From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 389/CH12/EX12.4/Example12_4.sce | 72 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 72 insertions(+) create mode 100755 389/CH12/EX12.4/Example12_4.sce (limited to '389/CH12/EX12.4') diff --git a/389/CH12/EX12.4/Example12_4.sce b/389/CH12/EX12.4/Example12_4.sce new file mode 100755 index 000000000..5fa7f283b --- /dev/null +++ b/389/CH12/EX12.4/Example12_4.sce @@ -0,0 +1,72 @@ +clear; +clc; + +// Illustration 12.4 +// Page: 676 + +printf('Illustration 12.4 - Page: 676\n\n'); + +// Solution (a) + +//***Data***// +// For rectangular pan: +l = 0.7;// [m] +b = 0.7;// [m] +zS = 0.025;// [m] +zM = 0.0008;// [m] +d = 0.1;// [m] +Y1 = 0.01;// [kg water/kg dry air] +TempG = 65;// [OC] +v = 3;// [m/s] +TempR = 120;// [OC] +//*************// + +// From Table 7.1: (Pg 234) +vH = (0.00283+(0.00456*Y1))*(TempG+273);// [cubic m/kg dry air] +Density_G = (1+Y1)/vH;// [kg/cubic m] +G = v*Density_G;// [kg/square m.s] +de = 4*d*l/(2*(l+d));// [m] +// From Eqn. 12.20: +hc = 5.90*G^0.71/de^0.29;// [W/square m.K] +// Assume: +e = 0.94; +// Estimate: +TempS = 38;// [OC] +// From Eqn. 12.14: +hR = e*5.729*10^(-8)*((273+TempR)^4-(273+TempS)^4)/((273+TempR)-(273+TempS)); +A = l*b;// [square m] +Am = A;// [square m] +As = 4*l*zS;// [square m] +Au = Am+As;// [square m] +// Thermal Coductivities: +kM = 45;// [W/m.K] +kS = 3.5;// [W/m.K] +// By Eqn. 12.16: +Uk = 1/(((1/hc)*(A/Au))+((zM/kM)*(A/Au))+((zS/kS)*(A/Am)));// [W/squre m.K] +// From Table 7.1: (Pg 234) +Cs = 1005+(1884*Y1);// [kJ/kg] +// At estimated 38 OC +lambdaS = 2411.4;// [kJ/kg] +// From Eqn. 12.18: +// (Ys-Y1)*lambdaS*10^3/Cs = ((1+(Uk/hc))*(TempG-Temps))+((hR/hC)*(TempR-TempS)) +// On Simplifying: +// Ys = 0.0864-(10.194*10^(-4)*TempS) +// The eqn. is solved simultaneously with the saturated humidity curve of the psychometric chart for the air water mixture. +// From Fig. 12.12: (Pg 677) +Ys = 0.0460;// [kg water/kg dry air] +TempS = 39;// [OC] +// At 39 OC +lambdaS = 2409.7;// [kJ/kg] +// From Eqn. 12.17: +Nc = (((hc+Uk)*(TempG-TempS))+(hR*(TempR-TempS)))/(lambdaS*10^3);// [kg water evaporated/square m.s] +printf("The Evaporation Rate: %e kg/s\n",Nc*A); + +// Solution (b) +// When no radiation or conduction of heat through the solid occurs, the drying surface assumes wet bulb temparature of the air. +// From Fig. 12.12 (Pg 677) +TempS = 28.5;// [OC] +Ys = 0.025;// [kg water/kg dry air] +lambdaS = 2435;// [kJ/kg] +// From Eqn. 12.17: +Nc = hc*(TempG-TempS)/(lambdaS*10^3);// [kg/aquare m.s] +printf("The Evaporation Rate: %e kg/s\n",Nc*A); \ No newline at end of file -- cgit