diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3878 | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3878')
39 files changed, 638 insertions, 0 deletions
diff --git a/3878/CH1/EX1.1/Ex1_1.sce b/3878/CH1/EX1.1/Ex1_1.sce new file mode 100644 index 000000000..40770a487 --- /dev/null +++ b/3878/CH1/EX1.1/Ex1_1.sce @@ -0,0 +1,8 @@ +clear +// Variable Declaration +T_0=-5+273// K +T_1=35+273// K + +// Calculation +COP=(T_0)/(T_1-T_0)// Coefficient of performance +printf("\n Carnot COP= %0.2f error",COP) diff --git a/3878/CH1/EX1.2/Ex1_2.sce b/3878/CH1/EX1.2/Ex1_2.sce new file mode 100644 index 000000000..1eddb009a --- /dev/null +++ b/3878/CH1/EX1.2/Ex1_2.sce @@ -0,0 +1,9 @@ +clear +// Variable Declaration +T_f=80// Final Temperature in °C +T_i=0// Initial Temperature in °C +h_f=334.91// The specific enthalpy of water in kJ/kg + +// Calculation +C=h_f/(T_f-T_i)// The average specific heat capacity in kJ/(kg K) +printf("\n The average specific heat capacity is %0.3f kJ/(kg K)", C) diff --git a/3878/CH1/EX1.3/Ex1_3.sce b/3878/CH1/EX1.3/Ex1_3.sce new file mode 100644 index 000000000..19b1d641d --- /dev/null +++ b/3878/CH1/EX1.3/Ex1_3.sce @@ -0,0 +1,12 @@ +clear +// Variable Declaration +P=1.013// Pressure in bar +h_fg=2257// The latent heat of boiling water in kJ/kg +T_b=100 // The boiling point temperature of water in °C +m=1 // The mass of water in kg +T_i=30 // The initial temperature of water in °C +C_p=4.19// The specific heat of water in kJ/kg°C + +// Calculation +Q=m*((C_p*(T_b-T_i))+h_fg)// The quantity of heat added in kJ +printf("\n The quantity of heat added is %0.1f kJ",Q) diff --git a/3878/CH1/EX1.4/Ex1_4.sce b/3878/CH1/EX1.4/Ex1_4.sce new file mode 100644 index 000000000..f918a9ba0 --- /dev/null +++ b/3878/CH1/EX1.4/Ex1_4.sce @@ -0,0 +1,8 @@ +clear +// Variable Declaration +V_1byV_2=2// Volumetric ratio (given) +p_1=1.01325// The atmospheric pressure in bar(101325 kPa) + +// Calculation +p_2=V_1byV_2*p_1// The new pressure in bar +printf("\n The new pressure,p_2= %0.4f bar(abs.)",p_2) diff --git a/3878/CH1/EX1.5/Ex1_5.sce b/3878/CH1/EX1.5/Ex1_5.sce new file mode 100644 index 000000000..aa35b2fa3 --- /dev/null +++ b/3878/CH1/EX1.5/Ex1_5.sce @@ -0,0 +1,9 @@ +clear +// Variable Declaration +V_1=0.75// The initial volume in m**3 +T_1=273+20 // The initial temperature of water in K +T_2=273+90 // The final temperature of water in K + +// Calculation +V_2=V_1*(T_2/T_1)// The final volume in m**3 +printf("\n The final volume,V_2= %0.2f m**3",V_2) diff --git a/3878/CH1/EX1.6/Ex1_6.sce b/3878/CH1/EX1.6/Ex1_6.sce new file mode 100644 index 000000000..985f7a982 --- /dev/null +++ b/3878/CH1/EX1.6/Ex1_6.sce @@ -0,0 +1,10 @@ +clear +// Variable Declaration +R=287// The specific gas constant in J/(kg K) +m=5 // The mass of ideal gas in kg +p=101.325// The atmospheric pressure in kPa +T=273+25// The temperature of an ideal gas in K + +// Calculation +V=(m*R*T)/(p*1000)// The volume of an ideal gas in m**3 +printf("\n The volume of an ideal gas is %0.2f m**3",V) diff --git a/3878/CH1/EX1.7/Ex1_7.sce b/3878/CH1/EX1.7/Ex1_7.sce new file mode 100644 index 000000000..16dcbdc9c --- /dev/null +++ b/3878/CH1/EX1.7/Ex1_7.sce @@ -0,0 +1,16 @@ +clear +// Variable Declaration +m_N=0.906// The mass of nitrogen in a cubic metre of air in kg +R_N=297// The specific gas constant of nitrogen in J/kg K +m_O=0.278// The mass of oxygen in a cubic metre of air in kg +R_O=260// The specific gas constant of oxygen in J/kg K +m_A=0.015// The mass of argon in a cubic metre of air in kg +R_A=208// The specific gas constant of argon in J/kg K +T=273.15+20// The temperature of air in K + +// Calculation +p_N=m_N*R_N*T// The pressure of nitrogen in Pa +p_O=m_O*R_O*T// The pressure of oxygen in Pa +p_A=m_A*R_A*T// The pressure of argon in Pa +p_t=p_N+p_O+p_A// The total pressure in Pa +printf("\n The total pressure is %0.0f Pa %0.5f bar",p_t,p_t/10**5) diff --git a/3878/CH1/EX1.8/Ex1_8.sce b/3878/CH1/EX1.8/Ex1_8.sce new file mode 100644 index 000000000..d7c640331 --- /dev/null +++ b/3878/CH1/EX1.8/Ex1_8.sce @@ -0,0 +1,11 @@ +clear +// Variable declartion +t=225// The wall thickness in mm +k=0.60// Thermal conductivity in W/(m K) +L=10// Length in m +h=3// Height in m +delT=25// The temperature difference between the inside and outside faces in K + +// Calculation +Q_t=(L*h*k*delT*1000)/(t)// The rate of heat conduction in W +printf("\n The rate of heat conduction,Q_t= %0.0f ",Q_t) diff --git a/3878/CH10/EX10.1/Ex10_1.sce b/3878/CH10/EX10.1/Ex10_1.sce new file mode 100644 index 000000000..b01011edf --- /dev/null +++ b/3878/CH10/EX10.1/Ex10_1.sce @@ -0,0 +1,19 @@ +clear +// +// Variable declaration +w_a=8.4// The mass flow rate of air in kg/s +R=3.8// Rating of an air-cooling evaporator in kW/k +T_a=-15// Entering air temperature in °C +T_r=-21// Refrigerant temperature in °C + +// Calculation +deltaT=(T_a+273)-(T_r+273)// Rating LMTD in K +E=R*deltaT// Rated duty in kW +C_pair=1.006// kJ/kg.K +T_ar=E/(C_pair*w_a)// Reduction in air temperature in °C +T_al=T_a-T_ar// Air leaving temperature in °C +deltaT_min=(T_al+273)-(T_r+273)// K +deltaT_max=deltaT// K +LMTD=(deltaT_max-deltaT_min)/(log(deltaT_max/deltaT_min)) +printf("\n \nLMTD=%1.1f K",LMTD) + diff --git a/3878/CH10/EX10.3/Ex10_3.sce b/3878/CH10/EX10.3/Ex10_3.sce new file mode 100644 index 000000000..97300c638 --- /dev/null +++ b/3878/CH10/EX10.3/Ex10_3.sce @@ -0,0 +1,42 @@ +clear +// Variable declaration +P_c=10// kW +T_e=-35// Evaporating temperature in °C +T_c=40// Condensing temperature in °C +T_s=5// Subcooling temperature in K +T_cin=20// Compressor inlet temperature in °C +T_cout=0// Zero subcooling temperature in °C + +// Calculation +//(a) +v_s1=146.46// m**3/kg +v_s2=135.25// m**3/kg +v_sr=v_s1/v_s2// The ratio of specific volume +// Assuming the compressor pumps the same volume flowrate: +m_1bym_2=v_sr// Flow rate ratio +printf("\n \nFlow rate ratio,m_2/m_1=%1.3f",m_1bym_2) + +//(b) +h_1=392.51// Suction gas enthalpy at 20°C in kJ/kg +h_2=375.19// Suction gas enthalpy at 0°C in kJ/kg +h_f=257.77// Liquid enthalpy at the expansion valve inlet at 40°C in kJ/kg +dh_1=h_1-h_f// Evaporator enthalpy difference at rating condition in kJ/kg +dh_2=h_2-h_f// Evaporator enthalpy difference with 0°C suction in kJ/kg +dh_r=dh_2/dh_1// Enthalpy difference ratio +C_c=P_c*m_1bym_2*dh_r// Compressor capacity corrected for suction temperature change in kW +printf("\n \nCompressor capacity corrected for suction temperature change=%1.2f kW",C_c) + +//(c) +h_f=249.67// Liquid enthalpy at the expansion valve inlet at 35°C in kJ/kg +dh=h_2-h_f// Evaporator enthalpy difference at application condition in kJ/kg +dh_r=dh/dh_1// Enthalpy difference ratio +C_cact=P_c*m_1bym_2*dh_r// Actual compressor capacity in kW +printf("\n \nActual compressor capacity=%2.2f kW",C_cact) + +//(d) +h_g=350.13// Suction gas enthalpy at evaporator outlet, -30°C (5 K superheat) in kJ/kg +dh_e=h_g-h_f// Useful evaporator enthalpy difference in kJ/kg +dh_r=dh_e/dh_1// Enthalpy difference ratio +C_eact=P_c*m_1bym_2*dh_r// Actual evaporator capacity in kW +printf("\n \nActual evaporator capacity=%1.2f kW",C_eact) + diff --git a/3878/CH10/EX10.4/Ex10_4.sce b/3878/CH10/EX10.4/Ex10_4.sce new file mode 100644 index 000000000..f0771bfd4 --- /dev/null +++ b/3878/CH10/EX10.4/Ex10_4.sce @@ -0,0 +1,20 @@ +clear +// Variable declaration +T_c1=30// Condensing temperature for larger condenser in °C +T_c2=35// Condensing temperature for smaller condenser in °C +Rc_1=242// Rated capacity of plant for larger condenser in kW +Rc_2=218// Rated capacity of plant for smaller condenser in kW +Rt_1=1802// Running time (kW-h) +Rt_2=2000// Running time (kW-h) +Ci_1=60// Compressor electrical input power in kW +Ci_2=70// Compressor electrical input power in kW +Ec_1=11533// Electricity cost per year (£) +Ec_2=14933// Electricity cost per year (£) +C_1=14000// Cost of the larger condenser in £ +C_2=8500// Cost of the smaller condenser in £ + +// Calculation +Es=Ec_2-Ec_1// Cost of the larger condenser in £ +Bet=(C_1-C_2)*Es**-1// Break-even time in years +printf("\n Break-even time=%1.1f years",Bet) + diff --git a/3878/CH11/EX11.2/Ex11_2.sce b/3878/CH11/EX11.2/Ex11_2.sce new file mode 100644 index 000000000..208ab15d3 --- /dev/null +++ b/3878/CH11/EX11.2/Ex11_2.sce @@ -0,0 +1,12 @@ +clear +// Variable declaration +T_a=20// The ambient temperature in °C +m_p=10// g + +// Calculation +P_v=10.34// Vapour pressure of R407C at 20°C in bar abs +P_o=11.70// Observed pressure in bar abs +P_p=P_o-P_v// Partial pressure of non-condensible gas in bar abs +M_m=(0.23*52)+(0.25*120)+(0.52*102)// Molecular mass +printf("\n \nPartial pressure of non-condensible gas=%1.2f bar abs \n Molecular mass=%2.0f",P_p,M_m) + diff --git a/3878/CH15/EX15.1/Ex15_1.sce b/3878/CH15/EX15.1/Ex15_1.sce new file mode 100644 index 000000000..14e93d54a --- /dev/null +++ b/3878/CH15/EX15.1/Ex15_1.sce @@ -0,0 +1,15 @@ +clear +// Variable declaration +n=2// The number of two pellet truck doors +m_n=300//The number of traffic movements per day +t=30// seconds + +// Calculation +T=n*m_n*t// The time for the door openings seconds per day +A=2.2*3.2// The cross sectional area in m**2 +v=1// m/s +I=A*T*v// The air infiltration in m**3/d +V=50*70*10// The store volume in m**3 +R=I/V// The rate of air change per day +printf("\n \nThe store volume is %5.0f m**3. \nThe rate of air change is %1.1f per day.",V,R) + diff --git a/3878/CH15/EX15.2/Ex15_2.sce b/3878/CH15/EX15.2/Ex15_2.sce new file mode 100644 index 000000000..17709776e --- /dev/null +++ b/3878/CH15/EX15.2/Ex15_2.sce @@ -0,0 +1,24 @@ +clear +// Variable declaration +T=5// The dry bulb temperature in +R=3.6// The rate of air change per day +V=35000// The store volume in m**3 +v_spa=0.8// The specific volume in m**3/kg +q=600// m**3/h +n=2// The number of two pellet truck doors +h_1=15.9// kJ/kg +h_2=-24.3// kJ/kg +T_1=20// °C +T_2=-25// °C +t=24// Time duration for one day in hours +t_s=24*60*60// Time duration for one day in seconds + +// Calculation +R_woh=V*R/v_spa// The rate of air change without dehumidification in kg/day +Q_woh=R_woh*(h_1-h_2)/t_s// The cooling load without dehumidification in kW +R_wh=q*n*t/v_spa// The rate of air change with dehumidification in kg/day +Q_wh=R_wh*(T_1-T_2)/t_s// The cooling load with dehumidification in kW +printf("\n \nThe rate of air change without dehumidification is %5.0f kg/day. \nThe cooling load without dehumidification %2.1f kW(calculation error).",R_woh,Q_woh) + +printf("\n \nThe rate of air change with dehumidification is %5.0f kg/day. \nThe cooling load with dehumidification %2.2f kW.",R_wh,Q_wh) + diff --git a/3878/CH18/EX18.1/Ex18_1.sce b/3878/CH18/EX18.1/Ex18_1.sce new file mode 100644 index 000000000..ef560aec2 --- /dev/null +++ b/3878/CH18/EX18.1/Ex18_1.sce @@ -0,0 +1,13 @@ +clear +// Variable declaration +T_1=15// °C +T_2=0// °C +C_pw=4.187// The specific heat capacity of water in kJ/kg.k +m=20*10**3// The mass flow rate of water in kg/day +h_l=334// kJ/kg +t=24*3600// The time available for cooling in s + +// Calculation +Q=(m*((C_pw*T_1)+334))/t// The cooling load in kW +printf("\n The cooling load,Q=%2.0f kW.",Q) + diff --git a/3878/CH18/EX18.2/Ex18_2.sce b/3878/CH18/EX18.2/Ex18_2.sce new file mode 100644 index 000000000..0f0408181 --- /dev/null +++ b/3878/CH18/EX18.2/Ex18_2.sce @@ -0,0 +1,12 @@ +clear +// Variable declaration +T_1=22// °C +T_2=1// °C +C_p=3.1// The specific heat capacity of meat in kJ/kg.K +m=8*10**3// The mass of meat in kg +t=14*3600// The time available for cooling in s + +// Calculation +Q=(m*((C_p*(T_1-T_2))))/t// The cooling load in kW +printf("\n The cooling load,Q=%2.1f kW.",Q) + diff --git a/3878/CH18/EX18.6/Ex18_6.sce b/3878/CH18/EX18.6/Ex18_6.sce new file mode 100644 index 000000000..9b1a3898d --- /dev/null +++ b/3878/CH18/EX18.6/Ex18_6.sce @@ -0,0 +1,27 @@ +clear +// Variable declaration +m=1000// The capacity of meat store in tonnes +m_l=50// The amount of meat leaving the store in t/day +m_s=300// The amount of meat arrives from the ships in t/day +t=24*3600// Time in s + +// Calculation +// Case(1) +m=90// t/day +T_1=2// °C +T_2=-12// °C +C=3.2// Specific heat capacity in kJ/(kg.K) +T_fp=-1// Freezing point of meat in °C +h_fg=225// Latent heat of freezing in kJ/kg +C_fm=1.63// Specific heat of frozen meat in kJ/(kg.K) +Q_f=(m*1000*((C*3)+h_fg+(C_fm*11)))/(t)// Cooling load in kW +printf("\n \nCase(1):Cooling load,Q_f=%3.0f kW",Q_f) + +// Case(2) +Q_f=(m_s*10**3*(C_fm*T_1))/t// Cooling load in kW +printf("\n \nCase(2):Cooling load,Q_f=%2.0f kW",Q_f) + +// Case(3) +Q_f=(m_l*10**3*((C*3)+h_fg+(C_fm*11)))/t// Cooling load in kW +printf("\n \nCase(3):Cooling load,Q_f=%3.0f kW",Q_f) + diff --git a/3878/CH2/EX2.1/Ex2_1.sce b/3878/CH2/EX2.1/Ex2_1.sce new file mode 100644 index 000000000..a8796f8d4 --- /dev/null +++ b/3878/CH2/EX2.1/Ex2_1.sce @@ -0,0 +1,22 @@ +clear +// Variable Declaration +T_l=0+273// The required cooling temperature of room in °C +T_h=30+273// The temperature of outside air in °C +T_e=-5+273// The evaporating temperature of Refrigeration cycle in °C +T_c=35+273// The Condensing temperature of Refrigeration cycle in °C +deltaT=5// The temperature difference at the evaporator and the condenser in K +h_i=249.7// Enthalpy of fl uid entering evaporator in kJ/kg +h_e=395.6// Enthalpy of saturated vapour leaving evaporator in kJ/kg +h_sup=422.5// Enthalpy of superheated vapour leaving compressor in kJ/kg + +// Calculation +CarnotCOP=T_l/(T_h-T_l) +printf("\n The Carnot COP for the process is %0.1f ",CarnotCOP) +// For Refrigeration cycle, +CarnotCOP=T_e/(T_c-T_e) +printf("\n The Carnot COP for the refrigeration cycle is %0.1f ",CarnotCOP) +// For R134a, +Q=h_e-h_i// Cooling effect in kJ/kg +W_in=h_sup-h_e// Compressor energy input in kJ/kg +COP=Q/W_in// Ideal R134a vapour compression cycle COP +printf("\n The Carnot COP for the ideal vapour compression cycle is %0.1f ",COP) diff --git a/3878/CH21/EX21.1/Ex21_1.sce b/3878/CH21/EX21.1/Ex21_1.sce new file mode 100644 index 000000000..591c97dbd --- /dev/null +++ b/3878/CH21/EX21.1/Ex21_1.sce @@ -0,0 +1,15 @@ +clear +// Variable declaration +m_a=68// The mass flow rate of air in kg/s +T_1=16// The temperature of air at inlet in °C +T_2=34// The temperature of air at outlet in °C +T_win=85// The temperature of hot water at inlet in °C +T_wout=74// The temperature of hot water at outlet in °C +C_pa=1.02// The specific heat capacity of air in kJ/kg.K +C_pw=4.187// The specific heat capacity of water in kJ/kg.K + +// Calculation +Q=m_a*C_pa*(T_2-T_1)// Heat input in kW +m_w=Q/(C_pw*(T_win-T_wout))// The mass flow rate of water in kg/s +printf("\n \nHeat input,Q=%4.0f kW \nThe mass flow rate of water,Q=%2.0f kg/s",Q,m_w) + diff --git a/3878/CH21/EX21.10/Ex21_10.sce b/3878/CH21/EX21.10/Ex21_10.sce new file mode 100644 index 000000000..12809173a --- /dev/null +++ b/3878/CH21/EX21.10/Ex21_10.sce @@ -0,0 +1,13 @@ +clear +// Variable declaration +T_d=23// The dry bulb temperature in °C +H=40// % saturation +SH=36// The sensible heat to be removed in kW +LH=14// The latent heat in kW + +// Calculation +// Plotting on the chart ( Figure 21.10 ) from 23°C/40% and using the ratio +R=SH/(SH+LH) +printf("\n The process line meets the saturation curve at - 1°C, giving the ADP (which meansthat condensate will collect on the fins as frost).") + +printf("\n Taking the condition at 5°C dry bulb and measuring the proportion along theprocess line gives a coil contact factor of 75") diff --git a/3878/CH21/EX21.2/Ex21_2.sce b/3878/CH21/EX21.2/Ex21_2.sce new file mode 100644 index 000000000..67587f834 --- /dev/null +++ b/3878/CH21/EX21.2/Ex21_2.sce @@ -0,0 +1,11 @@ +clear +// Variable declaration +Q=500// The amount of heat required for the building in kW +T=19// The temperature at which air enters the heater coil in °C +m_a=68// // The mass flow rate of air in kg/s +C_pa=1.02// The specific heat capacity of air in kJ/kg.K + +// Calculation +t=T+(Q/(m_a*C_pa))// The air supply temperature in °C +printf("\n The air-supply temperature,t=%2.1f°C",t) + diff --git a/3878/CH21/EX21.3/Ex21_3.sce b/3878/CH21/EX21.3/Ex21_3.sce new file mode 100644 index 000000000..af36e332b --- /dev/null +++ b/3878/CH21/EX21.3/Ex21_3.sce @@ -0,0 +1,24 @@ +clear +// Variable declaration +T_ra=21// The temperature of the returning air +H=50// % saturation +T_d=28// The dry bulb temperature in °C +T_w=20// The wet bulb temperature in °C +m_a=20// The mass flow rate of returning air in kg/s +m_b=3// The mass flow rate of outside air in kg/s +x_ra=0.0079// The moisture content in kg/kg +x_oa=0.0111// The moisture content in kg/kg +h_a=41.8// The enthalpy in kJ/kg +h_b=56.6// The enthalpy in kJ/kg + +// Calculation +// Method (b) +t_c=((T_ra*m_a)+(T_d*m_b))/(m_a+m_b)// °C +g_c=((x_ra*m_a)+(x_oa*m_b))/(m_a+m_b)// kg/kg +h_c=((h_a*m_a)+(h_a*m_b))/(m_a+m_b)// kJ/kg dry air +printf("\n \nThe condition of the mixture,t_c=%2.1f°C",t_c) + +printf("\n \n g_c=%0.4f kg/kg",g_c) + +printf("\n \n h_c=%2.1f kJ/kg dry air",h_c) + diff --git a/3878/CH21/EX21.6/Ex21_6.sce b/3878/CH21/EX21.6/Ex21_6.sce new file mode 100644 index 000000000..ca8b71e25 --- /dev/null +++ b/3878/CH21/EX21.6/Ex21_6.sce @@ -0,0 +1,18 @@ +clear +// Variable declaration +T_d1=23// The dry bulb temperature in °C +T_w=5// The temperature of water in °C +H=50// % saturation +n_s=0.7// Saturation efficiency in % +x_a=0.0089// Moisture content in kg/kg +x_b=0.0054// Moisture content in kg/kg + +// Calculation +//(a) +printf("\n (a) By construction on the chart ( Figure 21.7 ), the final condition is 10.4°C dry bulb,82 percents saturation") + +//(b) +T_d2=T_d1-(n_s*(T_d1-T_w))// The final dry bulb temperature in °C +x_f=x_a-(n_s*(x_a-x_b))// kg/kg +printf("\n \n(b)The final condition,\n The final dry bulb temperature=%2.1f°C \n The moisture content=%0.5f kg/kg",T_d2,x_f) + diff --git a/3878/CH21/EX21.8/Ex21_8.sce b/3878/CH21/EX21.8/Ex21_8.sce new file mode 100644 index 000000000..9b09eb799 --- /dev/null +++ b/3878/CH21/EX21.8/Ex21_8.sce @@ -0,0 +1,16 @@ +clear +// Variable declaration +T_d1=24// The dry bulb temperature in °C +T_d2=7// The dry bulb temperature in °C +H=45// % saturation +cf=0.78// Contact factor +h_1=45.85// The enthalpy in kJ/kg +h_2=22.72// The enthalpy in kJ/kg + +// Calculation +//(a) By construction on the chart ( Figure 21.9 ), 10.7°C dry bulb, 85% saturation. +//(b) By calculation, the dry bulb will drop 78% of 24 to 7°C: +dT=T_d1-(cf*(T_d1-T_d2))// The drop in dry bulb temperature in °C +dh=h_1-(cf*(h_1-h_2))// The drop in enthalpy in kJ/kg +printf("\n \nThe drop in dry bulb temperature=%2.1f°C \nThe drop in enthlpy=%2.2f kJ/kg",dT,dh) + diff --git a/3878/CH22/EX22.1/Ex22_1.sce b/3878/CH22/EX22.1/Ex22_1.sce new file mode 100644 index 000000000..0cfef0f37 --- /dev/null +++ b/3878/CH22/EX22.1/Ex22_1.sce @@ -0,0 +1,12 @@ +clear +// Variable declaration +T_d=37// The dry bulb temperature of air in °C +H=24// % saturation +n_s=75// Saturation efficiency in % +h=62.67// The entering enthalpy in kJ/kg + +// Calculation +// By construction on the chart, or from tables, the ultimate saturation condition would be 21.5°C, and 75% of the drop from 37°C to 21.5°C gives a fi nal dry bulb of 25.4°C. +h_fg=2425// The average latent heat of water over the working range in kJ/kg +q=(h_fg)**-1// The amount of water to be evaporated in kg/(s kW) +printf("\n The amount of water to be evaporated is %0.3f kg/(s kW)",q) diff --git a/3878/CH23/EX23.1/Ex23_1.sce b/3878/CH23/EX23.1/Ex23_1.sce new file mode 100644 index 000000000..63ab64580 --- /dev/null +++ b/3878/CH23/EX23.1/Ex23_1.sce @@ -0,0 +1,11 @@ +clear +//Variable declaration +R_si=0.3// The inside resistance in (m**2 K)/W +R_1=0.040/0.09// The thermal resistance of concrete panels in (m**2 K)/W +R_2=0.050/0.037// The thermal resistance of insulation in (m**2 K)/W +R_3=0.012/0.16// The thermal resistance of plaster board in (m**2 K)/W +R_so=0.07// The outside resistance in (m**2 K)/W + +//Calculation +U=1/(R_si+R_1+R_2+R_3+R_so)// U factor in W/(m**2 K) +printf("\n U factor=%0.2f W/(m**2 K)",U) diff --git a/3878/CH23/EX23.2/Ex23_2.sce b/3878/CH23/EX23.2/Ex23_2.sce new file mode 100644 index 000000000..40bfa219b --- /dev/null +++ b/3878/CH23/EX23.2/Ex23_2.sce @@ -0,0 +1,31 @@ +clear +//Variable declaration +T_d1=21// The dry bulb temperature of air in °C +H=45// % saturation +T_d2=27// The dry bulb temperature of air in °C +T_wb1=20// The wet bulb temperature of air in °C +m=1.35// The mass flow rate of air in kg/s +C_pa=1.006// The specific heat capacity of air in kJ/kg.K +C_pw=4.187// The specific heat capacity of water in kJ/kg.K + +//Calculation + // 1.Total heat: +h_2=57.00// Enthalpy at 27°C DB, 20°C WB in kJ/kg +h_1=39.08// Enthalpy at 21°C DB, 45% sat in kJ/kg +dh=17.92// Heat to be removed in kJ/kg +Q_t=dh*m// Total heat in kW +printf("\n Total heat,Q_t=%2.1f kW", Q_t) + + +// 2.Latent heat: +x_2=0.0117// Moisture at 27°C DB, 20°C WB in kg/kg +x_1=0.0070// Moisture at 21°C DB, 45% sat in kg/kg +dx=x_2-x_1// Moisture to be removed in kg/kg +Q_l=dx*m*2440// Latent heat in kW +printf("\n Latent heat,Q_l=%2.1f kW", Q_l) + + +// 3.Sensible heat: +Q_s=(C_pa+((C_pw*x_2)))*(T_d2-T_d1)*m// Sensible heat in kW +printf("\n Sensible heat,Q_s=%1.1f kW", Q_s) + diff --git a/3878/CH23/EX23.3/Ex23_3.sce b/3878/CH23/EX23.3/Ex23_3.sce new file mode 100644 index 000000000..8c17afb36 --- /dev/null +++ b/3878/CH23/EX23.3/Ex23_3.sce @@ -0,0 +1,12 @@ +clear +//Variable declaration +Q_tl=15// Total lighting load +P_ra=90// % of load taken from return air +P_a=25// % of load rejected to ambient + +//Calculation +Q_ra=Q_tl*(P_ra*10**-2)// Picked up by return air in kW +Q_a=Q_ra*(P_a*10**-2)// Rejected to ambient in kW +Q_net=Q_tl-Q_a// Net room load in kW +printf("\n \nNet room load=%2.3f kW",Q_net) + diff --git a/3878/CH24/EX24.1/Ex24_1.sce b/3878/CH24/EX24.1/Ex24_1.sce new file mode 100644 index 000000000..02e6a5c00 --- /dev/null +++ b/3878/CH24/EX24.1/Ex24_1.sce @@ -0,0 +1,10 @@ +clear +// Variable declaration +Z=4500// Altitude in m +p=575// mbar barometric pressure +t=-10// Temperature in °C + +// Calculation +rho=1.2*(p/1013.25)*((273.15+20)/(273.15+t))// The density of dry air in kg/m**3 +printf("\n The density of dry air,rho=%0.2f kg/m**3",rho) + diff --git a/3878/CH24/EX24.2/Ex24_2.sce b/3878/CH24/EX24.2/Ex24_2.sce new file mode 100644 index 000000000..04a3de15e --- /dev/null +++ b/3878/CH24/EX24.2/Ex24_2.sce @@ -0,0 +1,13 @@ +clear +// Variable declaration +V=1// The volume of air in m**3 +t=20// The dry bulb temperature in °C +H=60// % saturation +p=101.325// The pressure in kPa +v=7// The velocity in m/s +v_s=0.8419// The specific volume in m**3/kg + +// Calculation +m=V/v_s// Mass in kg +Ke=(m*v**2)/2// Kinetic energy in kg/(m s**2) +printf("\n Kinetic energy=%2.1f kg/(m s**2)",Ke) diff --git a/3878/CH24/EX24.3/Ex24_3.sce b/3878/CH24/EX24.3/Ex24_3.sce new file mode 100644 index 000000000..56ffce2ff --- /dev/null +++ b/3878/CH24/EX24.3/Ex24_3.sce @@ -0,0 +1,14 @@ +clear +// Variable declaration +v_e=8// The entering velocity of air in m/s +v_l=5.5// The leaving velocity of air in m/s +fl=20// Friction losses in % +m=1.2// Masss in kg + +// Calculation +P_e=(m*v_e**2)/2// Velocity pressure entering expansion in Pa +P_l=(m*v_l**2)/2// Velocity pressure leaving expansion in Pa +FL=fl*10**-2*(P_e-P_l)// Friction losses in Pa +Sr=(1-(fl*10**-2))*(P_e-P_l)// Static regain in Pa +printf("\n The amount of Static regain=%2.1f Pa",Sr) + diff --git a/3878/CH25/EX25.1/Ex25_1.sce b/3878/CH25/EX25.1/Ex25_1.sce new file mode 100644 index 000000000..afb983cbb --- /dev/null +++ b/3878/CH25/EX25.1/Ex25_1.sce @@ -0,0 +1,18 @@ +clear +// +// Variable Declaration +T_d=21// The dry bulb temperature in °C +Q=14// Internal load in kW +H=50// % saturation +Q_l=1.5// Latent heat gain in kW +T_ain=12// The inlet air temperature in °C +C_p=1.02// The specific heat capacity of air in kJ/kg.K + +// Calculation +deltaT=T_d-T_ain// Air temperature rise through room in K +m=Q/(deltaT*C_p)// Air flow for sensible heat in kg/s +x=0.007857// Moisture content of room air, 21, 50% +x_p=Q_l/(2440*m)// Moisture to pick up +x_ain=x-x_p// Moisture content of entering air +printf("\n \n Air flow for sensible heat=%1.3f kg/s \nMoisture content of entering air=%0.5f",m,x_ain) + diff --git a/3878/CH25/EX25.2/Ex25_2.sce b/3878/CH25/EX25.2/Ex25_2.sce new file mode 100644 index 000000000..a6febfff3 --- /dev/null +++ b/3878/CH25/EX25.2/Ex25_2.sce @@ -0,0 +1,16 @@ +clear +// +// Variable declaration +// From example 25.1 +Q_i=14// Internal load in kW +Q_l=1.5// Latent heat gain in kW +Q_f=0.9// The fan motor power in kW +T_win=5// The temperature of water at inlet in °C +T_wout=10.5// The temperature of water at outlet in °C +C_pw=4.19// The specific heat capacity in kJ/kg.K + +// Calculation +Q=Q_i+Q_l+Q_f// Total cooling load in kW +m_w=Q/(C_pw*(T_wout-T_win))// Mass water flow in kg/s +printf("\n \nMass water flow=%0.2f kg/s",m_w) + diff --git a/3878/CH25/EX25.3/Ex25_3.sce b/3878/CH25/EX25.3/Ex25_3.sce new file mode 100644 index 000000000..02247dcae --- /dev/null +++ b/3878/CH25/EX25.3/Ex25_3.sce @@ -0,0 +1,16 @@ +clear +// +// Variable declaration +// From example 25.2 +Q=16.4// Total load in kW +T_in=33// The temperature at liquid R134a enters the expansion valve in °C +T_out=9// The temperature at liquid R134a leaves the cooler in °C +T_e=5// The temperature at which liquid R134a evaporates in °C + +// Calculation +h_v=405.23// Enthalpy of R134a,superheated to 9 C in kJ/kg +h_f=246.71// Enthalpy of liquid R134a at 33 C in kJ/kg +Re=h_v-h_f// Refrigerating effect in kJ/kg +m_r=Q/Re// Required refrigerant mass flow in kg/s +printf("\n Required refrigerant mass flow=%0.3f kg/s",m_r) + diff --git a/3878/CH25/EX25.4/Ex25_4.sce b/3878/CH25/EX25.4/Ex25_4.sce new file mode 100644 index 000000000..6778ad5bd --- /dev/null +++ b/3878/CH25/EX25.4/Ex25_4.sce @@ -0,0 +1,25 @@ +clear +// +// Variable declaration +T_d1=13// The dry bulb temperature in °C +m_a=0.4// The flow rate of primary air in kg/s +T_win=12// The temperature of water at inlet in °C +T_wout=16// The temperature of water at outlet in °C +H=72// % saturation +T_d2=21// The dry bulb temperature in °C +// From example 25.1 +Q_i=14// Internal load in kW +Q_l=1.5// Latent heat gain in kW +C_pw=4.19// The specific heat capacity in kJ/kg.K +C_pa=1.02// The specific heat capacity of air in kJ/kg.K + +// Calculation +x_a=0.006744// Moisture in primary air, 13 C DB, 72% sat +x_r=Q_l/(2440*m_a)// Moisture removed in kg/kg +x_rise=x_a+x_r// Moisture in room air will rise to in kg/kg +// which corresponds to a room condition of 21°C dry bulb, 53% saturation +Q_a=m_a*C_pa*(T_d2-T_d1)// Sensible heat removed by primary air in kW +Q_w=Q_i-Q_a// Heat to be removed by water in kW +m_w=Q_w/(C_pw*(T_wout-T_win))// Mass water flow in kg/s +printf("\n \nMass water flow=%0.2f kg/s",m_w) + diff --git a/3878/CH29/EX29.1/Ex29_1.sce b/3878/CH29/EX29.1/Ex29_1.sce new file mode 100644 index 000000000..eb2500755 --- /dev/null +++ b/3878/CH29/EX29.1/Ex29_1.sce @@ -0,0 +1,15 @@ +clear +// +// Variable declaration +T_e=3// The evaporating temperature in °C +T_in=20// The temperature of air entering coil in °C +T_out=11// The temperature of air off coil at full air flow in °C +T_c=35// The condensing temperature in °C +af=(1-0.15)// The reduced air flow + +// Calculation +LMTD=((T_in-T_e)-(T_out-T_e))/log((T_in-T_e)/(T_out-T_e))// K +T_aoff=T_in-(T_in-T_out)/af// Air off coil at 85% air flow (°C) +Cp=(af)**0.8// Coil performance at 85% air flow (°C) +LMTD_85=LMTD/Cp// LMTD at 85% air flow in K +printf("\n \n LMTD at 85 percentage air flow=%2.1f K(error)",LMTD_85) diff --git a/3878/CH30/EX30.1/Ex30_1.sce b/3878/CH30/EX30.1/Ex30_1.sce new file mode 100644 index 000000000..f8553fc7c --- /dev/null +++ b/3878/CH30/EX30.1/Ex30_1.sce @@ -0,0 +1,27 @@ +clear +// Variable declaration +P=15// kW +n_b=85// The effiency of the gas boiler in % +SCOP=3// An average or seasonal COP (SCOP) of heat pump + +// Calcualtion +// For the gas boiler +R_pf=17.65// Rate of primary fuel use in kW +m_co2=0.19// The mass of carbon in kg +R_co2=R_pf*m_co2// Rate of CO_2 emission in kg/h +// For example +Gp=3// p/kWh +Rc=R_pf*Gp// Boiler Running cost in p per hour of heating +printf("\n Boiler Running cost=%2.0fp per hour of heating.",Rc) + +// For heat pump +T_R_pf=10// Rate of primary fuel use in kW (total) +R_pf=5// Rate of primary fuel use in kW +m_co2=0.43// The mass of carbon in kg +R_co2=R_pf*m_co2,// Rate of CO_2 emission in kg/h + +// For example +Ep=9// p/kWh +Rc=R_pf*Ep// HP Running cost in p per hour of heating +printf("\n HP Running cost=%2.0fp per hour of heating.",Rc) + diff --git a/3878/CH6/EX6.1/Ex6_1.sce b/3878/CH6/EX6.1/Ex6_1.sce new file mode 100644 index 000000000..24c61f466 --- /dev/null +++ b/3878/CH6/EX6.1/Ex6_1.sce @@ -0,0 +1,19 @@ +clear +// Variable declaration +Q_1=12// Heat load in kW +T_c1=50// The condensing temperature in °C +T_o1=35// The maximum outdoor temperature in °C +T_o2=15// The reduced outdoor temperature in °C +Q_2=8// The reduced heat load in kW + +// Calculation +deltaT=T_c1-T_o1// Temperature Difference in K +CR=Q_1*10**3/deltaT// Condenser Rating in W/K +CR=CR*10**-3// Condenser Rating in kW/K +deltaT_15=Q_2/CR// Temperature Difference at 15°C +T_c2=T_o2+deltaT_15//The Condensing temperature at 15°C +printf("\n Cooling Rating= %0.1f kW/K",CR) +printf("\n Temperature Difference at 15°C=%2.0f°C",deltaT_15) + +printf("\n The Condensing temperature at 15°C=%2.0f°C",T_c2) + diff --git a/3878/CH6/EX6.3/Ex6_3.sce b/3878/CH6/EX6.3/Ex6_3.sce new file mode 100644 index 000000000..595a42a8c --- /dev/null +++ b/3878/CH6/EX6.3/Ex6_3.sce @@ -0,0 +1,13 @@ +clear +// Variable declaration +E_t=880// Total duty at the condenser in kW +E_wcp=15// Total duty at water-circulating pump in kw + +// Calculation +E=E_t+E_wcp// Total tower duty in kW +w_er=E*0.41*10**-3// Evaporation rate in kg/s +Cr_80=30// Circulation rate in kg/s +Cr_160=60// Circulation rate in kg/s +w_air=E*0.06// Air flow rate in kg/s +printf("\n \nEvaporation rate=%0.2f kg/s \nCirculation rate,80times=%2.0f kg/s \nCirculation rate,160times=%2.0f kg/s \nAir flow rate=%2.0f kg/s",w_er,Cr_80,Cr_160,w_air) + |