = 29;//molecular weight of air +g = 9.81; +T1 = 90+273;//initial temperature in K +y = 1.4;//gamma = Cp/Cv +W = 800/3600;//Mass rate of air in Kg/sec +P1 = 3.5;//initial pressure in atm +d = 2.5;//diameter of the pipe in cm + +//To find out the pressure at the final point +v1 = (R*T1)/(M*P1*1.033*10^4);//specific volume in cubic meter/Kg +u1 = (W*v1)/(%pi*(d^2*(10^-4))/4);//inital velocity in m/sec +//Assume final temperature as +T2 = [300 310]; +//Assume specific heat capacity in J/KgK corresponding to the above temperature as +Cp = [2987.56 2983.56]; +for i = 1:2 + us(i) = (g*y*R*T2(i)/M)^(1/2);//sonic velocity attained in m/sec + u2(i) = ((u1^2)-((2*g*Cp(i)/M)*(T2(i)-T1)))^(1/2);//From equation 9.18 & 9.19 (page no 170) +end +if us(i)-u2(i) <= 1 + u2 = u2(i); + T2 = T2(i); +else +end +v2 = u2*(%pi/4)*(d^2/10^4)*(1/W); +P2 = (P1*v1*T2)/(T1*v2); +mprintf('The pressure at the final point is %f atm',P2); +//end \ No newline at end of file diff --git a/479/CH9/EX9.2/Exampe_9_2.sce b/479/CH9/EX9.2/Exampe_9_2.sce new file mode 100755 index 000000000..0138db882 --- /dev/null +++ b/479/CH9/EX9.2/Exampe_9_2.sce @@ -0,0 +1,19 @@ +//Chemical Engineering Thermodynamics +//Chapter 9 +//Fluid Flow in Pipes and Nozzles +//Example 9.2 +clear; +clc; + +//Given +A1 = 0.002;//inlet area in sq meter +A2 = 0.0005;//throat area in sq meter +P1 = 1.3*10^4;//inlet pressure in Kgf/sq m +P2 = 0.7*10^4;//throat pressure in Kgf/sq m +g = 9.81; +v = 12*10^-4;//specific volume in cubic m /Kg + +//To find out the mass rate of alcohol +u2 = ((v*2*g*(P1-P2))/(1-((A2/A1)^2)))^(1/2);//throat velocity in m/sec +W = (u2*A2)/v; +mprintf('The mass rate of alcohol is %f Kg/sec',W); \ No newline at end of file diff --git a/479/CH9/EX9.3/Example_9_3.sce b/479/CH9/EX9.3/Example_9_3.sce new file mode 100755 index 000000000..031486d28 --- /dev/null +++ b/479/CH9/EX9.3/Example_9_3.sce @@ -0,0 +1,62 @@ +//Chemical Engineering Thermodynamics +//Chapter 9 +//Fluid Flow in Pipes and Nozzles +//Example 9.3 +clear; +clc; + +//Given +P1 = 50;//initial pressure in Kgf/sq m +T1 = 45+273;//initial temperature in K +g = 9.81; +y = 1.35;//gamma +R = 848;//gas constant in m Kgf/Kgmole K +M = 29;//molecular weight of air +d = 1;//pipe diameter in cm + +//(i)To plot velocity,specific volume,mass velocity against P2/P1 +//(ii)To calculate the critical pressure,critical mass velocity and mass rate of flow +//(i)Plotting of graph +V1 = (R*T1)/(M*P1*1.033*10^4);//initial volume of the gas in cubic m/Kg +//P3 = P2/P1 (say) +//Assume P3 values as +P3 = [1.0 0.8 0.6 0.4 0.2 0.1 0]; +G = [0 0 0 0 0 0 0]; +for i = 1:7 + u2(i) = (((2*g*y*R*T1)/((y-1)*M))*(1-(P3(i)^((y-1)/y))))^(1/2);//final velocity in m/sec +end +for i = 1:6 + v2(i) = V1/(P3(i)^(1/y));//final specific volume in cubic meter/Kg +end +for i = 1:6 + G(i) = u2(i)/v2(i);//Mass velocity in Kg/sq m sec +end + +clf; +xset('window',4); +plot(P3,u2,"o-"); +xtitle("Velocity vs P2/P1","P2/P1","Velocity"); +xset('window',5); +plot(P3,G,"+-"); +xtitle("Mass velocity vs P2/P1","P2/P1","Mass velocity"); +xset('window',6); +P_3 = [1.0 0.8 0.6 0.4 0.2 0.1]; +plot(P_3,v2,"*-"); +xtitle("Sp. volume vs P2/P1","P2/P1","Specific volume"); + +//(ii)Calculation of critical pressure,critical mass velocity and mass rate of flow +//From equation 9.37(page no 181) +P2 = P1*(2/(y+1))^(y/(y-1)); +mprintf('The critical pressure is %f atm',P2); +//From equation a (page no 183) +u2 = (((2*g*y*R*T1)/((y-1)*M))*(1-((P2/P1)^((y-1)/y))))^(1/2); +mprintf('\n The critical velocity is %f m/sec',u2); +//From equation b (page no 183) +v2 = ((R*T1)/(M*P1*1.033*10^4))/((P2/P1)^(1/y)); +mprintf('\n The critical specific volume is %f cubic meter/Kg',v2); +//From relation c (page no 183) +G = u2/v2; +mprintf('\n The critical mass velocity is %f Kg/sq meter sec',G); +W = G*(%pi/4)*(d/(100))^2; +mprintf('\n Mass rate of flow through nozzle is %f Kg/sec',W); +//end \ No newline at end of file diff --git a/479/CH9/EX9.4/Example_9_4.sce b/479/CH9/EX9.4/Example_9_4.sce new file mode 100755 index 000000000..ad48dd080 --- /dev/null +++ b/479/CH9/EX9.4/Example_9_4.sce @@ -0,0 +1,27 @@ +//Chemical Engineering Thermodynamics +//Chapter 9 +//Fluid Flow in Pipes and Nozzles +//Example 9.4 +clear; +clc; + +//Given +A1 = 0.1;//Inlet area in sq meter +u1 = 60;//inlet velocity in m/sec +v1 = 0.185;//inlet specific volume in cubic meter/Kg +H1 = 715;//inlet enthalpy in Kcal/Kg +H2 = 660;//exit enthalpy in Kcal/Kg +v2 = 0.495;//exit specific volume in cubic meter/Kg +g = 9.81 + +//To calculate the area at exit of nozzle and hence decide the type of the nozzle +//From the first law +u2 = ((u1^2)-(2*g*(H2-H1)*427))^(1/2); +W = (u1*A1)/v1;//Mass rate of gas in Kg/sec +A2 = (W*v2)/u2;//Area at exit of nozzle +if(A2 < A1) + mprintf('The nozzle is convergent'); +else + mprintf('The nozzle is divergent'); +end +//end \ No newline at end of file -- cgit