diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /389/CH12/EX12.4 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '389/CH12/EX12.4')
-rwxr-xr-x | 389/CH12/EX12.4/Example12_4.sce | 72 |
1 files changed, 72 insertions, 0 deletions
diff --git a/389/CH12/EX12.4/Example12_4.sce b/389/CH12/EX12.4/Example12_4.sce new file mode 100755 index 000000000..5fa7f283b --- /dev/null +++ b/389/CH12/EX12.4/Example12_4.sce @@ -0,0 +1,72 @@ +clear;
+clc;
+
+// Illustration 12.4
+// Page: 676
+
+printf('Illustration 12.4 - Page: 676\n\n');
+
+// Solution (a)
+
+//***Data***//
+// For rectangular pan:
+l = 0.7;// [m]
+b = 0.7;// [m]
+zS = 0.025;// [m]
+zM = 0.0008;// [m]
+d = 0.1;// [m]
+Y1 = 0.01;// [kg water/kg dry air]
+TempG = 65;// [OC]
+v = 3;// [m/s]
+TempR = 120;// [OC]
+//*************//
+
+// From Table 7.1: (Pg 234)
+vH = (0.00283+(0.00456*Y1))*(TempG+273);// [cubic m/kg dry air]
+Density_G = (1+Y1)/vH;// [kg/cubic m]
+G = v*Density_G;// [kg/square m.s]
+de = 4*d*l/(2*(l+d));// [m]
+// From Eqn. 12.20:
+hc = 5.90*G^0.71/de^0.29;// [W/square m.K]
+// Assume:
+e = 0.94;
+// Estimate:
+TempS = 38;// [OC]
+// From Eqn. 12.14:
+hR = e*5.729*10^(-8)*((273+TempR)^4-(273+TempS)^4)/((273+TempR)-(273+TempS));
+A = l*b;// [square m]
+Am = A;// [square m]
+As = 4*l*zS;// [square m]
+Au = Am+As;// [square m]
+// Thermal Coductivities:
+kM = 45;// [W/m.K]
+kS = 3.5;// [W/m.K]
+// By Eqn. 12.16:
+Uk = 1/(((1/hc)*(A/Au))+((zM/kM)*(A/Au))+((zS/kS)*(A/Am)));// [W/squre m.K]
+// From Table 7.1: (Pg 234)
+Cs = 1005+(1884*Y1);// [kJ/kg]
+// At estimated 38 OC
+lambdaS = 2411.4;// [kJ/kg]
+// From Eqn. 12.18:
+// (Ys-Y1)*lambdaS*10^3/Cs = ((1+(Uk/hc))*(TempG-Temps))+((hR/hC)*(TempR-TempS))
+// On Simplifying:
+// Ys = 0.0864-(10.194*10^(-4)*TempS)
+// The eqn. is solved simultaneously with the saturated humidity curve of the psychometric chart for the air water mixture.
+// From Fig. 12.12: (Pg 677)
+Ys = 0.0460;// [kg water/kg dry air]
+TempS = 39;// [OC]
+// At 39 OC
+lambdaS = 2409.7;// [kJ/kg]
+// From Eqn. 12.17:
+Nc = (((hc+Uk)*(TempG-TempS))+(hR*(TempR-TempS)))/(lambdaS*10^3);// [kg water evaporated/square m.s]
+printf("The Evaporation Rate: %e kg/s\n",Nc*A);
+
+// Solution (b)
+// When no radiation or conduction of heat through the solid occurs, the drying surface assumes wet bulb temparature of the air.
+// From Fig. 12.12 (Pg 677)
+TempS = 28.5;// [OC]
+Ys = 0.025;// [kg water/kg dry air]
+lambdaS = 2435;// [kJ/kg]
+// From Eqn. 12.17:
+Nc = hc*(TempG-TempS)/(lambdaS*10^3);// [kg/aquare m.s]
+printf("The Evaporation Rate: %e kg/s\n",Nc*A);
\ No newline at end of file |