diff options
author | prashantsinalkar | 2018-02-03 11:01:52 +0530 |
---|---|---|
committer | prashantsinalkar | 2018-02-03 11:01:52 +0530 |
commit | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df (patch) | |
tree | 449d555969bfd7befe906877abab098c6e63a0e8 /3888/CH15 | |
parent | d1e070fe2d77c8e7f6ba4b0c57b1b42e26349059 (diff) | |
download | Scilab-TBC-Uploads-master.tar.gz Scilab-TBC-Uploads-master.tar.bz2 Scilab-TBC-Uploads-master.zip |
Diffstat (limited to '3888/CH15')
-rw-r--r-- | 3888/CH15/EX15.1/Ex15_1.JPG | bin | 0 -> 20120 bytes | |||
-rw-r--r-- | 3888/CH15/EX15.1/Ex15_1.sce | 36 | ||||
-rw-r--r-- | 3888/CH15/EX15.2/Ex15_2.JPG | bin | 0 -> 21387 bytes | |||
-rw-r--r-- | 3888/CH15/EX15.2/Ex15_2.sce | 32 | ||||
-rw-r--r-- | 3888/CH15/EX15.3/Ex15_3.JPG | bin | 0 -> 15895 bytes | |||
-rw-r--r-- | 3888/CH15/EX15.3/Ex15_3.sce | 37 | ||||
-rw-r--r-- | 3888/CH15/EX15.4/Ex15_4.JPG | bin | 0 -> 14031 bytes | |||
-rw-r--r-- | 3888/CH15/EX15.4/Ex15_4.sce | 23 | ||||
-rw-r--r-- | 3888/CH15/EX15.6/Ex15_6.JPG | bin | 0 -> 37256 bytes | |||
-rw-r--r-- | 3888/CH15/EX15.6/Ex15_6.sce | 29 |
10 files changed, 157 insertions, 0 deletions
diff --git a/3888/CH15/EX15.1/Ex15_1.JPG b/3888/CH15/EX15.1/Ex15_1.JPG Binary files differnew file mode 100644 index 000000000..135091d1c --- /dev/null +++ b/3888/CH15/EX15.1/Ex15_1.JPG diff --git a/3888/CH15/EX15.1/Ex15_1.sce b/3888/CH15/EX15.1/Ex15_1.sce new file mode 100644 index 000000000..1987a61ed --- /dev/null +++ b/3888/CH15/EX15.1/Ex15_1.sce @@ -0,0 +1,36 @@ +//Electric Power Generation, Transmission and Distribution by S.N.Singh
+//Publisher:PHI Learning Private Limited
+//Year: 2012 ; Edition - 2
+//Example 15.1
+//Scilab Version : 6.0.0 ; OS : Windows
+
+clc;
+clear;
+
+
+D=2; //Conductor diameter in cm
+l=40; //Length of lay in cm
+n=1; //Strand of layer one
+l1=sqrt(l^(2)+(%pi*(2*n+1)*D)^(2)); //Length is a strand of layer one in cm
+Tl1=l+6*l1; //Total length of strands in cm
+Tl2=7*l; //Total length of strands,Not spiraled in cm
+W=((Tl1-Tl2)/Tl2)*100; //Weight increased in percentage
+R1=1/l+(6/l1);
+R2=7/l;
+R=(R2/R1)*100; //Change in resistance in percentage
+R1=R-100; //Increased resistance in percentage
+
+
+printf("\nThe increase in weight due to spiraling of the conductor is %.2f percentage",W);
+printf("\nThe increase in resistance due to spiraling of the conductor is %.1f percentage",R1);
+
+
+
+
+
+
+
+
+
+
+
diff --git a/3888/CH15/EX15.2/Ex15_2.JPG b/3888/CH15/EX15.2/Ex15_2.JPG Binary files differnew file mode 100644 index 000000000..06497cca3 --- /dev/null +++ b/3888/CH15/EX15.2/Ex15_2.JPG diff --git a/3888/CH15/EX15.2/Ex15_2.sce b/3888/CH15/EX15.2/Ex15_2.sce new file mode 100644 index 000000000..c6e97c172 --- /dev/null +++ b/3888/CH15/EX15.2/Ex15_2.sce @@ -0,0 +1,32 @@ +//Electric Power Generation, Transmission and Distribution by S.N.Singh
+//Publisher:PHI Learning Private Limited
+//Year: 2012 ; Edition - 2
+//Example 15.2
+//Scilab Version : 6.0.0 ; OS : Windows
+
+clc;
+clear;
+
+
+r=1.5; //Conductor radius in cm
+R=3; //Lead sheath radius in cm
+V=33; //Operating voltage in kV
+E_max=V/(r*log(R/r)); //Maximum value of electric stress in kV/cm
+E_min=V/(R*log(R/r)); //Minimum value of electric stress in kV/cm
+r1=R/2.718; //Optimum value of conductor radius in cm
+E_max1=V/(r1*log(R/r1)); //Smallest value of Maximum stress in kV/cm
+
+printf("\nMaximum and Minimum values of electrical stress is %.2f kV/cm and %.2f kV/cm",E_max,E_min);
+printf("\nOptimal value of conductor radius is %.3f cm and the smallest value of the maximum stress is %.2f kV/cm",r1,E_max1);
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/3888/CH15/EX15.3/Ex15_3.JPG b/3888/CH15/EX15.3/Ex15_3.JPG Binary files differnew file mode 100644 index 000000000..1c488b5ee --- /dev/null +++ b/3888/CH15/EX15.3/Ex15_3.JPG diff --git a/3888/CH15/EX15.3/Ex15_3.sce b/3888/CH15/EX15.3/Ex15_3.sce new file mode 100644 index 000000000..be27a465c --- /dev/null +++ b/3888/CH15/EX15.3/Ex15_3.sce @@ -0,0 +1,37 @@ +//Electric Power Generation, Transmission and Distribution by S.N.Singh
+//Publisher:PHI Learning Private Limited
+//Year: 2012 ; Edition - 2
+//Example 15.3
+//Scilab Version : 6.0.0 ; OS : Windows
+
+clc;
+clear;
+
+
+V=11; //Supply voltage in kV
+die_strength=50; //Dielectric strength of conductor in kV/cm
+Sf=2; //Safety factor
+e=2.718; //Constant value
+E_max=die_strength/Sf; //Maximum stress in kV/cm
+R=11*e/25; //Outer insulation radius in cm
+r=R/e; //Radius of the conductor in cm
+D=2*r; //Diameter of the conductor in cm
+
+printf("\nThe radius and diameter of a single conductor cable is %.2f cm and %.2f cm",r,D);
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/3888/CH15/EX15.4/Ex15_4.JPG b/3888/CH15/EX15.4/Ex15_4.JPG Binary files differnew file mode 100644 index 000000000..9a949882d --- /dev/null +++ b/3888/CH15/EX15.4/Ex15_4.JPG diff --git a/3888/CH15/EX15.4/Ex15_4.sce b/3888/CH15/EX15.4/Ex15_4.sce new file mode 100644 index 000000000..f8fd169c3 --- /dev/null +++ b/3888/CH15/EX15.4/Ex15_4.sce @@ -0,0 +1,23 @@ +//Electric Power Generation, Transmission and Distribution by S.N.Singh
+//Publisher:PHI Learning Private Limited
+//Year: 2012 ; Edition - 2
+//Example 15.4
+//Scilab Version : 6.0.0 ; OS : Windows
+
+clc;
+clear;
+
+
+V=110; //Line voltage in kV
+r=1; //Conductor radius in cm
+p1=5; //Permittivitie of the material A
+p2=4; //Permittivitie of the material B
+p3=2; //Permittivitie of the material C
+G1=50; //Permissible stress of the material A in kV/cm
+G2=40; //Permissible stress of the material B in kV/cm
+G3=30; //Permissible stress of the material C in kV/cm
+r1=p1*r*G1/(p2*G2); //Outer radius of the material A in cm
+r2=p2*r1*G2/(p3*G3); //Outer radius of the material B in cm
+R=exp(1.638); //Outer radius of the material C in cm(solving the eqn 15.24 in the book )
+
+printf("\nThe minimum internal sheath radius of the cable is %.2f cm",R)
diff --git a/3888/CH15/EX15.6/Ex15_6.JPG b/3888/CH15/EX15.6/Ex15_6.JPG Binary files differnew file mode 100644 index 000000000..d9b52d0ca --- /dev/null +++ b/3888/CH15/EX15.6/Ex15_6.JPG diff --git a/3888/CH15/EX15.6/Ex15_6.sce b/3888/CH15/EX15.6/Ex15_6.sce new file mode 100644 index 000000000..79aae40ec --- /dev/null +++ b/3888/CH15/EX15.6/Ex15_6.sce @@ -0,0 +1,29 @@ +//Electric Power Generation, Transmission and Distribution by S.N.Singh
+//Publisher:PHI Learning Private Limited
+//Year: 2012 ; Edition - 2
+//Example 15.6
+//Scilab Version : 6.0.0 ; OS : Windows
+
+clc;
+clear;
+
+
+V=11; //Supply voltage in kV
+f=50; //Supply frequency in Hz
+C=0.5; //Capacitance between two conductors in microFarad/km
+Cx=0.75; //Capacitance between sheath and three conductors in microFarad/km
+Cy=0.50; //Capacitance between sheath and remaining conductor in microFarad/km
+C1=Cx/3; //Capacitance between conductor and sheath in microFarad/km
+C2=(Cy-C1)/2; //Capacitance between phases in microFarad/km
+C0=C1+3*C2; //Effective capacitance in microFarad/km
+C3=C0/2; //Capacitance between two conductors connecting a third conductor to the sheath in microFarad/km
+I=(V*10^(3)/sqrt(3))*2*%pi*f*C0*10^(-6); //Charging current in A/ph/km
+
+
+printf("\nThe capacitance between phases is %.3f microFarad/km",C2);
+printf("\nThe capacitance between conductor and sheath is %.2f microFarad/km",C1);
+printf("\nThe effective per phase capacitance is %.3f microFarad/km",C0);
+printf("\nThe capacitance between two conductors connecting a third conductor to the sheath is %.4f microFarad/km",C3);
+printf("\nThe charging current per phase per km is %.2f A",I);
+
+
|