From 7bc77cb1ed33745c720952c92b3b2747c5cbf2df Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Sat, 3 Feb 2018 11:01:52 +0530 Subject: Added new code --- 3888/CH15/EX15.1/Ex15_1.JPG | Bin 0 -> 20120 bytes 3888/CH15/EX15.1/Ex15_1.sce | 36 ++++++++++++++++++++++++++++++++++++ 3888/CH15/EX15.2/Ex15_2.JPG | Bin 0 -> 21387 bytes 3888/CH15/EX15.2/Ex15_2.sce | 32 ++++++++++++++++++++++++++++++++ 3888/CH15/EX15.3/Ex15_3.JPG | Bin 0 -> 15895 bytes 3888/CH15/EX15.3/Ex15_3.sce | 37 +++++++++++++++++++++++++++++++++++++ 3888/CH15/EX15.4/Ex15_4.JPG | Bin 0 -> 14031 bytes 3888/CH15/EX15.4/Ex15_4.sce | 23 +++++++++++++++++++++++ 3888/CH15/EX15.6/Ex15_6.JPG | Bin 0 -> 37256 bytes 3888/CH15/EX15.6/Ex15_6.sce | 29 +++++++++++++++++++++++++++++ 10 files changed, 157 insertions(+) create mode 100644 3888/CH15/EX15.1/Ex15_1.JPG create mode 100644 3888/CH15/EX15.1/Ex15_1.sce create mode 100644 3888/CH15/EX15.2/Ex15_2.JPG create mode 100644 3888/CH15/EX15.2/Ex15_2.sce create mode 100644 3888/CH15/EX15.3/Ex15_3.JPG create mode 100644 3888/CH15/EX15.3/Ex15_3.sce create mode 100644 3888/CH15/EX15.4/Ex15_4.JPG create mode 100644 3888/CH15/EX15.4/Ex15_4.sce create mode 100644 3888/CH15/EX15.6/Ex15_6.JPG create mode 100644 3888/CH15/EX15.6/Ex15_6.sce (limited to '3888/CH15') diff --git a/3888/CH15/EX15.1/Ex15_1.JPG b/3888/CH15/EX15.1/Ex15_1.JPG new file mode 100644 index 000000000..135091d1c Binary files /dev/null and b/3888/CH15/EX15.1/Ex15_1.JPG differ diff --git a/3888/CH15/EX15.1/Ex15_1.sce b/3888/CH15/EX15.1/Ex15_1.sce new file mode 100644 index 000000000..1987a61ed --- /dev/null +++ b/3888/CH15/EX15.1/Ex15_1.sce @@ -0,0 +1,36 @@ +//Electric Power Generation, Transmission and Distribution by S.N.Singh +//Publisher:PHI Learning Private Limited +//Year: 2012 ; Edition - 2 +//Example 15.1 +//Scilab Version : 6.0.0 ; OS : Windows + +clc; +clear; + + +D=2; //Conductor diameter in cm +l=40; //Length of lay in cm +n=1; //Strand of layer one +l1=sqrt(l^(2)+(%pi*(2*n+1)*D)^(2)); //Length is a strand of layer one in cm +Tl1=l+6*l1; //Total length of strands in cm +Tl2=7*l; //Total length of strands,Not spiraled in cm +W=((Tl1-Tl2)/Tl2)*100; //Weight increased in percentage +R1=1/l+(6/l1); +R2=7/l; +R=(R2/R1)*100; //Change in resistance in percentage +R1=R-100; //Increased resistance in percentage + + +printf("\nThe increase in weight due to spiraling of the conductor is %.2f percentage",W); +printf("\nThe increase in resistance due to spiraling of the conductor is %.1f percentage",R1); + + + + + + + + + + + diff --git a/3888/CH15/EX15.2/Ex15_2.JPG b/3888/CH15/EX15.2/Ex15_2.JPG new file mode 100644 index 000000000..06497cca3 Binary files /dev/null and b/3888/CH15/EX15.2/Ex15_2.JPG differ diff --git a/3888/CH15/EX15.2/Ex15_2.sce b/3888/CH15/EX15.2/Ex15_2.sce new file mode 100644 index 000000000..c6e97c172 --- /dev/null +++ b/3888/CH15/EX15.2/Ex15_2.sce @@ -0,0 +1,32 @@ +//Electric Power Generation, Transmission and Distribution by S.N.Singh +//Publisher:PHI Learning Private Limited +//Year: 2012 ; Edition - 2 +//Example 15.2 +//Scilab Version : 6.0.0 ; OS : Windows + +clc; +clear; + + +r=1.5; //Conductor radius in cm +R=3; //Lead sheath radius in cm +V=33; //Operating voltage in kV +E_max=V/(r*log(R/r)); //Maximum value of electric stress in kV/cm +E_min=V/(R*log(R/r)); //Minimum value of electric stress in kV/cm +r1=R/2.718; //Optimum value of conductor radius in cm +E_max1=V/(r1*log(R/r1)); //Smallest value of Maximum stress in kV/cm + +printf("\nMaximum and Minimum values of electrical stress is %.2f kV/cm and %.2f kV/cm",E_max,E_min); +printf("\nOptimal value of conductor radius is %.3f cm and the smallest value of the maximum stress is %.2f kV/cm",r1,E_max1); + + + + + + + + + + + + diff --git a/3888/CH15/EX15.3/Ex15_3.JPG b/3888/CH15/EX15.3/Ex15_3.JPG new file mode 100644 index 000000000..1c488b5ee Binary files /dev/null and b/3888/CH15/EX15.3/Ex15_3.JPG differ diff --git a/3888/CH15/EX15.3/Ex15_3.sce b/3888/CH15/EX15.3/Ex15_3.sce new file mode 100644 index 000000000..be27a465c --- /dev/null +++ b/3888/CH15/EX15.3/Ex15_3.sce @@ -0,0 +1,37 @@ +//Electric Power Generation, Transmission and Distribution by S.N.Singh +//Publisher:PHI Learning Private Limited +//Year: 2012 ; Edition - 2 +//Example 15.3 +//Scilab Version : 6.0.0 ; OS : Windows + +clc; +clear; + + +V=11; //Supply voltage in kV +die_strength=50; //Dielectric strength of conductor in kV/cm +Sf=2; //Safety factor +e=2.718; //Constant value +E_max=die_strength/Sf; //Maximum stress in kV/cm +R=11*e/25; //Outer insulation radius in cm +r=R/e; //Radius of the conductor in cm +D=2*r; //Diameter of the conductor in cm + +printf("\nThe radius and diameter of a single conductor cable is %.2f cm and %.2f cm",r,D); + + + + + + + + + + + + + + + + + diff --git a/3888/CH15/EX15.4/Ex15_4.JPG b/3888/CH15/EX15.4/Ex15_4.JPG new file mode 100644 index 000000000..9a949882d Binary files /dev/null and b/3888/CH15/EX15.4/Ex15_4.JPG differ diff --git a/3888/CH15/EX15.4/Ex15_4.sce b/3888/CH15/EX15.4/Ex15_4.sce new file mode 100644 index 000000000..f8fd169c3 --- /dev/null +++ b/3888/CH15/EX15.4/Ex15_4.sce @@ -0,0 +1,23 @@ +//Electric Power Generation, Transmission and Distribution by S.N.Singh +//Publisher:PHI Learning Private Limited +//Year: 2012 ; Edition - 2 +//Example 15.4 +//Scilab Version : 6.0.0 ; OS : Windows + +clc; +clear; + + +V=110; //Line voltage in kV +r=1; //Conductor radius in cm +p1=5; //Permittivitie of the material A +p2=4; //Permittivitie of the material B +p3=2; //Permittivitie of the material C +G1=50; //Permissible stress of the material A in kV/cm +G2=40; //Permissible stress of the material B in kV/cm +G3=30; //Permissible stress of the material C in kV/cm +r1=p1*r*G1/(p2*G2); //Outer radius of the material A in cm +r2=p2*r1*G2/(p3*G3); //Outer radius of the material B in cm +R=exp(1.638); //Outer radius of the material C in cm(solving the eqn 15.24 in the book ) + +printf("\nThe minimum internal sheath radius of the cable is %.2f cm",R) diff --git a/3888/CH15/EX15.6/Ex15_6.JPG b/3888/CH15/EX15.6/Ex15_6.JPG new file mode 100644 index 000000000..d9b52d0ca Binary files /dev/null and b/3888/CH15/EX15.6/Ex15_6.JPG differ diff --git a/3888/CH15/EX15.6/Ex15_6.sce b/3888/CH15/EX15.6/Ex15_6.sce new file mode 100644 index 000000000..79aae40ec --- /dev/null +++ b/3888/CH15/EX15.6/Ex15_6.sce @@ -0,0 +1,29 @@ +//Electric Power Generation, Transmission and Distribution by S.N.Singh +//Publisher:PHI Learning Private Limited +//Year: 2012 ; Edition - 2 +//Example 15.6 +//Scilab Version : 6.0.0 ; OS : Windows + +clc; +clear; + + +V=11; //Supply voltage in kV +f=50; //Supply frequency in Hz +C=0.5; //Capacitance between two conductors in microFarad/km +Cx=0.75; //Capacitance between sheath and three conductors in microFarad/km +Cy=0.50; //Capacitance between sheath and remaining conductor in microFarad/km +C1=Cx/3; //Capacitance between conductor and sheath in microFarad/km +C2=(Cy-C1)/2; //Capacitance between phases in microFarad/km +C0=C1+3*C2; //Effective capacitance in microFarad/km +C3=C0/2; //Capacitance between two conductors connecting a third conductor to the sheath in microFarad/km +I=(V*10^(3)/sqrt(3))*2*%pi*f*C0*10^(-6); //Charging current in A/ph/km + + +printf("\nThe capacitance between phases is %.3f microFarad/km",C2); +printf("\nThe capacitance between conductor and sheath is %.2f microFarad/km",C1); +printf("\nThe effective per phase capacitance is %.3f microFarad/km",C0); +printf("\nThe capacitance between two conductors connecting a third conductor to the sheath is %.4f microFarad/km",C3); +printf("\nThe charging current per phase per km is %.2f A",I); + + -- cgit