diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /401/CH3 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '401/CH3')
-rwxr-xr-x | 401/CH3/EX3.1/Example3_1.sce | 33 | ||||
-rwxr-xr-x | 401/CH3/EX3.10/Example3_10.sce | 32 | ||||
-rwxr-xr-x | 401/CH3/EX3.11/Example3_11.sce | 29 | ||||
-rwxr-xr-x | 401/CH3/EX3.12/Example3_12.sce | 26 | ||||
-rwxr-xr-x | 401/CH3/EX3.13/Example3_13.sce | 23 | ||||
-rwxr-xr-x | 401/CH3/EX3.14/Example3_14.sce | 16 | ||||
-rwxr-xr-x | 401/CH3/EX3.2/Example3_2.sce | 40 | ||||
-rwxr-xr-x | 401/CH3/EX3.3/Example3_3.sce | 23 | ||||
-rwxr-xr-x | 401/CH3/EX3.4/Example3_4.sce | 32 | ||||
-rwxr-xr-x | 401/CH3/EX3.5/Example3_5.sce | 27 | ||||
-rwxr-xr-x | 401/CH3/EX3.6/Example3_6.sce | 23 | ||||
-rwxr-xr-x | 401/CH3/EX3.7/Example3_7.sce | 25 | ||||
-rwxr-xr-x | 401/CH3/EX3.8/Example3_8.sce | 36 | ||||
-rwxr-xr-x | 401/CH3/EX3.9/Example3_9.sce | 24 |
14 files changed, 389 insertions, 0 deletions
diff --git a/401/CH3/EX3.1/Example3_1.sce b/401/CH3/EX3.1/Example3_1.sce new file mode 100755 index 000000000..5d95b7781 --- /dev/null +++ b/401/CH3/EX3.1/Example3_1.sce @@ -0,0 +1,33 @@ +//Example 3.1
+//Program to Determine
+//(a)Overall signal attenuation
+//(b)Signal attenuation per kilometer
+//(c)Overall signal attenuation for 10 km optical link with splices
+//(d)Numerical Input/Output power ratio
+
+clear;
+clc ;
+close ;
+
+//Given data
+Pi=120; //uW - INPUT OPTICAL POWER
+Po=3; //uW - OUTPUT OPTICAL POWER
+L=8; //km - FIBER LENGTH
+
+//(a)Overall signal attenuation
+Alpha_dB_L=10*log10(Pi/Po);
+
+//(b)Signal attenuation per kilometer
+Alpha_dB=Alpha_dB_L/L;
+
+//(c)Overall signal attenuation for 10 km optical link with splices
+A=Alpha_dB*10+9;
+
+//(d)Numerical Input/Output power ratio
+Pi_by_Po=10^(round(A)/10);
+
+//Displaying the Results in Command Window
+printf("\n\n\t (a)Overall signal attenuation is %1.0f dB.",Alpha_dB_L);
+printf("\n\n\t (b)Signal attenuation per kilometer is %1.0f dB/km.",Alpha_dB);
+printf("\n\n\t (c)Overall signal attenuation for 10 km optical link with splices is %1.0f dB.",A);
+printf("\n\n\t (d)Numerical Input/Output power ratio is %0.1f.",Pi_by_Po);
\ No newline at end of file diff --git a/401/CH3/EX3.10/Example3_10.sce b/401/CH3/EX3.10/Example3_10.sce new file mode 100755 index 000000000..e798502bb --- /dev/null +++ b/401/CH3/EX3.10/Example3_10.sce @@ -0,0 +1,32 @@ +//Example 3.10
+//Program to estimate
+//(a)RMS pulse broadening per kilometer
+//(b)Bandwidth-Length product for the fiber
+
+clear;
+clc ;
+close ;
+
+//Given data
+NA=0.3 ; //NUMERICAL APERTURE
+n1=1.45; //CORE REFRACTIVE INDEX
+M=250*10^(-6); //s/km^2 - MATERIAL DISPERSION PARAMETER
+sigma_lambda=50*10^(-9); //metre - RMS SPECTRAL WIDTH
+L=1; //km - LENGTH OF OPTICAL LINK
+c=2.998*10^8; //m/s - VELOCITY OF LIGHT IN VACCUM
+
+//RMS pulse broadening /km due to material dispersion
+sigma_m=sigma_lambda*L*M;
+
+//RMS pulse broadening /km due to intermodal dispersion
+sigma_s=L*NA^2/(4*sqrt(3)*n1*c);
+
+//(a)Total RMS pulse broadening /km
+sigma_t=sqrt(sigma_m^2+sigma_s^2);
+
+//(b)Bandwidth-Length product
+BoptXL=0.2/sigma_t;
+
+//Displaying the Results in Command Window
+printf("\n\n\t Total RMS pulse broadening per kilometer is %0.1f ns/km.",sigma_t/10^(-12));
+printf("\n\n\t Bandwidth-Length product is %0.1f MHz km.",BoptXL/10^(9));
\ No newline at end of file diff --git a/401/CH3/EX3.11/Example3_11.sce b/401/CH3/EX3.11/Example3_11.sce new file mode 100755 index 000000000..cc25eb039 --- /dev/null +++ b/401/CH3/EX3.11/Example3_11.sce @@ -0,0 +1,29 @@ +//Example 3.11
+//Program to compare the total first order dispersion and determine
+//waveguide dispersion
+
+clear;
+clc ;
+close ;
+
+//Given data
+lambda0=1310; //nm - ZERO DISPERSION WAVELENGTH
+So=0.09*10^(-12); //s/nm^2/km - DISPERSION SLOPE
+
+//Dt at 1280nm
+lambda1=1280; //nm - OPERATING WAVELENGTH
+Dt1=lambda1*So/4*(1-(lambda0/lambda1)^4);
+
+//Dt at 1550nm
+lambda2=1550; //nm - OPERATING WAVELENGTH
+Dt2=lambda2*So/4*(1-(lambda0/lambda2)^4);
+
+//Waveguide Dispersion at 1550nm
+Dm=13.5*10^(-12); //s/nm/km - MATERIAL DISPERSION
+Dp=0.4*10^(-12); //s/nm/km - PROFILE DISPERSION
+Dw=Dt2-(Dm+Dp);
+
+//Displaying the Results in Command Window
+printf("\n\n\t Dt(1280nm) = %0.1f ps/nm/km.",Dt1/10^(-12));
+printf("\n\n\t Dt(1550nm) = %0.1f ps/nm/km.",Dt2/10^(-12));
+printf("\n\n\t Dw = %0.1f ps/nm/km.",Dw/10^(-12));
\ No newline at end of file diff --git a/401/CH3/EX3.12/Example3_12.sce b/401/CH3/EX3.12/Example3_12.sce new file mode 100755 index 000000000..e892d49c0 --- /dev/null +++ b/401/CH3/EX3.12/Example3_12.sce @@ -0,0 +1,26 @@ +//Example 3.12
+//Program to determine modal birefringence, coherence length and difference between propagation constants for the two orthogonal modes
+
+clear;
+clc ;
+close ;
+
+//Given data
+lambda=0.9*10^(-6); //metre - PEAK WAVELENGTH
+Lb=9*10^(-2); //metre - BEAT LENGTH
+del_lambda=1*10^(-9); //metre - SPECTRAL LINE WIDTH
+
+//Modal Birefringence
+Bf=lambda/Lb;
+
+//Coherence Length
+Lbc=lambda^2/(Bf*del_lambda);
+
+//Difference between propagation constants for the two orthogonal
+//modes
+Bx_minus_By=2*%pi/Lb;
+
+//Displaying the Results in Command Window
+printf("\n\n\t The Modal birefringence is %1.0f X 10^(-5) .",Bf/10^(-5));
+printf("\n\n\t The Coherence Length is %d m.",round(Lbc));
+printf("\n\n\t The difference between propagation constants for the two orthogonal modes is %0.1f .",Bx_minus_By);
\ No newline at end of file diff --git a/401/CH3/EX3.13/Example3_13.sce b/401/CH3/EX3.13/Example3_13.sce new file mode 100755 index 000000000..2fed9064e --- /dev/null +++ b/401/CH3/EX3.13/Example3_13.sce @@ -0,0 +1,23 @@ +//Example 3.13
+//Program to determine fiber birefringence for given beat lengths
+//(1)Lb = 0.7 mm
+//(2)Lb = 80 m
+
+clear;
+clc ;
+close ;
+
+//Given data
+lambda=1.3*10^(-6); //metre - OPERATING WAVELENGTH
+
+//Part (1)
+Lb1=0.7*10^(-3); //metre - BEAT LENGTH
+Bf1=lambda/Lb1;
+
+//Part (2)
+Lb2=80; //metre - BEAT LENGTH
+Bf2=lambda/Lb2;
+
+//Displaying the Results in Command Window
+printf("\n\n\t The fiber birefringence for Lb = 0.7 mm is %0.2f X 10^(-3) which is high.",Bf1/10^(-3));
+printf("\n\n\t The fiber birefringence for Lb = 80 m is %0.2f X 10^(-8) which is low.",Bf2/10^(-8));
\ No newline at end of file diff --git a/401/CH3/EX3.14/Example3_14.sce b/401/CH3/EX3.14/Example3_14.sce new file mode 100755 index 000000000..64b12e32c --- /dev/null +++ b/401/CH3/EX3.14/Example3_14.sce @@ -0,0 +1,16 @@ +//Example 3.14
+//Program to determine the mode coupling parameter for the fiber
+
+clear;
+clc ;
+close ;
+
+//Given data
+L=3.5*10^3; //metre - LENGTH
+CT=-27; //dB - POLARIZATION CROSSTALK
+
+//Mode coupling parameter for the fiber
+h=(10^(CT/10))/L; //as tan(h*L)=h*L for small values
+
+//Displaying the Result in Command Window
+printf("\n\n\t The mode coupling parameter for the fiber is %0.1f X 10^(-7)/m.",h/10^(-7));
\ No newline at end of file diff --git a/401/CH3/EX3.2/Example3_2.sce b/401/CH3/EX3.2/Example3_2.sce new file mode 100755 index 000000000..b3e9f9902 --- /dev/null +++ b/401/CH3/EX3.2/Example3_2.sce @@ -0,0 +1,40 @@ +//Example 3.2
+//Program to Determine Theoretical attenuation in dB/km due to fundamental rayleigh scattering at optical wavelengths:
+//(a)0.63um
+//(b)1.00um
+//(c)1.30um
+
+clear;
+clc ;
+close ;
+
+//Given data
+n=1.46; //REFRACTIVE INDEX
+p=0.286; //PHOTOELASTIC COEFFICIENT
+Bc=7*10^(-11); //m^2/N - ISOTHERMAL COMPRESSIBILITY
+K=1.381*10^(-23); //J/K - BOLTZMANN's CONSTANT
+Tf=1400; //Kelvin - FICTIVE TEMPERATURE
+l=1000; //metre - FIBER LENGTH
+
+//(a)Attenuation in dB/km due to fundamental rayleigh scattering at 0.63um
+lambda=0.63*10^(-6); //metre - WAVELENGTH
+Gamma_R=8*(%pi)^3*n^8*p^2*Bc*K*Tf/(3*lambda^4);
+L_km1=exp(-Gamma_R*l)
+A1=10*log10(1/L_km1);
+
+//(b)Attenuation in dB/km due to fundamental rayleigh scattering at 1.00um
+lambda=1.00*10^(-6); //metre - WAVELENGTH
+Gamma_R=8*(%pi)^3*n^8*p^2*Bc*K*Tf/(3*lambda^4);
+L_km2=exp(-Gamma_R*l)
+A2=10*log10(1/L_km2);
+
+//(c)Attenuation in dB/km due to fundamental rayleigh scattering at 1.30um
+lambda=1.30*10^(-6); //metre - WAVELENGTH
+Gamma_R=8*(%pi)^3*n^8*p^2*Bc*K*Tf/(3*lambda^4);
+L_km3=exp(-Gamma_R*l)
+A3=10*log10(1/L_km3);
+
+//Displaying the Results in Command Window
+printf("\n\n\t (a)Attenuation in dB/km due to fundamental rayleigh scattering at 0.63um = %0.1f dB/km.",A1);
+printf("\n\n\t (b)Attenuation in dB/km due to fundamental rayleigh scattering at 1.00um = %0.1f dB/km.",A2);
+printf("\n\n\t (c)Attenuation in dB/km due to fundamental rayleigh scattering at 1.30um = %0.1f dB/km.",A3);
\ No newline at end of file diff --git a/401/CH3/EX3.3/Example3_3.sce b/401/CH3/EX3.3/Example3_3.sce new file mode 100755 index 000000000..a2cb8671a --- /dev/null +++ b/401/CH3/EX3.3/Example3_3.sce @@ -0,0 +1,23 @@ +//Example 3.3
+//Program to compare the threshold optical powers for stimulated
+//Brillouin and Raman Scattering
+
+clear;
+clc ;
+close ;
+
+//Given data
+alpha_dB=0.5; //dB/km - ATTENUATION
+lambda=1.3; //micrometre - OPERATING WAVELENGTH
+d=6; //micrometre - FIBER CORE DIAMETER
+nu=0.6; //GHz - LASER SOURCE BANDWIDTH
+
+//Threshold optical power for SBS
+Pb=4.4*10^(-3)*(d^2)*(lambda^2)*alpha_dB*nu;
+
+//Threshold optical power for SRS
+Pr=5.9*10^(-2)*d^2*lambda*alpha_dB;
+
+//Displaying the Results in Command Window
+printf("\n\n\t The threshold optical power for SBS is %0.1f mW.",Pb*10^3);
+printf("\n\n\t The threshold optical power for SRS is %0.2f W.",Pr);
\ No newline at end of file diff --git a/401/CH3/EX3.4/Example3_4.sce b/401/CH3/EX3.4/Example3_4.sce new file mode 100755 index 000000000..08165c97c --- /dev/null +++ b/401/CH3/EX3.4/Example3_4.sce @@ -0,0 +1,32 @@ +//Example 3.4
+//Program to estimate critical radius of curvature at which large
+//bending loss occur
+
+clear;
+clc ;
+close ;
+
+//Given data for part (a)
+n1=1.500; //metre - LENGTH
+delta=0.03; //*100 percent - RELATIVE REFRACTIVE INDEX DIFFERENCE
+lambda=0.82*10^(-6); //metre - OPERATING WAVELENGTH
+
+//Calculation of the radius of curvature of Multi Mode fiber
+n2=sqrt(n1^2-2*delta*n1^2);
+Rc=3*n1^2*lambda/(4*%pi*(n1^2-n2^2)^(3/2));
+
+//Given data for part (b)
+n1=1.500; //metre - LENGTH
+delta=0.003; //*100 percent - RELATIVE REFRACTIVE INDEX DIFFERENCE
+lambda=1.55*10^(-6); //metre - OPERATING WAVELENGTH
+d=8*10^(-6); //metre - CORE DIAMETER
+
+//Calculation of the radius of curvature of Single Mode fiber
+n2=sqrt(n1^2-2*delta*n1^2);
+a=d/2;
+lambda_c=2*%pi*a*n1*sqrt(2*delta)/2.405;
+Rcs=20*lambda*(2.748-0.996*lambda/lambda_c)^(-3)/(n1-n2)^(3/2);
+
+//Displaying the Results in Command Window
+printf("\n\n\t (a)The radius of curvature of Multi Mode fiber is %1.0f um.",Rc/10^(-6));
+printf("\n\n\t (b)The radius of curvature of Single Mode fiber is %1.0f mm.",Rcs/10^(-3));
\ No newline at end of file diff --git a/401/CH3/EX3.5/Example3_5.sce b/401/CH3/EX3.5/Example3_5.sce new file mode 100755 index 000000000..00fbd8d00 --- /dev/null +++ b/401/CH3/EX3.5/Example3_5.sce @@ -0,0 +1,27 @@ +//Example 3.5
+//Program to estimate
+//(a)The maximum possible bandwidth on the link assuming no ISI
+//(b)The pulse dispersion per unit length
+//(c)The bandwidth-length product for the fiber
+
+clear;
+clc ;
+close ;
+
+//Given data
+tau=0.1*10^(-6); //second - TOTAL PULSE BROADENING
+L=15; //km - DISTANCE
+
+//(a)The maximum possible bandwidth on the link assuming no ISI
+B_opt=1/(2*tau);
+
+//(b)The pulse dispersion per unit length
+Dispersion=tau/L;
+
+//(c)The bandwidth-length product for the fiber
+B_optXL=B_opt*L;
+
+//Displaying the Results in Command Window
+printf("\n\n\t (a)The maximum possible bandwidth on the link assuming no ISI is %1.0f MHz.",B_opt/10^6);
+printf("\n\n\t (b)The pulse dispersion per unit length is %0.2f ns/km.",Dispersion/10^(-9));
+printf("\n\n\t (c)The bandwidth-length product for the fiber is %1.0f MHz km.",B_optXL/10^6);
\ No newline at end of file diff --git a/401/CH3/EX3.6/Example3_6.sce b/401/CH3/EX3.6/Example3_6.sce new file mode 100755 index 000000000..c4e1372af --- /dev/null +++ b/401/CH3/EX3.6/Example3_6.sce @@ -0,0 +1,23 @@ +//Example 3.6
+//Program to estimate Material dispersion parameter and rms pulse
+//broadening per kilometer
+clear;
+clc ;
+close ;
+
+//Given data
+lambda=0.85*10^(-6); //metre - WAVELENGTH
+L=1; //km - DISTANCE
+MD=0.025;//MATERIAL DISPERSION = mod(lamda^2*[del^2(n1)/del(lamda)^2)
+c=2.998*10^8; //m/s - VELOCITY OF LIGHT IN VACCUM
+sigma_lambda=20*10^(-9);//metre - RMS SPECTRAL WIDTH
+
+//Material Dispersion Parameter
+M=MD/(lambda*c);
+
+//R.M.S. pulse broadening per kilometer
+sigma_m=sigma_lambda*L*M;
+
+//Displaying the Results in Command Window
+printf("\n\n\t Material Dispersion Parameter is %0.1f ps/nm/km.",M*10^6);
+printf("\n\n\t R.M.S. pulse broadening per kilometer is %0.2f ns/km.",sigma_m/10^(-12));
\ No newline at end of file diff --git a/401/CH3/EX3.7/Example3_7.sce b/401/CH3/EX3.7/Example3_7.sce new file mode 100755 index 000000000..081047e80 --- /dev/null +++ b/401/CH3/EX3.7/Example3_7.sce @@ -0,0 +1,25 @@ +//Example 3.7
+//Program to estimate rms pulse broadening per kilometer for the fiber
+
+clear;
+clc ;
+close ;
+
+//Given data
+lambda=0.85*10^(-6); //metre - WAVELENGTH
+L=1; //km - DISTANCE
+MD=0.025;//MATERIAL DISPERSION = mod(lamda^2*[del^2(n1)/del(lamda)^2)
+c=2.998*10^8; //m/s - VELOCITY OF LIGHT IN VACCUM
+sigma_lambda_by_lambda=0.0012;// sigma_lambda/lambda
+
+//Material Dispersion Parameter
+M=MD/(lambda*c);
+
+//R.M.S. Spectral Width
+sigma_lambda=sigma_lambda_by_lambda*lambda;
+
+//R.M.S. pulse broadening per kilometer
+sigma_m=sigma_lambda*L*M;
+
+//Displaying the Result in Command Window
+printf("\n\n\t R.M.S. pulse broadening per kilometer is %0.2f ns/km.",sigma_m/10^(-12));
\ No newline at end of file diff --git a/401/CH3/EX3.8/Example3_8.sce b/401/CH3/EX3.8/Example3_8.sce new file mode 100755 index 000000000..178599d54 --- /dev/null +++ b/401/CH3/EX3.8/Example3_8.sce @@ -0,0 +1,36 @@ +//Example 3.8
+//Program to estimate
+//(a)The delay difference between the slowest and fastest modes at the fiber output
+//(b)The rms pulse broadening due to intermodal dispersion on the link
+//(c)The maximum bit rate
+//(d)Bandwidth-length product corresponding to (c)
+
+clear;
+clc ;
+close ;
+
+//Given data
+delta=0.01; //*100 percent - RELATIVE REFRACTIVE INDEX DIFFERENCE
+L=6; //km - LENGTH OF OPTICAL LINK
+n1=1.5; //CORE REFRACTIVE INDEX
+c=2.998*10^8; //m/s - VELOCITY OF LIGHT IN VACCUM
+
+//(a)The delay difference between the slowest and fastest modes at the fiber output
+del_Ts=L*n1*delta/c;
+
+//(b)The rms pulse broadening due to intermodal dispersion on the link
+sigma_s=L*n1*delta/(2*sqrt(3)*c);
+
+//(c)The maximum bit rate
+Bt=1/(2*del_Ts);
+//Improved maximum bit rate
+Bti=0.2/sigma_s;
+
+//(d)Bandwidth-length product corresponding to (c)
+BoptXL=Bti*L;
+
+//Displaying the Results in Command Window
+printf("\n\n\t (a)The delay difference between the slowest and fastest modes at the fiber output is %1.0f ns.",del_Ts/10^(-12));
+printf("\n\n\t (b)The rms pulse broadening due to intermodal dispersion on the link is %0.1f ns.",sigma_s/10^(-12));
+printf("\n\n\t (c)The maximum bit rate is %0.1f Mbit/s and improved bit rate is %0.1f Mbit/s.",Bt/10^(9),Bti/10^(9));
+printf("\n\n\t (d)Bandwidth-length product is %0.1f MHz km.",BoptXL/10^(9));
\ No newline at end of file diff --git a/401/CH3/EX3.9/Example3_9.sce b/401/CH3/EX3.9/Example3_9.sce new file mode 100755 index 000000000..e97565ee9 --- /dev/null +++ b/401/CH3/EX3.9/Example3_9.sce @@ -0,0 +1,24 @@ +//Example 3.9
+//Program to compare rms pulse broadening per kilometer due to
+//intermodal dispersion for multimode step index fiber with that of
+//near parabolic graded index fiber
+
+clear;
+clc ;
+close ;
+
+//Given data
+delta=0.01; //*100 percent - RELATIVE REFRACTIVE INDEX DIFFERENCE
+L=1; //km - LENGTH OF OPTICAL LINK
+n1=1.5; //CORE REFRACTIVE INDEX
+c=2.998*10^8; //m/s - VELOCITY OF LIGHT IN VACCUM
+
+//RMS pulse broadening /km due to intermodal dispersion for MMSI Fiber
+sigma_s=L*n1*delta/(2*sqrt(3)*c);
+
+//RMS pulse broadening /km for near parabolic graded index fiber
+sigma_g=L*n1*delta^2/(20*sqrt(3)*c);
+
+//Displaying the Results in Command Window
+printf("\n\n\t RMS pulse broadening per kilometer due to intermodal dispersion for MMSI Fiber is %0.1f ns/km.",sigma_s/10^(-12));
+printf("\n\n\t RMS pulse broadening per kilometer for near parabolic graded index fiber is %0.1f ps/km.",sigma_g/10^(-15));
\ No newline at end of file |