summaryrefslogtreecommitdiff
path: root/479/CH9/EX9.3
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /479/CH9/EX9.3
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '479/CH9/EX9.3')
-rwxr-xr-x479/CH9/EX9.3/Example_9_3.sce62
1 files changed, 62 insertions, 0 deletions
diff --git a/479/CH9/EX9.3/Example_9_3.sce b/479/CH9/EX9.3/Example_9_3.sce
new file mode 100755
index 000000000..031486d28
--- /dev/null
+++ b/479/CH9/EX9.3/Example_9_3.sce
@@ -0,0 +1,62 @@
+//Chemical Engineering Thermodynamics
+//Chapter 9
+//Fluid Flow in Pipes and Nozzles
+//Example 9.3
+clear;
+clc;
+
+//Given
+P1 = 50;//initial pressure in Kgf/sq m
+T1 = 45+273;//initial temperature in K
+g = 9.81;
+y = 1.35;//gamma
+R = 848;//gas constant in m Kgf/Kgmole K
+M = 29;//molecular weight of air
+d = 1;//pipe diameter in cm
+
+//(i)To plot velocity,specific volume,mass velocity against P2/P1
+//(ii)To calculate the critical pressure,critical mass velocity and mass rate of flow
+//(i)Plotting of graph
+V1 = (R*T1)/(M*P1*1.033*10^4);//initial volume of the gas in cubic m/Kg
+//P3 = P2/P1 (say)
+//Assume P3 values as
+P3 = [1.0 0.8 0.6 0.4 0.2 0.1 0];
+G = [0 0 0 0 0 0 0];
+for i = 1:7
+ u2(i) = (((2*g*y*R*T1)/((y-1)*M))*(1-(P3(i)^((y-1)/y))))^(1/2);//final velocity in m/sec
+end
+for i = 1:6
+ v2(i) = V1/(P3(i)^(1/y));//final specific volume in cubic meter/Kg
+end
+for i = 1:6
+ G(i) = u2(i)/v2(i);//Mass velocity in Kg/sq m sec
+end
+
+clf;
+xset('window',4);
+plot(P3,u2,"o-");
+xtitle("Velocity vs P2/P1","P2/P1","Velocity");
+xset('window',5);
+plot(P3,G,"+-");
+xtitle("Mass velocity vs P2/P1","P2/P1","Mass velocity");
+xset('window',6);
+P_3 = [1.0 0.8 0.6 0.4 0.2 0.1];
+plot(P_3,v2,"*-");
+xtitle("Sp. volume vs P2/P1","P2/P1","Specific volume");
+
+//(ii)Calculation of critical pressure,critical mass velocity and mass rate of flow
+//From equation 9.37(page no 181)
+P2 = P1*(2/(y+1))^(y/(y-1));
+mprintf('The critical pressure is %f atm',P2);
+//From equation a (page no 183)
+u2 = (((2*g*y*R*T1)/((y-1)*M))*(1-((P2/P1)^((y-1)/y))))^(1/2);
+mprintf('\n The critical velocity is %f m/sec',u2);
+//From equation b (page no 183)
+v2 = ((R*T1)/(M*P1*1.033*10^4))/((P2/P1)^(1/y));
+mprintf('\n The critical specific volume is %f cubic meter/Kg',v2);
+//From relation c (page no 183)
+G = u2/v2;
+mprintf('\n The critical mass velocity is %f Kg/sq meter sec',G);
+W = G*(%pi/4)*(d/(100))^2;
+mprintf('\n Mass rate of flow through nozzle is %f Kg/sec',W);
+//end \ No newline at end of file