summaryrefslogtreecommitdiff
path: root/3821/CH11
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3821/CH11
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '3821/CH11')
-rw-r--r--3821/CH11/EX11.1/Example11_1.sce25
-rw-r--r--3821/CH11/EX11.10/Example11_10.sce17
-rw-r--r--3821/CH11/EX11.11/Example11_11.sce19
-rw-r--r--3821/CH11/EX11.12/Example11_12.sce18
-rw-r--r--3821/CH11/EX11.13/Example11_13.sce16
-rw-r--r--3821/CH11/EX11.14/Example11_14.sce24
-rw-r--r--3821/CH11/EX11.15/Example11_15.sce32
-rw-r--r--3821/CH11/EX11.16/Example11_16.sce27
-rw-r--r--3821/CH11/EX11.17/Example11_17.sce36
-rw-r--r--3821/CH11/EX11.18/Example11_18.sce27
-rw-r--r--3821/CH11/EX11.19/Example11_19.sce31
-rw-r--r--3821/CH11/EX11.2/Example11_2.sce25
-rw-r--r--3821/CH11/EX11.20/Example11_20.sce29
-rw-r--r--3821/CH11/EX11.21/Example11_21.sce35
-rw-r--r--3821/CH11/EX11.22/Example11_22.sce19
-rw-r--r--3821/CH11/EX11.3/Example11_3.sce28
-rw-r--r--3821/CH11/EX11.4/Example11_4.sce33
-rw-r--r--3821/CH11/EX11.5/Example11_5.sce30
-rw-r--r--3821/CH11/EX11.6/Example11_6.sce32
-rw-r--r--3821/CH11/EX11.7/Example11_7.sce34
-rw-r--r--3821/CH11/EX11.8/Example11_8.sce38
-rw-r--r--3821/CH11/EX11.9/Example11_9.sce34
22 files changed, 609 insertions, 0 deletions
diff --git a/3821/CH11/EX11.1/Example11_1.sce b/3821/CH11/EX11.1/Example11_1.sce
new file mode 100644
index 000000000..ab90694a0
--- /dev/null
+++ b/3821/CH11/EX11.1/Example11_1.sce
@@ -0,0 +1,25 @@
+///Chapter No 11 Steam Boilers
+////Example 11.1 Page No 228
+///Find Mass of evaporation
+//Input data
+clc;
+clear;
+ms=5000; //Boiler produces wet steam in Kg/h
+x=0.95; //Dryness function
+P=10; //Operating pressure in bar
+mf=5500; //Bour in the furnace in Kg
+Tw=40; //Feed water temp in degree celsius
+
+//Calculation
+//from steam table
+hfw=167.45; //In KJ/Kg
+hf=762.61; //In KJ/Kg
+hfg=2031.6; //In KJ/Kg
+hs=(hf+x*hfg); //Enthalpy of wet stream in KJ/Kg
+me=ms/mf; //Mass of evaporation
+E=((me*(hs-hfw))/(2257))*10; //Equivalent evaporation in Kg/Kg of coal
+
+//Output
+printf('Enthalpy of wet stream=%f KJ/Kg \n',hs);
+printf('Mass of evaporation=%f KJ/Kg \n',me);
+printf('Equivalent evaporation = %f Kg/Kg of coal \n',E);
diff --git a/3821/CH11/EX11.10/Example11_10.sce b/3821/CH11/EX11.10/Example11_10.sce
new file mode 100644
index 000000000..96836ec28
--- /dev/null
+++ b/3821/CH11/EX11.10/Example11_10.sce
@@ -0,0 +1,17 @@
+///Chapter No 11 Steam Boilers
+////Example 11.10 Page No 242
+//Find Draught produce in terms of water
+//Input data
+clc;
+clear;
+ma=18; //Boileruses of per Kg of fuel in Kg/Kg
+hw=25*10^-3; //Chimney height to produce draught in mm
+Tg=315+273; //Temperature of chimney gases in degree celsius
+Ta=27+273; //Out side air temp in degree celsius
+
+//Calculation
+//Draught produce in terms of water column in m
+H=(hw/(353*(1/Ta-1/Tg*((ma+1)/ma))))*1000;
+
+//Output
+printf('Draught produce in terms of water column=%f m \n',H);
diff --git a/3821/CH11/EX11.11/Example11_11.sce b/3821/CH11/EX11.11/Example11_11.sce
new file mode 100644
index 000000000..21b76bd64
--- /dev/null
+++ b/3821/CH11/EX11.11/Example11_11.sce
@@ -0,0 +1,19 @@
+///Chapter No 11 Steam Boilers
+////Example 11.11 Page No 242
+///Find Draught produce in terms of hot gas
+//Input data
+clc;
+clear;
+H=40; //High discharge in m
+ma=19; //Fuel gases per Kg of fuel burnt
+Tg=220+273; //Average temp of fuel gases in degree celsius
+Ta=25+273; //Ambient temperature in degreee celsius
+
+
+//Calculation
+hw=353*H*(1/Ta-1/Tg*((ma+1)/ma)); //Draught produce in terms of water column in mm
+H1=H*((Tg/Ta)*(ma/(ma+1))-1); //Draught produce in terms of hot gas column in m
+
+//Output
+printf('Draught produce in terms of water column=%f mm \n',hw);
+printf('Draught produce in terms of hot gas column=%f m \n',H1);
diff --git a/3821/CH11/EX11.12/Example11_12.sce b/3821/CH11/EX11.12/Example11_12.sce
new file mode 100644
index 000000000..8d7c7fec7
--- /dev/null
+++ b/3821/CH11/EX11.12/Example11_12.sce
@@ -0,0 +1,18 @@
+///Chapter No 11 Steam Boilers
+////Example 11.12 Page No 243
+///Find Mean temperature of fuel gases
+//Input data
+clc;
+clear;
+H=27; //Chimney height in m
+hw=15; //Draught produces of water column in mm
+ma=21; //Gases formed per Kg of fuel burnt in Kg/Kg
+Ta=25+273; //Temperature of the ambient air in degree celsius
+
+
+//Calculation
+Tg=-(((ma+1)/ma)/((hw/(353*H))-(1/Ta))) //Mean temperature of fuel gases in K
+
+//Output
+printf('Mean temperature of fuel gases= %f K \n',Tg);
+
diff --git a/3821/CH11/EX11.13/Example11_13.sce b/3821/CH11/EX11.13/Example11_13.sce
new file mode 100644
index 000000000..ad9cb6e29
--- /dev/null
+++ b/3821/CH11/EX11.13/Example11_13.sce
@@ -0,0 +1,16 @@
+///Chapter No 11 Steam Boilers
+////Example 11.13 Page No 244
+//Find Air-fuel ratio
+//Input data
+clc;
+clear;
+hw=20; //Static draught of water in mm
+H=50; //Chimney height in m
+Tg=212+273; //Temperature of the fuel degree celsius
+Ta=27+273; //Atmospheric air in degree celsius
+
+//Calculation
+ma=(-((hw/(353*H))-Ta*Tg))*10^-4 //Air-fuel ratio in Kg/Kg of fuel burnt-3
+
+//Output
+printf('Air-fuel ratio= %f Kg/Kg of fuel burnt \n',ma);
diff --git a/3821/CH11/EX11.14/Example11_14.sce b/3821/CH11/EX11.14/Example11_14.sce
new file mode 100644
index 000000000..39afce846
--- /dev/null
+++ b/3821/CH11/EX11.14/Example11_14.sce
@@ -0,0 +1,24 @@
+///Chapter No 11 Steam Boilers
+////Example 11.14 Page No 245
+///Find Theoretical draught in millimeters of water
+//Input data
+clc;
+clear;
+H=24; //Chimney height in m
+Ta=25+273; //Ambient temperature in degree celsius
+Tg=300+273; //Temperature of fuel gases in degree celsius
+ma=20; //Combustion space of fuel burnt in Kg/Kgof fuel
+g=9.81;
+
+
+//Calculation
+hw=((353*H)*((1/Ta)-((1/Tg)*((ma+1)/ma))));//Theoretical draught in millimeters of water in mm
+H1=H*((Tg/Ta)*(ma/(ma+1))-1); //Theoretical draught produced in hot gas column in m
+H2=H1-9.975; //Draught lost in friction at the grate and passage in m
+V=round(sqrt(2*g*H2)); //Actual draught produced in hot gas column in m
+
+///Output
+printf('Theoretical draught in millimeters of water= %f mm \n',hw);
+printf('Theoretical draught produced in hot gas column=%f m \n',H1);
+printf('Draught lost in friction at the grate and passage=%f m \n',H2);
+printf('Actual draught produced in hot gas column= %f m \n ',V);
diff --git a/3821/CH11/EX11.15/Example11_15.sce b/3821/CH11/EX11.15/Example11_15.sce
new file mode 100644
index 000000000..0d153e836
--- /dev/null
+++ b/3821/CH11/EX11.15/Example11_15.sce
@@ -0,0 +1,32 @@
+///Chapter No 11 Steam Boilers
+////Example 11.15 Page No 246
+////Find Draught lost in friction at the grate and pasage
+//Input data
+clc;
+clear;
+H=38; //Stack height in m
+d=1.8; //Stack diameter discharge in m
+ma=17; //Fuel gases per Kg of fuel burnt Kg/Kg
+Tg=277+273; //Average temperature of fuel gases in degree celsius
+Ta=27+273; //Temperature of outside air in degree celsius
+h1=0.4; //Theoretical draught is lost in friction in
+g=9.81;
+pi=3.142;
+
+//Calculation
+H1=H*(((Tg/Ta)*(ma/(ma+1))-1)); //Theoretical draught produce in hot gas column in m
+gp=0.45*27.8; //Draught lost in friction at the grate and pasage in m
+C=H1-gp; //Actual draught produce in hot gas column in m
+V=sqrt(2*9.81*C); //Velocity of the flue gases in the chimney in m/s
+rhog=((353*(ma+1))/(ma*Tg)); //Density of flue gases in Kg/m^3
+mg=round(rhog*((pi/4)*(d**(2))*V)); //Mass of gas flowing through the chimney in Kg/s
+
+
+///Output
+printf('Theoretical draught produce in hot gas column=%f m \n',H1);
+printf('Draught lost in friction at the grate and pasage=%f m \n',gp);
+printf('Actual draught produce in hot gas column=%f m \n ',C);
+printf('Velocity of the flue gases in the chimney =%f m/s \n',V);
+printf('Density of flue gases=%f Kg/m^3 \n',rhog);
+printf('Mass of gas flowing through the chimney=%f Kg/s \n',mg);
+
diff --git a/3821/CH11/EX11.16/Example11_16.sce b/3821/CH11/EX11.16/Example11_16.sce
new file mode 100644
index 000000000..3c161203a
--- /dev/null
+++ b/3821/CH11/EX11.16/Example11_16.sce
@@ -0,0 +1,27 @@
+///Chapter No 11 Steam Boilers
+////Example 11.16 Page No 247
+///Find Theoretical draught produced in water
+//Input data
+clc;
+clear;
+hw=1.9; //Drauhgt water in cm
+Tg=290+273; //Temp of flue gases in degree celsius
+Ta=20+273; //Ambient temp in degree celsius
+ma=22; //Flue gases formed in kg/Kg of coal
+d=1.8; //Fuel burnt in m
+pi=3.142;
+g=9.81;
+
+//Calculation
+H=(hw/(353*(1/Ta-1/Tg*((ma+1)/ma))))*10; //Theoretical draught produced in water column in m
+H1=round(H*(((Tg/Ta)*(ma/(ma+1))-1))); //Theoretical draught produced in hot gas column n m
+V=sqrt(2*g*H1); //Velocity of tthe flue gases in the chimney in m/s
+rhog=((353*(ma+1))/(ma*Tg)); //Density of flue gases in Kg/m^3
+mg=rhog*((pi/4)*d^2)*V; //Mass of gas flowing through the chimney in Kg/s
+
+//Output
+printf('Theoretical draught produced in water column= %f m \n ',H);
+printf('Theoretical draught produced in hot gas column= %f m \n',H1);
+printf('Velocity of tthe flue gases in the chimney= %f m \n',V);
+printf('Density of flue gases=%f Kg/m^3 \n',rhog);
+printf('Mass of gas flowing through the chimney= %f Kg/s \n',mg);
diff --git a/3821/CH11/EX11.17/Example11_17.sce b/3821/CH11/EX11.17/Example11_17.sce
new file mode 100644
index 000000000..04fca964d
--- /dev/null
+++ b/3821/CH11/EX11.17/Example11_17.sce
@@ -0,0 +1,36 @@
+///Chapter No 11 Steam Boilers
+////Example 11.17 Page No 248
+///Find Actual draught produced in hot gas
+//Input data
+clc;
+clear;
+mf1=8000; //Average coal consumption in Kg/h
+ma1=19; //Flue gases formed in Kg/Kg
+Tg1=270+273; //Average temperature of the chimney in degree celsius
+Ta1=27+273; //Ambient temperature in degree celsius
+hw1=18; //Theoretical draught produced by the chimney in mm
+h11=0.6; //Draught is lost in friction H1
+g1=9.81;
+pi1=3.142;
+
+
+//Calculation
+H2=(hw1/(353*(1/Ta1-1/Tg1*((ma1+1)/ma1)))); //Theoretical draught produced in water column in m
+H3=H2*(((Tg1/Ta1)*(ma1/(ma1+1)))-1); //Theoretical draught produced in hot gas column in m
+gp1=h11*H3; //Draught is lost in friction at the grate and passing in m
+hgc1=H3-gp1; //Actual draught produced in hot gas column in m
+V1=sqrt(2*g1*(hgc1)); //Velocity of the flue gases in the chimney in m/s
+rhog1=((353*(ma1+1))/(ma1*Tg1)); //Density of flue gases in Kg/m^3
+mg1=((mf1/3600)*ma1); //Mass of gas fowing throgh the chimney in Kg/s
+d1=sqrt(mg1/(rhog1*(pi1/4)*V1)); //Diameter of the chimney in m
+
+
+//Output
+printf('Theoretical draught produced in water column=%f m \n',H2);
+printf('Theoretical draught produced in hot gas column=%f m \n',H3);
+printf('Draught is lost in friction at the grate and passing=%f m \n',gp1);
+printf('Actual draught produced in hot gas column=%f m \n ',hgc1);
+printf('Velocity of the flue gases in the chimney=%f \n',V1);
+printf('Density of flue gases=%f Kg/m^3 \n',rhog1);
+printf('Mass of gas fowing throgh the chimney=%f Kg/s \n',mg1);
+printf('Diameter of the chimney=%f m \n',d1);
diff --git a/3821/CH11/EX11.18/Example11_18.sce b/3821/CH11/EX11.18/Example11_18.sce
new file mode 100644
index 000000000..6c78ce225
--- /dev/null
+++ b/3821/CH11/EX11.18/Example11_18.sce
@@ -0,0 +1,27 @@
+///Chapter No 11 Steam Boilers
+////Example 11.18 Page No 251
+///Find Actual draught produced in hot gas
+//Input data
+clc;
+clear;
+H2=24; //Chimney height in m
+Ta1=25+273; //Ambient temperature in degree celsius
+Tg1=300+273; //Temp of flue gases passing through the chimney in degree celsius
+ma1=20; //Combustion space of fuel burnt in Kg/kg of fuel
+g1=9.81;
+
+//Calculation
+hw1=((353*H2)*((1/Ta1)-((1/Tg1)*((ma1+1)/ma1)))); //Theoretical draught produced in water column in m
+ //Calculation mistake in book of hw1 it is correct according to data &calculation
+H3=H2*(((Tg1/Ta1)*(ma1/(ma1+1))-1)); //Theoretical draught produced in hot gas column in m
+H4=0.5*H3; //Draught is lost in friction at the grate and passing in m
+hgc1=H3-H4; //Actual draught produced in hot gas column in m
+V1=sqrt(2*g1*H4); //Velocity of the flue gases in the chimney in m/s
+
+
+//Output
+printf('Theoretical draught produced in water column=%f m \n',hw1);
+printf('Theoretical draught produced in hot gas column= %f m \n',H3);
+printf('Draught is lost in friction at the grate and passing=%f m \n ',H4);
+printf('Actual draught produced in hot gas column= %f m \n',hgc1);
+printf('Velocity of the flue gases in the chimney= %f m/s \n',V1);
diff --git a/3821/CH11/EX11.19/Example11_19.sce b/3821/CH11/EX11.19/Example11_19.sce
new file mode 100644
index 000000000..8dd5a4031
--- /dev/null
+++ b/3821/CH11/EX11.19/Example11_19.sce
@@ -0,0 +1,31 @@
+///Chapter No 11 Steam Boilers
+////Example 11.19 Page No 252
+///Find Velocity of the flue gases in the chimney
+//Input data
+clc;
+clear;
+H2=38; //Stack height in m
+d1=1.8; //Stack diameter in m
+ma1=18; //Flue gases per kg of the fuel burnt
+Tg1=277+273; //Average temp of the flue gases in degree celsius
+Ta1=27+273; //Temperature of outside air in degree celsius
+h11=0.4; //Theorical draught is lost in friction in %
+g1=9.81;
+pi1=3.142
+
+//Calculation
+H3=H2*(((Tg1/Ta1)*(ma1/(ma1+1))-1)); //Theoretical draught produced in hot gas column in m
+gp1=0.40*H3; //Draught is lost in friction at the grate and passing in m
+hgc1=H3-gp1; //Actual draught produced in hot gas column in m
+V1=sqrt(2*g1*hgc1); //Velocity of the flue gases in the chimney in m/s
+rhog1=((353*(ma1+1))/(ma1*Tg1)); //Density of flue gases in Kg/m^3
+mg1=rhog1*((pi1/4)*d1^2)*V1; //Mass of gas fowing throgh the chimney in Kg/s
+
+
+//Output
+printf('Theoretical draught produced in hot gas column= %f m \n',H3);
+printf('Draught is lost in friction at the grate and passing= %f m \n',gp1);
+printf('Actual draught produced in hot gas column=%f m \n',hgc1);
+printf('Velocity of the flue gases in the chimney=%f m/s \n',V1);
+printf('Density of flue gases=%f Kg/m^3 \n',rhog1);
+printf('Mass of gas fowing throgh the chimney=%f Kg/s \n',mg1);
diff --git a/3821/CH11/EX11.2/Example11_2.sce b/3821/CH11/EX11.2/Example11_2.sce
new file mode 100644
index 000000000..dca842dda
--- /dev/null
+++ b/3821/CH11/EX11.2/Example11_2.sce
@@ -0,0 +1,25 @@
+///Chapter No 11 Steam Boilers
+////Example 11.2 Page No 229
+///Find Enthalpy of wet stream
+///Input data
+clc;
+clear;
+p=14; //Boiler pressure in bar
+me=9; //Evaporates of water in Kg
+Tw=35; //Feed water entering in degree celsius
+x=0.9; //Steam stop value
+CV=35000; //Calorific value of the coal
+
+///Calculation
+//From Steam Table
+hfw=146.56; //In KJ/Kg
+hf=830.07; //In KJ/Kg
+hfg=1957.7; //In KJ/Kg
+hs=hf+x*hfg; //Enthalpy of wet stream in KJ/Kg
+E=((me*(hs-hfw))/2257); //Equivalent evaporation in Kg/Kg of coal
+etaboiler=((me*(hs-hfw))/CV)*100;//Boiler efficiency in %
+
+///Output
+printf('Enthalpy of wet stream=%f KJ/Kg \n',hs);
+printf('Equivalent evaporation=%f Kg/Kg of coal \n',E);
+printf('Boiler efficiency=%f percent \n',etaboiler);
diff --git a/3821/CH11/EX11.20/Example11_20.sce b/3821/CH11/EX11.20/Example11_20.sce
new file mode 100644
index 000000000..e5db3fdc2
--- /dev/null
+++ b/3821/CH11/EX11.20/Example11_20.sce
@@ -0,0 +1,29 @@
+///Chapter No 11 Steam Boilers
+////Example 11.20 Page No 253
+////Find Density of flue gases
+//Input data
+clc;
+clear;
+hw1=19; //Draught produced water in cm
+Tg1=290+273; //Temperature of flue gases in degree celsius
+Ta1=20+273; //Ambient temperature in degree celsius
+ma1=22; //Flue gases formed per kg of fuel burnt in kg/kg of coal
+d1=1.8; //Diameter of chimney
+g1=9.81;
+pi1=3.142
+
+
+//Calculation
+H2=(hw1/((353)*((1/Ta1)-((1/Tg1)*((ma1+1)/ma1))))); //Theoretical draught produced in hot gas column in m
+H3=round(H2*(((Tg1/Ta1)*(ma1/(ma1+1))-1))); //Draught is lost in friction at the grate and passing in m
+V1=(sqrt(2*g1*H3)); //Velocity of the flue gases in the chimney in m/s
+rhog1=((353*(ma1+1))/(ma1*Tg1)); //Density of flue gases in Kg/m**3
+mg1=rhog1*((pi1/4)*d1^2)*V1; //Mass of gas fowing throgh the chimney in Kg/s
+
+
+//Output
+printf('Theoretical draught produced in hot gas column= %f m \n',H2);
+printf('Draught is lost in friction at the grate and passing=%f m \n',H3);
+printf('Velocity of the flue gases in the chimney= %f m/s \n',V1);
+printf('Density of flue gases=%f Kg/m^2 \n',rhog1);
+printf('Mass of gas fowing throgh the chimney= %f Kg/s \n',mg1);
diff --git a/3821/CH11/EX11.21/Example11_21.sce b/3821/CH11/EX11.21/Example11_21.sce
new file mode 100644
index 000000000..a94cc8198
--- /dev/null
+++ b/3821/CH11/EX11.21/Example11_21.sce
@@ -0,0 +1,35 @@
+///Chapter No 11 Steam Boilers
+////Example 11.21 Page No 254
+///Find Mass of gas fowing throgh the chimney
+//Input data
+clc;
+clear;
+mf=8000; //Average coal consumption in m
+ma=18; //Fuel gases formed ccoal fired in m
+Tg=270+273; //Average temp of the chimney of water in degree celsius
+Ta=27+273; //Ambient temp in degree celsius
+hw=18; //Theoretical draught produced by the chimney in mm
+h1=0.6; //Draught is lost in friction in H1
+g=9.81;
+pi=3.142;
+
+
+//Calculation
+H=(hw/((353)*((1/Ta)-((1/Tg)*((ma+1)/ma))))); //Theoretical draught produced in water column in m
+H1=H*(((Tg/Ta)*(ma/(ma+1))-1)); //Theoretical draught produced in hot gas column in m
+gp=0.6*H1; //Draught is lost in friction at the grate and passing in m
+hgc=H1-gp; //Actual draught produced in hot gas column in m
+V=sqrt(2*g*hgc); //Velocity of the flue gases in the chimney in m/s
+rhog=((353*(ma+1))/(ma*Tg)); //Density of flue gases in Kg/m^3
+mg=mf/3600*(ma+1); //Mass of gas fowing throgh the chimney in Kg/s
+d=sqrt(mg/(rhog*(pi/4)*V)); //Diameter of flue gases in Kg/m^3
+
+///Output
+printf('Theoretical draught produced in water column= %f m \n ',H);
+printf('Theoretical draught produced in hot gas column= %f m \n',H1);
+printf('Draught is lost in friction at the grate and passing= %f m \n',gp);
+printf('Actual draught produced in hot gas column= %f \n',hgc);
+printf('Velocity of the flue gases in the chimney= %f m/s \n',V);
+printf('Density of flue gases= %f Kg/m^3 \n ',rhog);
+printf('Mass of gas fowing throgh the chimney= %f Kg/s \n ',mg);
+printf('Diameter of flue gases= %f Kg/m^3 \n ',d);
diff --git a/3821/CH11/EX11.22/Example11_22.sce b/3821/CH11/EX11.22/Example11_22.sce
new file mode 100644
index 000000000..e77ed0512
--- /dev/null
+++ b/3821/CH11/EX11.22/Example11_22.sce
@@ -0,0 +1,19 @@
+///Chapter No 11 Steam Boilers
+////Example 11.22 Page No 256
+///Find Efficeincy of chimney draught
+///Input data
+clc;
+clear;
+H=45; //Chimney height in m
+Tg=370+273; //Temperature of flue gases in degree celsius
+T1=150+273; //Temperature of flue gases in degree celsius
+ma=25; //Mass of the flue gas formed in Kg/kg of a cosl fired
+Ta=35+273; //The boiler temperature in degree celsius
+Cp=1.004; //fuel gas
+
+//Calculation
+//Efficeincy of chimney draught in %
+A=(H*(((Tg/Ta)*(ma/(ma+1)))-1))/(Cp*(Tg-T1))*100;
+
+//Output
+printf('Efficeincy of chimney draught= %f percent \n',A);
diff --git a/3821/CH11/EX11.3/Example11_3.sce b/3821/CH11/EX11.3/Example11_3.sce
new file mode 100644
index 000000000..6200c2f09
--- /dev/null
+++ b/3821/CH11/EX11.3/Example11_3.sce
@@ -0,0 +1,28 @@
+///Chapter No 11 Steam Boilers
+////Example 11.3 Page No 230
+///Find mass of evaporation
+//Input data
+clc;
+clear;
+ms=2500; //Saturated steam per bour in Kg
+x=1;
+P=15; //Boiler pressure in bar
+Tw=25; //Feed water entering in degree celsius
+mf=350; //Coal burnt in Kg/bour
+CV=32000; //Calorific value in Kj/Kg
+
+//Calculation
+//steam table
+hfw=104.77; //In KJ/Kg
+hf=844.66; //In KJ/Kg
+hfg=1945.2; //In KJ/Kg
+hg=2789.9; //In KJ/Kg
+hs=2789.9; //Enthalpy of dry steam in KJ/Kg
+me=ms/mf; //mass of evaporation
+E=((me*(hs-hfw))/2257); //Equivalent evaporation in Kg/Kg ofcoal
+etaboiler=((me*(hs-hfw))/CV)*100; //Boiler efficiency in %
+
+//Output
+printf('mass of evaporation= %f \n',me);
+printf('Equivalent evaporation= %f Kg/Kg of coal\n',E);
+printf('Boiler efficiency= %f percent \n',etaboiler);
diff --git a/3821/CH11/EX11.4/Example11_4.sce b/3821/CH11/EX11.4/Example11_4.sce
new file mode 100644
index 000000000..7761a6f2b
--- /dev/null
+++ b/3821/CH11/EX11.4/Example11_4.sce
@@ -0,0 +1,33 @@
+///Chapter No 11 Steam Boilers
+////Example 11.4 Page No 231
+///Find Enthalpy of superheated steam
+//Input data
+clc;
+clear;
+mf=500; //Boiler plant consumes of coal in Kg/h
+CV=32000; //Calorific value in Kj/Kg
+ms=3200; //plant generates in Kg/h
+P=1.2; //Absolute pressure MN/m^2
+MN=12;
+Tsup=300; //Absolute temperature in degree celsius
+Tw=35; //Feed water temperature
+Cps=2.3;
+
+//Calculation
+hfw=146.56; //In KJ/Kg
+Ts=187.96; //In Degree celsius
+hf=798.43; //In KJ/Kg
+hfg=1984.3; //In KJ/Kg
+hg=2782.7; //In KJ/Kg
+hs=hg+Cps*(Tsup-Ts); //Enthalpy of superheated steam in KJ/Kg
+me=ms/mf; //mass of evaporation
+E=((me*(hs-hfw))/2257); //Equivalent evaporation in Kg/Kg ofcoal
+etaboiler=((me*(hs-hfw))/CV)*100; //Boiler efficiency in %
+
+
+///Output
+printf('Enthalpy of superheated steam= %f KJ/Kg\n',hs);
+printf('mass of evaporation=%f \n',me);
+printf('Equivalent evaporation=%f Kg/Kg of coal \n',E);
+printf('Boiler efficiency %f percent \n ',etaboiler);
+
diff --git a/3821/CH11/EX11.5/Example11_5.sce b/3821/CH11/EX11.5/Example11_5.sce
new file mode 100644
index 000000000..384e5085f
--- /dev/null
+++ b/3821/CH11/EX11.5/Example11_5.sce
@@ -0,0 +1,30 @@
+///Chapter No 11 Steam Boilers
+////Example 11.5 Page No 232
+//Find Enthalpy of wet stream
+//Input data
+clc;
+clear;
+ms=5000; //Steam generted in Kg/h
+mf=700; //Coal burnt in Kg/h
+CV=31402; //Cv of coal in KJ/Kg
+x=0.92; //quality of steam
+P=1.2; //Boiler pressure in MPa
+Tw=45; //Feed water temperature in degree celsius
+
+
+//Calculation
+hfw=188.35; //In KJ/Kg
+hf=798.43; //In KJ/Kg
+hfg=1984.3; //In KJ/Kg
+hs=hf+x*hfg; //Enthalpy of wet stream in KJ/Kg
+me=ms/mf; //mass of evaporation
+E=((me*(hs-hfw))/2257); //Equivalent evaporation in Kg/Kg of coal
+etaboiler=((me*(hs-hfw))/CV)*100; //Boiler efficiency in %
+
+
+
+//Output
+printf('Enthalpy of wet stream= %f KJ/Kg \n',hs);
+printf('mass of evaporation=%f \n',me);
+printf('Equivalent evaporation=%f Kg/Kg of coal \n',E);
+printf('Boiler efficiency=%f percent \n',etaboiler);
diff --git a/3821/CH11/EX11.6/Example11_6.sce b/3821/CH11/EX11.6/Example11_6.sce
new file mode 100644
index 000000000..1c52df746
--- /dev/null
+++ b/3821/CH11/EX11.6/Example11_6.sce
@@ -0,0 +1,32 @@
+///Chapter No 11 Steam Boilers
+////Example 11.6 Page No 233
+///Enthalpy of superheated steam
+//Input data
+clc;
+clear;
+ms=6000; //Boiler produce of steam Kg/h
+P=25; //Boiler pressure in bar
+Tsup=350; //Boiler temperature in degree celsius
+Tw=40; //Feed water temperature indegree celsius
+CV=42000; //Calorific value in Kj/Kg
+etaboiler=75/100; //Expected thermal efficiency in %
+
+
+//Calculation
+hfw=167.45; //In KJ/Kg
+Ts=223.94; //In degree celsius
+hf=961.96; //In KJ/Kg
+hfg=1839.0; //In KJ/Kg
+hg=2800.9; //In KJ/Kg
+Cps=2.3;
+hs=((hg)+(Cps)*(Tsup-Ts)); //Enthalpy of superheated steam KJ/Kg
+mf=((ms*(hs-hfw))/(CV*etaboiler)); //Boiler efficiency in %
+me=ms/mf; //Equivalent mass of evaporation
+E=((me*(hs-hfw))/2257); //Equivalent evaporation in Kg/Kg of oil
+
+
+//Output
+printf('Enthalpy of superheated steam=%f KJ/Kg \n',hs);
+printf('Boiler efficiency=%f percent \n',mf);
+printf('Equivalent mass of evaporation=%f \n',me);
+printf('Equivalent evaporation=%fKg/Kg of oil \n' ,E);
diff --git a/3821/CH11/EX11.7/Example11_7.sce b/3821/CH11/EX11.7/Example11_7.sce
new file mode 100644
index 000000000..59c089fd0
--- /dev/null
+++ b/3821/CH11/EX11.7/Example11_7.sce
@@ -0,0 +1,34 @@
+///Chapter No 11 Steam Boilers
+////Example 11.7 Page No 234
+///Find Boiler efficiency
+///Input data
+clc;
+clear;
+E=12; //Boiler found steam in Kg/Kg
+CV=35000; //Calorific value in KJ/Kg
+ms=15000; //Boiler produces in Kg/h
+P=20; //Boiler pressure in bar
+Tw=40; //Feed water in degree celsius
+mf=1800; //Fuel consumption
+
+
+//Calculation
+//R=me(hs-hfw)
+hfw=167.45; //In KJ/Kg
+hg=2797.2; //In KJ/Kg
+Ts=211.37; //In degree celsius
+Cps=2.3;
+R=E*2257; //Equivalent evaporation in KJ/Kg of coal
+etaboiler=(R/CV)*100; //Boiler efficiency in %
+me=ms/mf; //Equivalent mass evaporation in KJ/Kg of coal
+hs=(R/me)+hfw; //In KJ/Kg
+Tsup=((hs-hg)/Cps)+Ts; //Enthalpy of superheated steam in degree celsius
+
+
+
+//Output
+printf('Equivalent evaporation=%f KJ/Kg of coal \n',R);
+printf('Boiler efficiency=%f percent \n',etaboiler);
+printf('Equivalent mass evaporation= %f KJ/Kg of coal \n',me);
+printf('hs=%f KJ/Kg \n',hs);
+printf('Enthalpy of superheated steam=%f degree celsius \n',Tsup);
diff --git a/3821/CH11/EX11.8/Example11_8.sce b/3821/CH11/EX11.8/Example11_8.sce
new file mode 100644
index 000000000..8bf400f80
--- /dev/null
+++ b/3821/CH11/EX11.8/Example11_8.sce
@@ -0,0 +1,38 @@
+///Chapter No 11 Steam Boilers
+////Example 11.8 Page No 236
+///Find Equivalent mass evaporation
+//Input data
+clc;
+clear;
+ms=6000; //Steam generated in Kg/h
+mf=700; //Coal burnt in Kg/h
+CV=31500; //Cv of coal in KJ/Kg
+x=0.92; //Dryness in fraction of steam
+P=12; //Boiler pressure in bar
+Tsup=259; //Temperature of steam in degree celsius
+Tw=45; //Hot well temperature in degree celsius
+
+//Calculation
+hfw=188.35; //In KJ/Kg
+Ts=187.96; //In degree celsius
+hf=798.43; //In KJ/Kg
+hfg=1984.3; //In KJ/Kg
+hg=2782.7; //In KJ/Kg
+Cps=2.3;
+me=ms/mf; //Equivalent mass evaporation
+hs=hf+x*hfg; //Enthalpy of wet steam in KJ/Kg
+E=((me*(hs-hfw))/2257); //Equivalent evaporation in Kg/Kg of coal
+hs1=(hg+Cps*(Tsup-Ts)); //Enthalpy of superheated steam in KJ/Kg
+E1=((me*(hs1-hfw))/2257); //Equivalent evaporation(with superheater) in Kg/Kg of coal
+etaboiler=((me*(hs-hfw))/CV)*100; //Boiler efficiency without superheater in %
+etaboiler1=((me*(hs1-hfw))/CV)*100;//Boiler efficiency with superheater in %
+
+
+//Output
+printf('Equivalent mass evaporation=%f \n',me);
+printf('Enthalpy of wet steam=%f KJ/Kg \n',hs);
+printf('Equivalent evaporation=%f Kg/Kg of coal\n',E);
+printf('Enthalpy of superheated steam=%f KJ/Kg \n',hs1);
+printf('Equivalent evaporation(with superheater)=%f Kg/Kg of coal\n',E1);
+printf('Boiler efficiency without superheater=%f percent \n',etaboiler);
+printf('Boiler efficiency without superheater=%f percent \n',etaboiler1);
diff --git a/3821/CH11/EX11.9/Example11_9.sce b/3821/CH11/EX11.9/Example11_9.sce
new file mode 100644
index 000000000..3f1142bae
--- /dev/null
+++ b/3821/CH11/EX11.9/Example11_9.sce
@@ -0,0 +1,34 @@
+///Chapter No 11 Steam Boilers
+////Example 11.9 Page No 237
+///Find Mass of steam consumption
+///Input data
+clc;
+clear;
+P=15; //Boiler produces steam in bar
+Tsup=250; //Boiler temperature in degree celsius
+Tw=35; //Feed water in degree celsius
+MWh=1.5; //steam supplied to the turbine
+CV=32000; //Coal of calorific value in KJ/Kg
+etaboiler=80/100; //Thermal efficiency in %
+fr=210; //Firing rate in Kg/m^2/h
+//From steam table(temp basis at 35 degree celsius)
+hfw=146.56; //In KJ/Kg
+Ts=198.29; //In degree celsius
+hfg=1945.2; //In KJ/Kg
+hg=2789.9; //In KJ/Kg
+Cps=2.3;
+
+
+//calculator
+hs=hg+Cps*(Tsup-Ts); //Enthalpy of superheated steam(with superheater) in KJ/Kg
+ms=9000/MWh; //Steam rate in Kg/MWh
+mf=((ms*(hs-hfw))/(etaboiler*CV)); //Mass of steam consumption in Kg/h
+GA=mf/fr; //Grate rate in m^2
+
+
+
+//Output
+printf('Enthalpy of superheated steam(with superheater)=%f KJ/Kg \n',hs);
+printf('Steam rate= %f Kg/h \n',ms);
+printf('Mass of steam consumption=%f Kg/h \n',mf);
+printf('Grate rate=%f m^2 \n',GA);