diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /431/CH3 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '431/CH3')
58 files changed, 803 insertions, 0 deletions
diff --git a/431/CH3/EX3.1/EX3_1.sce b/431/CH3/EX3.1/EX3_1.sce new file mode 100755 index 000000000..adbcda1b0 --- /dev/null +++ b/431/CH3/EX3.1/EX3_1.sce @@ -0,0 +1,21 @@ +//calculating number of turns,primary and secondary currents and value of flux
+//Chapter 3
+//Example 3.1
+//page 196
+clear;
+clc;
+disp("Example 3.1")
+kVA=500; //rating
+V1=11000; //primary voltage in volts
+V2=400; //secondary voltage in volts
+N2=100; //number of turns in secondary winding
+f=50; //frequency in hertz
+N1=(V1*N2)/V2; //number of turns in primary winding
+printf("number of turns in primary winding,N1=%dturns",N1)
+I1=(kVA*1000)/V1;
+I2=(kVA*1000)/V2
+printf("\nprimary current,I1=%fA",I1)
+printf("\nsecondary current,I2=%fA",I2)
+E1=V1;
+phi=E1/(4.44*f*N1)
+printf("\nmaximium flux in the core=%fWb",phi)
\ No newline at end of file diff --git a/431/CH3/EX3.1/resultEX3_1.txt b/431/CH3/EX3.1/resultEX3_1.txt new file mode 100755 index 000000000..c11bed47f --- /dev/null +++ b/431/CH3/EX3.1/resultEX3_1.txt @@ -0,0 +1,6 @@ +
+ Example 3.1
+number of turns in primary winding,N1=2750turns
+primary current,I1=45.454545A
+secondary current,I2=1250.000000A
+maximium flux in the core=0.018018Wb
\ No newline at end of file diff --git a/431/CH3/EX3.10/EX3_10.sce b/431/CH3/EX3.10/EX3_10.sce new file mode 100755 index 000000000..35121871f --- /dev/null +++ b/431/CH3/EX3.10/EX3_10.sce @@ -0,0 +1,29 @@ +//Calculating primary current and primary power factor
+//Chapter 3
+//Example 3.10
+//page 211
+clear;
+clc;
+disp("Example 3.10")
+V1=6600; //primary voltage in volts
+V2=240; //secondary voltage in volts
+kW1=10; //power
+phi1=acosd(0.8);
+I2=50; //current in amperes
+kW3=5; //power
+phi2=acosd(0.7)
+kVA=8; //rating
+phi4=acosd(0.6)
+I1=(kW1*1000)/(cosd(phi1)*V2);
+I3=(kW3*1000)/(1*V2);
+I4=(kVA*1000)/V2;
+Ih=((I1*cosd(phi1))+(I2*cosd(phi2))+I3+(I4*cosd(phi4)));
+Iv=((I1*sind(phi1))+(I2*sind(phi2))-(I4*sind(phi4)));
+I5=sqrt((Ih^2)+(Iv^2))
+printf("I5=%dA",I5)
+Ip=(I5*V2)/V1;
+printf("\nThe current drawn by the primary from 6600Vmains is equal to,Ip=%fA",Ip);
+phi=atand(Iv/Ih);
+printf("\n
+power factor=%flagging",cosd(phi))
+
diff --git a/431/CH3/EX3.10/resultEX3_10.txt b/431/CH3/EX3.10/resultEX3_10.txt new file mode 100755 index 000000000..edb9c2a7a --- /dev/null +++ b/431/CH3/EX3.10/resultEX3_10.txt @@ -0,0 +1,4 @@ + Example 3.10
+I5=124A
+The current drawn by the primary from 6600Vmains is equal to,Ip=4.516939A
+power factor=0.945934lagging
\ No newline at end of file diff --git a/431/CH3/EX3.11/EX3_11.sce b/431/CH3/EX3.11/EX3_11.sce new file mode 100755 index 000000000..a3cfb682f --- /dev/null +++ b/431/CH3/EX3.11/EX3_11.sce @@ -0,0 +1,20 @@ +//Calculating equivalent impedence referred to primary
+//Chapter 3
+//Example 3.11
+//page 212
+clear;
+clc;
+disp("Example 3.11")
+kVA=100; //rating of the tronsfromer
+N1=400; //number of primary turns
+N2=80; //number of secondary turns
+R1=0.3; //primary resistance in ohms
+R2=0.01; //secondary resistance in ohms
+X1=1.1; //primary leakage reactance in ohs
+X2=0.035; //secondary leakage reactance in ohms
+Rr2=(((N1/N2)^2)*R2)
+printf("R2=%f ohms",Rr2);
+Xx2=(((N1/N2)^2)*X2);
+printf("\nX2=%f ohms",Xx2);
+Ze=sqrt((R1+Rr2)^2+(X1+Xx2)^2);
+printf("\nEquivqlent impedence=%f",Ze);
\ No newline at end of file diff --git a/431/CH3/EX3.11/resultEX3_11.txt b/431/CH3/EX3.11/resultEX3_11.txt new file mode 100755 index 000000000..9bf834a0e --- /dev/null +++ b/431/CH3/EX3.11/resultEX3_11.txt @@ -0,0 +1,4 @@ + Example 3.11
+R2=0.250000 ohms
+X2=0.875000 ohms
+Equivqlent impedence=2.050152
\ No newline at end of file diff --git a/431/CH3/EX3.12/EX3_12.sce b/431/CH3/EX3.12/EX3_12.sce new file mode 100755 index 000000000..ce25d3eb8 --- /dev/null +++ b/431/CH3/EX3.12/EX3_12.sce @@ -0,0 +1,24 @@ +//Calculating equivalent impedence referred to primary
+//Chapter 3
+//Example 3.12
+//page 216
+clear;
+clc;
+disp("Example 3.11")
+f=50; //frequency in hertz
+r=6; //turns ratio
+R1=0.90; //primary resistance in ohms
+R2=0.03; //secondary resistance in ohms
+X1=5; //primary reactance in ohms
+X2=0.13; //secondary reactance in ohms
+I2=200; //full-load current
+Re=(R1+(R2*r^2));
+printf("equivalent resistance reffered to primary,Re=%fohms",Re);
+Xe=(X1+(X2*r^2));
+printf("\nequivalent reactance reffered to primary,Xe=%fohms",Xe);
+Ze=sqrt(Re^2+Xe^2);
+printf("\nequivalent impedance reffered to primary,Ze=%fohms",Ze);
+Ii2=r*I2;
+printf("\nsecondary current reffered to primary side=%fA",Ii2);
+printf("\n(a)Voltage to be applied to the high voltage side=%dvolts",(Ii2*Ze));
+printf("\n(b)Power factor=%f",(Re/Ze));
diff --git a/431/CH3/EX3.12/resultEX3_12.txt b/431/CH3/EX3.12/resultEX3_12.txt new file mode 100755 index 000000000..bea5227cf --- /dev/null +++ b/431/CH3/EX3.12/resultEX3_12.txt @@ -0,0 +1,8 @@ +
+ Example 3.12
+equivalent resistance reffered to primary,Re=1.980000ohms
+equivalent reactance reffered to primary,Xe=9.680000ohms
+equivalent impedance reffered to primary,Ze=9.880425ohms
+secondary current reffered to primary side=1200.000000A
+(a)Voltage to be applied to the high voltage side=11856volts
+(b)Power factor=0.200396
\ No newline at end of file diff --git a/431/CH3/EX3.13/EX3_13.sce b/431/CH3/EX3.13/EX3_13.sce new file mode 100755 index 000000000..dfd9b06df --- /dev/null +++ b/431/CH3/EX3.13/EX3_13.sce @@ -0,0 +1,25 @@ +//Calculate current and power input
+//Chapter 3
+//Example 3.13
+//page 216
+clear;
+clc;
+disp("Example 3.13")
+R1=0.21; //primary resistance in ohms
+X1=1; //primary reactance in ohms
+R2=2.72*10^(-4); //secondary resistance in ohms
+X2=1.3*10^(-3); //secondary reactanced in ohms
+V1=6600; //primary voltage in volts
+V2=250; //secondary voltage in volts
+r=V1/V2; //turns ratio
+Re=R1+(r^2*R2);
+printf("Equivalent resistance referred to primary side=%fohms",Re);
+Xe=X1+(r^2*X2);
+printf("\nEquivalent reactance referred to primary side=%fohms",Xe);
+Ze=sqrt(Re^2+Xe^2);
+printf("\nequivalent impedance reffered to primary,Ze=%fohms",Ze);
+V=400; //voltage in volts
+I1=V/Ze;
+printf("\nI1=%f",I1);
+printf("\nPower input=%fW",(I1^2*Re));
+
diff --git a/431/CH3/EX3.13/resultEX3_13.txt b/431/CH3/EX3.13/resultEX3_13.txt new file mode 100755 index 000000000..bb5567ffd --- /dev/null +++ b/431/CH3/EX3.13/resultEX3_13.txt @@ -0,0 +1,7 @@ +
+ Example 3.13
+Equivalent resistance referred to primary side=0.399573ohms
+Equivalent reactance referred to primary side=1.906048ohms
+equivalent impedance reffered to primary,Ze=1.947480ohms
+I1=205.393656
+Power input=16856.612924W
\ No newline at end of file diff --git a/431/CH3/EX3.14/EX3_14.sce b/431/CH3/EX3.14/EX3_14.sce new file mode 100755 index 000000000..0b42c3afd --- /dev/null +++ b/431/CH3/EX3.14/EX3_14.sce @@ -0,0 +1,14 @@ +//Calculate current and power input
+//Chapter 3
+//Example 3.14
+//page 217
+clear;
+clc;
+disp("Example 3.14")
+N1=90; //number of primary turns
+N2=180; //number of secondary turns
+R1=0.067; //primary resistance in ohms
+R2=0.233; //secondary resistance in ohms
+printf("Primary winding resistance referred to secondary side=%fohms",(R1*(N2/N1)^2))
+printf("\nsecondary winding resistance referred to primary side=%fohms",(R2*(N1/N2)^2))
+printf("\nTotal resistance of the transformer refferred to primary side=%fohms",((R1*(N2/N1)^2)+(R2*(N2/N1)^2)))
\ No newline at end of file diff --git a/431/CH3/EX3.14/resultEX3_14.txt b/431/CH3/EX3.14/resultEX3_14.txt new file mode 100755 index 000000000..d891bc703 --- /dev/null +++ b/431/CH3/EX3.14/resultEX3_14.txt @@ -0,0 +1,4 @@ + Example 3.14
+Primary winding resistance referred to secondary side=0.268000ohms
+secondary winding resistance referred to primary side=0.058250ohms
+Total resistance of the transformer refferred to primary side=1.200000ohms
\ No newline at end of file diff --git a/431/CH3/EX3.15/EX3_15.sce b/431/CH3/EX3.15/EX3_15.sce new file mode 100755 index 000000000..2a48f984a --- /dev/null +++ b/431/CH3/EX3.15/EX3_15.sce @@ -0,0 +1,20 @@ +//Calculate percentage regulation
+//Chapter 3
+//Example 3.15
+//page 217
+clear;
+clc;
+disp("Example 3.15")
+kVA=30; //rating of the transformer
+V1=6000; //primary voltage in volts
+V2=230; //secondary voltage in volts
+R1=10; //primary resistance in ohms
+R2=0.016; //secondary resistance in ohms
+Xe=23; //total reactance reffered to the primary
+phi=acosd(0.8); //lagging
+Re=(R1+((V1/V2)^2*R2))
+printf("equivalent resistance,Re=%fohms",Re)
+I2dash=(kVA*1000)/V1;
+V2dash=5847;
+Reg=((I2dash*((Re*cosd(phi))+(Xe*sind(phi))))*100)/V2dash;
+printf("\npercentage regulation=%fpercent",Reg)
\ No newline at end of file diff --git a/431/CH3/EX3.15/resultEX3_15.txt b/431/CH3/EX3.15/resultEX3_15.txt new file mode 100755 index 000000000..67e94d516 --- /dev/null +++ b/431/CH3/EX3.15/resultEX3_15.txt @@ -0,0 +1,4 @@ +
+ Example 3.15
+equivalent resistance,Re=20.888469ohms
+percentage regulation=2.609097percent
\ No newline at end of file diff --git a/431/CH3/EX3.16/EX3_16.sce b/431/CH3/EX3.16/EX3_16.sce new file mode 100755 index 000000000..9c2dad4bf --- /dev/null +++ b/431/CH3/EX3.16/EX3_16.sce @@ -0,0 +1,27 @@ +//Calculating secondary voltage and voltage regulation
+//Chapter 3
+//Example 3.16
+//page 218
+clear;
+clc;
+disp("Example 3.16")
+kVA=10; //rating of the transformer
+V1=2000; //primary voltage in volts
+V2=400; //secondary voltage in volts
+R1=5.5; //primary voltage in ohms
+R2=0.2; //secondary voltage in ohms
+X1=12; //primary reactance in ohms
+X2=0.45; //secondary reactance in ohms
+//assuming (V1/V2)=(N1/N2)
+Re=R2+(R1*(V2/V1)^2);
+printf("equivalent resistance referred to the secondary=%fohms",Re);
+Xe=X2+(X1*(V2/V1)^2);
+printf("equivalent reactance referred to the secondary=%fohms",Xe);
+Ze=sqrt(Re^2+Xe^2);
+printf("equivalent impedance referred to the secondary=%fohms",Ze);
+phi=acosd(0.8);
+Vl=374.5;
+printf("\nVoltage across the full load and 0.8 p.f lagging=%fV",Vl);
+reg=((V2-Vl)*100)/Vl;
+printf("\npercentage voltage regulation=%f percent",reg);
+
diff --git a/431/CH3/EX3.16/resultEX3_16.txt b/431/CH3/EX3.16/resultEX3_16.txt new file mode 100755 index 000000000..fcfb5e2e5 --- /dev/null +++ b/431/CH3/EX3.16/resultEX3_16.txt @@ -0,0 +1,5 @@ +
+ Example 3.16
+equivalent resistance referred to the secondary=0.420000ohmsequivalent reactance referred to the secondary=0.930000ohmsequivalent impedance referred to the secondary=1.020441ohms
+Voltage across the full load and 0.8 p.f lagging=374.500000V
+percentage voltage regulation=6.809079 percent
\ No newline at end of file diff --git a/431/CH3/EX3.17/EX3_17.sce b/431/CH3/EX3.17/EX3_17.sce new file mode 100755 index 000000000..90d329878 --- /dev/null +++ b/431/CH3/EX3.17/EX3_17.sce @@ -0,0 +1,21 @@ +//Calculating regulation
+//Chapter 3
+//Example 3.17
+//page 219
+clear;
+clc;
+disp("Example 3.17")
+kVA=80; //rating of the transformer
+V1=2000; //primary voltage in volts
+V2=200; //secondary voltage in volts
+f=50; //frequency in hertz
+Id=8; //impedence drop
+Rd=4; //resistance drop
+phi=acosd(0.8)
+I2Ze=(V2*Id)/100;
+I2Re=(V2*Rd)/100;
+I2Xe=sqrt(I2Ze^2-I2Re^2)
+reg=((I2Re*cosd(phi))+(I2Xe*sind(phi)))*(100/V2)
+printf("percentage regulation=%fpercent",reg)
+pf=I2Xe/sqrt(I2Re^2+I2Xe^2)
+printf("\nPower factor for zero regulation=%f(leading)",pf)
diff --git a/431/CH3/EX3.17/resultEX3_17.txt b/431/CH3/EX3.17/resultEX3_17.txt new file mode 100755 index 000000000..42ba7ad03 --- /dev/null +++ b/431/CH3/EX3.17/resultEX3_17.txt @@ -0,0 +1,4 @@ +
+ Example 3.17
+percentage regulation=7.356922percent
+Power factor for zero regulation=0.866025(leading)
\ No newline at end of file diff --git a/431/CH3/EX3.19/EX3_19.sce b/431/CH3/EX3.19/EX3_19.sce new file mode 100755 index 000000000..46706fb10 --- /dev/null +++ b/431/CH3/EX3.19/EX3_19.sce @@ -0,0 +1,26 @@ +//Calculating the efficiency and voltage regulation//Chapter 3
+//Example 3.19
+//page 225
+clear;
+clc;
+disp("Example 3.19")
+kVA=50; //rating of the transformer
+V1=3300; //open circuit primary voltage
+Culoss=540; //copper loss from short circuit test
+coreloss=460; //core loss from open circuit test
+V1sc=124; //short circuit primary voltage in volts
+I1sc=15.4; //short circuit primary current in amperes
+Psc=540 //short circuit primary power in watts
+phi=acosd(0.8)
+effi=(kVA*1000*cosd(phi)*100)/((kVA*1000*cosd(phi))+Culoss+coreloss)
+printf("From the open-circuit test, core-loss=%dW",coreloss);
+printf("\nFrom short circuit test, copper loss=%dW",Culoss);
+printf("\nThe efficiency at full-load and 0.8 lagging power factor=%f",effi);
+Ze=V1sc/I1sc;
+Re=Psc/I1sc^2;
+Xe=sqrt(Ze^2-Re^2);
+V2=3203;
+phi2=acosd(0.8);
+phie=acosd(Culoss/(V1sc*I1sc));
+reg=(V1sc*cosd(phie-phi2)*100)/V1;
+printf("\nVoltage regulation=%dpercent",reg)
\ No newline at end of file diff --git a/431/CH3/EX3.19/resultEX3_19.txt b/431/CH3/EX3.19/resultEX3_19.txt new file mode 100755 index 000000000..fcb3b6169 --- /dev/null +++ b/431/CH3/EX3.19/resultEX3_19.txt @@ -0,0 +1,6 @@ +
+ Example 3.19
+From the open-circuit test, core-loss=460W
+From short circuit test, copper loss=540W
+The efficiency at full-load and 0.8 lagging power factor=97.560976
+Voltage regulation=3percent
\ No newline at end of file diff --git a/431/CH3/EX3.2/EX3_2.sce b/431/CH3/EX3.2/EX3_2.sce new file mode 100755 index 000000000..35fdcf982 --- /dev/null +++ b/431/CH3/EX3.2/EX3_2.sce @@ -0,0 +1,20 @@ +//calculating number of primary and secondary turns
+//Chapter 3
+//Example 3.2
+//page 196
+clear;
+clc;
+disp("Example 3.2")
+V1=6600; //primary voltage in volts
+V2=230; //secondary voltage in volts
+f=50; //frequency in hertz
+Bm=1.1; //flux density in Wb/m^2
+A=(25*25*10^(-4)); //area of the core in m^2
+phi=Bm*A
+printf("flux=%fWb",phi)
+E1=V1;
+E2=V2;
+N1=E1/(4.44*f*phi);
+N2=E2/(4.44*f*phi);
+printf("\nnumber of turns in primary winding,N1=%dturns",N1)
+printf("\nnumber of turns in secondary winding,N2=%dturns",N2)
\ No newline at end of file diff --git a/431/CH3/EX3.2/resultEX3_2.txt b/431/CH3/EX3.2/resultEX3_2.txt new file mode 100755 index 000000000..755f9e82d --- /dev/null +++ b/431/CH3/EX3.2/resultEX3_2.txt @@ -0,0 +1,5 @@ +
+ Example 3.2
+flux=0.068750Wb
+number of turns in primary winding,N1=432turns
+number of turns in secondary winding,N2=15turns
\ No newline at end of file diff --git a/431/CH3/EX3.20/EX3_20.sce b/431/CH3/EX3.20/EX3_20.sce new file mode 100755 index 000000000..2728dc99e --- /dev/null +++ b/431/CH3/EX3.20/EX3_20.sce @@ -0,0 +1,22 @@ +//Calculate voltsge to be applied//Chapter 3
+//Example 3.20
+//page 226
+clear;
+clc;
+disp("Example 3.20")
+kVA=100;
+V1=6600; //primary voltage in volts
+V2=330; //secondary voltage in volts
+f=50; //frequency in hertz
+V1sc=100; //short circuit primary voltage in volts
+I1sc=10; //short circuit primary current in amperes
+Psc=436; //short circuit primary power in watts
+Ze=V1sc/I1sc;
+Re=Psc/I1sc^2;
+phi=acosd(0.8);
+Xe=sqrt(Ze^2-Re^2);
+printf("\nTotal resistance=%fohms",Re);
+printf("\nTotal impedence=%fohms",Ze)
+Il=(kVA*1000)/V1;
+V1dash=(sqrt(((V1*cosd(phi))+(Il*Re))^2+((V1*sind(phi))+(Il*Xe))^2));
+printf("\nfull voltage current,V1=%dV",V1dash)
\ No newline at end of file diff --git a/431/CH3/EX3.20/resultEX3_20.txt b/431/CH3/EX3.20/resultEX3_20.txt new file mode 100755 index 000000000..4e02cecf1 --- /dev/null +++ b/431/CH3/EX3.20/resultEX3_20.txt @@ -0,0 +1,6 @@ +
+ Example 3.20
+
+Total resistance=4.360000ohms
+Total impedence=10.000000ohms
+full voltage current,V1=6735V
\ No newline at end of file diff --git a/431/CH3/EX3.21/EX3_21.sce b/431/CH3/EX3.21/EX3_21.sce new file mode 100755 index 000000000..044c1c0dc --- /dev/null +++ b/431/CH3/EX3.21/EX3_21.sce @@ -0,0 +1,36 @@ +//Calculate circuit constants and efficiency //Chapter 3
+//Example 3.21
+//page 227
+clear;
+clc;
+disp("Example 3.21")
+V2=500; //secondary voltage in volts
+V1=250; //primary voltage in short circuit test in volts
+I0=1; //current in short circuit test in amperes
+P=80; //core loss in watt
+Psc=100; //power in short circuit test in watts
+Vsc=20; //short circuit voltage in volts
+Isc=12; //short circuit current in amperes
+phi0=acosd(P/(V1*I0));
+printf("From open circuit test , cos(phi0)=%f",cos(phi0));
+Ic=I0*cosd(phi0);
+printf("\nLoss component of no-load current,Ic=%fA",Ic)
+Im=sqrt(I0^2-Ic^2);
+printf("\nMagnetising current,Im=%fA",Im);
+Rm=V1/Ic;
+Xm=V1/Im;
+Re=Psc/(Isc^2);
+Ze=Vsc/Isc;
+Xe=sqrt(Ze^2-Re^2);
+printf("\n\nEquvalent resistance referred to secondary=%fohms",Re);
+printf("\nEquvalent reactance referred to secondary=%fohms",Xe);
+printf("\nEquvalent impedance referred to secondary=%fohms",Ze);
+K=V2/V1; //turns ratio
+printf("\n\nEquvalent resistance referred to primary=%fohms",(Re/K^2));
+printf("\nEquvalent reactance referred to primary=%fohms",(Xe/K^2));
+printf("\nEquvalent impedance referred to primary=%fohms",(Ze/K^2));
+V=500; //output in volts
+I=10; //output current in amperes
+phi=acosd(0.80);
+effi=(V*I*cosd(phi)*100)/((V*I*cosd(phi))+P+((I)^2*Re));
+printf("\nEffiency=%fpercent",effi);
\ No newline at end of file diff --git a/431/CH3/EX3.21/resultEX3_21.txt b/431/CH3/EX3.21/resultEX3_21.txt new file mode 100755 index 000000000..e49c40608 --- /dev/null +++ b/431/CH3/EX3.21/resultEX3_21.txt @@ -0,0 +1,14 @@ +
+ Example 3.21
+From open circuit test , cos(phi0)=-0.606173
+Loss component of no-load current,Ic=0.320000A
+Magnetising current,Im=0.947418A
+
+Equvalent resistance referred to secondary=0.694444ohms
+Equvalent reactance referred to secondary=1.515099ohms
+Equvalent impedance referred to secondary=1.666667ohms
+
+Equvalent resistance referred to primary=0.173611ohms
+Equvalent reactance referred to primary=0.378775ohms
+Equvalent impedance referred to primary=0.416667ohms
+Effiency=96.398447percent
\ No newline at end of file diff --git a/431/CH3/EX3.22/EX3_22.sce b/431/CH3/EX3.22/EX3_22.sce new file mode 100755 index 000000000..157ac8fc1 --- /dev/null +++ b/431/CH3/EX3.22/EX3_22.sce @@ -0,0 +1,17 @@ +//Calculate efficiency //Chapter 3
+//Example 3.22
+//page 231
+clear;
+clc;
+disp("Example 3.22")
+kVA=200; //Rating of the transformer
+Pin=3.4; //power input to two transformer in watt
+Pin2=5.2;
+coreloss=Pin; //core loss of two transformers
+phi=acosd(0.8);
+printf("\nCore loss of two transformer=%fkW",Pin)
+printf("\nCore loss of each transformer=%fkW",(Pin/2))
+printf("\nFull load copper loss of the two transformer=%fkW",Pin2)
+printf("Therefore,full load copper loss of each transformer=%fkW",(Pin2/2));
+effi=(kVA*cosd(phi)*100)/((kVA*cosd(phi))+(Pin/2)+(Pin2/2))
+printf("\nFull load efficiency at 0.8 p.f. lagging=%fpercent",effi);
\ No newline at end of file diff --git a/431/CH3/EX3.22/resultEX3_22.txt b/431/CH3/EX3.22/resultEX3_22.txt new file mode 100755 index 000000000..254ef0634 --- /dev/null +++ b/431/CH3/EX3.22/resultEX3_22.txt @@ -0,0 +1,7 @@ +
+ Example 3.22
+
+Core loss of two transformer=3.400000kW
+Core loss of each transformer=1.700000kW
+Full load copper loss of the two transformer=5.200000kWTherefore,full load copper loss of each transformer=2.600000kW
+Full load efficiency at 0.8 p.f. lagging=97.382836percent
\ No newline at end of file diff --git a/431/CH3/EX3.24/EX3_24.sce b/431/CH3/EX3.24/EX3_24.sce new file mode 100755 index 000000000..4f8713c2e --- /dev/null +++ b/431/CH3/EX3.24/EX3_24.sce @@ -0,0 +1,17 @@ +//Calculate efficiency of transformer //Chapter 3
+//Example 3.24
+//page 233
+clear;
+clc;
+disp("Example 3.24")
+kVA=50; //rating of the transformer
+V1=6360; //primary voltage rating
+V2=240; //secondary voltage rating
+pf=0.8
+coreloss=2; //core loss in kilo watt from open circuit test
+Culoss=2; //copper loss at secondary current of 175A
+I=175; //current in amperes
+I2=(kVA*1000)/V2;
+printf("Full load secondary current,I2=%fA",I2);
+effi=(kVA*pf*100)/((kVA*pf)+coreloss+(Culoss*(I2/I)^2))
+printf("\nEfficiency=%fpercent",effi)
diff --git a/431/CH3/EX3.24/resultEX3_24.txt b/431/CH3/EX3.24/resultEX3_24.txt new file mode 100755 index 000000000..ec75add6b --- /dev/null +++ b/431/CH3/EX3.24/resultEX3_24.txt @@ -0,0 +1,3 @@ + Example 3.24
+Full load secondary current,I2=208.333333A
+Efficiency=89.217075percent
\ No newline at end of file diff --git a/431/CH3/EX3.25/EX3_25.sce b/431/CH3/EX3.25/EX3_25.sce new file mode 100755 index 000000000..f8ed7ef01 --- /dev/null +++ b/431/CH3/EX3.25/EX3_25.sce @@ -0,0 +1,21 @@ +//Calculate efficiency of transformer //Chapter 3
+//Example 3.25
+//page 234
+clear;
+clc;
+disp("Example 3.25")
+kVA=500; //rating of the transformer
+R1=0.4; //resistance in primary winding inohms
+R2=0.001; //resistance in secondary winding in ohms
+V1=6600; //primary voltahe in volts
+V2=400; //secondary voltage in volts
+ironloss=3; //iron loss in kilowatt
+pf=0.8; //power factor lagging
+I1=(kVA*1000)/V1;
+printf("\nPrimary winding current=%fA",I1);
+I2=(I1*V1)/V2;
+printf("\nSecondary winding current=%fA",I2);
+Culoss=((I1^2*R1)+(I2^2*R2));
+printf("\nCopper losses in the two winding=%fWatts",Culoss);
+effi=(kVA*pf*100)/((kVA*pf)+ironloss+(Culoss/1000));
+printf("\nEfficiency at 0.8 p.f=%fpercent",effi);
diff --git a/431/CH3/EX3.25/resultEX3_25.txt b/431/CH3/EX3.25/resultEX3_25.txt new file mode 100755 index 000000000..a5025c26e --- /dev/null +++ b/431/CH3/EX3.25/resultEX3_25.txt @@ -0,0 +1,7 @@ +
+ Example 3.25
+
+Primary winding current=75.757576A
+Secondary winding current=1250.000000A
+Copper losses in the two winding=3858.184114Watts
+Efficiency at 0.8 p.f=98.314355percent
\ No newline at end of file diff --git a/431/CH3/EX3.26/EX3_26.sce b/431/CH3/EX3.26/EX3_26.sce new file mode 100755 index 000000000..328225ab7 --- /dev/null +++ b/431/CH3/EX3.26/EX3_26.sce @@ -0,0 +1,23 @@ +//Calculate efficiency of transformer //Chapter 3
+//Example 3.26
+//page 234
+clear;
+clc;
+disp("Example 3.26")
+kVA=400; //rating of the transformer
+ironloss=2; //iron loss in kilowatt
+pf=0.8; //power factor
+kW=240; //load in kilowatt
+kVA1=kW/pf;
+disp("Efficiency is maximium when,core-loss=copper-loss")
+coreloss=ironloss;
+disp("Maximium efficiency occurs at 240kw,0.8 power factor,i.e., at 300kVA load")
+Cl300=coreloss;
+Cl400=(Cl300*(kVA/kVA1)^2);
+pf1=0.71; //power factor for full load
+effi=(kVA*pf1*100)/((kVA*pf1)+coreloss+Cl400);
+printf("\nEfficiency at full-load and 071 power factor=%dpercent",effi);
+pf2=1 //maximium efficiency occurs at unity power factor
+MAXeffi=(kVA1*pf2*100)/((kVA1*pf2)+coreloss+Cl300)
+printf("\nMaximium efficiency at 300kVA and unity power factor=%fpercent",MAXeffi);
+
diff --git a/431/CH3/EX3.26/resultEX3_26.txt b/431/CH3/EX3.26/resultEX3_26.txt new file mode 100755 index 000000000..5a6a1bc51 --- /dev/null +++ b/431/CH3/EX3.26/resultEX3_26.txt @@ -0,0 +1,8 @@ + Example 3.26
+
+ Efficiency is maximium when,core-loss=copper-loss
+
+ Maximium efficiency occurs at 240kw,0.8 power factor,i.e., at 300kVA load
+
+Efficiency at full-load and 071 power factor=98percent
+Maximium efficiency at 300kVA and unity power factor=98.684211percent
\ No newline at end of file diff --git a/431/CH3/EX3.27/EX3_27.sce b/431/CH3/EX3.27/EX3_27.sce new file mode 100755 index 000000000..e8d4a46fb --- /dev/null +++ b/431/CH3/EX3.27/EX3_27.sce @@ -0,0 +1,19 @@ +//Calculate efficiency of transformer //Chapter 3
+//Example 3.27
+//page 235
+clear;
+clc;
+disp("Example 3.27")
+kVA=40; //rating of the transformer
+coreloss=450; //core-loss in watts
+Culoss=800; //copper loss in watt
+pf=0.8; //power factor of the load
+FLeffi=(kVA*pf*100)/((kVA*pf)+((coreloss+Culoss)/1000));
+printf("Full-load efficiency=%fpercent",FLeffi);
+disp("For maximium efficiency, Core loss=copper loss")
+Culoss2=coreloss; //for maximium efficiency
+n=sqrt(Culoss2/Culoss);
+kVA2=n*kVA; //load for maximium efficiency
+MAXeffi=(kVA2*pf*100)/((kVA2*pf)+((coreloss+Culoss2)/1000));
+printf("\nValue of maximium efficiency=%fpercent",MAXeffi);
+
diff --git a/431/CH3/EX3.27/resultEX3_27.txt b/431/CH3/EX3.27/resultEX3_27.txt new file mode 100755 index 000000000..abcc11d0a --- /dev/null +++ b/431/CH3/EX3.27/resultEX3_27.txt @@ -0,0 +1,6 @@ +
+ Example 3.27
+Full-load efficiency=96.240602percent
+ For maximium efficiency, Core loss=copper loss
+
+Value of maximium efficiency=96.385542percent
\ No newline at end of file diff --git a/431/CH3/EX3.28/EX3_28.sce b/431/CH3/EX3.28/EX3_28.sce new file mode 100755 index 000000000..9b2675bd1 --- /dev/null +++ b/431/CH3/EX3.28/EX3_28.sce @@ -0,0 +1,22 @@ +//Calculate efficiency of transformer //Chapter 3
+//Example 3.29
+//page 236
+clear;
+clc;
+disp("Example 3.29")
+kVA=50; //rating of the transformers
+I1=250; //primary current in amperes
+Re=0.006; //total resistance referred to the primary side
+ironloss=200; //iron loss in watt
+Culoss=(I1^2*Re); //copper loss in watt
+pf=0.8; //power factor lagging
+printf("Full-load copper loss=%fW",Culoss);
+TL1=((Culoss+ironloss)/1000);
+printf("\nTotal loss on full load=%fkW",TL1);
+TL2=((((Culoss*(1/2)^2))+ironloss)/1000)
+printf("\nTotal loss on half load=%fkW",TL2);
+effi1=(kVA*pf*100)/((kVA*pf)+TL1);
+printf("\nEfficiency at full load,0.8 power factor lagging=%f percent",effi1)
+effi2=((kVA/2)*pf*100)/(((kVA/2)*pf)+TL2);
+printf("\nEfficiency at half load,0.8 power factor lagging=%f percent",effi2)
+
diff --git a/431/CH3/EX3.28/resultEX3_28.txt b/431/CH3/EX3.28/resultEX3_28.txt new file mode 100755 index 000000000..00433b7f0 --- /dev/null +++ b/431/CH3/EX3.28/resultEX3_28.txt @@ -0,0 +1,4 @@ + Example 3.28
+
+All-day efficiency of transformer A=95.522388percent
+All-day efficiency of transformer B=96.822995percent
\ No newline at end of file diff --git a/431/CH3/EX3.29/EX3_29.sce b/431/CH3/EX3.29/EX3_29.sce new file mode 100755 index 000000000..7fe105d0a --- /dev/null +++ b/431/CH3/EX3.29/EX3_29.sce @@ -0,0 +1,26 @@ +//Calculate efficiency of transformer //Chapter 3
+//Example 3.30
+//page 237
+clear;
+clc;
+disp("Example 3.30")
+kVA=10; //rating of the transformers
+V1=400; //primary voltage in volts
+V2=200; //secondary voltage in volts
+f=50; //frequency in hertz
+MAXeffi=0.96; //maximium efficiency
+output1=(kVA*0.75); //output at 75% of full load
+input1=(output1/MAXeffi);
+printf("\nInput at 75percent of full load=%fkW",input1);
+TL=input1-output1;
+printf("\nTotal losses=%fkW",TL);
+Pi=TL/2;
+Pc=TL/2;
+disp("Maximiunm efficiency occurs at 3/4th of full load")
+Pc=Pi/(3/4)^2;
+printf("\nThus,total losses on full load=%fW",((Pc+Pi)*1000));
+pf=0.8; //power factor lagging
+effi=(kVA*pf*100)/((kVA*pf)+(Pc+Pi));
+printf("\nEfficiency on full load. 0.8 power factor lagging=%fpercent",effi)
+
+
diff --git a/431/CH3/EX3.29/resultEX3_29.txt b/431/CH3/EX3.29/resultEX3_29.txt new file mode 100755 index 000000000..1a1fda68d --- /dev/null +++ b/431/CH3/EX3.29/resultEX3_29.txt @@ -0,0 +1,6 @@ + Example 3.29
+Full-load copper loss=375.000000W
+Total loss on full load=0.575000kW
+Total loss on half load=0.293750kW
+Efficiency at full load,0.8 power factor lagging=98.582871 percent
+Efficiency at half load,0.8 power factor lagging=98.552510 percent
\ No newline at end of file diff --git a/431/CH3/EX3.3/EX3_3.sce b/431/CH3/EX3.3/EX3_3.sce new file mode 100755 index 000000000..cd3da852a --- /dev/null +++ b/431/CH3/EX3.3/EX3_3.sce @@ -0,0 +1,18 @@ +//calculating induced emf and maximium flux density
+//Chapter 3
+//Example 3.3
+//page 197
+clear;
+clc;
+disp("Example 3.3")
+V1=230; //primary voltage in volts
+f=50; //frequency in hertz
+N1=100; //number of primary turns
+N2=400; //number of secondary turns
+A=250*10^(-4); //cross section area of core in m^2
+disp("since at no-load E2=V2")
+E2=(V1*N2)/N1;
+printf("induced secondary winding,E2=%dV",E2);
+phi=E2/(4.44*f*N2);
+Bm=phi/A;
+printf("\nMaximium flux density in the core=%fWb/m^2",Bm)
\ No newline at end of file diff --git a/431/CH3/EX3.3/resultEX3_3.txt b/431/CH3/EX3.3/resultEX3_3.txt new file mode 100755 index 000000000..33ca6797c --- /dev/null +++ b/431/CH3/EX3.3/resultEX3_3.txt @@ -0,0 +1,6 @@ +
+ Example 3.3
+
+ since at no-load E2=V2
+induced secondary winding,E2=920V
+Maximium flux density in the core=0.414414Wb/m^2
\ No newline at end of file diff --git a/431/CH3/EX3.30/EX3_30.sce b/431/CH3/EX3.30/EX3_30.sce new file mode 100755 index 000000000..9ecebd3c5 --- /dev/null +++ b/431/CH3/EX3.30/EX3_30.sce @@ -0,0 +1,27 @@ +//Calculate voltage regulation of transformer //Chapter 3
+//Example 3.31
+//page 237
+clear;
+clc;
+disp("Example 3.31")
+kVA=500; //rating of the transformers
+V1=3300; //primary voltage in volts
+V2=500; //secondary voltage in volts
+f=50; //frequency in hertz
+MAXeffi=0.97;
+x=0.75; //fraction of full load for maximium efficiency
+pf1=1;
+output1=(kVA*x*pf1*1000);
+printf("Output at maximium efficiency=%dwatts",output1);
+losses=((1/MAXeffi)-1)*output1;
+printf("\nThus, at maximium efficiency,\n lossses=%fW",losses)
+Culoss=losses/2;
+printf("\nCopper losses at 75percent of full load=%dW",Culoss);
+CulossFL=Culoss/x^2;
+printf("\nCopper losses at full load=%dW",CulossFL);
+Re=CulossFL/(kVA*1000);
+Ze=0.1; //equivalent impedence per unit
+Xe=sqrt(Ze^2-Re^2);
+phi=acosd(0.8);
+reg=((Re*cosd(phi))+(Xe*sind(phi)))*100;
+printf("\npercentage regulation=%f percent",reg);
diff --git a/431/CH3/EX3.30/resultEX3_29.txt b/431/CH3/EX3.30/resultEX3_29.txt new file mode 100755 index 000000000..1a1fda68d --- /dev/null +++ b/431/CH3/EX3.30/resultEX3_29.txt @@ -0,0 +1,6 @@ + Example 3.29
+Full-load copper loss=375.000000W
+Total loss on full load=0.575000kW
+Total loss on half load=0.293750kW
+Efficiency at full load,0.8 power factor lagging=98.582871 percent
+Efficiency at half load,0.8 power factor lagging=98.552510 percent
\ No newline at end of file diff --git a/431/CH3/EX3.32/EX3_32.sce b/431/CH3/EX3.32/EX3_32.sce new file mode 100755 index 000000000..65d019a10 --- /dev/null +++ b/431/CH3/EX3.32/EX3_32.sce @@ -0,0 +1,16 @@ +//Calculate current in different parts of winding of autotransformer//Chapter 3
+//Example 3.32
+//page 240
+clear;
+clc;
+disp("Example 3.32")
+V1=230; //primary voltage of auto-transformer
+V2=75; //secondary voltage of auto-transformer
+r=(V1/V2); //ratio of primary to secondary turns
+I2=200; //load current in amperes
+I1=I2/r;
+printf("Primary current,I1=%fA",I1);
+printf("\nLoad current,I1=%fA",I2);
+printf("\ncirrent flowing through the common portion of winding=%fA",(I2-I1));
+printf("\nEconomy in saving in copper in percentage=%fpercent",(100/r));
+
diff --git a/431/CH3/EX3.32/resultEX3_32.txt b/431/CH3/EX3.32/resultEX3_32.txt new file mode 100755 index 000000000..441ea142b --- /dev/null +++ b/431/CH3/EX3.32/resultEX3_32.txt @@ -0,0 +1,6 @@ +
+ Example 3.32
+Primary current,I1=65.217391A
+Load current,I1=200.000000A
+cirrent flowing through the common portion of winding=134.782609A
+Economy in saving in copper in percentage=32.608696percent
\ No newline at end of file diff --git a/431/CH3/EX3.4/EX3_4.sce b/431/CH3/EX3.4/EX3_4.sce new file mode 100755 index 000000000..f937ff379 --- /dev/null +++ b/431/CH3/EX3.4/EX3_4.sce @@ -0,0 +1,18 @@ +//calculating induced emf and maximium flux density
+//Chapter 3
+//Example 3.3
+//page 197
+clear;
+clc;
+disp("Example 3.3")
+kVA=40; //rating of the transformer
+V1=2000; //primary side voltage in volts
+V2=250; //secondary side voltage in volts
+R1=1.15; //primary resistance in ohms
+R2=0.0155; //secondary resistance in ohms
+R=R2+(((V2/V1)^2)*R1)
+printf("Total resistance of the transformer in terms of the secondary winding=%fohms",R)
+I2=(kVA*1000)/V2;
+printf("\nFull load secondary current=%dA",I2)
+printf("\nTotal resistance load on full load=%fVolts",(I2*R))
+printf("\nTotal copper loss on full load=%fWatts",((I2)^2*R))
diff --git a/431/CH3/EX3.4/resultEX3_4.txt b/431/CH3/EX3.4/resultEX3_4.txt new file mode 100755 index 000000000..49c1c841b --- /dev/null +++ b/431/CH3/EX3.4/resultEX3_4.txt @@ -0,0 +1,5 @@ +Example 3.4
+Total resistance of the transformer in terms of the secondary winding=0.033469ohms
+Full load secondary current=160A
+Total resistance load on full load=5.355000Volts
+Total copper loss on full load=856.800000Watts
\ No newline at end of file diff --git a/431/CH3/EX3.5/EX3_5.sce b/431/CH3/EX3.5/EX3_5.sce new file mode 100755 index 000000000..a7598d500 --- /dev/null +++ b/431/CH3/EX3.5/EX3_5.sce @@ -0,0 +1,19 @@ +//Calculating the current and power factor of the primary circuit
+//Chapter 3
+//Example 3.5
+//page 206
+clear;
+clc;
+disp("Example 3.5")
+I2=300;........................//Secondary current in amperes
+N1=1200; //number of primary turns
+N2=300; //number of secondary turns
+I0=2.5; //load current in amperes
+I1=(I2*N2)/N1;
+phi0=acosd(0.2);
+phi2=acosd(0.8);
+I1c=(I1*cosd(phi2))+(I0*cosd(phi0));
+I1s=(I1*sind(phi2))+(I0*sind(phi0));
+I=sqrt(I1c^2+I1s^2);
+phi=atand(I1s/I1c)
+printf("primary power factor=%fdegrees",cosd(phi));
\ No newline at end of file diff --git a/431/CH3/EX3.5/resultEX3_5.txt b/431/CH3/EX3.5/resultEX3_5.txt new file mode 100755 index 000000000..421d58957 --- /dev/null +++ b/431/CH3/EX3.5/resultEX3_5.txt @@ -0,0 +1,2 @@ + Example 3.5
+primary power factor=0.786863degrees
\ No newline at end of file diff --git a/431/CH3/EX3.6/EX3_6.sce b/431/CH3/EX3.6/EX3_6.sce new file mode 100755 index 000000000..bce545724 --- /dev/null +++ b/431/CH3/EX3.6/EX3_6.sce @@ -0,0 +1,18 @@ +//Calculating the value of primary current
+//Chapter 3
+//Example 3.6
+//page 207
+clear;
+clc;
+disp("Example 3.6")
+I0=1.5; //no-load current
+phi0=acosd(0.2)
+I2=40; //secondary current in amperes
+phi2=acosd(0.8)
+r=3; //ratio of primary and secondary turns
+I1=I2/r;
+I1c=(I1*cosd(phi2))+(I0*cosd(phi0));
+I1s=(I1*sind(phi2))+(I0*sind(phi0));
+I=sqrt(I1c^2+I1s^2);
+printf("I1=%fA",I)
+
diff --git a/431/CH3/EX3.6/resultEX3_6.txt b/431/CH3/EX3.6/resultEX3_6.txt new file mode 100755 index 000000000..087f66e08 --- /dev/null +++ b/431/CH3/EX3.6/resultEX3_6.txt @@ -0,0 +1,3 @@ +
+ Example 3.6
+I1=14.489406A
\ No newline at end of file diff --git a/431/CH3/EX3.7/EX3_7.sce b/431/CH3/EX3.7/EX3_7.sce new file mode 100755 index 000000000..6a7e03bb2 --- /dev/null +++ b/431/CH3/EX3.7/EX3_7.sce @@ -0,0 +1,20 @@ +//Calculating the magnetising current,core loss and flux
+//Chapter 3
+//Example 3.7
+//page 208
+clear;
+clc;
+disp("Example 3.7")
+V1=230; //voltage in volts
+f=50; //frequency of supply in hertz
+N1=250; //number of primary turns
+I0=4.5; //no-load current in amperes
+phi0=acosd(0.25);
+Im=I0*sind(phi0)
+printf("magnetising current,Im=%fA",Im);
+Pc=V1*I0*cosd(phi0);
+printf("\nCore loss=%dW",Pc)
+disp("neglecting I^2R loss in primary winding at no-load")
+E1=V1;
+phi=E1/(4.44*f*N1);
+printf("\nMaximium value of flux in the core=%fWb",phi)
\ No newline at end of file diff --git a/431/CH3/EX3.7/resultEX3_7.txt b/431/CH3/EX3.7/resultEX3_7.txt new file mode 100755 index 000000000..f5e9e348b --- /dev/null +++ b/431/CH3/EX3.7/resultEX3_7.txt @@ -0,0 +1,7 @@ +
+ Example 3.7
+magnetising current,Im=4.357106A
+Core loss=258W
+ neglecting I^2R loss in primary winding at no-load
+
+Maximium value of flux in the core=0.004144Wb
\ No newline at end of file diff --git a/431/CH3/EX3.8/EX3_8.sce b/431/CH3/EX3.8/EX3_8.sce new file mode 100755 index 000000000..c2efea9dd --- /dev/null +++ b/431/CH3/EX3.8/EX3_8.sce @@ -0,0 +1,20 @@ +//Calculating the current and power factor of the primary circuit
+//Chapter 3
+//Example 3.8
+//page 209
+clear;
+clc;
+disp("Example 3.8")
+I2=30;........................//Secondary current in amperes
+I0=2; //load current in amperes
+V1=660; //primary voltage in volts
+V2=220; //secondary voltage in volts
+I1=(I2*V2)/V1;
+phi0=acosd(0.225);
+phi2=acosd(0.9);
+I1c=(I1*cosd(phi2))+(I0*cosd(phi0));
+I1s=(I1*sind(phi2))+(I0*sind(phi0));
+I=sqrt(I1c^2+I1s^2);
+phi=atand(I1s/I1c)
+printf("I1=%fA",I)
+printf("\nprimary power factor=%fdegrees",cosd(phi));
diff --git a/431/CH3/EX3.8/resultEX3_8.txt b/431/CH3/EX3.8/resultEX3_8.txt new file mode 100755 index 000000000..23df4df73 --- /dev/null +++ b/431/CH3/EX3.8/resultEX3_8.txt @@ -0,0 +1,4 @@ +
+ Example 3.8
+I1=11.361713A
+primary power factor=0.831741degrees
\ No newline at end of file diff --git a/431/CH3/EX3.9/EX3_9.sce b/431/CH3/EX3.9/EX3_9.sce new file mode 100755 index 000000000..a3b6eaf33 --- /dev/null +++ b/431/CH3/EX3.9/EX3_9.sce @@ -0,0 +1,32 @@ +//Calculating magnetising current,primary current and primary power factor
+//Chapter 3
+//Example 3.9
+//page 210
+clear;
+clc;
+disp("Example 3.9")
+phi_m=7.5*10^(-3); //maximium flux
+f=50; //frequecy in hertz
+N1=144; //number of primary turns
+N2=432; //number of secondary turns
+kVA=0.24; //rating of transformer
+E1=(4.44*phi_m*f*N1)
+V1=E1;
+printf("V1=%dV",V1)
+I0=(kVA*1000)/V1;
+phi0=acosd(0.26);
+Im=I0*sind(phi0);
+printf("\nIm=%fA",Im);
+V2=(E1*N2)/N1
+printf("\nV2=%fV",V2)
+disp("At a load of 1.2kVA and power factor of 0.8 lagging")
+kVA=1.2;
+phi2=acosd(0.8);
+I2=(kVA*1000)/V2;
+I=(I2*N2)/N1;
+I1c=(I*cosd(phi2))+(I0*cosd(phi0));
+I1s=(I*sind(phi2))+(I0*sind(phi0));
+I=sqrt(I1c^2+I1s^2);
+printf("\nI1=%fA",I);
+phi=acosd(((I*cosd(phi2))+(I0*cosd(phi0)))/I);
+printf("\nprimary power factor=%flagging",cosd(phi))
\ No newline at end of file diff --git a/431/CH3/EX3.9/resultEX3_9.txt b/431/CH3/EX3.9/resultEX3_9.txt new file mode 100755 index 000000000..36f47303a --- /dev/null +++ b/431/CH3/EX3.9/resultEX3_9.txt @@ -0,0 +1,8 @@ +Example 3.9
+V1=239V
+Im=0.966575A
+V2=719.280000V
+ At a load of 1.2kVA and power factor of 0.8 lagging
+
+I1=5.825933A
+primary power factor=0.844673lagging
\ No newline at end of file |