summaryrefslogtreecommitdiff
path: root/3822/CH5
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3822/CH5
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '3822/CH5')
-rw-r--r--3822/CH5/EX5.1/Ex5_1.jpgbin0 -> 160031 bytes
-rw-r--r--3822/CH5/EX5.1/Ex5_1.sce20
-rw-r--r--3822/CH5/EX5.2/Ex5_2.jpgbin0 -> 160322 bytes
-rw-r--r--3822/CH5/EX5.2/Ex5_2.sce21
-rw-r--r--3822/CH5/EX5.3/Ex5_3.jpgbin0 -> 142941 bytes
-rw-r--r--3822/CH5/EX5.3/Ex5_3.sce14
-rw-r--r--3822/CH5/EX5.4/Ex5_4.jpgbin0 -> 160924 bytes
-rw-r--r--3822/CH5/EX5.4/Ex5_4.sce18
-rw-r--r--3822/CH5/EX5.5.A/Ex5_5_A.jpgbin0 -> 145407 bytes
-rw-r--r--3822/CH5/EX5.5.A/Ex5_5_A.sce14
-rw-r--r--3822/CH5/EX5.5/Ex5_5.jpgbin0 -> 145145 bytes
-rw-r--r--3822/CH5/EX5.5/Ex5_5.sce14
-rw-r--r--3822/CH5/EX5.6/Ex5_6.jpgbin0 -> 172820 bytes
-rw-r--r--3822/CH5/EX5.6/Ex5_6.sce25
-rw-r--r--3822/CH5/EX5.7/Ex5_7.jpgbin0 -> 162296 bytes
-rw-r--r--3822/CH5/EX5.7/Ex5_7.sce19
16 files changed, 145 insertions, 0 deletions
diff --git a/3822/CH5/EX5.1/Ex5_1.jpg b/3822/CH5/EX5.1/Ex5_1.jpg
new file mode 100644
index 000000000..36c48b52f
--- /dev/null
+++ b/3822/CH5/EX5.1/Ex5_1.jpg
Binary files differ
diff --git a/3822/CH5/EX5.1/Ex5_1.sce b/3822/CH5/EX5.1/Ex5_1.sce
new file mode 100644
index 000000000..d808eae32
--- /dev/null
+++ b/3822/CH5/EX5.1/Ex5_1.sce
@@ -0,0 +1,20 @@
+
+
+//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 5.1
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+Tc=727;//temperature in celcius
+lamda=0.5*10^-6;//wavength of emitting radiation in M
+h=6.626*10^-34;//Plank's constant in SI units
+KB=1.38*10^-23;//boltzman constant in SI units
+c=3*10^8;//speed of light in m/s
+f=c/lamda;//frequency in Hz
+T=Tc+273;//temperature in kelvin
+c1=(h*f)/(KB*T);//constant value
+B21byA21Pf=1/(exp(c1)-1);//ratio of stimulated and spontaneous emission rate
+mprintf("\n Ratio between stimulated and spontaneous emission is =%.1fx10^-13",B21byA21Pf*1e13); //multiplication by 1e13 to convert the ratio to 10^-13
diff --git a/3822/CH5/EX5.2/Ex5_2.jpg b/3822/CH5/EX5.2/Ex5_2.jpg
new file mode 100644
index 000000000..5621edd77
--- /dev/null
+++ b/3822/CH5/EX5.2/Ex5_2.jpg
Binary files differ
diff --git a/3822/CH5/EX5.2/Ex5_2.sce b/3822/CH5/EX5.2/Ex5_2.sce
new file mode 100644
index 000000000..6dd24e9ce
--- /dev/null
+++ b/3822/CH5/EX5.2/Ex5_2.sce
@@ -0,0 +1,21 @@
+
+
+//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 5.2
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+n=3.8;//refractive index
+L=200*10^-4;//length in cm
+W=100*10^-4;//width in cm
+Beta=20*10^-3;//gain factor in A/cm^3
+alpha=10;//loss coefficient per cm
+R1=((n-1)/(n+1))^2;//reflectivity
+c1=((alpha+((1/L)*(log(1/R1)))))//constant value
+Jth=(1/Beta)*c1;//threshold current density in A/cm^2
+mprintf("\n Threshold current density is= %.2f x10^3 A/cm^2",Jth*1e-3);//multiplication by 1e-3 to convert the ratio to 10^-3
+Ith=Jth*L*W;//threshold current in A
+mprintf("\n Threshold current is =%.2f mA",Ith*1e3);//the answer vary due to rouding
diff --git a/3822/CH5/EX5.3/Ex5_3.jpg b/3822/CH5/EX5.3/Ex5_3.jpg
new file mode 100644
index 000000000..db85d1cb7
--- /dev/null
+++ b/3822/CH5/EX5.3/Ex5_3.jpg
Binary files differ
diff --git a/3822/CH5/EX5.3/Ex5_3.sce b/3822/CH5/EX5.3/Ex5_3.sce
new file mode 100644
index 000000000..e871b82a0
--- /dev/null
+++ b/3822/CH5/EX5.3/Ex5_3.sce
@@ -0,0 +1,14 @@
+
+//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 5.3
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+Br=7.21*10^-10;//injected electron density
+Pn=10^18;//majority carrier hole density in/cm^3
+Gamar=1/(Br*Pn);//minority carrier life time
+mprintf("\n Minority carrier life time is =%.2f ns ",Gamar*1e9);// the answer vary due to roundingoff
+//multiplication by 1e9 to convert the unit to nm
diff --git a/3822/CH5/EX5.4/Ex5_4.jpg b/3822/CH5/EX5.4/Ex5_4.jpg
new file mode 100644
index 000000000..f72dafd2f
--- /dev/null
+++ b/3822/CH5/EX5.4/Ex5_4.jpg
Binary files differ
diff --git a/3822/CH5/EX5.4/Ex5_4.sce b/3822/CH5/EX5.4/Ex5_4.sce
new file mode 100644
index 000000000..679f6485a
--- /dev/null
+++ b/3822/CH5/EX5.4/Ex5_4.sce
@@ -0,0 +1,18 @@
+
+//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 5.5
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+lamda=0.85*1e-6;//wavelength of GaAs in m
+n1=3.6;//refractive index
+L=200e-6//length of the cavity in m
+K=L*(2*n1)/lamda;//number of modes
+mprintf("\n Number of modes=%.0f ",K);//the answer vary due to rounding//multiplication by 1e6 to convert the unit to um
+u=2*n1*L;//partial product
+v=(lamda)^2;//partial product
+dellamda=v/u;//separation wavelength between the two mode in m
+mprintf("\nThe separation wavelength between the two mode=%.2f nm",dellamda*1e9);//multiplication by 1e9 to convert the unit to nm// the answer given in textbook is wrong the unit is nm but the textbook gives it as um
diff --git a/3822/CH5/EX5.5.A/Ex5_5_A.jpg b/3822/CH5/EX5.5.A/Ex5_5_A.jpg
new file mode 100644
index 000000000..abaaeddbe
--- /dev/null
+++ b/3822/CH5/EX5.5.A/Ex5_5_A.jpg
Binary files differ
diff --git a/3822/CH5/EX5.5.A/Ex5_5_A.sce b/3822/CH5/EX5.5.A/Ex5_5_A.sce
new file mode 100644
index 000000000..61bd16e5b
--- /dev/null
+++ b/3822/CH5/EX5.5.A/Ex5_5_A.sce
@@ -0,0 +1,14 @@
+
+//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 5.5(A)
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+etaT=0.20//total efficiency
+Eg=1.43//bandgap energy in eV
+V=2.5//applied voltage in V
+etae=etaT*Eg*100/V//external power efficiency
+mprintf("\n External power efficiency =%.2f percent ",etae);
diff --git a/3822/CH5/EX5.5/Ex5_5.jpg b/3822/CH5/EX5.5/Ex5_5.jpg
new file mode 100644
index 000000000..dd82085a9
--- /dev/null
+++ b/3822/CH5/EX5.5/Ex5_5.jpg
Binary files differ
diff --git a/3822/CH5/EX5.5/Ex5_5.sce b/3822/CH5/EX5.5/Ex5_5.sce
new file mode 100644
index 000000000..bc201eb1d
--- /dev/null
+++ b/3822/CH5/EX5.5/Ex5_5.sce
@@ -0,0 +1,14 @@
+
+//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 5.5
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+etaT=0.18//total efficiency
+Eg=1.43//bandgap energy in eV
+V=2.5//applied voltage in V
+etae=etaT*Eg*100/V//external power efficiency
+mprintf("\n External power efficiency =%.0f percent ",etae);
diff --git a/3822/CH5/EX5.6/Ex5_6.jpg b/3822/CH5/EX5.6/Ex5_6.jpg
new file mode 100644
index 000000000..b0eb1c285
--- /dev/null
+++ b/3822/CH5/EX5.6/Ex5_6.jpg
Binary files differ
diff --git a/3822/CH5/EX5.6/Ex5_6.sce b/3822/CH5/EX5.6/Ex5_6.sce
new file mode 100644
index 000000000..023e2df79
--- /dev/null
+++ b/3822/CH5/EX5.6/Ex5_6.sce
@@ -0,0 +1,25 @@
+
+//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 5.6
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+T1=273+20;//first temperature for an AlGaAs injection laser diode in kelvin
+T2=273+80;//second temperature for an AlGaAs injection laser diode in kelvin
+T01=160;//first thershold temperature in kelvin
+T02=55;//second thershold temperature in kelvin;
+
+//case 1:
+Jth120C=exp(T1/T01);
+Jth180C=exp(T2/T01);
+Jth1=Jth180C/Jth120C;
+mprintf("\n The ratio of threshold current densities for AlGaAs=%.2f",Jth1);//the answer vary due to rounding
+
+//case 2:
+Jth220C=exp(T1/T02);
+Jth280C=exp(T2/T02);
+Jth2=Jth280C/Jth220C;
+mprintf("\n The ratio threshold current densities for InGaAs=%.2f",Jth2);
diff --git a/3822/CH5/EX5.7/Ex5_7.jpg b/3822/CH5/EX5.7/Ex5_7.jpg
new file mode 100644
index 000000000..c224f45c0
--- /dev/null
+++ b/3822/CH5/EX5.7/Ex5_7.jpg
Binary files differ
diff --git a/3822/CH5/EX5.7/Ex5_7.sce b/3822/CH5/EX5.7/Ex5_7.sce
new file mode 100644
index 000000000..f21c2d09c
--- /dev/null
+++ b/3822/CH5/EX5.7/Ex5_7.sce
@@ -0,0 +1,19 @@
+
+//OptoElectronics and Fibre Optics Communication, by C.K Sarkar and B.C Sarkar
+//Example 5.7
+//OS=Windows 10
+////Scilab version Scilab 6.0.0-beta-2(64 bit)
+clc;
+clear;
+
+//given
+lamda=0.85*1e-6;//wavelength of GaAs in m
+n1=3.6;//refractive index
+K=1700//number of modes
+L=K*lamda/(2*n1);//length of the cavity in m
+mprintf("\n Length of cavity in the laser=%.0f um",L*1e6);//the answer vary due to rounding//multiplication by 1e6 to convert the unit to um
+u=2*n1*L;//partial product
+v=(lamda)^2;//partial product
+dellamda=v/u;//separation wavelength between the two mode in m
+mprintf("\nThe separation wavelength between the two mode=%.2f nm",dellamda*1e9);//multiplication by 1e9 to convert the unit to nm// the answer given in textbook is wrong the unit is nm but the textbook gives it as um
+